
UC Irvine
ICS Technical Reports

Title
LT revisited : explanation-based learning and the logic of Principia mathematica

Permalink
https://escholarship.org/uc/item/7pf3q93t

Author
O'Rorke, Paul

Publication Date
1989-07-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pf3q93t
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

LT Revisited:
----~

Explanation-Based Learning and

the Logic of Principia Mathematica 1

PAUL O'RORKE (ORORKE@ICS.UCI.EDU)

Department of Information & Computer Science

University of California, Irvine 92717

(Technical Report Number 88-29)

November 14, 1988

Last Revised: July, 1989

Printed: July 10, 1989

ABSTRACT

)) (\ .

This paper describes an explanation-based learning (EBL) system based on a version of

Newell, Shaw and Simon's LOGIC-THEORIST (LT). Results of applying this system

to propositional calculus problems from Principia Mathematica are compared with

results of applying several other versions of the same performance element to these

problems. The primary goal of this study is to characterize and analyze differences

between not learning, rote learning (LT's original learning method), and EBL. Another

aim is to provide a characterization of the performance of a simple problem solver in

the context of the Principia problems, in the hope that these problems can be used as

a benchmark for testing improved learning methods, just as problems like chess and the

eight puzzle have been used as benchmarks in research on search methods.

1 To appear in Machine Learning. Preliminary versions of some of the results presented here were

originally published in the Proceedings of the Fourth International Conference on Machine Learning.

This paper is based on work supported in part by the National Science Foundation under grant NSF IST

83-17889, by a Cognitive Science/ AI Fellowship from the University of Illinois, by a McDonnell-Douglas

University External Relations contract, and by an Irvine Faculty Fellowship from the University of Cali

fornia, Irvine Academic Senate Committee on Research.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. THE DOMAIN: PRINCIPIA MATHEMATICA ... 1

3. THE PERFORMANCE ELEMENT: LT, THE LOGIC THEORIST 2

3.1. Schemata .. 2

3.2. Problem Solving 4

3.2.1. Substitution and Matching ... 5

3.2.2. Detachment 6

3.2.3.

3.3

Chaining .. .

An Example: Principia-2.17 .. .

6

6

4. THE LEARNING METHODS 9

4.1 LT Plus Rote Learning .. 9

4.2 LT Plus Explanatioh-Based Learning 10

5. METHODOLOGY 13

5.1 Evaluating the Results of Problem Solving 13

5.2 Characterizing the Search for a Solution 14

5.3 Comparing the Generality of Learned Solutions 16

6. LIMITED SEARCH WITH THE IMPLIES RESTRICTIONS 17

6.1 Results on the Number and Quality of the Solutions 18

6.2 Results on Search Performance 20

6.3 Discussion of Limited Search Under the IMPLIES Restrictions 20

7. ON THE EFFECTS OF REMOVING THE IMPLIES RESTRICTIONS 25

7.1 Results on Number and Quality of Solutions and Search 25

7.2 Discussion on the Effects of Lifting the IMPLIES Restrictions 27

8. ON THE EFFECTS OF ALLOWING EXTENDED SEARCH 27

8.1 Number and Quality of Solutions and Search Performance 28

8.2 Quality of Learning 30

9. ON THE EFFECTS OF IGNORING INSTANCES .. 34

10. SUMMARY 36

10.1. Characteristics of the Domain, Problems, and Performance and

Learning Elements .. 36

10.2. Summary of Experiments and Results .. 37

11. RELATION TO OTHER WORK 40

11.1. Prior and Parallel Work . 40

11.2. Future Work ... 41

12. CONCLUSION ... 43

ACKNOWLEDGEMENTS .. 45

APPENDIX 1: AXIOMS AND PROBLEMS FROM PRINCIPIA 46

APPENDIX 2: EXAMPLES OF IMPROVEMENTS IN PERFORMANCE

DUE TO EBL 48

REFERENCES 50

1

1. Introduction

There is widespread agreement that explanations can form the basis for powerful

learning strategies. A new subfield of machine learning called explanation-based

learning (EBL for short) has begun to exploit this idea (see, e.g., (2, 4, 16]). To date,

however, there have been few experiments on EBL involving more than a few

examples. 1 Experiments involving the application of complete EBL systems to large sets

of problems from challenging domains are needed in order to demonstrate claims about

the advantages of EBL and to discover the limitations of proposed EBL methods.

This paper reports on an EBL experiment in a logical domain. The experiment

involves complete machine learning systems built around one of the earliest, simplest

AI problem-solvers: Newell, Shaw, and Simon's LOGIC-THEORIST (LT). Results of a

comparison of the performances of three versions of LT (corresponding to non-learning,

rote learning, and explanation-based learning) on a large number of problems are

given.

2. The Domain: Principia Mathematica

The domain of this experiment is the propositional calculus of Alfred North

Whitehead and Bertrand Russell's Principia Mathematica (31]. The calculus deals

with a set of expressions or well-formed propositional formulae built upon a set of

variables that are supposed to stand for arbitrary propositions such as "Agrippina

killed Claudius." Complex propositions are built up by using connectives such as NOT

(-), AND (/\), OR (V), and IMPLIES (:J).

Valid propositions are called theorems. It turns out that the theorems of the

propositional calculus can be built up from an initial set of theorems called axioms. An

example of an axiom is Principia 1.2 P V P:JP. This axiom, called the principle of

tautology, states that if either P is true or P is true, then P is true. An example of a

theorem is Principia 2.01 (P:JP):JP. This states that if P implies its own falsehood

then P is false. It is called the "principle of the reductio ad absurdum" or reduction to

absurdity.

Theorems are derived from the axioms by applying rules of inference. Detachment,

or modus ponens, is a rule of inference that allows one to infer B if one has A and

A:JB. Another rule allows substitution of any expression for a variable in any

theorem. Other rules allow replacement of definitions for defined connectives (e.g.,

P V Q for P:JQ). A derivation of a theorem is called a proof. A proof of a desired

theorem can be written as a sequence ending in that theorem where each step in the

sequence is either an axiom or else follows from previous steps by a rule of inference.

Alternatively, the proof can be depicted as a tree whose root is the desired theorem

where each node in the tree is either an axiom or follows from its offspring by an

inference rule.

1 Minton's work on MORRIS [13] and on PRODIGY [14, 15] are noteworthy exceptions.

I
J

2

Complete lists of the axioms and problems used in our experiments are provided in

appendix 2. Note that Whitehead and Russell use a labeling scheme (originally due to

Peano) involving numbers with integer and decimal parts. The integer part indicates

the chapter of Principia containing the axiom or theorem. The axioms and theorems

used in the experiments are from the first, second, and third chapters of part one of

Principia. The decimal indicates the ordering within a chapter and was used to make

insertion easy, avoiding relabelling. Note that, under the decimal notation used to

sequence the theorems in Principia, 2.11 comes before 2.2 (even though 11 is greater

than 2).

One of the advantages of propositional logic is an advantage of mathematics in

general, namely high levels of abstraction and generality. When one learns arithmetic

one is learning something that will apply to an extremely wide range of tasks, from the

mundane (e.g., choosing best buys at the grocery store) to the esoteric (e.g., performing

basic calculations in the astrophysics of black holes). Similarly, propositional logic is an

abstract, general theory of deduction. One can apply logic in infinitely many definite,

specific domains by specifying propositions that provide details about particular

subjects. Any learning that takes place at the logical level can thus be applied in many

domains.

Another advantage of propositional logic is that the number of problem solving

operators required for complete coverage of a large set of problems is small. This

feature facilitates the execution of large scale experiments because it is not necessary to

hand code new operators in order to introduce new examples.

The particular logical system of Principia Mathematica has the added advantage

that a very simple and natural theorem prover exists, which can be used as the

problem-solving performance element in learning experiments.

3. The Performance Element: LT, the Logic Theorist

According to Donald Loveland's Automated Theorem-Proving: A Quarter-Century

Review [12], Newell, Shaw, and Simon's The Logic Theory Machine [20] (hereafter

referred to as LT) was the first publication reporting results of a computer program

that proved theorems. LT solved problems (proved theorems) in the propositional

calculus of Principia Mathematica. This section is a brief description of how a simple

version of LT works, in the terminology of schema-based problem solving.

3.1. Schemata

In this context, a schema is merely a collection of related descriptions. Each LT

schema has three descriptions (in this case, descriptions are well-formed formulae of

propositional calculus) related by a logical dependency. The dependency states that

one description, (the consequence of the schema) is true if both of the others (the

antecedents) are true. LT uses only two schemata: a detachment schema and a

chaining schema (see Figure 1). The detachment schema captures modus ponens and

is comprised of X, Y, and X::>Y, where Y depends on X::>Y and X. The chaining

schema captures the transitivity of implication, and is comprised of X::>Y, Y::>Z, and

3

y x:::>z

x:::>y x X:JY Y:JZ

Figure 1. The Detachrrent and Chaining Schennta

X:JZ, where X:JZ is true if both X:JY and Y:JZ are true.

Po

A
To pl

A
Tl P2

'•

.............

Figure 2. The Structure of LT's Proofs

4

3.2. Problem Solving

LT's mission is to construct a proof of a given conjecture, building it out of

detachment and chaining schemata, axioms, and previously proven theorems. LT's

proofs are always linear trees similar to the one shown in Figure 2. The leaves (labelled

T 0 ... T
1
) are all taken from the set of known theorems. Each schema (labelled S.)

correspo~ds to a step in the proof and can be considered to reduce a problem (P.) to
1
a

simpler one (Pi+l) as in Figure 3.
1

Given a problem, LT first considers whether the problem is an instance of a known

theorem. If not, the problem is matched against the conclusion of a schema such as

detachment. If the match succeeds, the resulting substitution is applied to the

conclusion and to both antecedents of the schema. The result of applying the

substitution to one of the antecedents is then matched against known theorems until a

match succeeds. The resulting substitution is applied to the other antecedent, and it

becomes a new subproblem.

Figure 3 shows the details. If a match between a known theorem and the current

problem P. succeeds, the problem is considered to be solved immediately by

substitutio~. Otherwise, LT chooses a schema S. and a known theorem T., such that

the problem is an instance of the schema's c6nclusion C. and the th~orem T. is

compatible with one of the schema's antecedents A.. If () i~ the most general unilier

(MGU) [8, 25] of C. with P. and of A. with T., th~ result of applying 8 to the other
1 1 . 1 1

New Problem Pi+l is Bi(},

where (} is the MGU of C. with p. and of A. with T.
l l 1 l

A.: T.
l l

c.: p.
l l

Figure 3. One Step in the C-Onstruction of a Proof

5

antecedent Bi becomes the new problem Pi+l'

3.2.1. Su~titution and Matching

In attempting to use known theorems to solve problems, our version of LT uses

matching (one-way unification [8]) in order to determine whether a given problem is an

instance of a known theorem. If it is, the matcher returns a substitution that specifies

the variable bindings that map the known theorem into the problem.

In order to avoid solving a special case of a problem instead of solving the problem

in its full generality, the matcher treats variables in the initial problem as if they were

constants. For this reason, while the matcher is able to specialize a variable P in a

theorem to a pattern fJ in a problem, it is unable to bind the expression fJ in a

theorem to the expression P in a problem. This is in contrast with full (two-way)

unification, which could return substitutions instantiating variables from both the

known theorem and the problem expressions.

It is important to note that the matcher and unifier incorporated in our version of

LT go a bit beyond simple unification. The matcher has some information about the

meaning of the logical connectives, but other information is reserved for the logic of

Principia. The matcher decodes defined symbols such as AND and IMPLIES, so it can

recognize that P~Q should match p V q. However, the matcher does not recognize

that variables can be replaced by their negations without altering the validity of a

theorem, and it fails to match P and P because information about double negation is

unavailable to it. The logic itself, rather than the matcher, deals with most logical

relationships. In conjunction with the detachment inference rule, the fact that double

negations can be added or stripped away is encoded in Principia-2.12 P~P and

New Problem Pi+l is X (}

where(} is the MGU of Y with Pi and of X~Y with Ti

Figure 4. A Detachm:mt Step

6

Principia-2.14 P:JP. The fact that P is logically equivalent to P 1s encoded m

Principia-4.13.

In the analysis of the initial experiments reported later in this paper, it became

apparent that restrictions on matching that were included in Newell, Shaw and Simon's

LT and in all our initial versions of LT had a significant effect on the initial

experimental results. These restrictions required that matches associated with the

detachment and chaining operators only be done on known theorems in the form of

implications, so we call them "IMPLIES restrictions."

3.2.2. Detachment

LT extends a proof by means of a detachment schema in only one way: given a

problem, LT looks for a known implication2 whose conclusion subsumes the problem. If

such a theorem is found, its antecedent becomes the new problem (see Figure 4). This

amounts to applying a detachment operator corresponding to modus ponens run

backward.

3.2.3. Chaining

The chaining schema can be used in two ways to extend the proof, so in effect LT

has two chaining operators corresponding to transitivity of implication inference rules.

Both operators attempt to prove an implication of the form X:JZ. Chaining forward,

(Figure 5), involves trying to show that an immediate consequence of X implies Z. In

contrast, chaining backward (Figure 6) tries to show that X implies an immediate

antecedent of Z.3

3.3. An Example: Principia-2.17

For a concrete example, consider the operation of LT on Principia-2.17:

(Q':JP) :J(P:JQ). This is the only if part of an important tautology called

contraposition [5], which states that the contrapositive Q':JP holds if and only if the

implication P:JQ holds.

2 To be more specific, LT scans the known theorems looking for theorems that have IMPLIES as the

top level connective - matching their conclusions against the problem. This strategy contains IMPLIES

restrictions carried over from the original LT. The alternative is to match the problem against a variable

Y representing the conclusion of the detachment schema. This match yields a substitution () for Y.

Next, the entire list of known theorems, including patterns whose top level connective is not IMPLIES, is

scanned - matching known theorems against X:JYB. Since the matcher decodes defined symbols such

as IMPLIES, it is possible for known theorems that are not expressed as implications to match the impli

cation associated with the detachment schema, so the IMPLIES restrictions inhibit some applications of

the detachment operator that would otherwise occur.

3 The IMPLIES restrictions associated with chaining are as follows. In the original LT (and in our

initial versions) chaining was not invoked unless the problem to be solved had IMPLIES as its top level

connective. Furthermore, known theorems used in chaining were required to have IMPLIES as their top

level connective.

7

New Problem Pi+l is Y:JZ 8,
where 8 is the MGU of X:JY with T. and of X:JZ with p.

x:Jz: p.
1

1 1

Figure 5. A Chaining Forward Step

New Problem Pi+l is X:JY 8,
where ()is the MGU of Y:JZ with T. and of X:JZ with p.

x:Jz: p.
1

1 1

Figure 6. A Chaining Backward Step

8

Princi pi a-1. 4: (Q'-:J P)-:J (P-:J Q') (P-:J Q')-:J (P-:J Q)

Principia-1.6: ((J-:JQ)-:J((P-:Jlj)-:J(P-:JQ)) Principia-2.14: Q'-:JQ

Figure 7. The Proof of Principia-2.17

LT proves Principia-2.17 by chaining forward (see Figure 7): it proves that the

contrapositive (J-:JP implies an intermediate result that eventually leads to the original

implication P-:JQ. The first link of the chain is supplied by an instance of the axiom

Principia-1.4: (AV B)-:J(B VA). With A bound to (J, and B bound to P this yields

(Q' V P)-:J(P V rJ). By the definition of the implication connective, P V rJ is the same

as P-:J(J; this serves as the intermediate step in the chain from (J-:JP to P-:JQ.
Chaining forward transforms the initial problem into the problem of proving

(P-:J(J)-:J(P-:JQ).

Next, the detachment operator is used. The detachment operation amounts to

performing modus ponens backwards, so a theorem is needed whose conclusion

subsumes the current subproblem~ The conclusion of axiom Principia-1.6:

(A:JB):J((C V A):J(C VB)) meets this requirement. With C bound to P, A bound to

Cj, and B bound to Q, the axiom becomes ((J-:JQ)-:J((P:JQ)-:J(P:JQ)). Detachment on

Principia-1.6 transforms the problem of proving (P:JQ'):J(P-:JQ) into the problem of

proving Q':JQ. Assuming Principia-2.14 is known, (J-:JQ is the final subproblem

because it is an instance of Principia-2.14.

The example just discussed may leave the impression that no search is involved in

finding proofs. Of course this is not correct. Theorem provers are notorious for

searches involving high branching factors, and LT is no exception. LT performs

breadth first search: when it uses its operators and known theorems to expand the

unsolved· subproblem in a partial proof, it generates a number of new partial proofs

9

each with one new subproblem. These subproblems are checked to see whether they

are instances of known solutions and if not, they are added to the end of a queue of

incomplete proofs to be worked on later.

4. The Learning Methods

The goal of this paper is to present results of computational experiments aimed at

evaluating the performance of several versions of the problem solver described in the

previous section. In particular, the problem solver and the problems discussed

previously are used to compare two learning strategies - rote and explanation-based

learning. The following sections describe the details of these learning strategies.

4.1. LT Plus Rote Learning

In Human Problem Solving [19], Newell and Simon describe experiments on LT

augmented with simple forms of learning. They mention that perhaps the simplest

learning method is to make LT's list of known theorems variable, modifying LT so as to

add new theorems onto the list, so that " ... in proving a sequence of theorems, LT

would gradually become more capable" [19].

When problems encountered are simply added to memory one is left with the

distinct impression that no "understanding" or "thinking" is taking place during

learning. For this reason,/one can consider this sort of learning strategy to be a form of

rote learning. Our version of LT incorporating this form of learning is called ROTE

LT, or just ROTE.

There are a number of different variations of rote learning, many of them

corresponding to different answers to questions about the storage of learned results. In

general, our initial approach was to duplicate as closely as possible the original learning

method used by Newell, Shaw, and Simon so that we could validate our initial

implementation by comparing overlapping results. As we gained experience with the

particular version of ROTE used in both the original and the present studies we

noticed that this version has two major features that have some impact on

experimental results. These features correspond to ROTE's answers to the questions

"what is to be stored?" and "how are learned results to be stored?".

VWiat is to be stored? The particular version of ROTE learning used here allows

ROTE to use all prior theorems in its attempts on each new theorem, whether it had

succeeded in proving them or not. In this strategy, since all problems encountered are

stored, each new problem is reduced to one that has been seen before.

This strategy appears to be appropriate for the Principia problem sequence

because this sequence has been carefully constructed so that all of the problems in it

are solvable.4 In addition, the problems appear to form a sequence in order of

4 We ran our version of the problem set through a truth table validity tester in order to check our

translations of Whitehead and Russell's arcane, obsolete notation. This validity tester verified that the

problems are all theorems, so the problems are all solvable in the sense that each theorem is provable.

10

increasing difficulty. The solutions to later problems often depend on solutions to

earlier problems. In other words, the strategy of using all prior problems in attempts

on each new problem appears to be appropriate here because the problems present LT

with a controlled learning situation such as one might encounter in learning from a

teacher. One can imagine relatively uncontrolled learning situations where this

strategy would be less appropriate, especially if previous problems were not solved. For

example, in learning by discovery conjectures are made that may turn out to be false

and problems are posed that may not be solvable even in principle. In such situations,

it might be more appropriate to try a variation of ROTE in which only solved problems

are stored. In this alternative strategy, each new problem is reduced to one that has

been solved before.

How are learned results to be stored? The ROTE learning version of LT adds new

theorems to the end of a list of known theorems. In order to make comparisons

simpler, all our learning systems (including the EBL version of LT described in the

next section) add learned theorems to the end of a list. This will be seen to have

important consequences for the performance of the learning systems (see, e.g., section 9

On the Effects of Adding Instances in Rote Learning).

4.2. LT Plus Explanation-Based Learning

One problem with rote learning systems is that they tend to be very sensitive to

the particular form of the examples they observe. Extraneous details of specific

examples tend to be retained as well as essential facts. This can cause failure to

recognize that a solution to one problem can also be used for an?ther problem because

the problems differ in trivial ways. One would prefer to forget about the extraneous

details and to remember only the essentials of an example. The basic idea of

explanation-based learning is that one can do this by constructing and using

explanations. When one conducts an analysis and constructs an explanation of how

and why a solution solves one particular problem, one is better prepared to see the

general class of problems that the method can be successfully applied to.

LT can be augmented with EBL by focusing on explanations instead of focusing on

problems. The explanations are LT's proofs, considered as structures built out of

schemata. The EBL version of LT ignores the specific theorem that gave rise to a

proof. Each proof is considered in its full generality in order to compute the most

general theorem that can be concluded on the basis of the proof. The generalized

conclusion of an LT proof can be defined recursively as follows. The generalized

conclusion of an elementary proof (a proof that states that the desired conclusion is an

instance of a known theorem) is simply the known theorem itself. The generalized

conclusion of a complex proof is the result of simultaneously unifying one antecedent

with a known theorem and the other antecedent with the generalized conclusion of the

subproof (see Figure 8).

In particular, the generalized conclusion of a proof by detachment is the result of

simultaneously unifying one of its antecedents (X:JY) with some known theorem (T.)

and the other antecedent X with the generalized conclusion (Gi_
1

) of the subprodf.

J

11

Generalized Conclusion G. is c. (},
l l

where (} is the MGU of A. with T. and of B. with G.
1 l l l 1-

A.: T.
l l

B.: G.1
l 1-

Figure 8. The Generalized Conclusion of One Step of a Proof

Generalized Conclusion G. is Y (},
l

where Bis the MGU of X:JY with T. and of X with G.
1 1 1-

Y: G.
l

X: G· 1
1-

Figure 9. The Generalized Conclusion of a Detachimnt Proof

The simultaneous unification results in a substitution which is then applied to the

conclusion Y of the detachment schema to produce the generalized conclusion of the

detachment proof. (See Figure 9.) In forward chaining, X:JY is unified with a known

theorem while Y:JZ is unified with the generalized subconclusion to obtain a

substitution that is applied to X:JZ. In backward chaining, the roles of X:JY and Y:JZ

are reversed.

12

For a concrete example, reconsider the proof of Principia-2.17, (Q":::JP)-:J(P:JQ).
Recall that the proof involved two steps: chaining forward on Principia-1.4 reduced the

original problem to a subproblem that was solved by detachment on Principia-1.6 and

Principia-2.14. Computing the generalized conclusion also involves two steps: first the

generalized conclusion of the detachment subproof must be computed, then the

generalized conclusion of the overall chaining forward proof can be determined.

The generalized conclusion of the detachment step is computed by unifying

Principia-2.14 '!5-::JD with the antecedent A-:JB of Principia-1.6,

(A-:JB)-:J((C V A):J(C VB)). This unification binds A to '!5, and B to D. The

conclusion of Principia-1.6, in the context of this substitution, becomes the generalized

conclusion of the detachment step, namely (CV '!5)-:J(CV D). The generalized

conclusion of the entire proof is computed by chaining forward on Principia-1.4

(EV F):J(FV E) and the generalized conclusion of the subproof (CV !J)-:J(C VD).

The conclusion of Principia-1.4 plays the role of the middleman, and is unified

with the antecedent of the generalized conclusion of the detachment. That is, F V E is

unified with C V '!5: F is bound to C while E is bound to '!5. The generalized

conclusion of the chaining forward step kicks out the middleman and goes directly from

EV F, the antecedent of Principia-1.4, to CV D, the conclusion of the generalized

conclusion of the detachment step, in light of the unifications in force. Substituting

(IJ:JC)-:J(C VD)

Principia-1.4: (D-:JC):J(C V IJ) (CV !J)-:J(C VD)

Principia-1.6: ('!5-:::JD)-:::J(C V IJ)-:J(C VD) Principia-2.14: IJ-:JD

Figure 10. The Generalized Conclusion of the Proof of Principia-2.17

13

C for F and 'IJ for E in (FV E):J(C VD), the generalized overall conclusion is

('[JV C):J(CV D). By the definition of implication, this can also be seen as

('IJ::J C) :J (C V D) as shown in Figure 10.

For a discussion of differences in the generality of learning in EBL versus rote

learning please see subsection 5.3 on comparing the generality of learned solutions m

the section on Methodology

5. Methodology

The experiments reported here involve the application of three different versions of

LT to propositional logic problems from Principia Mathematica. All three versions of

LT start with the same axioms (the same initial set of known theorems). However, the

first (non-learning) version of LT is not allowed to learn from its successes or failures.

No new theorems are added to the list of known theorems. The non-learning LT

attempts to solve each new problem by reducing it to one of the original axioms. The

second version is allowed a form of rote learning: problems are added to the list of

known theorems whether they are solved or not. The rote learning LT attempts to

solve new problems by reducing them to problems it has seen before. The third version

augments the basic LT by the simple form of explanation-based learning described

earlier. Of, course EBL is useless when the search for a solution (i.e. proof) fails, so rote

learning is resorted to in this case. However, when a novel theorem is proved, the

generalized conclusion of the proof is added to the list of known theorems. 5

The main questions asked are:

• What are the number and quality of the solutions found?

• What is the nature of the search for solutions?

• What is the quality of the learning?

The following subsections give details of measurements taken in an attempt to answer

these questions. The measurements are intended to make the questions more concrete

and well defined so that they can be answered by experiment.

5.1. Evaluating the Results of Problem Solving

For each problem in Principia, a record is made concerning whether each version

of LT solves or fails to solve the problem in a limited search. Total numbers of

problems solved and not solved are computed; methods that solve more problems are

judged to be better. Detailed analysis is done in case one method fails to solve a

problem solved by another method contrary to expectations.

5 It is important to note that the same basic problem solving machinery (LT) is being used in each

version. LT is admittedly primitive by modern standards of problem solving and theorem proving but

our main interest is in differences in performance between no learning, rote learning and EBL systems,

not in the particular performance element. All the learning and non-learning systems are handicapped

by LT's lack of sophistication. In particular, all systems use the same matcher. Simplicity of the shared

performance element is an advantage in debugging and analysis.

14

If a proof of a theorem is found, a measure of the quality of the proof is recorded.

Short (shallow) proofs are considered to be higher quality than long (deep) proofs.

Thus, the quality of a proof is measured by computing the depth of the proof. When a

problem is an instance of a known theorem, the proof is by substitution and is

considered to be of depth zero. Proofs requiring one application of detachment or

chaining are considered to have depth one, and so on.

5.2. Characterizing the Search for a Solution

In this section, we describe search measures used in this study to evaluate the

effectiveness of knowledge acquired by different learning strategies. The measures are

intended to address the issue of whether the knowledge added by learning reduces or

increases search.

LT does breadth first search, maintaining a queue of untried problems. Counts

are maintained of the number of problems generated and attempted. Before a newly

generated subproblem is added to the queue, it is checked to see whether it is an

instance of a known theorem. Problems are dequeued and attempted by applying LT's

operators: first the detachment operator is applied, followed by chaining forward and

then chaining backward. Each of these operators may produce new subproblems which

may be added to the queue of untried problems. Search is restricted by limiting the

number of problems attempted.

Whether the problem is solved or not, the total number of subproblems generated

and the number of problems attempted in each search for a solution are recorded and

used to compute the average branching factor for that problem. This is a simple ratio

- namely, the number of subproblems generated divided by the number of problems

attempted. This average branching factor measure reflects work done in exploring

many search paths, not just the one that ultimately led to a solution.

One of our aims in using these measures is to avoid any possible dependence of our

results on the particular implementation platform we are using, partly because we want

to be free to run experiments on different classes of machines. The experiments

discussed in this paper have been run on Xerox Lisp Machines, various Suns and other

Unix machines such as Sequents. In fact, the experiments have been carried out with

programs written in different dialects of LISP and PROLOG. Using machine and

language independent measures of performance has the practical .advantage that it

facilitates comparisons of results: old experiments need not be re-run when new

experiments are done using new implementations.

More importantly, we distrust alternative measures such as CPU time because we

believe they are highly dependent on details of the implementation that have little to

do with the methods under study. It is not just that the absolute values of measures

such as CPU time depends on the particular machine; we are more concerned that

differences in machines may manifest themselves in different relative orderings of the

values obtained for machine dependent measures. Different implementation platforms

often have different strengths and weaknesses. We want our measures of performance

to focus on the relative strengths and weaknesses of different learning methods and to

15

be immune to differences in hard ware. We also want our measures to be independent

of software such as operating systems, programming languages, interpreters, and

compilers.

The numbers of subproblems generated and attempted can be thought of as

machine-independent, "absolute" measures of the amount of search done by LT in

solving or attempting to solve a particular problem. The number of problems

attempted includes the original problem and any subproblems taken off the breadth

first search queue. When a problem is taken off the queue, operators are tried in an

effort to generate new subproblems. If a subproblem is not an instance of a known

solution it is placed at the end of the queue to be attempted later. The number of

problems generated is generally larger (sometimes much larger) than the number

attempted; typically many problems remain on the queue when a problem is solved or

search is abandoned.

The average branching factor can be thought of as a "relative" measure of the

amount of search done in attempting to solve a given problem. Since it is the ratio of

the number of subproblems generated divided by the number attempted, a larger

branching factor indicates that a given method produces more new subproblems for

each subproblem attempted. It is important to note, however, that one search method

can easily generate and attempt many more subproblems than another search method

applied to the same problem, while still yielding the same average branching factor.

For example, if method A generates 10 problems in 1 attempt and method B generates

100 problems in 10 attempts, they both have the same average branching factor: 10/1

= 100/10 = 10. In fact, the absolute measures of search can be much higher, while the

relative measure is lower. Method C might have a branching factor of 5 because it

generates 500 subproblems in attempting 100. In absolute terms, method C has done

more work than methods A and B, but since the average branching factor is a ratio, it

is lower for method C.

Since one method may be superior with respect to the relative measure (average

branching factor) yet inferior to another method with respect to the absolute measures

(goals attempted and subgoals generated), or vice versa, in general both the absolute

and the relative measures of "amount of search" are important. All of these measures

are taken and the results are plotted and analyzed in each of our experiments.

However, it turns out that in the experiments reported on here, when one method is

superior in that it generates fewer subproblems per problem attempted, this method is

also superior in the absolute sense; it also attempts fewer problems and generates fewer

subproblems. In the interests of economy of presentation, we have chosen to present

only graphs of average branching factors in order to reduce the amount of data

presented in this paper. The average branching factor is used rather than the

alternative search measures because it has the advantage that it combines information

from the other measures (it is a ratio of the subproblems generated and the number of

problems attempted). In presenting only the relative measure, great care was taken to

ensure that this measure is not misleading. In particular, graphs of each of the

measures taken in each experiment were inspected to ensure that relationships that

16

hold between the average branching factors of competing methods also hold for the

corresponding absolute measures.

5.3. Comparing the Generality of Learned Solutions

In addition to measuring the quality of search and the quality of the solutions

found, measurements of the quality of learned results are taken. Generality is taken to

be an indication of quality, although it is really an empirical question whether more

general learning leads to higher performance.

Some measures used for making comparisons between rote and explanation-based

learning have been discussed previously (see the previous subsection (5.2) on

characterizing the search for a solution). These measures are indirect in the sense

that they measure problem solving performance to gauge the effects of learning. The

differences between ROTE and EBL are measured more directly by recording and

comparing the things that are learned. The theorems learned by EBL degenerate to

the input theorem in cases when no proof is found. When a non-trivial proof (i.e., a

proof with non-zero depth) is found, the generalized conclusion is computed and the

generality of the result is compared to the generality of the corresponding result of rote

learning.

A purely syntactic measure of generality is used for the comparison. Please see

[24] for a fully detailed description of this measure.

In brief, generality is measured by using one-way matches between the theorems

learned by EBL and the theorems learned by ROTE. The theorems are considered as

terms, and we focus on the syntax of these terms. The one-way matches determine

whether the theorem learned by ROTE is an instance of the theorem learned by EBL

and vice versa. If a one-way match returns a substitution showing how to bind

variables in term E so as to get term R, then we say R is an instance of E, and E is as

general as R. A priori, one can see that when EBL works at all, it provides theorems

that are at least as general as the original problems. The original problems are always

instances of the generalized conclusions .of their proofs. So if R is the result of ROTE

learning and E is the corresponding result of EBL, a one-way match will always

succeed, yielding a substitution showing how to specialize Eby binding its variables so

as to produce R.

The question is whether the substitution mapping the result of EBL into the result

of ROTE simply changes the names of the variables. ff both one-way matches

comparing two terms succeed, then the terms are said to be variants. If they are

variants, one differs from the other only because it has different names for the other's

variables. In this case they are instances of each other and so they are equally general.

If they are not variants, the theorem learned by EBL is strictly more general than the

corresponding theorem learned by ROTE and the substitution list computed by the

successful one-way match (call it B) shows how to specialize the EBL result to get the

one learned by ROTE.

Note that the measure of relative generality used here is not quantitative in the

sense that numbers are not assigned to generality. Instead the measure specifies a

' !

!

17

partial ordering on terms. As will be seen in examples given later, a qualitative

understanding of the relative generality of two terms can be gained by looking at

difference substitutions mapping one term into another. For example, when three

variables in a term learned by EB L are replaced by a single variable in the

corresponding term learned by ROTE, it is clear that three things which could vary

independently collapse to a single variable with some loss of generality. Note also that

the measure is syntactic in the sense that it ignores the semantics of the functions and

predicates involved. For example, the fact that P can be replaced by P everywhere in

a theorem without changing its validity is ignored, as are other logical relationships

such as the fact that P and P are logically equivalent.

As an example, consider the results of rote and explanation-based learning on

Principia-2.17:

Principia-2.17: (lj-:JP)=:J(P-:::JQ)
Generalized Conclusion: (I5-:JC)-:::J(C VD)

The ROTE LT simply adds Principia-2.17 to its list of known theorems. The EBL LT

computes the generalized conclusion shown above and adds it. A one-way match shows

that these two learned results are not equally general. Matching yields the substitution

B= {DIQ ,GIP}. The generalized conclusion is strictly more general than the problem

because the problem contains an extraneous negation. The NOT in P is not really

necessary. A detailed comparison of the generality of some results learned by ROTE

and EBL is presented in subsection 8.2 on quality of learning.

Increases in the generality of learned results make a difference in future

performance. Recall that when LT attempts to use known theorems in solving

problems, it does one-way matches, treating the variables in the problem as if they

were constants in order to avoid solving a special case of a problem instead of solving

the problem in its full generality.

For an artificial example of how differences between EBL and ROTE can make a

difference in future performance, imagine that (q:Jp)-:::J(p V q) is given as a new

problem, after Principia-2.17 has been solved. The EBL LT would immediately

recognize it as an instance of the generalized conclusion above. But a one-way m~tch

between this new problem and Principia-2.17 would fail, because the p in the problem

cannot be specialized to P. As a result, EBL would solve the problem immediately,

while ROTE might be forced to regenerate the proof of Principia-2.17. For uncontrived

examples of improvements in performance due to increased generality of learned results,

please see appendix 2 on examples of improvements in performance due to ebl. This

appendix gives actual examples taken from the results of experiments described in the

following sections.

6. Limited Search With the IlVIPLIES Restrictions

The main goal of all our experiments is to find and exp~ain differences in problem

solving performance between non-learning (NL), rote c learning (ROTE), and

18

explanation-based learning (EEL) versions of LT. It was known from the work of

Newell, Shaw, and Simon that rote learning improves LT's performance dramatically

over not learning. Before EBL experiments were conducted, one researcher (a well

known partisan of empirical approaches to learning) conjectured that generalization

and performance would not improve in going from ROTE to EEL versions of LT on the

Principia problems because these problems are so general to begin with. 6 EEL

advocates expected some improvement in performance. The only question for

advocates of EBL was: how much would performance improve?

The experiments reported in this section involve severely limited search. To be

exact, the number of subproblems LT is allowed to attempt in its effort to solve each

Principia problem is limited to 15. 7 Limited search experiments are interesting because

people do not seem to search much; when they fail to find a solution fairly quickly in

problem solving, they tend to give up and go on. Another (stronger) reason for our

interest in limited search is that advantages of one method over another may be

magnified. For example, if one method requires more search than another to find a

solution to a particular problem, it may not find a solution at all when the search is

limited, so the difference in the percentage of problems solved may increase as search is

limited. T~e quality of the learned results and the search performance on later

problems will also be affected.

6.1. Results on the Number and Quality of the Solutions

LT solves far more problems with learning than without, and the learning versions

are roughly comparable in this respect. Of the 92 problems from Chapters 1-3 of

Principia attempted, the NL system solves 22 problems (22/92 = 24%), including one

problem not solved by ROTE (problem 31, Principia 2.41). 8 ROTE solves 70 problems

(76%), including 49 problems not solved by NL. EBL solves everything that ROTE

solves and more (73 problems in all, or 79%). (EBL picks up problem 31 and thus also

solves everything NL solves as well.)

Turning to the quality of the solutions found by LT, recall that quality is

measured in terms of the depth of the solution. Depth zero solutions involve

recognizing that a problem is an instance of a known theorem; these solutions are

considered the best. Depth one solutions involve one application of a schema such as

detachment, depth two solutions require two schemata, etc.

6 Pat Langley, personal communication at the Seventh Conference of the Cognitive Science Society,

Irvine, California, August 1985.

7 The number 15 was chosen because this small number severely restricts search, but no special rea

son existed for choosing 15 over, say, 10 or 20.

8 An analysis shows that ROTE fails to solve 2.31 in limited search because it misses an early proof

due to the IMPLIES restrictions. This, and several other anomalies in the results of this section

motivate the experiment reported in the next section. In the next section, it will be shown that when

the IMPLIES restrictions are lif~ed, this and several other odd results disappear.

19

Average Branch, New Problems Attempted :S 15, IMPLIES Restrictions, Unsolved

35

30

25

20

15

10

5

0

0 10 20

D NL Principia Problem Number

b. ROTE

OEBL

Figure 11. Limited Search Perforrm.nce on Unsolved Problems

With the single exception of problem 31, the proofs discovered by the ROTE LT

are always at least as short as the proofs discovered by the non-learning LT, and often

shorter. The ROTE and EBL proofs are of comparable quality, the same proofs being

found in most cases. Sometimes (viz Principia-2.49, 2.56, and 2.8) EBL produces

shorter proofs. EBL's proofs of these theorems are of lengths O, 1, and O, while ROTE's

are of length 1, 2, and 1, respectively. However, in other cases (namely Principia-2.68,

3.24, and 3.41) the ROTE proofs are shorter. EBL's solutions are of length 2, 3, and 2,

respectively, while ROTE's are of length 1. In other words, the differences in quality

between ROTE and EBL are mixed. They often get the same proof, but sometimes

20

ROTE finds a shorter one, sometimes vice versa. 9

The average depth of the 22 proofs found by NL is 26/22 or approximately 1.18.

The average depth of the 70 proofs found by ROTE is 48/70 or about 0.69. The

average depth of the 73 proofs found by EBL is 54/73 or about 0.74. Overall, ROTE's

superior solutions give it a slight advantage in solution quality over EBL, if we ignore

the problems solved by EBL but not by ROTE.

6.2. Results on Search Performance

The results on search performance are easier to understand if solved and unsolved

problems are considered separately. Figure 11 shows the search behavior of three

versions of LT on the problems they fail to solve. Each point on the graph corresponds

to an unsolved problem. The figure gives the "average branching factor", the number

of problems generated in the search divided by the number of problems attempted. In

the case of unsolved problems, the number of problems attempted is a constant, since

this parameter is limited to 16 (15 subproblems and the original problem) and search

has to be abandoned at that point when LT fails to find solutions. Thus, the average

branching factor is proportional to the number of problems generated in this case.

The fact that the ROTE curve is generally above the EBL curve and both are

always above the NL curve indicates that, in most cases, ROTE generates more

subproblems than EBL, which generates more subproblems than NL. When both

systems solve a problem, ROTE never attempts more subproblems than NL, and

ROTE almost always generates fewer (or the same number of) subgoals before a

solution is found.

In general, EB L does less search than ROTE, as measured in terms of problems

attempted, subproblems generated, and in terms of average branching factors (as

shown in Figure 12).10 However, there are a significant number of exceptions to this

rule, e.g., problems 86 and 87. Note also the relative flatness of the NL and EBL

"curves" for both solved and unsolved problems. This indicates that the number of

subproblems generated per problem attempted does not increase markedly with the

number of problems tried by NL and EBL, while it does increase in ROTE. 11

6.3. Discus.sion of Limited Search Under the IMPLIES Restrictions

This subsection contains interpretations and explanations of the experimental

results just described. Some of the explanations are hypothetical. Some are alternative

9 As will be explained more fully in the discussion of the results, this is another anomaly due to the

IMPLIES restrictions, motivating the next experiment.

10 Note that the graphs of measurements on solved problems are presented in a different graphical

format than that used for unsolved problems. In order to facilitate comparison of corresponding solu

tions, vertical lines connect corresponding points in the graph.

11 The relative flatness of the EBL curve turns out to be an anomaly. The next experiment lifts the

IMPLIES restrictions. The results will show that the EBL curve is relatively fl.at here only because the

IMPLIES restrictions prevent many results learned by EBL from being used in the search for solutions.

45

40

35

30

25

20

15

10

5

0

21

Average Branch, New Problems Attempted :S 15, IMPLIES Restrictions, Solved

.. .a .. ~

H

c:
~~

(!)

H ~ ~

"
~.a

" ~
"'

c: n. H c
c:

,~~

'~
... w~

r~

~~ p
I. ~

L~ 1)

~ t
C~D

c~ A ~ ,1 ~ ..i ~~

~ ~nra - e ~ n aP
...._,..._,

~~ '~ -.-. ~ ~ I ~ --- - .._._
-~ i...&.A ~

0 10 20 30 40 50 60 70 80 90 100

/:::,.ROTE

QEBL

Principia Problem Number

Figure 12. ROTE vs EBL on Solved Problem; in Linited Search

explanations of the same effects. Experiments in later sections of this paper are

designed to tease apart the magnitudes of the contributions of competing but not

necessarily incompatible alternatives.

In general, problems solved by the non-learning LT are also solved by the ROTE

version and problems solved by the ROTE LT are also solved by the EBL version. In

general, the solutions provided by EBL are superior to the solutions found by ROTE

and these are superior to the solutions found without learning.

The fact that ROTE proofs are as short as or shorter than proofs produced

without learning is not surprising; it is a consequence of the fact that LT does

breadth-first search and the ROTE LT needs only to reduce a problem to a previously

seen problem, whereas the non-learning LT has to reduce it to one of the original

axioms. ROTE has the advantage that the steps used in the proofs of the learned

theorems are not counted against it when the results of learning are used to solve later

22

problems.

Looking at the number of subproblems generated and attempted by each version

of LT, one sees increases in these "amounts of search" in going from non-learning to

learning in some cases and drops in other cases. The drops indicate that some learned

theorem is useful in solving a problem efficiently. The increases are due to the fact

that learned theorems increase the number of possible next steps in proofs. The

learning versions of LT generally have more ways of attempting to solve a problem.

When one of the early attempts succeeds, the problem is solved immediately and less

search is done. Otherwise, more attempts are made before a solution is found or search

is abandoned.

Relationships between the average branching factors are relatively easy to see in

the unsolved problems. The branching factors are relatively low for the non-learning

system, much higher in both learning systems, but significantly lower in EBL than in

ROTE. They appear to be relatively constant in NL, but increase with learning, more

quickly in ROTE than in EBL.

It may seem odd that the no learning performance is poor (it solves far fewer

problems) as compared to the learning systems when it seems to have a less difficult

search space (lower branching factor) to contend with. There are several reasons for

this. First, learned theorems enable the learning versions of LT to "see more deeply

into the search space." Search is limited and there are problems that cannot be· solved

without learning just because the required search exceeds the limit. The learning

versions of LT may be able to effectively exceed the limit because search done in

constructing the proof of learned solutions is not counted against searches that apply

these earlier solutions to solve later problems.

Another possible reason for the drastic improvement in performance in learning as

compared to non-learning has to do with LT's limited control strategy. LT is restricted

to producing linear proofs: each operator (detachment and chaining) uses a known

theorem in order to reduce a problem to a new subproblem. However, the learning

systems add to the initial axioms theorems that follow from the initial axioms by one or

more operations. This has the effect of allowing the learning versions of LT to break

out of this constraint so that the search for a solution is taking place in a radically

different search space, one which contains solutions that cannot be generated by the

non-learning version of LT.

Figure 13 shows an example of a proof that is within the search space of the

learning systems but denied to the NL LT. While NL does manage to construct an

equivalent proof, using chaining forward as a mirror image of chaining backward, this is

done at the cost of extra search.

An additional source of the improvement in performance in learning is that learned

solutions can increase the set of problems that can be solved. It is known that LT is an

incomplete theorem prover; in other words there are theorems that it cannot prove in

principle (even ignoring any limitations of the amount of search allowed). For example,

Principia problem 2.13 cannot be solved by LT. Adding such problems to the list of

known results covers for incompleteness in the theorem prover and leads to solutions of

23

2.3: (PV Q-:::JPV R)-:::J(PV Q:JRV P) 1.6: (Q:JR)-:::J(PV Q-:::JPV R)

1.4: (P V R-:::JR VP)

1.6 (PV R-:::JRV P)-:::J((PV Q:JPV R):J(PV Q-:::JRV P))

Figure 13. Rote-Learning and EBL Proof of Principia-2.36

problems that otherwise could not be solved.

Focusing on search performance differences between the learning systems, we note

that sometimes problems are solved by the EBL version alone, (for example, in this

experiment, Principia-2.16 and 2.18). Also, it is often the case that EBL finds proofs

with less search than ROTE, measuring the amount of search in terms of problems

attempted, subproblems generated, and in terms of average branching factor. One

possible reason for improvement in performance in EBL as opposed to ROTE is the

improved generality of the results of explanation-based learning.

Another possible reason for improvements in branching factors in going from

ROTE to EBL is that the ROTE LT adds instances of known theorems to the end of

the list of known theorems. Our initial ROTE LT did this because it is a simple,

natural way to do rote learning, but also because of historical reasons. The original

rote learning version of Newell, Shaw, and Simon's LT added every problem, regardless

of whether it was solved as an instance of a known theorem. This was not done in the

EBL version of LT because it violates a general principle of explanation-based learning

that might be paraphrased: only novel solutions to problems are worth remembering

[3]. Even without invoking EBL, however, there is no point in adding instances of

known theorems to the list of known theorems because any instance of an instance X of

Y is also an instance of Y. Or to put it another way, any "indirect" instance is also a

"direct" instance. Adding instances hurts by increasing the branching factor of the

24

search but provides no benefits, since the instances are added to the end of the list of

known theorems, rather than the beginning. Section 9, On the Effects of Adding

Instances in Rote Learning, reports on an experiment aimed at determining how much

of the difference between ROTE and EBL is accounted for by the fact that one adds

instances and the other does not. This experiment will show that the obvious way of

augmenting LT with ROTE learning is not the most effective way to do so. It turns

out that the obvious way of augmenting LT with EBL is not the most effective way, for

a different reason.

This was discovered when the examples where EBL missed superior solutions

found by ROTE were viewed as possible anomalies and explanations were sought. It

was hypothesized that the increased generality of results learned by EBL might get in

the way of finding a proof found by ROTE or NL. A detailed analysis, however,

80

60

40

20

0

Average Branch, New Problems Attempted = 15, No IMPLIES Restrictions, Unsolved

0 10 20 30 40 50 60 70 80 90 100

D NL

fl.ROTE

0EBL

Principia Problem Number

Figtu"e 14. Search Behavior Without the Il\.1PLIES Restrictions

25

revealed that LT had some restrictions in its use of problem solving operators and that

these restrictions seemed to interact with learning and to prevent some good proofs

from being found. The details of these restrictions were presented in footnotes in the

descriptions of the detachment and chaining operators in the section on LT, the

performance element. Briefly, LT requires subproblems to have IMPLIES as their top

level connective before it will attempt to reduce them using forward or backward

chaining. In addition, the known theorem used must also have IMPLIES as its top

level connective ([19], [30] page 24).12 These restrictions may have been incorporated in

the original LT in an effort to reduce the branching factor of the search. In the present

study, however, these IMPLIES restrictions were identified as culprits in some cases

where EBL missed solutions found by ROTE and it was hypothesized that the

restrictions might be responsible for a number of anomalies observed in the initial

experiments. Since EBL often learns theorems that are more general than their ROTE

counterparts, and many of these are not explicit implications, EBL was thought to be

more vulnerable to degradations in performance under the IMPLIES restrictions than

ROTE. The next experiment tests this hypothesis.

7. On the Effects of RenDving the Il\.1PLIES Rffitrictions

The initial experiment reported in the previous section compared improvements in

the behavior of a performance element augmented in obvious ways with rote and

explanation-based learning. Analysis of the results indicated that the obvious way to

combine a performance element with a learning method such as ROTE or EBL may not

always be the best way. It was expected that EBL would perform at least as well as

ROTE, if not better, but in the experiment ROTE outperformed EBL in some cases.

Analysis of the reasons for this surprise pointed to unexpected interactions between the

performance and learning elements in the EBL system. It was discovered that

restrictions in the performance element prevented some results learned by EBL from

being used in future problem solving. In this section, the restrictions in the problem

solver are lifted in order to determine the extent of their interference with EBL.

To be specific, in this section we lift LT's IMPLIES restrictions. Lifting these

restrictions has effects on LT regardless of whether or how it is learning. The question

is how much of an effect? How will the relationships between non-learning and the

competing learning strategies change?

7.1. Rffiults on Nwnber and Quality of Solutions and Search

With the IMPLIES restrictions lifted, NL solves 26 of the 92 problems (24%),

ROTE solves 71 (77%), and EBL solves 74 (80%). EBL solves everything solved by

ROTE and ROTE solves everything solved by NL. ROTE no longer gets superior

solutions; EBL gets two solutions of length zero where ROTE has solutions of length

one.

12 The resulting subproblem is, by definition, an explicit implication, but it may ground in (match

with) a known theorem that is not an implication.

26

As in the first experiment, it is easier to understand the search results by

considering the solved and unsolved problems separately. Figure 14 shows the search

behavior of three versions of LT on unsolved problems. Lifting the IMPLIES

restrictions has substantial impact. The branching factors are much higher, especially

in the learning systems. EBL's average branch now seems to increase with learning at

nearly the same rate as ROTE, whereas under the IMPLIES restrictions its branching

factor curve seemed relatively flat. In addition, the relationships between the various

systems are simpler: the ROTE curve is now always above the EBL curve and it in

turn is always above the NL curve.

Turning to solved problems, Figure 15 shows the search behavior of ROTE versus

EBL. EBL does less search than ROTE on every problem now, as measured by

problems generated, subproblems attempted, and by average branching factors. The

exceptions observed in the initial experiments no longer occur once the IMPLIES

60

40

20

0

Average Branch, New Problems Attempted :S 15, No IMPLIES Restrictions, Solved

0 10 20 30 40 50 60 70 80 90 100

~ROTE

0EBL

Principia Problem Number

Figure 15. ROTE vs EBL Without the Il\.1PLIEB Restrictions

27

restrictions are lifted.

7.2. Discussion on the Effects of Lifting the ll\1PLIES Restrictions

Lifting the IMPLIES restrictions tends to increase branching factors, as reflected

in the numbers of problems generated in limited attempts on the unsolved problems.

However, this is offset by the fact that the new subproblems generated sometimes lead

to early proofs. This sometimes makes the difference, in limited search, between solving

or not solving a problem. In other cases it means that a shorter proof is found.

Since problems must be reduced to the initial axioms when learning is disallowed,

changes in behavior noted in the non-learning system are due solely to the fact that

chaining is allowed to work on subproblems that are no longer required to be

implications (the initial axioms are always implications). In ROTE, changes are due to

both types of the IMPLIES restrictions, but the effect of the requirement that known

theorems be implications is muted by the fact that almost all of the Principia problems

are implications. Thus, once they are learned, they can be used even under the

IMPLIES restrictions. In the EBL system, however, lifting the IMPLIES restrictions

leads to much more pronounced changes in performance, because many of the theorems

learned are not implications. Many of the theorems learned by EBL are disjunctions

more general than implications; they can be specialized to implications.

EBL does significantly more search than ROTE in some cases due to the fact that

the IMPLIES restricted LT fails to put the results of explanation-based learning to full

use. LT only uses the chaining schema to solve problems when they have the form of

implications. In addition, it only uses known implications in chaining, in order to

transform problems into new subproblems. These restrictions effectively prevent the

EBL LT from finding some legitimate proofs by preventing LT from using some of the

theorems learned by EBL. Thus, in the remaining experiments discussed in this

paper, the IMPLIES restrictions are lifted.

The general significance of the results of this section is that one cannot expect to

get a high performance learning system by simply adding an explanation-based learning

element to an existing performance element. It is important to check whether the

performance element is capable of making full use of the generalizations provided by

explanation-based learning. Hidden restrictions in the performance element can block

the effective application of knowledge acquired by EBL.

8. On the Effects of Allowing Extended Search

It is important to determine whether the relationships observed so far are

dependent on the fact that search was restricted rather severely in the previous

experiments. Increasing the search limits should enable each version of the problem

solver to solve more problems. What else happens when the search limits are relaxed?

What happens to the differences in performances of the learning systems? In this

section, we loosen the limits on search. Instead of only attempting the first 15

28

Average Branch, New Problems Attempted =200, No IMPLIES Restrictions, Unsolved

100

80

60

40

20

0

0 10 20 30 40 50 60 70 80 90 100

D NL. Principia Problem Number

b,. ROTE

OEBL

Figure 16. Search Behavior on Unsolved Problem; in Extended Search

subproblems, 20013 subproblems may now be attempted.

8.1. Number and Quality of Solutions and Search Performance

As in limited search, NL solves far fewer problems than the learning methods; all

problems solved by NL are solved by ROTE, and ROTE solves many problems

13 Note that the IMPLIES restrictions are not in force in this section. Note also that the limit of

200 was arrived at empirically and has no special theoretical significance. Several numbers much larger

than 15 were tried. It was found that 200 (as opposed to a limit of, e.g., 1000) is small enough that ex

periments can be done in reasonable computing time. On the other hand, 200 is large enough that cer

tain experimental results obtain. In particular, 200 provides enough search resources so that the percen

tage of problems solved by the learning methods exceeds 90% and the difference in the number of prob

lems solved by the learning methods goes to zero.

,, I

29

unsolved by NL. NL solves 35 of 92 (38%) while the learning systems each solve the

same 84 problems (91 %). The difference with respect to problems solved by the

learning systems goes to zero with extended search.

Figure 16 shows the search behavior of NL, ROTE, and EBL on the problems they

fail to solve. The ROTE and EBL curves have points at the same X coordinates since

they solve the same problems. The NL curve is denser because it solves fewer problems

than the learning systems.

The branching factor observed in NL seems to be roughly constant and much

lower than the sharply increasing branching factors of the learning systems. ROTE

does more search as indicated by subproblems generated and attempted (not shown).

EBL's branching factors are uniformly below those of ROTE (as shown in Figure 17).

One important reason for this is identified in section 9 on the effects of adding

80

60

40

20

0

Average Branch, New Problems Attempted S 200, No IMPLIES Restrictions, Solved

0 10 20 30 40 50 60 70 80 90 100

fl.ROTE

QEBL

Principia Problem Number

Figure 17. ROTE vs EBL on Solved Problem; in Extended Search

30

instances in rote learning.

Another reason is the fact that EBL can learn strictly more general results than

ROTE. This can lead to superior performance as shown in appendix 2: Examples of

Improvements in Performance Due to EEL. In brief, the fact that the difference in

the number of problems solved between EBL and ROTE goes to zero as the search

limit goes up is due to the fact that EBL only improves efficiency over ROTE. EBL

has an efficiency advantage in case the best solution of a new problem requires an

instance of a more general result learned by EBL and this instance is not an instance of

the corresponding result learned by ROTE. If the search limit is low enough in this

situation, EBL will find a solution where ROTE fails to find one. If the search limit is

increased, both will find a proof because if the search limit is high enough ROTE can

always get the necessary lemma by reconstructing the original proof.

8.2. Quality of Learning

A comparison of the quality of the results learned by ROTE versus those learned

by EBL is shown in Table 1.14 Recall from the discussion in the subsection on

Comparing the Generality of Learned Results in the section on Methodology that EBL

results are always at least as general as the results of ROTE learning, and that EBL

can yield strictly more general results. Note that EBL is not attempted in many cases,

specifically in cases where the original problem is an instance of a known theorem and

in cases where no proof is found. The following comparison focuses on the theorems

learned by EBL versus ROTE in the remaining cases.

The column labelled "Problem" in the table shows the problem numbers from

Principia. The column labelled "EBL vs ROTE" shows an "=" if EBL and ROTE

learn equally general theorems; it shows "> " if EBL learns a strictly more general

result. The next column shows the theorem learned by EBL. When EBL learns a

strictly more general result than ROTE, the column labelled "()" shows a difference

substitution; applying this substitution to the theorem learned by EBL yields the

theorem learned by ROTE. The substitution () may be interpreted as showing the

overspecialization which results from using ROTE rather than EBL.

In the results of this particular experiment, one sees that while many theorems (25

of 56, or about 45%) learned via EBL are no more general than the given problems, in

many cases (31 of 56, about 55%) the theorem added by EBL is strictly more general

than the theorem added by ROTE.

How are the results of EBL more general? In many cases (e.g., Principia-2.06)

EBL produced a variant of the original problem, minus an extraneous negation. The

EBL version of LT acquires the theorem P V Q V (r:r=rtf, V (P V R)) from the solution

14 These results are from the experiment with extended search (the number of new problems at

tempted was limited to 200). Similar results on the quality of learning obtained in other experiments

have been omitted for brevity. These particular results were chosen for presentation because more prob

lems are solved and hence more explanation-based learning occurs in relatively extended search, so there

are more opportunities to compare the different learning methods.

31

Table 1: C-Omparison of Theorems Learned by EBL vs ROTE.

EBL

Problem vs Theorem Learned by EBL B

ROTE

2.06 > PV<JV(QVRV(PVR)) {P/p,Q/q,R/r}

2.08 = P-:JP

2.11 = PVP

2.14 = P-:JP

2.16 > PV Q:J(JV P {P/p,Q/q}

2.17 > PVQ:JQVP {P/p,Q/Q}

2.18 = (P-:JP):JP

2.2 = P-:JP V Q

2.24 > PV (PV Q) {P/:0.Q/q}

2.25 = PV (PV Q:JQ)

2.3 = P V (Q V R)-:JP V (RV Q)

2.31 = PV (Q V R)-:J(PV Q) V R

2.32 = (PV Q) V R:JPV (Q V R)

2.36 = (P:JQ):J(RV P-:JQ V R)

2.37 = (P-:JQ)-:J(P V R-:JR V Q)

2.38 = (P-:JQ):J(P V R-:JQ V R)

2.4 = PV (PV Q):JPV Q

2.41 = PV(QVP):JQVP

2.45 = J.J v <J-:JP

2.46 = J.JV<J-:J{J

2.47 > P V U:JPV R {P/p,Q/q,R/ol

2.48 > P V Q:JR V {J {P/p,Q/q ,R/p}

2.521 > J.J V <J V (rJ V R) {P/p,Q/q,R/p}

2.53 = P V Q :J(P-:JQ)

2.54 = (P-:JQ):JP V Q

2.55 = P-:J(P V Q-:JQ)

2.56 = P:J(Q V P-:JQ)

2.6 > PV (r:JV (RV Q)) {Plv,Qlo.RJPVGl

2.61 > PV Q:JPV Q V Q {P/p,Q/q}

2.621 = (P-:J Q) :J (P V Q :J Q)

32

Table 1: C-Omparison of Theorems Learned by EBL vs ROTE (ctd.)

EEL

Problem vs Theorem Learned by EEL a
ROTE '

2.64 = P V Q :J(P V {J"::JP)

2.67 > P V CJ V R V (P V R) {P/p,Q/q,R/q}

2.68 > P V Q V R V (P V R) {P/p,Q/q,R/q}

2.69 > PVQVR:JRVPVP {P/p,Q/q,R/q}

2.73 = (P'::JQ)'::J((PV Q) V R:JQ V R)

2.76 = P V (Q '::JR) :J(P V Q :JP V R)

2.81 = (P'::J(Q '::JR)):J(S V P'::J(S V Q '::JS V R))

2.83 > P V (CJ V R) V (P V (R V S) V (P V (Q V S))) {P/p,Q/q,R/rS/s}

2.85 > P V CJ V (R V S) :JR V (rJ V S) {P/p,Q/q,R/p,S/r}

3.12 > PV (Q V PV CJ) {P/p,Q/Ql

3.21 > PV(QVQVI') {P/p,Q/Ql

3.22 > PV<JV<JV? {P/p,Q/Q}

3.24 > PVP {Plw

3.26 > PVQVP {P/p,Q/Ql

3.27 > PV av Q {Pli),Q/q}

3.3 > P V <JV R'::JPV (Q V R) {P/p,Q /Q,R/r}

3.31 > PV (Q V R)'::JPV <JV R {P/p,Q/q,R/r}

3.33 > P Y <J V Q V R V (P V R) {P/i),Q/q,R/r}

3.34 > PV Q V JI:'VPV (RV Q) {P/p,Q/q,R/r}

3.35 > PVPYUVQ {P/p,Q/q}

3.37 > .t' Y <J V R'::JP V RV Q {Pli),Q!G,R/r}

3.4 > PVrJV(RVQ) {P/p,Q/q,R/w

3.41 > PVQV(PVRVQ) {P/p,Q/q,R/r}

3.42 > PVQV(RVPVQ) {P/p,Q/q,R/r}

3.43 > .f'Y <JV P\l RV (PV UV R) {P/p,Q/q,R/r}

3.45 > PV Q:JP \l RV Q V R {Plii.Q/q,RJ;:}

33

of 2.06. The problem, (p:Jq):J((q:Jr):J(p:Jr)), is an instance of this theorem with Q
bound to q, R bound to r, and P bound to p. (This is the meaning of the difference

substitution in the theta column of Table 1.) The ROTE LT demands a negation that

is not required by the proof.

The EBL version of LT offers only modest improvements over ROTE in such

examples because it is well known that one can reverse the sign of a literal everywhere

in a theorem to get a new theorem. One could easily modify the ROTE LT to take

advantage of the fact that whenever a literal appears only negatively in a Principia
problem, one can safely delete the negative sign to obtain a logically equivalent but

syntactically more general problem.

In a number of cases, however, there is no such simple fix that the ROTE LT

could use to obtain theorems as general as those acquired by the EBL version. For

example, in a number of cases, ROTE unnecessarily collapses two or more variables

into one. Problem 36, Principia-2.47, is j)Vq:J(p:Jq). The EBL version of LT acquires

P V Q :J[P V R) from the proof. The problem is obtained as an instance by

substituting p for P and by binding both Q and R to q.

In other cases rote learning results in more interesting overspecializations. In these

examples, variables are not simply collapsed by ROTE; instead they are required to be

related logically in complicated ways when they really should be completely

independent.

In Problem 42, one variable ~s made to be the negation of another when they

should be independent and neither need be a negation. The problem (Principia-2.521)

is p:)q;J(q:Jp). The generalized conclusion of the proof is P V Q V [lJ V R). These

match with bindings of P to p, Q to q, and R to p.

In Problem 4 7, three independent variables are specialized by effectively making

one into a negation of an implication between the qthers and by requiring one to be a

double negative. The problem (Principia-2.6) is P':J(q:J((p:Jq):Jq)) and the generalized

conclusion of the proof is P V (Q :J(R V Q)). These results of rote and explanation

based learning match with P bound top, Q bound to q, and R bound to ii=J'q.

With LT's IMPLIES restrictions loosened, the improved generality afforded by

EBL leads to performance that is superior to that of the ROTE version of LT.15

Sometimes the EBL system solves problems that could not be solved by the ROTE

system due to limits on search. Sometimes both ROTE and EBL solve the problem but

the EBL solution is found earlier in "the search. In some of these cases, the EBL

solution is of higher quality than the solution provided by ROTE. The quality of

solutions found by the learning systems in extended search is not discussed in this

section. Instead, this comparison will take place in the next section, in the context of a

comparison between EBL and a version of rote learning that produces the same

solutions as the present ROTE system using a more efficient search.

15 For detailed discussions of examples of how EBL improves performance, see the appendix on "Ex

amples of Improvements in Performance Due to EBL."

100

80

60

40

20

0

34

Average Branch, New Problems Attempted = 200, No IMPLIES Restrictions, Unsolved

0 10 20 30 40 50 60 70 80 90 100

0 ROTE, no instances

D NL

Principia Problem Number

/:lROTE

OEHL

Figure 18. The Effects of Adding Instances During ROTE Learning

9. On the Effects of Ignoring Instances

·Two sources of the improved performance of the EBL over ROTE have been

identified. The improved generality of learned solutions helps, as does the fact that

EBL does not add instances. In this section, we report on an experiment that isolates

these sources of improvement by allowing the rote learning LT to avoid learning

instances of known theorems.

The results on quantity and quality of solutions for improved ROTE are the same

as for ROTE because the improved ROTE gets exactly the same solutions, it just gets

them more efficiently. ROTE should never produce shorter proofs than EBL because

our performance element does breadth-first search and the theorems learned by EBL

are always at least as general as those learned by ROTE. Some (5/84, or roughly 6%)

35

of the 84 proofs discovered by EB L are shorter than the proofs provided by improved

ROTE. On the five problems where they find solutions at different depths, ROTE had

depths of 2, 1, 2, 2, and 1 while EBL had depths of 1, 0, 1, O, and 0, respectively. The

average depth of the 35 NL proofs was 61/35 (1.74), the average depth of the ROTE

proofs was 77 /84 (0.92), and the average of the EBL proofs was 71/84 (0.84).

Figure 18 shows the search behavior of ROTE (without adding instances) on

unsolved problems superimposed on that of the systems previously studied. The

numbers of problems attempted and subproblems generated by improved ROTE are

both substantially reduced by not adding instances. Figure 19 shows the resulting

differences in average branching factors between improved ROTE and EBL on solved

problems.

Average Branch, New Problems Attempted :S 200, No IMPLIES Restrictions, Solved

60

40

20
0

~
0

0

0 10 20 30 40 50 60 70 80 90 100

<>ROTE, no instances
Principia Problem Number

OEBL

Figure 19. Improved ROTE vs EBL on Solved Problems in Extended Search

36

The results on search behavior indicate that adding instances accounts for much of

the decrease in branching factors that occurs in going from the original ROTE to EBL.

While EBL does uniformly less· search than the original ROTE system on both solved

and unsolved problems, EBL tends to do slightly more search than the improved

ROTE method. This is always the case on the unsolved problems, and often the case

in solved problems as well. However, exceptions in the solved problems occur when

EBL pays off by enabling the problem solver to hit upon a solution earlier in the

search. As a result, EBL generates 1850 fewer subproblems than the improved ROTE

method and attempts 67 fewer problems overall on the problems solved by both

methods. Since ROTE with no instances generates 17485 subgoals and attempts 565

problems, EBL still yields additional improvements of roughly 11 % and 12%

respectively overall.

The bottom line seems to be that, for a small increase in search on most problems,

one can buy large decreases in search on some problems and improved solutions on

some problems by using EBL rather than the improved rote learning procedure.

10. Summary

This section summarizes the contributions of this study toward an empirical

understanding of explanation-based learning (EBL). Much of the early work on EBL

involved partially implemented learning systems and most of the early EBL systems

worked on only a small set of examples. Yet the superiority of EBL over alternative

learning strategies (including no-learning) often seemed to be taken for granted. The

experiments reported here were originally undertaken in an attempt to treat the

relationship of EBL to alternative learning methods as a question to be decided

empirically. The initial EBL version of LT was one of the first complete EBL systems

to run on more than a handful of problems. Our aim in analyzing EBL's performance

and in comparing it to other learning systems on the same set of problems was to get

results that would eventually facilitate the construction of useful AI systems that learn.

It was hoped that tests involving large numbers of problems would help determine the

effectiveness of EBL and help determine whether the encouraging results of initial

prototypes scaled up to problem solvers that used EBL to tackle long sequences of

problems.

The results on the Principia problems presented in the present paper are part of

an effort to provide a baseline characterization of the performance of learning methods

such as rote and basic EBL on these problems. It is hoped that this will make it

possible to use the Principia problems as a benchmark for testing improved learning

methods, just as problems like the eight puzzle have been considered the Drosophila or

fruit fly of research on search in AI [11].

10.1. Characteristics of the Domain, Test Problems, and Performance and
Learning Elements

It might be nice to make grand general claims of the form "learning method X is

universally superior to all other forms of learning." No such claim can follow from

37

experiments, however, because one can only test a given learning method against a

limited set of competitors, in the context of a limited set of performance elements, on

limited sets of test data. It would make no sense to claim that the performance

element used in these experiments is a "representative" performance element. It would

make even less sense to claim that the problems used in this study are "typical"

problems. Performance elements and problem domains vary dramatically. Thus the

interpretation of the results of this study must be carefully qualified. The aspects of

the domain, test problems, performance element, and learning strategies that seem

most relevant to our results are:

• The domain is a highly abstract, purely logical one and the problems are very

general, involving variables for propositions rather than concrete propositions

like "Agrippina killed Claudius."

•The problems form a carefully constructed sequence arranged in order of in

creasing difficulty so that solutions to later problems follow naturally from solu

tions to earlier problems. All of the problems are solvable (though not neces

sarily by LT).

• The performance element is a schema-based problem solver. The schemata

are comprised of propositional terms related by logical dependencies. A small

number of schemata are required, namely two.

• The performance element uses breadth first search. The solutions (proofs)

have a linear structure.

• The results of learning are added to the end of a list of known solutions. The

, performance element is allowed to use all prior problems in ROTE learning.

• EBL reverts to ROTE when problems are not solved. No subgoal learning is

tried (either within or between trials). EBL learns generalized conclusions rath

er than condition/action rules. There is no postprocessing of the results of

EBL.

10.2. Swmnary of Experiments and Results

The overall goal of the four experiments reported in this paper was to compare no

learning, rote learning, and explanation-based learning (EBL) versions of LT, focusing

in particular on the relationship between EBL and ROTE. The experiments

systematically vary three parameters corresponding to whether the performance

element was allowed to perform extensive amounts of search, whether certain

restrictions were involved in determining whether operators should be applied, and

whether instances were learned by ROTE.

38

The first experiment involved severely constrained search. The search was limited

partly because people do not seem to attempt large numbers of subproblems during

problem solving and EBL was originally developed with human performance and

learning in mind. Another reason search was initially limited was that we hypothesized

that differences in learning methods might be magnified because improved search

efficiency can make the difference between success and failure when search resources

are limited.

The results of the limited search experiment showed that the learning methods

improved the performance of the problem solver. The learning systems solved more

than three times as many problems as the non-learning system, with EBL solving

slightly more problems than ROTE. The no learning system had a roughly constant

and relatively low branching factor. EBL's branching factor was relatively fiat but

higher. ROTE learning had a branching factor increasing roughly linearly in the

number of learned results. The no learning system produced lower quality solutions

requiring more operators than both learning systems, but the comparison of the

learning systems gave mixed results: sometimes EBL was better, sometimes ROTE.

These results surprised us, in that they appeared to reverse some of the earlier

results reported in [22]. The experiments reported in the present paper include all

problems from chapter 3 of Principia, thus going beyond the 52 problems from chapter

2 used in Newell, Shaw, and Simon's work and in our own earlier work. We were

surprised to find that in the new experiments ROTE occasionally outperformed EBL,

finding superior solutions.16 One possible explanation of the surprising inferior

performances was that the increased generality of the results learned by EBL might be

hurting by increasing branching factors. However, a detailed analysis of some of the

anomalous cases revealed that the increased generality hurt in an unanticipated way.

Restrictions built into the performance element prevented operators from being applied

in some cases when their application would have led to earlier, better solutions. These

restrictions on critical matching operations involved in determining whether operators

were applicable forced problems and known theorems to have IMPLIES as their top

level connective. These IMPLIES restrictions may have been included in Newell, Shaw,

and Simon's original problem solver in order to improve search performance; in any

case they were carried over to our own initial versions of LT during the process of re

implementing it according to descriptions in the literature and were not deliberately

included in the initial experiments. Once the restrictions were seen to be affecting the

coupling between learning and performance, we decided to determine the magnitude of

their effect. ·

The second experiment was performed with limited search but without the

IMPLIES restrictions. The major difference in the results was that EBL now solved all

problems solved by ROTE and produced solutions that were at least as good as

16 Worse, in some experiments not reported here involving larger search limits using the new prob

lems, EBL's overall performance under the IMPLIES restrictions was worse than ROTE's in terms of

numbers of problems solved, costs incurred during search, and quality of solutions.

39

ROTE's. In addition, EBL's branching factor, while still less than ROTE's, was seen to

increase with learning in the same way (roughly linearly with the number of learned

results) without the IMPLIES restrictions.

This experiment demonstrated conclusively that the restrictions embedded in the

original performance element had a large effect on performance under learning and that

the restrictions rendered many of the results of explanation-based learning unusable

(non-operational) in future problem solving. These restrictions affected EBL more

strongly than ROTE, so it was found in some cases that they caused EBL to be less

effective than ROTE learning. The lesson of the first and second experiments is that

one should not simply add EBL to an existing performance element without considering

the coupling between learning and performance. The striking change from relatively

fiat average branching factor curves to curves increasing with learned results indicates

that LT under the IMPLIES restrictions ignored many of the results learned through

EBL. One cannot assume that a given performance element will make effective use of

the results of EBL.

The author was concerned that the first and second experiments involved two

conditions that might tend to favor EBL: the extremely limited search involved may

have magnified any advantage EBL had over ROTE, and the eradication of the

IMPLIES restrictions improved EBL's performance more than ROTE's. The two

remaining experiments may be viewed as efforts to be fair to ROTE.

The third experiment allowed much more extensive search. All systems solved

more problems and nearly all the problems were solved by the learning systems. The

learning systems still solved many more problems than the non-learning system.

Measurements of the relative generality of learned results taken in this experiment

showed that EBL learned equally general results roughly half the time and strictly

more general results than ROTE roughly half the time. EBL still exhibited advantages

in search efficiency and quality of solutions over ROTE as measured by numbers of

problems attempted, subproblems generated, average branching factors, and sizes

(depths) of solutions. However, each learning method solved exactly the same

problems.

The small advantage in solved problems that EBL has over ROTE in limited

search disappears when the search limit is relaxed. This is because EBL's advantage

over ROTE is basically an efficiency advantage. EBL can solve problems more

efficiently than ROTE by using previously learned results that are more general than

the corresponding results of ROTE learning. Under limited search, this advantage can

enable EBL to find a solution where ROTE fails. 17 Under extended search, however,

ROTE can compensate for the fact that it failed to learn all it could from earlier

problems by simply reconstructing the solutions it needs.

The fourth experiment was motivated by the idea that, since EBL learns results

that are at least as general as results learned by ROTE, one might expect EBL to have

17 Please see Appendix 2 on examples of improvements in performance due to ebl.

40

higher branching factors than ROTE. It was hypothesized that the major reason why

EBL's branching factors were uniformly better than ROTE's was the fact that EBL did

not add instances. ROTE learning, as implemented in our initial ROTE LT and in the

original due to Newell, Shaw, and Simon, added instances to the end of the list of

learned results.

The fourth experiment was carried out to test the hypothesis that ROTE's

performance would improve dramatically without the counterproductive learning of

instances and to determine whether this improvement in ROTE would surpass EBL.

The results were similar to the experience with EBL. The first and second experiments

showed that the obvious way to add EBL to our performance element turned out to be

flawed because the results of EBL were not being used effectively. The third and

fourth experiments show that the obvious way of adding ROTE learning to the

performance element was flawed as well. The results show conclusively that when

instances were being added to the end of the list of known theorems they were not

contributing to finding proofs more quickly and indeed were hurting the search by

increasing ROTE's branching factors substantially above EBL's. When ROTE is

improved by throwing away instances of known theorems instead of storing them it has

slightly lower branching factors than EBL on most problems because EBL yields more

general patterns which sometimes match where the patterns learned by ROTE do not.

It turned out, however, that while these more general patterns usually amounted to an

extra bit of overhead, they sometimes contributed to finding higher quality solutions

substantially more quickly, so that in this final experiment EB L's overall performance

in terms of quality of solutions and work done during search wa~ slightly better than

the performance of the improved ROTE.

11. Relation to Other Work

This paper is part of the growing body of results on Explanation-Based Learning.

In this section, we first describe relationships between this work and other existing

work, then we describe suggestions for future work.

11.1. Prior and Parallel Work

The papers by Mitchell, et al [16] and DeJong and Mooney [2, 17] provide

overviews and pointers into the EBL literature. The present paper is basically an

experimental study of EBL versus no learning and rote learning in a particular

"domain". Other experimental studies of EBL involving relatively large numbers of

examples have been done recently in a number of other task domains, including

planning [14, 15]. Mooney's Ph.D. thesis [18] reports on experiments with a general

EBL system solving examples from a number of task domains such as planning,

recognition, etc. Shavlik's Ph.D. thesis [29] contains the results of a number of

experiments on planning and physical reasoning tasks and Segre's Ph.D. thesis [27, 28]

contains experimental work on applications of EBL in robotics.

Viewing the EBL versions of LT studied in our experiments as examples of the

general model proposed in [16], the operational concepts are members of LT's list of

41

known theorems. The IMPLIES restrictions narrow this set of operational concepts to

a subset including only the implications among the known theorems. Our results

suggest that including restrictions like the IMPLIES restrictions among the

operationality criteria is a bad idea and that, in general, it is dangerous to restrict

notions of operationality unnecessarily.

It should be noted that the way explanation-based generalization contributes to

future problem solving in the present study is a bit unusual. In contrast to EBG

macro-learning systems based on PROLOG [7, 23] and MRS [6], only generalized

conclusions are learned in the EBL LT. The leaves of the "generalized" proof tree are

thrown away; they are not needed because they are (always true) theorems. With this

reservation, the present study can be considered to be related to other work on

learning macro-operators [10], and can be viewed as a step in the direction of viewing

theorem proving as a process that can benefit from the acquisition of macro-operators

(as suggested, for example, by Korf in [9]).

Another way to view the work presented here is as evidence bearing on the relative

value of methods for generalizing examples by turning constants into variables versus

EBL methods of generalizing examples by specializing existing general knowledge. Our

results may be viewed as providing experimental evidence that conversions from

methods based on turning constants to variables like ROTE to methods like EBL

should yield improved performance. For example, since the chunking method originally

used in SOAR bears some similarities to ROTE learning, our results suggest that

converting SOAR's chunking to an EBL approach as described in (26] should lead to

improved performance.

11.2. Future Work

In the summary section, a number of distinguishing characteristics of the domain,

test problems, and performance element that seemed most relevant to the experimental

results were listed. Several possible extensions to the experiments reported here -

aimed at determining.how sensitive our results are to these distinguishing features -

suggest themselves.

There is some concern that our results comparing EBL and ROTE may depend on

the nature of the problem sequence used. This sequence appears to have been carefully

constructed so that solutions to later problems follow naturally from solutions to earlier

problems. In addition, all the problems in the sequence are solvable. In new

experiments aimed at determining how changes in the order of the Principia problems

affect the relative performances of the competing learning methods, we reverse and

randomly permute the problem set. In another new experiment, we disallow learning of

unsolved problems, in order to address concerns that this strategy, while it may be

appropriate for highly structured learning situations, is not appropriate in general.

These experiments are still in progress but the author hopes to present them in a

follow-on paper.

The particular performance element used may also limit the scope of our

experimental results. The scope of our results could be better delimited by conducting

42

experiments aimed at answering questions such as how much of the improvement in

going from non-learning to rote learning and then to EEL is due to the limited control

structure of LT requiring that proofs be linear?

While a number of variations in the performance element and learning methods

were tried here, there are still other variations that might yield valuable information.

The version of EBL used in this study is just one of several possible versions. Trying

alternative approaches could be informative.

For example, some EBL systems learn from the achievement of subgoals and not

just when top level goals are achieved (see, for example [21, 23]). It would be simple to

augment the EBL version of LT with subgoal learning. This could yield results on how

much improvement occurs in between trial learning (where learning from one problem

facilitates solution of later problems). The original LT would have to be modified to

produce non-linear proof trees in order to get results on the effectiveness of within trial

learning (where learning from a subgoal helps in solving another subgoal within the

same problem).

The present domain also seems like a good place for studies of proposed

improvements in storing and accessing learned results. It was noted here that it is a

mistake to add instances to the end of a list of known theorems in rote learning. Can

they make a positive contribution if they are added to the beginning of the list rather

than the end? Unlike the EBL LT discussed in this paper, EBL systems typically try

the most recently learned solutions first. This strategy may make especially good sense

when facing highly structured sequences of problems where new problems often build

upon their immediate predecessors as in Principia. Indeed, it would be interesting to

try out more sophisticated storage and retrieval mechanisms in this highly organized

domain. Rather than looking down linear lists as was done in this study,

discrimination nets [1] could be used. This could affect the efficiency of the search for

solutions and might alter the effectiveness of learning strategies. Perhaps more

powerful methods for organizing learned knowledge can be used so as to benefit EBL.

Evidence that carefully controlled "forgetting" will play an important role in the

management of memories containing learned results is beginning to accumulate. One

such method is based on tracking the usefulness of learned results in terms of

measurements of search utility. It would be interesting to see whether Minton's results

on search utility in planning [14] can be replicated in the purely logical domain of

Principia.

In particular, an EBL version of LT could learn general macro operators which

would play roles similar to detachment and chaining. These operators could be

constructed by ignoring not just the specific problem proved by a composition of

schemata, but also by ignoring the specific known theorems used to ground the leaves

of the proof tree. For example, recall that Principia-2.17 was proved using detachment

and chaining. Treating the detachment schema as an operator going from A and A ::JB

to B and the chaining schema as an operator going from C::JD and D::JE to C::JE, the

alternative approach to EBL in this example would be to paste these two operators

together to form a new problem solving operator. Unifying the conclusion B of the

43

detachment step with the antecedent D:JE of the chaining forward step yields a

schema corresponding to a macro-operator taking three antecedents C:JD, A :J(D :JE)

and A to the conclusion C:JE. Of course, the search control strategy in the

performance element would have to be altered in order to make use of these new

operators.

If one looks at the theorems learned by EBL in the present study, it is obvious

that they could stand some improvement. Many of these theorems are still less general

than they could be (e.g., some contain double negations). A future experiment could

determine how performance changes in this domain when basic EBL is augmented by a

system designed to transform learned expressions into more general forms.

12. C.Onclusion

One virtue of this study is that it explores the performance of a complete EBL

system against competing learning methods on a significant number of examples. The

examples used in the study are uncontrived in the sense that the Principia problem set

was designed for entirely different purposes three quarters of a century ago - long

before electronic computers existed and with no consideration of machine learning

experiments in mind. During the study a number of interactions between performance

elements, learning elements, and the problem set were observed. Some of these

interactions were quite unexpected.

The results reported here show that both EBL and rote learning are much better

than no learning at all on the Principia problems. The experiments focus on the

difference between EBL and rote learning in an abstract, purely logical setting, using

very general problems, where neither learning method is allowed an advantage in

"turning constants to variables." Before these experiments were done, it was

hypothesized that generalization and performance would not improve in going from

rote to EBL on purely logical problems because neither learning system is allowed to

make inductive leaps from concrete propositions like "It is raining" or "Today is

Monday." It seems harder for EBL to "win big" on the Principia problems because

any improvements of EBL over rote learning are forced to occur at a very high level of

abstraction. Indeed, the experiments can be interpreted as supporting this hypothesis,

because rote learning is "roughly comparable" to EBL on the Principia problems in the

sense that the difference between the learning systems is small when compared with the

large differences between non-learning and learning.

Ignoring non-learning, however, the experimental data focusing on the differences

between the learning systems shows that EBL is significantly more effective than rote

learning even in highly abstract settings. The size of EBL's advantage over ROTE is

magnified when search is extremely limited. The experiments and analysis show that

even on very general problems, EBL learns strictly more general results quite frequently

and that provided the performance element is able to exploit it EBL's superior

generalization contributes to superior problem solving performance.

When one considers the goals of the designers of a logical system such as the one

found in Principia Mathematica, it seems surprising that the EBL LT performs

44

significantly better than rote learning on the Principia problems. As we show in detail

in appendix 2 on examples of improvements in performance due to EBL, when EBL

learns a result more general than a given problem learned by ROTE, it is in a position

to get superior proofs of later problems. Since the authors of Principia did not need to

be as concerned as we have been with the efficiency of the process of finding proofs,

they had even more reason to ensure that each problem was as general as possible.

Imagine Whitehead and Russell creating their sequence of theorems. Assume they have

proposed a certain problem as the next theorem in the sequence. If they found a proof

for this problem that actually proved a more general theorem than the problem they

began with, they could have crossed out the proposed theorem, replacing it with the

more general one, thus ensuring shorter (more comprehensible) proofs of later

theorems. The EBL LT proves Principia 2.18 in only one step and requires only two

axioms while Whitehead and Russell's proof is substantially longer. With this in mind,

one can view the superior generalizations produced by the EBL version of LT as

suggesting improvements on the logical system of Principia Mathematica.

In our opinion, however, the most important lessons of our experiments transcend

the particular performance engine and domain used. For example, the caveat that it is

important to ensure that a performance element makes good use of the more general

results learned by EBL is critical. The performance element should be examined

carefully to determine whether the operationality criteria imposed by the performance

element include any restrictions that might prevent the effective application of the

results of. EBL. In our experiments, restrictions on matching limited the application of

operators, severely hampering EBL.

This lesson can be generalized still further. In our experiments, the initial

integration of the performance element and ROTE learning also turned out to be

flawed. Instances of known solutions were added during learning, but in a manner that

prevented them from contributing to finding earlier or better solutions. The experience

of finding serious, unexpected flaws in our initial rote learning and explanation-based

learning systems has convinced us that the coupling between learning and performance

elements is critically important.

In general, one cannot simply add a learning method to a performance engine and

assume that the results of learning will be used effectively. It is important to be aware

of the potential for unforseen interactions between the learning and performance

elements. Such interactions can prevent or interfere with the use of learned results.

Worse, learned results can be a hindrance instead of facilitating performance.

Another lesson of this paper is that, even when they are deliberately simplified,

machine learning systems are complex and tricky beasts deserving careful experiments

and analysis. It is often not enough to do one experiment and produce graphs that

indicate that learning method X is better than learning method Y. As we discovered, a

number of causes typically underlie initial results. The interactions of the underlying

causes can be complex and this can make initial data misleading. The goal of

advancing machine learning research as rapidly as possible is best served by taking the

additional steps necessary to determine why method Xis better than Y.

45

Acknowledgements

Some of the results presented here were originally published in the Proceedings of

the Fourth International Conference on Machine Learning (22]. The research presented

here grew out of a discussion with Pat Langley at the Cognitive Science Conference

held at the University of California, Irvine in the summer of 1985. Early work was

carried out by the author when he was a member of Gerald DeJong's Explanation

Based Learning Research Group at the University of Illinois at Champaign-Urbana.

Special thanks to Gerald DeJong and Scott Bennett at Illinois, to Ray Mooney (now at

the University of Texas at Austin), and also to Pat Langley, Michael Pazzani, Tony

Wieser, and Heping He at Irvine. Wieser provided a great deal of research assistance to

the author, including reimplementation of the author's LISP systems in PROLOG, as

well as having discovered that the IMPLIES restrictions forced the EBL LT's

performance to deteriorate in the extended experiments first reported here. Heping He

provided programming support and assisted in the analysis and presentation of the

data. At the Machine Learning Journal, Jack Mostow and three anonymous reviewers

contributed very useful suggestions for improvements. Thanks also to Bernhard

Pfahringer of the Austrian Research Institute for AI, for finding several errors in our

original translations of the Principia problems. This research was supported in part by

the National Science Foundation under grant NSF IST 83-17889, by a Cognitive

Science/ AI Fellowship from the University of Illinois, and by a McDonnell-Douglas

University External Relations contract.

46

Appendix 1: Axioms and Problems from Principia

This appendix contains the propositional logic axioms and problems used in

experiments with non-learning, rote-learning and explanation-based learning versions of

LT. The axioms corresponding to numbers 1.2 through 1.6 in Whitehead and Russell's

Principia Mathematica are shown in Table 2. Note that Principia-1.1 is not included

because it corresponds to a rule of inference, an operato~ in LT.

Table 2: Axioms from Princi ia

Designation

in Princi ia

1.2

1.3

1.4

1.5

1.6

Axiom

The problems are shown in Table 3. They are the first 92 theorems from chapters

two and three of part one of Principia. The axioms and problems are listed in an

abbreviated format using operators for (in order of syntactic precedence) logical

equivalence, implication, disjunction, conjunction, and negation. Machine readable

versions of these (and other) Principia axioms and problems may be obtained by
writing the author (preferably via electronic mail).

47

Problem

2.01

2.02

2.03

2.04

2.05

2.06

2.07

2.08

2.1

2.11

2.12 2.73

2.13

2.14 2.75

2.15 2.76

2.16

2.17 2.8

2.18 2.81

2.2 2.82

2.21 2.83

2.24 2.85

2.25 2.86

2.26

2.27

2.3

2.31

2.a2

2.36

2.37 3.21

2.38 3.22

2.4

2.41 3.26

2.42 3.27

2.43

2.45 3.31

2.46

2.47

2.48

2.49

2.5

2.51

2.52 3.42

2.521

2.53

2.54

2.55

2.56

48

Appendix 2: Examples of Improvements in Performance Due to EBL

The superior generality of EBL contributes to superior problem solving

performance in two main ways. Sometimes it enables the problem solver to solve

problems that could not be solved before. Alternatively, when both rote-learning and

EBL systems solve a problem, the EBL solution is sometimes found more quickly and is

sometimes simpler than that provided by rote-learning.

For an example of an EBL system solving more problems as a result of improved

generality note that the EBL version of LT found a proof for Problem 17 (Principia-

2.18) while the rote-learning version failed to find a proof in a small search (with the

subproblems attempted limited to 15). The proof found by EBL involves the theorem

learned from Problem 16 (Principia-2.17). The proof was obtained by chaining forward

on the learned theorem and axiom Principia-1.2 (see Figure 20). The generalized

conclusion of this proof of Principia-2.18 is (A::JA)::JA. The proof is not constructed

by rote-learning because of the extraneous NOT in Principia-2.17.

Chaining forward on the result of rote-learning on Principia-2.17 yields the less

general conclusion (.A"::J.A):J.A, (Figure 21). Principia-2.18 (P::::>P)::JP is not an instance

of this conclusion.

Examples of EBL constructing simpler solutions as a result of improved generality

also occurred in the experiments (see Figure 22). While both learning versions of LT

solve Problem 38 (Principia-2.49), the EBL version recognizes it as an instance of the

class of problems solved by a previous solution while the rote-learning version has to

regenerate that solution. The problem is P V Q::::>(P V CJ), an instance of the

generalized conclusion of the proof of Problem 36 (Principia-2.47), namely

A V B::J(.A" V C). This proof is not constructed during rote-learning because Principia-

2.4 7 identifies B and C but Q and fJ are incompatible. It turns out that in order to

prove Principia-2.49, the rote-learning LT winds up having to prove the theorem that

the explanation-based learning LT extracted from Principia-2.47. That is, it

EBL-2.17: (A:JA)::J(A VA) Principia-1.2: A V A::JA

Figure 20. The Proof of Principia-2.18

49

Rote-2.17: (.A:J.A)::>(A:JA) Principia-1.2: (A :>.A) :J.A)

Figure 21. Inferiority of Rote Learning on Principia-2.18

AV B::>(A. V C)

Rote-2.45: A V E::>.A Rote-2.2: A.:>(A. V C)

Figure 22. Rote-Learning Proof of Principia-2.47 and 2.49

regenerates the same proof that it used before on Principia-2.4 7 because it failed to

learn all it could from this proof. This is a very clear case of inferior performance on

the part of rote learning due to the fact that it simply stores problems instead of

generalizing and computing the class of problems that a novel solution solves.

50

REFERENCES

1. E. Charniak and D. McDermott, Introduction to Artificial Intelligence

Programming, Lawrence Erlbaum Associates, Hillsdale, N.J., 1986.

2. G. F. DeJong and R. Mooney, "Explanation-Based Learning: An Alternative

View," Machine Learning 1, 2 (1986), 145-176.

3. G. F. DeJong, "An Approach to Learning from Observation," in Machine

Learning: An Artificial Intelligence Approach, Vol. 2, Ryszard S. Michalski,

Jaime G. Carbonell, and Tom M. Mitchell (ed.), Morgan Kaufmann, Los Altos,

California, 1986, 571-590.

4. G. F. DeJong (Ed.), Proceedings of the American Association for Artificial

Intelligence Spring Symposium on Explanation-Based Learning, , March 22-24,

1988.

5. H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, Inc.,

New York, 1972.

6. H. Hirsh, "Explanation-Based Generalization in a Logic-Programming

Environment," Proceedings of the Tenth International Joint Conference on

Artificial Intelligence, Milan, Italy, August 1987, 221-227.

7. S. T. Kedar-Cabelli and L. T. McCarty, "Explanation-Based Generalization as

Resolution Theorem Proving," Proceedings of the Fourth International Workshop

on Machine Learning, Los Altos, CA, June 1987, 383-389.

8. K. Knight, "Unification: A Multidisciplinary Survey," Association for

Computing Machinery Computing Surveys 21, 1 (March 1989), 93-124.

9. R. E. Korf, Learning to Solve Problems by Searching for Macro-Operators,

Morgan Kaufmann Publishers, Inc., Palo Alto, CA, 1985.

10. R. E. Korf, "Macro-Operators: A Weak Method for Learning," Artificial

Intelligence 26, 1(April1985), 35-77.

11. R. E. Korf, "Search: A Survey of Recent Results," in Exploring Artificial

Intelligence: Survey Talks from the National Conferences on Artificial

Intelligence, Howard E. Shrobe (ed.), Morgan Kaufmann, San Mateo, CA, 1988,

197-237.

12. D. W. Loveland, "Automated Theorem Proving: A Quarter-Century Review," in

Proceedings of the Special Session on Automatic Theorem Proving at the

American Math. Soc. Annual Meeting, Denver, Colorado, January 1983.

13. S. Minton, "Selectively Generalizing Plans for Problem-Solving," Proceedings of

the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,

CA, August 1985, 596-599.

14. S. Minton, "Quantitative Results Concerning the Utility of Explanation-Based

Learning," Proceedings of the Seventh National Conference on Artificial

Intelligence, Saint Paul, Minnesota, August 1988, 564-569.

51

15. S. Minton, "Learning Effective Search Control Knowledge: An Explanation-Based

Approach," Ph.D. Thesis Carnegie Mellon University, Computer Science

Department Carnegie Mellon University, Pittsburgh, PA, March 1988.

16. T. M. Mitchell, R. M. Keller and S. T. Kedar-Cabelli, "Explanation-Based

Generalization - A Unifying View," Machine Learning l, 1 (1986), 47-80,

Kluwer Academic Publishers.

17. R. Mooney and S. Bennett, "A Domain Independent Explanation-Based

Generalizer," Proceedings of the National Conference on Artificial Intelligence,

Philadelphia, PA, August 1986, Morgan Kaufmann Publishers, Inc ..

18. R. J. Mooney, "A General Explanation-Based Learning Mechanism and its

Application to Narrative Understanding," UILU-Engineering-87-2269,

Coordinated Science Laboratory University of Illinois at Urbana-Champaign,

Urbana IL, December 1987.

19. A. Newell and H. A. Simon, "The Logic Theorist: An Example," in Human

Problem Solving, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972, 105-140.

20. A. Newell, J. C. Shaw and H. A. Simon, "Empirical Explorations with the Logic

Theory Machine: A Case Study in Heuristics," in Computers and Thought,

Edward Feigenbaum and Julian Feldman (ed.), Robert E. Krieger Publishing

Company, Inc., Malabar, Florida, 1981, 109-133. (This article was also published

in the Proceedings of the Joint Computer Conference (pp 218-230) in 1957. The

original edition of Computers and Thought was published in 1963 by McGraw

Hill, Inc.)

21. P. O'Rorke, "Generalization for Explanation-Based Schema Acquisition,"

Proceedings of the National Conference on Artificial Intelligence, Austin, TX,

August 1984, 260-263.

22. P. O'Rorke, "LT Revisited: Experimental Results of Applying Explanation-Based

Learning to the Logic of Principia Mathematica," Proceedings of the Fourth

International Machine Learning Workshop, Irvine, CA, June 1987, 148-159.

23. A. E. Prieditis and J. Mostow, "PROLEARN: Towards a Prolog Interpreter that

Learns," Proceedings of the National Conference on Artificial Intelligence,

Seattle, WA, August 1987, 494-498.

24. J. C. Reynolds, "Transformational Systems and the Algebraic Structure of Atomic

Formulas," in Machine Intelligence 5, Bernard Meltzer and Donald Michie (ed.),

Edinburgh University Press/ American Elsevier, New York, 1970, 135-151.

25. J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle,"

Journal of the Association for Computing Machinery 12, 1 (January 1965), 23-

41.

26. P. S. Rosenbloom and J. E. Laird, "Mapping Explanation-Based Generalization

onto SOAR," Proceedings of the National Conference on Artificial Intelligence,

Philadelphia, PA, August 1986, Morgan Kaufmann Publishers, Inc ..

52

27. A. M. Segre, "Explanation-Based Learning of Generalized Robot Assembly

Tasks," UIL U-Engineering-87-2208, Coordinated Science Laboratory University of

Illinois at Urbana-Champaign, Urbana IL, January 1987.

28. A. M. Segre, Machine Learning of Robot Assembly Plans, Kluwer Academic

Publishers, Dordrecht, the Netherlands, 1988.

29. J. W. Shavlik, "Generalizing the Structure of Explanations in Explanation-Based

Learning," Ph.D. thesis, Coordinated Science Laboratory University of Illinois at

Urbana-Champaign, Urbana IL, January 1988.

30. E. Stefferud, "The Logic Theory Machine: A Model Heuristic Program,"

Memorandum RM-3731-CC, The Rand Corporation, Santa Monica, CA, June,

1963.

31. A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge University

Press, London, 1913. (also available in a paperback edition to *56, published in

1962)

