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Abstract

Background: Since experimental elucidation of gene function is often laborious, various in silico methods have

been developed to predict gene function of uncharacterized genes. Since functionally related genes are often

expressed in the same tissues, conditions and developmental stages (co-expressed), functional annotation of

characterized genes can be transferred to co-expressed genes lacking annotation. With genome-wide expression

data available, the construction of co-expression networks, where genes are nodes and edges connect significantly

co-expressed genes, provides unprecedented opportunities to predict gene function. However, the construction of

such networks requires large volumes of high-quality data, multiple processing steps and a considerable amount of

computation power. While efficient tools exist to process RNA-Seq data, pipelines which combine them to

construct co-expression networks efficiently are currently lacking.

Results: LSTrAP (Large-Scale Transcriptome Analysis Pipeline), presented here, combines all essential tools to

construct co-expression networks based on RNA-Seq data into a single, efficient workflow. By supporting parallel

computing on computer cluster infrastructure, processing hundreds of samples becomes feasible as shown here for

Arabidopsis thaliana and Sorghum bicolor, which comprised 876 and 215 samples respectively. The former was used

here to show how the quality control, included in LSTrAP, can detect spurious or low-quality samples. The latter

was used to show how co-expression networks are able to group known photosynthesis genes and imply a role in

this process of several, currently uncharacterized, genes.

Conclusions: LSTrAP combines the most popular and performant methods to construct co-expression networks from

RNA-Seq data into a single workflow. This allows large amounts of expression data, required to construct co-expression

networks, to be processed efficiently and consistently across hundreds of samples. LSTrAP is implemented in Python 3.4

(or higher) and available under MIT license from https://github.molgen.mpg.de/proost/LSTrAP

Keywords: Transcriptomics, Co-expression, RNA-Seq analysis, Large-scale biology, Network analysis, Gene function

prediction, Expression atlas

Background

Experimentally determining a gene’s function is labori-

ous and time consuming, therefore numerous in silico

methods have emerged to predict gene function [1].

Some methods assign functions based on sequence simi-

larity to known domains [2] or genes with a known

function [3], or matching protein structure to known

templates [4]. Furthermore, genes whose protein

products physically interact can be implicated to be part

of the same biological process [5]. Expression patterns

across various tissues, developmental stages and condi-

tions can shed light on when and where a gene is re-

quired, which in turn provides clues about the gene’s

function. To this end, numerous platforms emerged that

allow browsing such expression profiles (e.g. eFP

browser [6], Genevestigator [7] and PaGenBase [8]).

Genes involved in the same biological process are often

transcriptionally coordinated. Such co-expression rela-

tionships can be represented as networks [9], which

allow the function of characterized genes to be
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transferred to uncharacterized neighbours in the net-

work. This principle has successfully been used to pre-

dict gene function in various species from various

kingdoms [10, 11]. Finally, integrative methods have

been developed that leverage multiple types of evidence

to detect functionally coherent modules or co-function

networks [12, 13].

Expression based methods have been especially power-

ful as, since the onset of microarrays, they can be used to

simultaneously measure expression levels of thousands of

genes. However, expression of a substantial fraction (up to

40% for popular microarray platforms [10]) of genes might

not be captured by the microarrays, due to absence of

probes interrogating these genes. RNA sequencing (RNA-

seq) which does allow determining expression levels of a

near-complete set of genes has become the norm, as

RNA-Seq has become increasingly affordable.

To construct co-expression networks, a sufficiently

large set of different tissues, developmental stages, and

biotic/abiotic perturbations needs to be collected at a

sufficient read depth. While the bare minimum was esti-

mated to be >20 samples with >10 million reads, more

samples and higher read depth were found to increase

the predictive capabilities of the resulting network [14].

Currently, the number of RNA-Seq experiments in the

Sequence Read Archive (SRA) [15] is growing rapidly

and constructing RNA-Seq based co-expression net-

works has become feasible for various species [16–18].

While constructing expression atlases and co-

expression networks can facilitate gene function predic-

tion, it poses multiple challenges. First, after collecting

and annotating data, several tools (e.g. Trimmomatic

[19], Bowtie 2 [20] and TopHat2 [21]) need to be run

consistently across all samples. Furthermore, as process-

ing large quantities of RNA-Seq data requires a substan-

tial amount of computational power, parallelization of

jobs on a computer cluster is imperative for keeping

runtimes within reasonable limits. Finally, as the con-

struction of co-expression networks often relies on pub-

licly available data from various different sources, quality

metrics to detect potential problems with RNA-seq sam-

ples need to be implemented.

Co-expression networks, once established for multiple

species, have been combined with functional and com-

parative genomics [22]. For instance the comparison of

co-expression networks from tomato and potato has led

to the discovery of gene modules associated with ster-

oidal glycoalkaloids [23]. Furthermore, the merger of co-

expression networks with phylogenetic data revealed

how gene modules relevant for cell wall synthesis

evolved independently in mosses and land plants [24].

To address these challenges, we present the Large-

Scale Transcriptome Analysis Pipeline (LSTrAP), which

pre-processes RNA-seq data, maps it to the genome,

performs quality control and produces co-expression

networks, along with (optionally) functional and com-

parative genomics data to enable a host of downstream

analyses. A manual is included for users outlining steps

to configure the pipeline on their system for their data.

Furthermore, several additional scripts are included to

assist users to obtain pre- and post-process results. The

output from LSTrAP is compatible with third party ap-

plications such as Cytoscape [25] to mine networks for

novel biological information.

Implementation

LSTrAP runs all required steps to construct co-

expression networks for multiple species from raw

RNA-Seq expression data, using a single command. This

includes read-trimming, adapter cutting, read mapping,

generation of normalized expression profiles, the con-

struction of co-expression networks and the detection of

co-expression clusters (Fig. 1). The pipeline iterates over

all species and executes all steps that can be run in par-

allel as jobs on a computer cluster (default Oracle Grid

Engine (previously Sun Grid Engine [26]),with support

for PBS [27] / Torque [28]). Additionally, included qual-

ity control metrics indicate which RNA-seq samples are

potentially unsuited or of low quality.

Data acquisition

De-multiplexed RNA-seq data should be provided to

LSTrAP as (compressed) fastq files in one directory per

species. Publicly available expression data stored in the

Sequence Read Archive (SRA) [15] can be downloaded

in bulk using the Aspera download client and converted

to fastq format with get_sra_ip.py and sra_to_fastq.py

scripts, respectively (found in LSTrAP repository). Data

provided in other formats (such as BAM files) needs to

be converted to fastq using e.g. SAMTools [29], BED-

Tools [30] or Picard (http://broadinstitute.github.io/

picard).

Apart from expression data, LSTRaP requires the gen-

ome sequence in fasta format together with a gff3 file

describing where in the genome coding sequences are

located. Alternatively, a fasta file with coding sequences

can also be used and gff3 file can be generated with

helper script fasta_to_gff.py.

Note that for species with multiple splice variants, it is

recommended to keep either the primary or the longest

transcript representative for a given gene, as HTSeq-

Count [31], and therefore by extension LSTrAP, only

considers reads that unambiguously map to a single gene

model. Including splice variants will result in loss of

reads that map to shared parts of isoforms. Including

multiple splicing isoforms would reject reads that map

to more than one gene model. The script parse_gff.py in

the helper directory can be used to extract the longest
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splice variant from gff3 files. Additionally, to identify gene

families and group orthologs using OrthoFinder [32], a

fasta file with coding sequences for each transcript and a

file with the resulting proteins is required. Here, the fasta

header should contain only the gene identifier and match

the gene identifiers used in the gff3 file.

Preparing to run LSTrAP

To start the pipeline, two INI files need to be provided,

one describing paths to third party tools (such as

Trimmomatic [19] and TopHat2 [21]) and another spe-

cifying where to find the input data and desired output

paths (example files and detailed instructions are pro-

vided in the documentation). Prior to starting the pipe-

line, LSTrAP will inform the user of any missing fields

or paths. Once the input data and INI files are ready,

LSTrAP can be started. Additional parameters to skip

optional parts, resume from or stop at a given point are

available. All the steps are executed in order and without

further manual intervention.

Fig. 1 LSTrAP overview. All tools to process RNA-Seq data (green boxes) along with optional protein domain annotation and detection of ortho-

logs and gene families (blue boxes) are combined into a single workflow
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Running LSTRaP

Indexing the genome

For efficient mapping using TopHat2 [21] or HISAT2

[33], LSTrAP first creates a genome index file using

Bowtie 2 [20] or hisat2-build. Default parameters are

used to run Bowtie 2/hisat2-build, though different pa-

rameters can be provided through the configuration INI

file.

By default BowTie 2 and TopHat2 are used by

LSTrAP, add the parameter -use-hisat2 when running

LSTrAP to switch to HISAT2.

Quality trimming and adapter cutting

As data might originate from different labs, generated

using various protocols and sequenced using different

platforms, quality trimming is included to ensure all

samples adhere to the same minimal standard. To this

end, fastq files are first processed using Trimmomatic

[19] to ensure low quality bases are trimmed off. Fur-

thermore, Trimmomatic can remove residual adapter se-

quences (a file with potential adapters needs to be

specified, adapter-sequences for commonly used TruSeq

Kits are included). The desired settings for Trimmo-

matic (minimal required read length, quality trimming

parameters) can be set in the config INI file.

Read mapping

Trimmed reads are mapped to the indexed genome

using TopHat2 [21] or HISAT2 [33], which will create

BAM or SAM files containing the alignment of each

read with regions in the genome (or transcriptome). The

number of cores TopHat2/HISAT2 can use to process a

single sample, along with other parameters can be speci-

fied in the config INI. By default LSTrAP will start

TopHat2/HISAT2 using 4 cores and standard settings.

Gene expression and normalization

For each gene (as defined by the gff file), the number of

reads mapping uniquely to that gene are counted. To

this end, HTSeq-Count [31] is included in the pipeline,

which produces for each sample a file containing the

mapped reads per gene. LSTrAP aggregates those files

into a single (m x n) matrix containing the expression

value for each gene (m) in each sample (n).

Normalization for differences in sequencing depth be-

tween samples, and gene length is required. LSTrAP will

normalize the expression matrix using two commonly

used approaches; Transcripts Per Kilobase per Million

(TPM) and Reads Per Kilobase per Million (RPKM) [34].

Co-expression networks and clusters

LSTrAP includes a fast implementation, using NumPy’s

[35] matrix operations, to calculate Pearson correlation

coefficients (PCC), which has been found to be among

the most performant for RNA-Seq based co-expression

studies [14], based on the TPM normalized expression

matrix. The PCC value ranges from −1.0 to 1.0 where

zero means no correlation, positive values indicate vari-

ous degrees of correlation (1.0 being perfectly correlated)

and negative values correspond with anti-correlation

(−1.0 would be perfect anti-correlation). The result is a

table describing for each gene the 1000 strongest co-

expressed genes in the dataset. All pairs with a PCC

value >0.7 (the recommended setting when using MCL

on co-expression data) are stored separately and repre-

sent the global co-expression network, which is clus-

tered into groups of co-expressed genes using the MCL

algorithm [36]. Note that depending on the intended

use-case, applying additional, more stringent filters can

provide better results.

Functional and comparative features

To facilitate further functional studies, LSTRaP includes

InterProScan [2] as an optional part of the pipeline (Fig.

1, blue boxes). InterProScan will compare a gene’s pro-

tein product against a large database of known protein

domains, and report regions in the protein that match

entries in the database. Furthermore, Gene Ontology

terms (GO) associated with domains are assigned to

genes as well.

To enable comparative studies (e.g. Movahedi et al.

[37] and Ruprecht et al. [24]), orthologous genes (genes

derived through speciation events) are detected using

OrthoFinder [32]. Gene families (genes derived from a

common ancestor) are generated by using MCL [36] dir-

ectly on OrthoFinder’s BLAST output.

Results
Quality control

Unsuited or low-quality expression data can negatively

affect the final co-expression network [38]. To avoid in-

clusion of such samples, LSTrAP indicates which sam-

ples are potentially problematic based on two metrics;

the percentage of reads TopHat2 [21] (or HISAT2 [33])

is able to map to the genome and the fraction of those

reads that HTSeq-Count maps to coding sequences. For

example, samples from one species should map poorly

to the genome from another (low % of mapped reads re-

ported by TopHat2/HISAT2), while DNA sequencing

samples should map less to coding sequences than

polyA-enriched samples (low % of mapped reads re-

ported by HTSeq-Count).

To investigate if these metrics can discriminate suited

from unsuited samples, manually curated sets of positive

and negative samples were processed and compared. As

the positive dataset, 821 polyA-enriched, annotated

RNA-seq samples for Arabidopsis thaliana, were se-

lected from SRA archive. The negative dataset
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comprised 36 samples, (Additional file 1: Table S1, Add-

itional file 1: Methods S1). These include DNA-seq sam-

ples, other species than Arabidopsis thaliana, non-

polyA-enriched samples, samples derived from DNA

and different ecotypes of Arabidopsis thaliana.

We observed that the majority of the samples from the

positive dataset, which contains poly(A) enriched RNA-Seq

samples, (Fig. 2, gray points) have a higher fraction of reads

mapping to the genome and coding sequences, compared

to samples in the negative dataset (Fig. 2, Additional file 1:

Table S1). This indicates that for valid Arabidopsis thaliana

samples, over 65% of reads should map to the genome and,

of these, at least 40% of those reads should map to coding

sequences (Fig. 2, samples outside red areas). Reads from

samples from unwanted species map poorly to the Arabi-

dopsis genome (yellow and green dots), with one notable

exception: SRR1695529, Mycorrhiza infecting Arabidopsis

thaliana. This sample contained parts of Arabidopsis

thaliana roots, and thus a substantial amount of Arabidop-

sis thaliana RNA, as well [39]. Studies, which sequenced

only ncRNA and small RNAs (cyan dots), map poorly to

the genome. While relatively few reads from DNA derived

samples (e.g. WGS and CHiP seq. Purple dots) map to cod-

ing genes. Samples which are not poly(A) enriched (blue

dots) cannot be distinguished from poly(A) enriched sam-

ples using these metrics. Note that, samples that do not ful-

fil these criteria are still processed. To avoid falsely

excluding biologically meaningful samples, the final deci-

sion whether those samples should be used to construct

the co-expression network is left to the user. The suggested

cutoffs can be altered in your data INI file.

Construction of a co-expression network for Sorghum

bicolor

To exemplify we included the following use case;

poly(A) enriched RNA-seq runs for Sorghum bicolor

Fig. 2 TopHat’s % reads mapped and HTSeq-count’s (% of reads mapped onto coding genes) for Arabidopsis thaliana. Gray dots indicate samples

included in the positive dataset, containing only Arabidopsis thaliana, poly(A) enriched samples. Other samples, generally considered un-suited for

the construction of co-expression networks are indicated by other colors. Samples derived from related organisms are shown in yellow, while

samples from pests infecting Arabidopsis thaliana are shown in green. Arabidopsis thaliana samples from DNA-seq derived samples are shown in

purple while non-poly(A) enriched samples are shown in cyan (samples enriched for various types of non-coding RNA) or blue (whole RNA

extracts). The exact mapping values are provided in Additional file 1: Table S1. LSTrAP by default warns users if samples with low mapping statis-

tics are included (red areas in graph, HTSeq-Count <40% or TopHat <65%)
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were downloaded from the SRA [15] (215 samples in

total), and manually determined the tissue type (e.g.

root, leaf, flower) from each experiment’s description

(Additional file 1: Method S1, Additional file 1: Table

S2). All samples, along with Sorghum’s genome se-

quence [40], were processed using LSTrAP using default

settings. Trimmomatic [19], with a minimum read

length of set to 36 (the default in LSTrAP), excluded 11

runs since all reads in these runs were shorter than 36

bases, leaving 204 samples. An additional 17 samples

were of insufficient quality based on the mapping statis-

tics (Additional file 1: Figure S1), and were therefore

excluded from the final network. The resulting co-

expression network and TPM normalized expression

matrix were used for further analysis.

First, a principal component analysis (PCA) of the ex-

pression matrix (Additional file 1: Method S2, Fig. 3a) re-

vealed a clear separation of photosynthetic and non-

photosynthetic tissues. As expected, samples derived from

the same tissue tend to end up in proximity of each other

in the plot. Furthermore, replicates cluster together (dar-

ker colors indicate overlapping nodes) and no outliers,

which would indicate potential problems, were present.

Alternatively, a hierarchically clustered heatmap

Fig. 3 PCA analysis and node degree distribution of the Sorghum bicolor samples and co-expression network, respectively. a Principal Component

Analysis of all Sorghum samples color coded by the tissue sampled. b Power law plot of the PCC > 0.7 co-expression network, where node degree

and node frequency are shown on the x- and y-axis, respectively

Fig. 4 Co-expression neighborhood for Sb01g004330.1 (blue node). Nodes represent genes, while edges connect co-expressed genes. To easily

visualize the neighborhood, we have decreased the number of genes co-expressed Sb01g004330.1 by increasing the PCC threshold to >0.925
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(Additional file 1: Figure S2) can be generated to show re-

lations between samples and detect potential outliers.

Biological networks, including co-expression networks,

often follow a power-law behavior (also called scale-free

or small worlds networks), where few nodes have many

connections (so called hubs in the network) and many

nodes have few connections [41, 42]. We plotted the fre-

quency (number of genes) of the node degree (number

of connections a node has) for the Sorghum network,

considering only edges with PCC > 0.7 (Additional

file 1: Method S3). Similarly to the co-expression net-

work of A. thaliana (Additional file 1: Figure S3), the

Sorghum co-expression network also follows power-

law behavior, indicated by the points in Fig. 3b form-

ing a straight line. Hence the co-expression network

has the expected topology.

Finally, to investigate whether the co-expression net-

work can capture biologically meaningful information,

we have investigated co-expression neighbors of

Sb01g004330.1 PSAD-1 (Fig. 4), a photosystem I subunit

required for photosynthesis. Directly connected to this

gene are several other known components of Sorghum’s

photosynthetic apparatus, but also three uncharacterized

genes. The latter would be excellent candidates for fu-

ture studies, as based on their position in the network

they are likely involved in photosynthesis as well.

Discussion

LSTrAP offers a single command solution to process a

large volume of RNA-Seq samples and construct co-

expression networks. Researchers working on species for

which no co-expression networks exist, can construct

one based on publically available data, similarly to the

case study presented here on Sorghum bicolor. These co-

expression networks can predict gene function, and thus

help to identify relevant candidate genes in biological

processes of interest and guide future experiments.

Smaller datasets, e.g. sampling a wild-type & mutant

or control & treatment, which are insufficient to con-

struct a co-expression network, can be prepared effi-

ciently in LSTrAP for detection of differentially

expressed genes (DEG). Read trimming, mapping and

counting are shared among the RNA-Seq analyses.

Therefore, running the pipeline up-to-and-including

HTSeq-Count provides a simple one-step solution to ob-

tain processed RNA-Seq data compatible with methods

allowing DEG detection, such as DESeq2 [43].

As RNA-Seq technology and tools continues to im-

prove future releases of LSTrAP will focus on includ-

ing new and better tools into this workflow.

Furthermore, downstream steps could be added to fa-

cilitate users in their quests to explore the generated

co-expression networks.

Conclusions
Expression profiles and co-expression networks have

been proven to be valuable tools to predict functions of

uncharacterized genes. However, building these net-

works using thousands of RNA-Seq samples was imprac-

tical. LSTrAP allows quick processing and quality

assessment of large multi-species datasets to produce

biologically meaningful co-expression networks. By fur-

ther integrating functional and comparative data,

LSTrAP enables the study of co-expression networks in

a broad evolutionary context.

Additional file

Additional file 1: Figure S1. Quality statistics for Sorghum bicolor

samples. Gray dots indicate quality statistics of the samples based on

HTSeq-Count and TopHat. Samples below our suggested quality control

(contained within red areas in plot) were excluded from the final net-

work. Figure S2. Dendrogram and heatmap of Sorghum bicolor sample

distances. The helper script matrix_heatmap.py calculates the Euclidean

distance between samples and plots a hierarchically clustered heatmap

of those sample distances. This can be used to detect outliers. Here the

most divergent samples (in the top left) are valid pollen and seed sam-

ples which are known to have a unique transcriptional profile. Figure S3.

Node degree distribution of the Arabidopsis thaliana samples co expres-

sion network. Co-expression networks are known to have few nodes with

many connections to other genes and many genes with few connec-

tions. For the co expression network of Arabidopsis thaliana based on the

positive samples, this behavior can clearly be observed. Table S1. Nega-

tive Arabidopsis thaliana dataset. The columns correspond to SRA run IDs

for the samples, short description (description and type) and mapping

percentages for TopHat and HTSeq-count. Table S2. Sorghum bicolor

samples with organ annotation. Overview of all Sorghum bicolor samples

used, organized by organ the samples were derived from. Methods S1.

Data source and curation. Methods S2. PCA analysis of expression data.

Methods S3. Power law. (DOCX 411 kb)
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