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Abstract—In this work it is examined if downlink Carrier
Aggregation (CA) can be used to save UE energy. A dual-receiver
LTE release 10 UE is compared with a single-receiver LTE
release 8 UE. The models are based on scaling of an existing
LTE release 8 UE power model. The energy consumption of the
UEs is examined in a Heterogeneous Network scenario consisting
of macro and small cells. The unexpected conclusion is that
CA UEs can save energy, compared to LTE release 8 UEs, if
they, depending on cell load, experience a throughput gain of
20 %. However if the UE throughput is unaltered the energy
consumption can increase up to 20 %.

I. INTRODUCTION

Carrier Aggregation (CA) has been standardized in LTE

release 10, and it entails that the CA UE can connect to

more than one component carrier (CC) in the downlink.

Previously research has shown that CA can be used to provide

better coverage and average throughput if carefully adjusted,

[1]. Unfortunately little attention has been paid to how the

increasingly complex requirements, [2], to the UE transceiver

potentially can increase the energy consumption. Neither has

it been examined if operators can adjust their LTE network,

using CA, to help the CA UEs save energy.
In previous work Wang et al. [3], discussed CA UE struc-

tures and estimated the current consumption based on RF

components’ data sheets, but the energy consumption was not

evaluated in a realistic scenario. The energy consumption of

CA capable UEs was discussed in the 3GPP, [4], [5], when

CA was proposed, but there are no accurate evaluations of how

CA will affect the UE energy consumption. Deactivating the

Secondary Cell [6], i.e. the UE does not receive or transmit

from that cell, was however standardized to save UE energy.
In this work a novel CA UE power consumption model is

proposed and it is shown that CA can actually prolong UE

battery life if the network is configured properly. This novel

conclusion is based on a comparison of LTE release 8 and

10 UEs’ energy consumption in a Heterogeneous Network

(HetNet) scenario consisting of macrocells and small cells.
First we propose a CA UE power consumption model,

and then we describe the considered HetNet scenario. By

combining the statistics from the HetNet simulation with the

UE model the energy consumption is calculated and discussed.

Finally the paper is concluded with recommendations for

network operators who utilize CA.

II. DOWNLINK CA UE POWER MODEL DESIGN

To evaluate the energy consumption of downlink CA UEs

a power model is required. Currently only Qualcomm has

Tx BB Tx RF

Supply Duplex

Rx BB Rx RF

PTxBB PTxRF

PRxBB PRxRF

RTx STx

RRx SRx

Fig. 1. LTE UE release 8 power model, [8, Fig.1]

TABLE I
FIRST ORDER POLYNOMIAL PARAMETERS, [8, TAB.3]

Part Variable p0 p1

Rx BB RRx [Mbit/s] -26.6 mW 2.89 mW/Mbit/s
Tx BB RTx [Mbit/s] 34.5 mW 0.87 mW/Mbit/s
Rx RF SRx [dBm] -60.7 mW -1.11 mW/dBm
Tx RF1a STx [dBm] -71.3 mw 5.50 mW/dBm

Tx RF2b STx [dBm] -943 mw 117 mW/dBm

a valid for −30 dBm ≤ STx ≤ 10 dBm
b valid for 10 dBm < STx ≤ 23 dBm.

TABLE II
CONSTANT PARAMETERS, [8, TAB.2].

Part Pidle Pcon PRx PTx PRx+Tx P2CW

Mode [-] midle midle mRx mTx mTx ·mRx m2CW

Value [W] 0.50 1.53 0.42 0.55 0.16 0.07

announced a CA chip set [7], but because it is not yet com-

mercially available an empirical model cannot be established.

Therefore a CA model is derived from the existing LTE release

8 (R8) power model in [8]. The block diagram of the R8

model is shown in Fig. 1. The model is defined in Eq. (1)

using the parameters in Tables I and II. Descriptions of how

the parameters were defined and measured are given in [8].

Ptot =midle · Pidle +midle · {Pcon +mTx ·mRx · PRx+tx+

mRx · [PRx + PRxRF(SRx) + PRxBB(RRx) +m2CW · P2CW]

+mTx · [PTx + PTxRF(STx) + PTxBB(RTx)]} [W] (1)

The four functions in Eq. (1) are evaluated using Table I and:

Ppart (variable) = variable · p1 + p0 [mW] (2)

This work focuses on downlink CA and hence the transmitter

part of the UEs is disabled in the following, i.e. mTx = 0.

In 3GPP three band combinations have been defined, [9]:

1) Intra-band with contiguous component carriers (CCs)

2) Intra-band with non-contiguous CCs

3) Inter-band with non-contiguous CCs

together with two Release 10 UE receiver architectures [9]
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Fig. 2. ADC power consumption as a function of channel BW.

(a) Single Radio Frequency (RF) front-end with single wide-

band Analog-to-Digital Converter (ADC) and dual base

band (BB) processor

(b) Dual RF with dual narrowband ADCs and dual BBs

Architecture (a) is only applicable in scenario 1, because

it cannot filter undesired frequency content between non-

contiguous CCs. Architecture (a) is however of interest be-

cause the hardware is less complicated and because scenario

1 will be used by some operators.

The R8 model was made for a 20 MHz downlink channel,

but measurements were also performed for 5 and 10 MHz

channels as shown in Fig. 2. The measurements were made

using the Downlink Fixed MAC Padding for 0 and 25 DL

PRBs, see [8] for further information. Based on those measu-

rements a linear function of channel bandwidth is implemented

in the R8 model and the receiver’s power consumption is:

PRx, R8 =PRx + PRxRF(SRx) + PRxBB(RRx)

+ PADC(BW) + q2CW, R8 · P2CW [W] (3)

The probability of using 2 codewords is q2CW, and calculated

by the simulator. Architecture (a), called release 10 wideband

(R10wb), is defined as

PRx, R10wb =PRx + PRxRF(SRx) + PADC(BW)

+ [q2CW, cc1 + q2CW, cc2] · P2CW

+ PRxBB1(RRx1) + PRxBB2(RRx2) [W] (4)

and (b), called release 10 narrowband (R10nb), is defined as:

PRx, R10nb = 2 · PRx + PRxRF1(SRx1) + PRxRF2(SRx2) (5)

+ PRxBB1(RRx1) + PRxBB2(RRx2) + PADC1(BW1)

+ PADC2(BW2) + [q2CW, cc1 + q2CW, cc2] · P2CW [W]

The receivers’ linear power functions are given in Table I and

the ADC function is shown in Fig. 2. The ADC of rel10wb

can handle two contiguous 20 MHz bandwidths while the rel8

and rel10nb are limited to 20 MHz per ADC.

The proposed CA power models are scaled versions of the

published R8 model, because we believe the linear scaling

is currently the best estimation available. The models do not

include DRX [10] or micro-sleep, which is a method where

a connected, but unscheduled UE can sleep during parts of a

subframe [11], because the R8 model also does not include

the methods. The idle mode power consumption Pidle, given

in Table II, is therefore used as the UEs optimal low power

mode. We anticipate DRX and micro-sleep will be of benefit

in CA, because both receivers will not always be active.

The simulations are made such that when UE i has finished

t

user

tmax = trx,itrx,jtrx,k

i

j

k

Active

Active

Active
tsleep,j

tsleep,k

Fig. 3. Active and sleep time example for UEs i, j, and k.
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Fig. 4. Considered HetNet scenario with dedicated carrier deployment.

receiving the payload it will sleep for (using Pidle Watts)

tsleep,i = max
j∈[1,N ]

(trx,j)− trx,i [s] (6)

where trx,j is the receive time for UE j and N is the total

number of UEs. The purpose is to compare all UEs over the

same period of time as shown in Fig. 3. For later reference

note that tmax = max
j∈[1,N ]

(trx,j).

III. THE HETNET SCENARIO

HetNets are expected to be the next big leap in cellular

system performance improvement by changing the topology

of traditional networks which will bring the network closer to

end users. In a HetNet, a mixture of macrocells combined with

low-power nodes such as picocells, femtocells, and remote

radio heads (RRHs) are used. The placement of macrocells

is generally based on careful network planning to maximize

the wide area coverage and control the inter-cell interference,

while low-power nodes are deployed to either eliminate co-

verage holes in the macrocell or improve capacity at hotspot

areas. In this paper, we focus on dedicated carrier deployment.

Two contiguous CCs, each with 10 MHz bandwidth, are

configured. One carrier frequency (CC1) is allocated to macro

eNB whereas the other one (CC2) is allocated to small cells.

The small cells are implemented as RRHs and are connected to

macro eNBs via high bandwidth, low latency fibers. Thus, all

baseband signal processing for the small cells (RRHs) could

be placed in the macro eNB, allowing the aggregation of CCs

between the macrocell (configured as primary serving cell

(PCell)) and the small cell (configured as secondary serving

cell (SCell)). Referring to the 3GPP terminology, the dedicated

carrier deployment with macro and RRHs is denoted CA

scenario 4 [6]. The R8 UEs can only connect to either the

macro eNB or the RRH on the corresponding CC, based on

downlink signal strength and the range expansion (RE) offset

which is used to increase the footprint of small cells by adding

a positive bias to the signal strength of low-power nodes during

cell association [12]. The R10 UEs configured to operate with



CA can connect to both the macro eNB and the RRH using CA

so that they can benefit from larger transmission bandwidth,

and therefore opportunities to be served at higher data rates.

The corresponding example of the considered deployment

scenario is presented in Fig. 4.

It is worth mentioning that as the packet scheduler for the

small cells (RRH) is physically located in the macro eNB, joint

multicell packet scheduling [13] for those UEs configured with

CA is feasible. The difference between independent and joint

proportional fair (PF) scheduler lies in the calculation of the

scheduling metric. In joint PF scheduler, the denominator of

the PF metric is updated as the sum of the average scheduled

throughput over all cells where the UE has been scheduled

in the past. It simply requires information exchange on the

average scheduled throughput between the scheduler for macro

and small cells. In that way, the scheduler can essentially offer

fast and efficient load balancing between macro and small

cells, thereby allowing for more equitable distribution of radio

resources among UEs. The comparisons between independent

and joint PF scheduling across multiple CCs can be referred

to [13] in the context of CA.

IV. SIMULATION ASSUMPTIONS AND ENERGY

CONSUMPTION RESULTS

The performance of the considered HetNet deployment

scenarios is evaluated in a quasi-static downlink multi-cell

system-level simulator that follows the LTE specifications,

including detailed modeling of major radio resource manage-

ment (RRM) functionalities. The network topology consists of

7 hexagonal macrocells transmitting at 40W with 3 sectors per

cell. 4 RRHs transmitting at 1W are randomly placed within

each sector. 2×2 MIMO with rank adaptation and interference

rejection combining is configured. A bursty traffic model

is considered where the call arrival follows a homogeneous

Poisson process with fixed payload size per call. The average

offered load per macrocell area is calculated as the product

of the user arrival rate and the payload size. We assume

hotspot UE distribution, where 2/3 of the UEs are dropped

within a 40 m radius of the small cells while the remaining

UEs are uniformly distributed within the macrocell area. The

results in this section are for an offered cell load (OCL) of

10 Mbps and a UE payload of 10 Mb. Simulations were also

performed with 20 Mb payload, but they do not affect the

overall conclusions, and therefore the results are omitted. The

scheduling granularity is 1 PRB. The UEs are mainly located

around the small cells, and therefore the path gain to the small

cell is lower as compared to the macrocell as shown in Fig. 5.

For R10 UEs, it is assumed that they are always connected to

both the macro and the most dominant RRH so that they can

benefit from potential larger transmission bandwidth and fast

inter-cell load balancing. This however does not entail that R10

UEs will always be scheduled on both CCs, as the scheduling

of each CC is based on the channel quality and the cell load.

For R8 UEs, different RE offsets are simulated. Only the

optimal RE offset that maximizes the cell edge (5-percentile)
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Offered cell load 10 Mbps

R10 cc1, µ = 33.1 Mbps

R10 cc2, µ = 31.9 Mbps

R10 sum, µ = 65 Mbps

R8, µ = 41.6 Mbps

Fig. 6. Throughput. OCL = 10 Mbps, µ is the mean.

throughput is used (RE=1.5dB with RSRQ cell selection for 10

Mbps OCL). Note R10 and R8 UEs are simulated separately.

Fig. 6 shows the UEs’ average throughput. The CA UEs

achieve similar throughput on both CCs and ∼56 % higher

throughput than the R8 UEs. This is due to the CA UE on

average is allocated 95 PRBs while the R8 UE gets 48 PRBs.

The CA UEs’ higher throughput entail they receive the payload

faster hence they can be in sleep mode for a longer duration.

The power consumption for each of the architectures is

shown in Fig. 7. The R10nb on average uses 20 % more power

than the R8 because the CA UE utilizes two receivers. Fig. 8

shows the total energy consumption of the UEs. The R10wb is

the most energy efficient solution and on average 4 % can be

saved, while the R10nb entails a saving of 3 %. The savings

may not seem impressive, but it is of interest that CA does

not introduce an energy consumption penalty on the UE given

the model and scenario assumptions. The figure also contains

a breakdown of the energy consumption in active and sleep

mode. The R8 UE consumes more than 25 % extra energy in

active mode compared to the CA UEs even though the actual

power consumption of the R8 UE is 20 % lower as shown in

Fig. 7. This is due to the lower throughput which entails the
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Offered cell load 10 Mbps

R10nb, µ = 2.38 W
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Fig. 7. Power consumption. OCL = 10 Mbps, µ is the mean.
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Offered cell load 10 Mbps

Total R10nb, µ = 3.3 J

Total R10wb, µ = 3.2 J

Total R8, µ = 3.4 J

Active R10nb, µ = 0.42 J

Active R10wb, µ = 0.38 J
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Sleep R8, µ = 2.8 J

Fig. 8. Energy consumption. OCL = 10 Mbps, µ is the mean.

TABLE III
MEAN DATA RATE AND RECEIVE POWER.

Load RR8 RR10 cc1 RR10 cc2 RR10 sum SR8 SR10 cc1 SR10 cc2

[Mbps] [Mbps] [Mbps] [Mbps] [Mbps] [dBm] [dBm] [dBm]

10 42 33 32 65 −71 −69 −73
30 32 22 24 45 −72 −70 −73
50 24 15 17 31 −73 −72 −74
70 18 10 11 21 −74 −73 −75

UE has to remain active for a longer time in order to receive

the same amount of data.

Given the major difference in active mode energy consumption

major overall savings could be expected, but due to the sleep

mode definition in Eq. (6) the UEs on average spend less than

10 % of the total time in active mode, hence the sleep mode

energy consumption is dominant. The reason is that a single

UE with low throughput prolongs the sleep time via tmax.

The simulations were also performed for other cell loads,

and the mean values of these results are shown in the following

Tables. Table III contains the results for mean throughput

rate R and receive power S as a function of the cell load.

The CA throughput gain decreases as the cell load increases

because each UE is allocated less PRBs less often. Table

TABLE IV
MEAN RECEIVE TIME AND ENERGY CONSUMPTION.

Load tR8 tR10 tmax
tR8−tR10

tR8

tmax
tR10

ER8 ER10nb ER10wb
ER8−ER10nb

ER8

[Mbps] [s] [s] [s] % [J] [J] [J] %

10 0.29 0.18 5.9 38 33 3.4 3.3 3.2 3
30 0.4 0.27 6.3 33 23 3.7 3.6 3.5 3
50 0.61 0.42 7 30 16 4.3 4.2 4.1 3
70 0.96 0.68 9.2 29 13 5.9 5.7 5.6 3

TABLE V
MEAN VALUES USING A MINIMUM THROUGHPUT LIMIT OF 5 MBPS.

Load tR8 tR10 tmax
tR8−tR10

tR8

tmax
tR10

ER8 ER10nb ER10wb
ER8−ER10nb

ER8

[Mbps] [s] [s] [s] % [J] [J] [J] %

10 0.28 0.18 1.6 37 9 1.2 1.1 1.1 7
30 0.39 0.27 2 32 7 1.5 1.5 1.4 6
50 0.56 0.42 2 25 5 1.8 1.7 1.6 3
70 0.76 0.65 2 15 3 2 2.1 2 −2

IV contains the associated results for mean receive time t

and energy consumption E. The first thing to observe is that

the receive time difference between R8 and R10 decreases

as the cell load increases. Furthermore the ratio between the

longest receive time and average R10 receive time decreases as

the load increases because the average throughput approaches

the minimum throughput i.e. the throughput spread is much

smaller, when the cell load is high. This means the sleep time

is very significant for all loads hence the sleep energy is the

major contributor to the total energy consumption. The relative

energy consumption difference between R8 and R10 is almost

constant. The reasons are that the active time ratio is almost

constant and that the sleep mode, which consumes the same

amount of energy for both releases, is dominating.

Due to the sleep time definition in Eq. (6) a slowly down-

loading UE will entail all other UEs experience long sleep

times. In the previous results this meant the sleep energy was

dominating and therefore an artificial simulation campaign

was made, where UEs with a throughput below 5 Mbps were

excluded from the statistics. This results in a lower maximum

receive time as shown in Table V. The 5 Mbps throughput limit

affects all scenarios, and it is clear that CA has an advantage

in low cell load scenarios where the energy savings now are

5-7 %. When the cell load is increased the difference between

R8 and R10 receive times decreases. This means the active

energy consumption of the R8 UE becomes smaller than the

CA UE hence the CA energy advantage is lost.

As discussed in section II CA can obtain even higher energy

savings by the use of DRX and/or micro-sleep, because the CA

UE is scheduled less often when it is in RRC connected mode.

Fig. 9 shows the UE activity factor, which is the ratio between

scheduled time and connected mode time, of the simulated

70 Mbps cell load scenario. When the UE is connected to

the macrocell it is scheduled less than 50 % of the time, and

based on the assumptions in [11], where it is estimated that the

energy consumption in micro-sleep mode is half of the active

mode, the energy consumption can be reduced by ∼25 %. One

reason for the low activity factor is due to the CA UE always

being connected to both CCs even though one of the CCs may

experience so low path gain that it cannot serve the UE.
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TABLE VI
MEAN POWER VALUES AND BREAK-EVEN POINTS FOR 10 MB PAYLOAD.

Load PR8 PR10nb PR10wb 1− xnb 1− xwb

[Mbps] [W] [W] [W] % %

10 2 2.4 2.2 21 11
30 2 2.3 2.1 19 9
50 1.9 2.3 2 19 8
70 1.9 2.2 2 19 7

V. ENERGY BREAK-EVEN

The results in the previous section showed that CA can

be used to save UE energy. The savings are possible when

the UE, using CA, receives a certain file faster than it would

have without CA. In this section the break-even point i.e. the

required increase in throughput to make CA energy efficient,

is calculated. The energy consumed by a R8 UE is:

ER8 = PR8 · trx + Psleep · (tmax − trx) [J] (7)

The receive time trx is scaled by x so the CA UE consumes

ER10 = PR10 · trx · x+ Psleep · (tmax − trx · x) [J] (8)

The break-even point i.e. the scaling factor x is

ER8 = ER10 [J]

PR8 · trx − Psleep · trx = PR10 · trx · x− Psleep · trx · x [J]

x =
PR8 − Psleep

PR10 − Psleep

[−] (9)

The break-even point is calculated for the simulated cell loads

and shown in Table VI. The sleep power is 0.50 W for all

UEs. The power consumption decreases as the load increases

because the UE throughput also decreases meaning that the

baseband processor is less loaded. When the R10nb is applied

a throughput increase of 19-21 % is required to break even. If

the R10wb is used the increase shall be as little as 7-11 %.

The conclusion that the throughput must be increased in order

to enter sleep mode fast and save energy e.g. by scheduling one

UE continuously is similar to the conclusion that was reached

for uplink transmission in [14]. Therefore it is expected that

the same conclusion can also be applied to uplink CA.

VI. CONCLUSION

Carrier Aggregation (CA) is standardized in LTE release

10 to improve throughput and coverage. However this entails

a more complicated transceiver design, hence a potential

increase in UE energy consumption. In this study it was

shown that CA can actually be used to save UE energy if

the downlink throughput is increased 20 %, hence this is what

network operators should aim for.

In this work two CA UE architectures where mapped to a

power model, and the energy consumption of the new UEs

were compared with an existing LTE release 8 UE in a

Heterogeneous Network scenario. The reason why energy can

be saved is that the CA UE can enter sleep mode faster, and

this low-power state is the key to save energy in current UE

architectures. If the LTE network using CA is implemented

to improve the coverage the throughput gain may be small.

This can entail the CA UEs experience an increased energy

consumption of up to 20 %. Discontinuous Reception and the

micro-sleep concept can add to the CA’s advantage because

the CA UE is likely to be scheduled less often, when it is in

connected mode and receiving finite buffer traffic.

To summarize CA can be used to increase the throughput,

and moreover decrease UE energy consumption, both key

performance indicators leading to a better user experience.
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