
LTL Planning for Groups of Robots

Marius Kloetzer, Student Member, IEEE, and Calin Belta, Member, IEEE

Abstract— We approach the general problem of planning
and controlling groups of robots from logical and temporal
specifications over regions of interest in 2D or 3D environ-
ments. The focus of this paper is on planning, and, enabled
by our previous results, we assume that the environment is
partitioned and described in the form of a graph whose nodes
label the partition regions and whose edges capture adjacency
relations among these regions. We also assume that the robots
can syncronize when penetrating from a region to another.
We develop a fully automated framework for generation of
robot plans from robot abstract task specifications given in
terms of Linear Temporal Logic (LTL) formulas over regions
of interest. Inter-robot collision avoidance is guaranteed, and
the assignment of plans to specific robots is automatic. The
main tools underlying our framework are model checking and
bisimilarity equivalence relations.

I. INTRODUCTION

The standard navigation problem for one robot in an
environment with obstacles consists of finding a motion
of the robot from configuration A to configuration B.
There are several approaches to this problem, which include
deterministic and probabilistic roadmap methods, poten-
tial fields [17], [18], navigation functions [16], cellular
decompositions, etc. In several robotics applications, the
specification ”go from A to B” is either too explicit, or
simply does not capture the nature of the task. For example,
there might exist two regions A and B in the environment
so that the accomplishment of the mission requires the
attainment of either A or B. Robotic tasks might also include
temporal specifications, such as in reachability tasks (”reach
A eventually”), convergence tasks (”reach A eventually and
stay there for all future times”), sequencing tasks (”reach
A, and then B, and then C”), surveillance tasks (”reach A
and then B infinitely often”), etc. Moreover, if more robots
are available, the attainment of disjoint regions at the same
time might be of interest, as in ”reach A and B eventually”.

Such specifications containing both logical and temporal
operators translate naturally to temporal logic. Several types
of temporal logics have been developed [8] for verifying the
correctness of computer programs, which can be seen as
continuously operating, (concurrent) reactive systems [20].
However, due to their resemblance to natural language, their
expressivity, and the existence of off-the-shelf algorithms for
model checking, temporal logic has the potential to impact
several other areas of engineering. The use of temporal logic
for task specification and controller synthesis in mobile ro-
botics has been advocated as far back as [1]. More recently,

The authors are with the Center for Information and Systems Engineer-
ing, Boston University, Brookline, MA 02446, USA (phone: 617-353-9586;
fax: 617-353-5548; email: {kmarius,cbelta}@bu.edu).

This work is partially supported by NSF CAREER 0447721 and NSF
0410514.

robot controllers satisfying Linear Temporal Logic (LTL)
formulas were constructed by composition of navigation
functions in [19]. The UPPAAL model checker was used
for motion planning of robots with trivial kinematics from
Computational Tree Logic (CTL) formulas in [22]. Finally,
based on continuous controllers developed in [4], [2], a
control strategy for a fully actuated planar robot moving
in a triangulated polygonal environment was developed in
[9] from specifications given in terms of LTL formulas over
the triangles in the partition.

We address the general problem of planning and con-
trolling a group of robots from specifications given in
terms of LTL formulas over predicates in the coordinates
of the environment. In our previous work, we developed
controllers for fully actuated robots moving in triangulated
polygonal environments [4], and for fully actuated robots
and unicycles operating in 2D and 3D environments with
rectangular partitions [14]. In both cases, we derived neces-
sary and sufficient conditions for the existence of controllers
for driving the robot from any initial point in a region to an
adjacent region in finite time, and for keeping the robot in
a given region for all times.

In this paper, we only focus on the discrete planning
problem. Specifically, we consider the following problem:
given a set of n robots, and given an arbitrary LTL formula
over the quotient of a partitioned environment, generate
motions for all robots so that the formula is satisfied. Central
to our approach is model checking and a certain notion
of equivalence, called bisimulation [21]. Enabled by our
previous results on robot control in partitioned 2D and
3D environments, we make some simplifying assumptions,
which allow us to model the environment as a graph (whose
nodes label the regions in the partition and whose edges
capture adjacency relations) and the set of all possible
motions of the robots as transition systems over this graph.
A robot motion will correspond to a run of the correspond-
ing transition system. In order to find runs satisfying the
formula, we perform model checking (using Büchi automata
[10]) on the transition system capturing the set of all
possible motions of the team. To this goal, starting from
the observation that the task is robot abstract (i.e., it only
contains logical and temporal statements about attainment
of regions, regardless of the performing robot(s)), we first
reduce the size of the problem by showing that the quotient
produced by the equivalence relation induced by robot
permutations is a bisimilarity quotient. To choose among
several motions of the team satisfying a given formula, we
select trajectories corresponding to a minimum number of
regions visited by the whole team.

From all related works cited above, this paper is closest

578

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

1-4244-0065-1/06/$20.00 ©2006 IEEE

related to [9], [22]. As in [9], we assume a partitioned
environment and use LTL formulas as task specifications.
However, we consider a team of robots as opposed to just
one robot, and automatically generate individual robot plans
from robot-abstract specifications. In [22], timed automata
are used to model robots moving in an environment parti-
tioned in square cells. Their controllers are synchronized
through a central controller, which is again modelled as
a timed automaton. The specifications are given as CTL
formulas over robot-cell assignments, and UPPAAL is used
for model checking. As opposed to [22], in addition to
accommodating robot abstract LTL specifications, we model
the robots as transition systems. Such models are general
enough to accommodate discrete, continuous, and hybrid
dynamics, and provide a formal framework for the inclusion
of realistic robot continuous and hybrid controllers in future
extensions of this work.

II. PRELIMINARIES

Definition 1: A transition system is a tuple T =
(Q,Q0,→,Π,!), where Q is a set of states, Q0 ⊆ Q is
a set of initial states, →⊆ Q×Q is a transition relation, Π
is a finite set of atomic propositions, and !⊆ Q × Π is a
satisfaction relation.

In this work, we assume that the transition system is
finite (Q is finite). For an arbitrary proposition π ∈ Π,
we define [[π]] = {q ∈ Q|q ! π} as the set of all states
satisfying it. Conversely, for an arbitrary state q ∈ Q, let
Πq = {π ∈ Π | q ! π}, Πq ∈ 2Π, denote the set of all atomic
propositions satisfied at q. A trajectory or run of T starting
from q is an infinite sequence r = r(1)r(2)r(3) . . . with the
property that r(1) = q, r(i) ∈ Q, and (r(i), r(i + 1)) ∈→,
for all i ≥ 1. A trajectory r = r(1)r(2)r(3) . . . defines a
word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i). The set
of all words generated by the set of all trajectories starting
at q ∈ Q is called the language of q and is denoted by
L(q). The language of the transition system T is defined as
L(T) =

⋃
q∈Q0

L(q).
An equivalence relation ∼⊆ Q × Q over the state space

of T is proposition preserving if for all q1, q2 ∈ Q and all
π ∈ Π, if q1 ∼ q2 and q1 ! π, then q2 ! π. A proposition
preserving equivalence relation naturally induces a quotient
transition system T/∼ = (Q/∼, Q0/∼,→∼,Π,!∼). Q/∼ is
the quotient space (the set of all equivalence classes). The
transition relation →∼ is defined as follows: for P1, P2 ∈
Q/∼, P1 →∼ P2 if and only if there exist q1 ∈ P1 and
q2 ∈ P2 such that q1 → q2. The satisfaction relation is
defined as follows: for P ∈ Q/∼, we have P !∼ π if and
only if there exist q ∈ P such that q ! π. Q0/∼ is the set
of all P ∈ Q/∼ containing at least one q ∈ Q0.

Definition 2: A proposition preserving equivalence re-
lation ∼ is a bisimulation of a transition system T =
(Q,Q0,→,Π,!) if for all states p, q ∈ Q, if p ∼ q and
p → p′, then there exist q′ ∈ Q such that q → q′ and
p′ ∼ q′.

If ∼ is a bisimulation, then the quotient transition system
T/∼ is called a bisimulation quotient of T , and the transition

systems T and T/∼ are called bisimilar. Bisimilar systems
have equivalent reachability properties, or more generally,
preserve properties specified in terms of temporal logics
such as LTL, CTL, and CTL* [8]. In this paper, we are
only concerned with LTL−X , a subclass of LTL, which
we will call for short linear temporal logic (LTL).

Definition 3: [Syntax of LTL−X formulas] A linear tem-
poral logic LTL−X formula over Π is recursively defined
as follows:

• Every atomic proposition πi, i = 1, . . . ,K is a for-
mula, and

• If φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, φ1Uφ2

are also formulas.
The semantics of LTL−X formulas are given over words

in the language of the transition system T .
Definition 4: [Semantics of LTL−X formulas] The sat-

isfaction of formula φ at position i ∈ N of word w, denoted
by w(i) ! φ, is defined recursively as follows:

• w(i) ! π if π ∈ w(i),
• w(i) ! ¬φ if w(i) " φ,
• w(i) ! φ1 ∨ φ2 if w(i) ! φ1 or w(i) ! φ2,
• w(i) ! φ1Uφ2 if there exist a j ≥ i such that w(j) !

φ2 and for all i ≤ k < j we have w(k) ! φ1

A word w satisfies an LTL formula φ, written as w ! φ,
if w(1) ! φ. The transition system T satisfies formula φ,
written as T ! φ, if w ! φ, ∀w ∈ L(T).

The symbols ¬ and ∨ stand for negation and disjunction.
The boolean constants) and ⊥ are defined as) =
π ∨ ¬π and ⊥ = ¬). The other Boolean connectors ∧
(conjunction), ⇒ (implication), and ⇔ (equivalence) are
defined from ¬ and ∨ in the usual way. The temporal
operator U is called the until operator. Formula φ1Uφ2

intuitively means that (over a word) φ2 will eventually
become true and φ1 is true until this happens. Two useful
additional temporal operators, ”eventually” and ”always”
can be defined as ♦φ =)Uφ and "φ = φU⊥, respectively.
Formula ♦φ means that φ becomes eventually true, whereas
"φ indicates that φ is true at all positions of w. More
expressiveness can be achieved by combining the temporal
operators. Examples include "♦φ (φ is true infinitely often)
and ♦"φ (φ becomes eventually true and stays true forever).

III. PROBLEM FORMULATION AND APPROACH

Enabled by our previous results on robot control in
partitioned 2D and 3D environments [4], [14], we make
the following simplifying assumptions, which allow us to
focus on the discrete motion planning problem: (1) the
environment is assumed to be already partitioned, (2) the
task is specified in terms of an LTL formula over the
partition quotient, (3) the robots are assumed to be able
to syncronize when penetrating from a region to another,
and (4) the robots are identically actuated. Assumptions (1)
and (2) are not restrictive, since as we show in [15], an
arbitrary LTL specification over arbitrary linear predicates
can automatically generate a partition satisfying assumption
(2). Also, on assumption (3), synchronization can be eas-
ily achieved by endowing the robots with a ’wait’ mode

579

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

(enabled at the boundaries of the regions) and a shared
syncronization input. Assumption (4) will allow us to solve
the problem in a computationally feasible way, by using a
bisimilarity equivalence relation.

To model the environment, we assign a symbol to every
region of the partition and assume that the adjacency among
regions is known. In other words, we describe the environ-
ment as a graph

E = (Q,A), (1)

where Q is a finite set of symbols (one for each element
in the partition), and A ⊂ Q × Q is a symmetric relation
capturing adjacency of regions. Such partitions can be
obtained by triangulation [4], rectangular grids [14], or
polytopal decompositions [15].

The motion of each robot is abstracted to the sequence of
regions reached by the robot, i.e., to a sequence of symbols
from Q. A robot can move from region q1 to region q2 if the
regions are adjacent and there exists a feedback controller
driving the robot from any initial point in q1 to q2 in finite
time. Similarly, a robot can stay in a region q for all future
times if there exists a feedback controller making the region
an invariant for the robot, independent of its initial position.
Such controllers for triangular partitions are described in [2],
for rectangular partitions in [3] and for partitions in convex
polytopes in [12], [15]. Formally, we model the i-th robot
as a transition system

Ti = (Qi, qi0,→i,Πi,!i), i = 1, . . . , n, (2)

where Qi = Q, qi0 ⊆ Q is the initial position of the robot
(a singleton), →i⊆ A ∪q∈Q (q, q) is the transition relation
which captures our capability to design controllers for robot
i so that it moves in finite time between adjacent regions
or stays inside a region for all times, Πi = Q, and ! is the
trivial satisfaction relation (q,π) ∈! if and only if q = π.
In other words, the proposition attached to symbol q is q
itself.

A motion of robot i is a word produced by a run of
Ti from equation (2) as defined in Section II. We assume
that the robots do not overlap initially, i.e., qi0 1= qj0, for
all i, j = 1, . . . , n, i 1= j. Assumption (3) above means
that the transitions of Ti, i = 1, . . . , n occur at the same
time, 1 while assumption (4) implies that →i=→j , for all
i, j = 1, . . . , n.

We are now ready to formulate the main problem:
Problem 1: Given a task specified as an arbitrary LTL

formula φ over an arbitrary subset of partition symbols Q,
determine a motion for each robot i (run of Ti), i = 1, . . . , n
so that the formula φ is satisfied.

Before we start to outline our approach, some comments
are in order. First, note that the task specification is ”robot-
abstract”, i.e., the accomplishment of the task requires that

1Syncronization of transition systems is usually achieved through shared
actions, or inputs. Definition 1 can be easily modified to include actions. Tg

from Definition 5 then becomes a synchronous product. However, since we
assume that all robots take transitions at the same time, this is equivalent
to all of them sharing the same action, and we omit writing the action
explicitly, since there is no ambiguity.

certain Boolean combinations of regions are attained in
certain order during the motion of the team, while the exact
assignment robot-region is not of interest. Second, note
that the satisfiability of the formula might depend on the
number of the robots in the team. For example, a formula
of the type ”♦q” can be satisfied by a robot that eventually
reaches region q. However, ”♦(q1∧q2)” cannot be satisfied
by one robot, since the regions q1 and q2 are distinct, and
one robot cannot be in q1 and q2 at the same time. Third,
in general there might exist several robot runs satisfying a
given formula.

Our solution to Problem 1 starts with the definition of a
transition system capturing all possible motions of the team.
Since the formula is robot abstract, we declare its states that
are related through robot permutations equivalent, and show
that the obtained quotient transition system is a bisimilarity
quotient (Section IV). We then find runs of the bisimulation
quotient satisfying the formula using Büchi automata and
generate the individual robot runs (Sections V, VI). To
choose among the several possible runs, we select those
runs consisting of the smallest number of robot transitions
(without counting transitions for staying inside a region).

IV. THE MOTION OF THE GROUP OF ROBOTS

To define the motion of the team of synchronized ro-
bots, we define a team (group) transition system. In what
follows, we use the usual notations (q1, . . . , qn) to denote
the n-tuple formed by the elements q1, . . . , qn (ordered set)
and {q1, . . . , qn} to denote the (unordered) set formed by
q1, . . . , qn.

Definition 5: The transition system Tg = (Qg, Qg0,→g

,Πg,!g) capturing the behavior of the group of n robots is
defined as

• Qg ⊂ Q1 × . . . × Qn is defined by (q1, . . . , qn) ∈ Qg

if and only if qi 1= qj for i 1= j,
• Qg0 = (q10, . . . , qn0),
• →g⊂ Qg × Qg is defined by

((q1, . . . , qn), (q′1, . . . , q′n)) ∈→g if and only if
(qi, q′i) ∈→i and for all i, j = 1, . . . , n with i 1= j, if
q′i = qj , then q′j 1= qi,

• Πg = Q,
• !g⊂ Qg × Πg is defined by ((q1, . . . , qn),π) ∈!g if

π ∈ {q1, . . . , qn}.
In other words, the states of the transition system Tg

capture all possible ways in which the regions labelled with
symbols from Q are occupied by the n robots. Configura-
tions in which two robots overlap (occupy the same region)
are excluded. The possible motions of the team are modelled
by the its transitions. A transition of Tg occurs when
all robots take synchronously allowed transitions, and we
exclude the case when two robots in adjacent regions switch
positions, since this could cause collision. Finally, each team
configuration is equipped with n predicates enumerating the
regions occupied by the robots, without explicitly specifying
the exact position of each robot.

Let a denote the map taking an n-tuple and producing
the corresponding set, i.e., a((q1, . . . , qn)) = {q1, . . . , qn}.

580

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

Over the states of Tg , we define an equivalence relation
∼a⊂ Qg × Qg by

((q1, . . . , qn), (q′1, . . . , q′n)) ∈∼a if
a((q1, . . . , qn)) = a((q′1, . . . , q′n)) (3)

It is obvious that ∼a is a proposition preserving equiva-
lence relation.

Proposition 1: The transition system Tg/∼a is a bisimu-
lation quotient.

Proof: We need to show that ∼a is a bisimulation
relation, as in Definition 2. Definition 5 implies that for any
state p = (q1, . . . , qn) ∈ Qg there are n! states q ∈ Qg

(including q = p) such that (p, q) ∈∼a. From all these
possible permutations of symbols q1, . . . , qn, choose for
simplicity of notation q = (qn, . . . , q1). For any transition
(p, p′) ∈→g with p′ = (q′1, . . . , q′n) ∈ Qg , there exists
q′ = (q′n, . . . , q′1) ∈ Qg such that (p′, q′) ∈∼a. Since
(p, p′) ∈→g , (qi, q′i) ∈→i, i = 1, . . . , n. Using →i=→j ,
for all i, j = 1, . . . , n we obtain that (qn−i+1, q′n−i+1) ∈→i,
i = 1, . . . , n, or (q, q′) ∈→g , which proves the Proposition.

Note that there is a significant decrease in the number of
states from Tg to Tg/∼a . Indeed, if there are N elements
in Q, then Tg has N !/(N − n)! states, while Tg/∼a has
N !/((N −n)!n!) states. However, based on Theorem 1, Tg

and Tg/∼a are equivalent with respect to the satisfaction of
LTL formulas. Therefore, in Section V, we will produce
runs of Tg/∼a satisfying formula φ. From these, in Section
VI, we will produce runs of the original Tg and and finally
runs of each Ti.

V. PRODUCING RUNS OF Tg/∼a

Formula φ from Problem 1 is over symbols in the set Q.
The set of predicates of Tg/∼a is Πg = Q (the same as
the set of predicates of Tg , in accordance with Section II).
Therefore, the semantics of formula φ can be interpreted
over words in the language of Tg/∼a .

In this section, we outline a procedure for finding runs
of Tg/∼a satisfying an arbitrary LTL formula φ over Πg .
We start by translating φ into a Büchi automaton B. Then
we take the product of Tg/∼a with B to obtain a product
automaton A, whose accepted runs will only include tra-
jectories of Tg/∼a that satisfy formula φ. We use standard
algorithms for graph traversing on A and eventually project
back to find the desired runs of Tg/∼a .

To simplify the notation and keep the discussion at a
general level, in the rest of this section we focus on an
arbitrary transition system T = (Q,Q0,→,Π,!) and an
arbitrary LTL formula φ over Π.

Definition 6 (Büchi automaton): A Büchi automaton is a
tuple B = (S, S0,Σ,→B, F), where

• S is a finite set of states,
• S0 ⊆ S is the set of initial states,
• Σ is the input alphabet,
• →B⊆ S × Σ × S is a nondeterministic transition

relation,
• F ⊆ S is the set of accepting (final) states.

The semantics of a Büchi automaton is defined over
infinite input words. Let ω = ω1ω2ω3... be an infinite
input word of automaton B, ωi ∈ Σ, ∀i ∈ N∗. We denote
by RB(ω) the set of all initialized runs of B that can be
generated by ω:

RB(ω) = {r = s1s2s3...|s1 ∈ S0,
(si,ωi, si+1) ∈→B, ∀i ∈ N∗} (4)

Definition 7 (Büchi acceptance): A word ω is accepted
by the Büchi automaton B (the word satisfies the automaton)
if and only if ∃r ∈ RB(ω) so that inf(r) ∩ F 1= ∅, where
inf(r) denotes the set of states appearing infinitely often
in the run r.

In [5], it was proved that, for any LTL formula φ over a
set of atomic propositions Π, there exists a Büchi automaton
B with input alphabet Σ ⊆ 2Π accepting all and only the
infinite strings over Π satisfying formula φ. In this paper,
we use the conversion algorithm described in [10] and its
freely downloadable implementation, LTL2BA.

Definition 8 (Product automaton): The product automa-
ton A = T × B between the transition system
T = (Q,Q0,→,Π,!) and the Büchi automaton B =
(S, S0,Σ,→B, F) with Σ ⊆ 2Π is defined as the tuple
A = (SA, SA0,→A, FA), where:

• SA = (Q ∪ {q0}) × S is the finite set of states,
• SA0 = {q0}× S is the set of initial states,
• →A⊆ SA × SA is the transition relation, defined

as: {(qi, sj), (qk, sl)} ∈→A if and only if (qi, qk) ∈
(→ ∪({q0}× Q0)) and (sj ,Πqk , sl) ∈→B,

• FA = Q × F is the set of accepting (final) states.
In the above definition, q0 is a dummy initial state.

Product automaton A can be seen as a Büchi automa-
ton without an input alphabet (i.e., the transitions have
no guards). The acceptance condition of A is formulated
similar to Definition 7, but with respect to runs instead of
input words. Explicitly, a run of rA of A is accepted if it
satisfies the transitions →A and inf(rA) ∩ FA 1= ∅. The
product automaton in Definition 8 can be regarded as a
match between the states of T and the transitions of B,
therefore A is sometimes referred to as the synchronous
product [13].

For any initialized run rA = (q0, sj1)(qi1, sj2)(qi2, sj3)...
of automaton A, we define the projection γT (rA) =
qi1qi2..., which maps rA to the corresponding run of T .
In [13], it was proved that, if φ is an arbitrary LTL formula
over Π and B is a corresponding Büchi automaton, then the
projection γT (rAφ) of any accepted run rA of A = T × B
is a run of T satisfying LTL formula φ. Thus, a run of
T satisfying specification φ exists if and only if A has an
accepted run [11], [9], which in turn is equivalent to the
existence of a strongly connected component of the directed
graph corresponding to A reachable from at least one initial
state and containing at least one accepting state [13].

Any accepted run of A starts from the initial state and
contains an infinite number of occurrences of one or more
final states. To find such runs, we used Dijkstra’s algorithm
[7], [6]. We only consider accepted runs rA of A composed

581

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

of two parts: (1) a prefix, containing a trajectory from an
initial state to an accepting state (excluding it) and (2) a
suffix, containing a trajectory starting and ending at the
above accepting state (excluding the last occurrence of this
final state if the suffix contains more than one state). The
actual run rA consists of the concatenation of the prefix and
an infinite number of suffix repetitions.

After projection, the corresponding run r =
r(1)r(2)r(3) . . . of T inherits the prefix-suffix structure.
In other words, there exist np and ns such that for any
i > np + ns, r(i) = r((i − np − 1)mod ns + np + 1). np

and ns are the number of states in prefix and suffix of r,
respectively and thus the run r contains at most np + ns

different states. In addition, it can be proved [15] that
in a run r of T , none of the states can be succeeded by
itself, except for the state of a suffix of length one (case
in which this state will be infinitely repeated). In other
words, r(i) 1= r(i + 1), ∀i ∈ N∗, i 1= np + k ns + 1, k ∈ N.
Moreover, if ns ≥ 2, r(i) 1= r(i + 1), ∀i ∈ N∗.

Due to space constraints, we do not give here an explicit
description of the algorithm returning runs for transition
system T satisfying an LTL formula φ and we refer the
interested reader to [15]. However, in contrast with [15],
we need to point out that we associate weights (costs) with
transitions of T (Tg/∼a). These costs are equal with the
minimum number of transitions from Ti, i = 1, . . . , n that
guarantee a transition of Tg/∼a . Then, for a given initial
state of Tg/∼a , we find a prefix with minimum cost and a
corresponding suffix with minimum cost.

On the complexity of the computation, let us denote by
ν1 the number of predicates appearing in the LTL formula.
Then an upper limit for the number of states of the Büchi
automaton B is ν12ν1 . However, this limit is almost never
achieved. The number of states of the product automaton
A (say ν2) equals the product of the number of states of
Tg/∼a and the number of states of the Büchi automaton B,
therefore an upper limit for ν2 is ν12ν1N !/((N − n)!n!).
Finally, the complexity of Dijkstra’s algorithm is O(ν2

2).

VI. ROBOT MOTION PLANS

In order to determine individual robot plans (i.e., runs of
Ti starting from qi0, i = 1, . . . , n), we first need to find a
run of Tg starting from (q10, . . . , qn0). Let r = r(1)r(2)...
be a run of Tg/∼a starting from r(1) = a((q10, . . . , qn0)) =
{q10, . . . , qn0} and satisfying formula φ (found as described
in Section V). Let us denote the run of Tg that we
want to find by rTg = rTg (1)rTg (2)..., with rTg (1) =
(q10, . . . , qn0).

For finding rTg (2), we find all states p ∈ Qg such that
(rTg (1), p) ∈→g and a(p) = r(2). Proposition 1 guarantees
that there exists at least one such state p. If there are more,
we choose one corresponding to the minimum number of
robots leaving their currently occupied region. We iteratively
use this method (np + ns − 1) times and we find a prefix-
suffix structure of rTg , similar with the one of r. The
minimum cost of prefix and suffix of r, together with the
way we match transitions of Tg/∼a with transitions of Tg ,

Fig. 1. Partitioned planar environment with 12 regions.

implies that there will be no robots spending energy in
unnecessary movements.

Further, we easily find the robot specific runs by pro-
jecting each state of rTg on states of Ti, using n trivial
projection maps αi : Qg → Qi, αi((q1, . . . , qn)) = qi,
i = 1, . . . , n. Note that the runs of both Tg and all Ti,
i = 1, . . . , n inherit the prefix-suffix structure of runs from
Tg/∼a , with the same number of states in prefix (np) and
suffix (ns). This particular structure is appropriate for real
implementations, because of the way it manages an infinite
run by storing a finite number of its elements.

VII. CASE STUDY

Consider the partitioned planar environment shown in
Figure 1 (such ”polytopal” partitions can be automatically
constructed from linear predicates in spaces of arbitrary
dimension using the algorithms presented in [15]). Assume
we have n = 2 robots in the team and the task is specified
as the following LTL formula:

φ = 6(q10∧q12∧"6(q5∧q8∧6(q6∧q8)))∧"¬(q4∨q7∨q9)
(5)

Formula 5 represents a reachability followed by sur-
veillance task, involving obstacle avoidance, which can be
informally read as: ”eventually reach regions q10 and q12,
after that infinitely often reach q5 and q8, then q6 and q8,
and always avoid regions q4, q7, and q9”.

The transition system Tg has 132 states, its bisimulation
quotient Tg/∼a has 66 states, and the corresponding Büchi
automaton has 6 states. There are 36 initial states of Tg/∼a

starting from which formula φ can be satisfied, which
correspond to 72 robot-specific configurations. We chose the
initial configuration (q1, q3) and obtained a corresponding
run with prefix of length np = 9 and suffix of length ns = 2.
Figure 2 shows the resulted motion of the team, which
corresponds to the smallest number of robot transitions.

VIII. CONCLUSION

In this paper, we present a fully automated framework
for planning of a team of robots from task specifications

582

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

Fig. 2. All different configuration reached by R1 and R2 during the motion satisfying formula φ. The region occupied by R1 is shown in red, the
region occupied by R2 is shown in blue, while the regions corresponding to obstacles are shown in yellow. The 8th configuration from prefix is identical
with the 6th one, the 9th configuration from prefix is identical with the 5th one, and the 10th configuration (first one from suffix) is identical with the
4th one from prefix. Configurations 10 and 11 are repeated infinitely often.

given in terms of LTL formulas over the quotient of a
partitioned environment. We model the robots as transition
systems, and use model checking techniques to generate
robot plans satisfying a formula. We also exploit the robot-
abstract structure of the specifications to reduce the size of
the model checking problem by using bisimulations.

REFERENCES

[1] M. Antoniotti and B. Mishra. Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion
controllers. In IEEE International Conference on Robotics and
Automation, May 1995.

[2] C. Belta and L.C.G.J.M. Habets. Constructing decidable hybrid
systems with velocity bounds. In 43rd IEEE Conference on Decision
and Control, Paradise Island, Bahamas, 2004.

[3] C. Belta and L.C.G.J.M. Habets. Control of a class of nonlinear
systems on rectangles. IEEE Transactions on Automatic Control,
2005. to appear.

[4] C. Belta, V. Isler, and G. J. Pappas. Discrete abstractions for robot
planning and control in polygonal environments. IEEE Trans. on
Robotics, 21(5):864–874, 2005.

[5] J. R. Büchi. On a decision method in restricted second order
arithmetic. In E. Nagel et al., editor, Proceedings of the International
Congress on Logic, Methodology and Philosophy of Science 1960,
Stanford, CA.

[6] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms. The MIT Press and McGraw-Hill Book Company,
Cambridge, Massachusetts and New York, 2nd edition, 2001.

[7] E.W. Dijkstra. A note on two problems in connexion with graphs.
In Numerische Mathematik, volume 1, pages 269–271. Mathematisch
Centrum, Amsterdam, The Netherlands, 1959.

[8] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science: Formal Models and
Semantics, volume B, pages 995–1072. North-Holland Pub. Co./MIT
Press, 1990.

[9] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for mobile robots. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005.

[10] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In
H. Comon G. Berry and A. Finkel, editors, Proceedings of the 13th
Conference on Computer Aided Verification (CAV’01), number 2102,
pages 53–65, 2001.

[11] G. De Giacomo and M.Y. Vardi. Automata-theoretic approach to
planning for temporally extended goals. In Proceedings of the 5th
European Conference on Planning (ECP ’99), volume 1809, pages
226–238, 1999.

[12] L.C.G.J.M. Habets and J.H. van Schuppen. A control problem for
affine dynamical systems on a full-dimensional polytope. Automatica,
40:21–35, 2004.

[13] G. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, 2004.

[14] M. Kloetzer and C. Belta. A framework for automatic deployment
of robots in 2d and 3d environments. In International Conference on
Robotics and Automation, Orlando, FL, 2006. submitted.

[15] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from ltl specifications. In The 9th International
Workshop on Hybrid Systems: Computation and Control, Santa
Barbara, CA, 2006. to appear.

[16] D. E. Koditschek. The control of natural motion in mechanical
systems. ASME Journal of Dynamic Systems, Measurement, and
Control, 113(4):548–551, 1991.

[17] J.C. Latombe. Robot Motion Planning. Kluger Academic Pub., 1991.
[18] S. M. LaValle and M. S. Branicky. On the relationship between

classical grid search and probabilistic roadmaps. In Workshop on the
Algorithmic Foundations of Robotics, Nice, France, 2002.

[19] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of
multiagent motion tasks based on ltl specifications. In 43rd IEEE
Conference on Decision and Control, December 2004.

[20] Z. Manna and A. Pnueli. The temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, Berlin, 1992.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[22] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot

motion planning: A timed automata approach. In Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
page 44174422, New Orleans, LA, April 2004.

583

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on November 20, 2009 at 22:06 from IEEE Xplore. Restrictions apply.

