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Abstract

Temporal logics, first-order logics, and automata over

data words have recently attracted considerable attention.

A data word is a word over a finite alphabet, together with

a datum (an element of an infinite domain) at each position.

Examples include timed words and XML documents. To re-

fer to the data, temporal logics are extended with the freeze

quantifier, first-order logics with predicates over the data

domain, and automata with registers or pebbles.

We investigate relative expressiveness and complexity of

standard decision problems for LTL with the freeze quan-

tifier (LTL↓), 2-variable first-order logic (FO2) over data

words, and register automata. The only predicate available

on data is equality. Previously undiscovered connections

among those formalisms, and to counter automata with in-

crementing errors, enable us to answer several questions

left open in recent literature.

We show that the future-time fragment of LTL↓ which

corresponds to FO2 over finite data words can be extended

considerably while preserving decidability, but at the ex-

pense of non-primitive recursive complexity, and that most

of further extensions are undecidable. We also prove that

surprisingly, over infinite data words, LTL↓ without the ‘un-

til’ operator, as well as nonemptiness of one-way universal

register automata, are undecidable even when there is only

1 register.

1. Introduction

Being able to store a value in some register/variable and

to test it later in a different context, is a common feature

of many recently studied logical formalisms. The following

are the most prominent examples:

Timed logics. The freeze quantifier in timed logics was in-

troduced in the logic TPTL (e.g. [2]), where the for-
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mula x · φ(x) binds the variable x to the time t of the

current state. Depending on the semantics, x is inter-

preted as a real number or a natural number and the

formula is semantically equivalent to φ(t).

Hybrid logics. In [13], the formula ↓x φ(x) holds when-

ever φ(x) holds in the variant Kripke structure where

the propositional variable x is interpreted as a single-

ton containing exactly the current state.

Modal logics. Predicate λ-abstraction is presented in [11]

to solve the problem of interpreting constants in first-

order modal logics: 〈λx · F P (x)〉(c) states that the

current value of the constant c satisfies the predicate P

eventually in the future.

Logics with forgettable past. In [15], Now φ holds when-

ever φ holds in a linear structure in which the origin

is updated to the current position (φ may contain past-

time operators). Equivalently, the register containing

the position of the origin of time is assigned the cur-

rent position.

Interestingly, the same general mechanism is central to

the notion of register automata [14, 26, 6, 21], which recog-

nise words over infinite alphabets. Indeed, a letter can be

stored in a register and tested later against the current letter.

Similarly, in Alur-Dill timed automata (e.g. [1]), resetting a

clock c to 0 is equivalent to storing the current time as the

time when c was last reset.

The ability to store and test is powerful, since many prob-

lems are undecidable in its presence [14, 1, 6, 8, 17]. How-

ever, searching for decidable fragments or subproblems, and

determining their complexity, is well-motivated by the fact

that logical and automata formalisms with such features are

helpful for querying semi-structured data [21, 7, 3], ver-

ifying timed systems [2, 1], model checking constrained

automata [8], and verifying dynamic systems with re-

sources [17], quoting a few examples.

In this paper, we consider logics and automata over finite

and infinite data words. In a data word, at each index, there

is a letter from a finite alphabet Σ, and an element of an

infinite domain D. As in [14, 26, 21, 7, 4, 8, 17], elements

of D can only be compared for equality, so it is equiva-

lent and simpler to define a data word as a word over Σ



equipped with an equivalence relation on its indices: i ∼ j

iff the elements of D at indices i and j are equal. In com-

mon with [7, 4], we take this latter approach. To be able to

consider languages of words over Σ obtained by projecting

data words, we do not eliminate the finite alphabets from

the definition of data words, although such eliminations are

possible by encodings as in [14, 26, 21, 8].

We study linear temporal logic extended by the freeze

quantifier (LTL↓). The formula ↓r φ holds at an index i of a

data word iff φ holds with i stored in the register r. Within

the scope of the freeze quantifier ↓r, the atomic formula

↑r∼ is true at an index j iff i ∼ j, i.e. the data value at the

index in r is equal to the data value at the current index.

LTL↓ is the core of Constraint LTL with the freeze quan-

tifier [8], and of the linear temporal logics with predicate

λ-abstraction [17]. Moreover, Repeating Hybrid LTL con-

sidered in [12] is exactly the fragment of LTL↓ with the

temporal operators X, X−1, F and F−1.

We show that the first-order logic with 2 variables

FO2(∼, <, +1) studied in [7, 4] is equivalent to a natu-

ral fragment of LTL↓ with only 1 register. That extends

the equivalence between FO2(<, +1) and unary LTL in the

setting without data values [10]. In [4], satisfiability for

FO2(∼, <, +1) is proved decidable and as hard as reacha-

bility for Petri nets, over finite and over infinite data words.

The automata formalism we consider is register auto-

mata (RA) over data words. As in LTL↓, an RA can store

the current data word index in a register r, and subsequently

test whether the index in r is in the same class of ∼ as the

current index. Over finite data words, essentially the same

automata were studied in [14, 26, 21], and one-way nonde-

terministic RA are a subclass of data automata [6, 5]. We

consider two-way alternating RA, as well as subclasses ob-

tained by restricting directionality and/or control. In con-

trast to finite automata on words over finite alphabets, a

number of separation results for such subclasses were ob-

tained in [14, 21]. For infinite data words, we focus on weak

parity RA, a subclass of both Büchi and co-Büchi RA.

The second expressiveness result in the paper is a transla-

tion in logarithmic space from sentences of LTL↓ to equiva-

lent RA. For the future fragment, one-way RA are sufficient.

The central part of the paper consists of a systematic in-

vestigation of decidability and complexity of standard de-

cision problems for fragments of LTL↓ and classes of RA.

Most of the results are based on surprising translations to

and from counter automata (CA), where we consider both

standard (Minsky) CA whose computations are exact, and

faulty (Incrementing) CA whose computations may contain

errors which increase one or more counters.

We show that, over finite and infinite data words, with

only 1 register, satisfiability for the future fragment of

LTL↓, as well as nonemptiness of one-way alternating RA,

are reducible in polynomial space to nonemptiness of Incre-

menting CA. In the finitary case, that gives us decidability

of the former two problems. The only decidable fragment of

LTL↓ previously known is the flat fragment in [8], in which

use of the freeze quantifier is heavily restricted. Interest-

ingly, the translation from one-way alternating RA to Incre-

menting CA consists of broadly similar steps as the trans-

lation from one-way alternating timed automata to faulty

channel machines in [24].

For the next main result, we first adapt the recent results

in [27, 24] on faulty channel machines to obtain that fini-

tary [resp. infinitary] nonemptiness of Incrementing CA is

not primitive recursive [resp. Π0
1-hard]. Then, through en-

coding runs of Incrementing CA as data words, we obtain

that, even with only 1 register, finitary [resp. infinitary] sat-

isfiability for the future fragment of LTL↓ without the U op-

erator, as well as nonemptiness of one-way universal RA

(equivalently, nonuniversality of one-way nondeterministic

RA), are not primitive recursive [resp. Π0
1-hard].

By translating from Minsky CA instead of Incrementing

CA, we show that several other satisfiability problems for

fragments of LTL↓ and nonemptiness problems for classes

of RA are Σ0
1-hard over finite data words, and Σ1

1-hard over

infinite data words.

Taken together, the decision problem results in this pa-

per provide a tighter demarkation of the decidability border

than was known in the literature, in terms of finite versus in-

finite data words, the number of registers, sets of temporal

operators, and automata directionality and control. We an-

swer several questions posed in [14, 21, 12, 8, 17]. In partic-

ular, the undecidability result for nonemptiness of one-way

universal RA with only 1 register shows that it is impossible

to extend the developments in [14] to infinite words, which

was a challenge posed in that paper.

Along the way, we obtain several other results, includ-

ing a characterisation of projections onto the finite alpha-

bet of languages of sentences from the future fragment of

LTL↓ with 1 register. Surprisingly, the characterisation is

the same with or without the U operator.

More detailed comparisons with related work can be

found throughout the paper.

Sections 2 and 3 contain the definitions, and warm-up re-

sults on closure properties of register automata and on non-

emptiness of counter automata. The results on relative ex-

pressiveness are in Section 4. The central part of the paper

is in Sections 5 and 6, which are mainly on decidability and

complexity of decision problems.

2. Preliminaries

2.1. LTL over data words

LTL↓(∼;O) will denote the linear temporal logic with

the freeze quantifier, the predicate ∼, and temporal oper-



ators in the set O. Each formula is over a finite alphabet

Σ. Atomic propositions a are elements of Σ, r ranges over

N \ {0}, and O ranges over O.

φ ::= ⊤ | a | ↑r∼ | ¬φ | φ ∧ φ | O(φ, . . . , φ) | ↓r φ

An occurence of ↑r∼ within the scope of some freeze

quantifier ↓r is bound by it; otherwise, it is free. A sentence

is a formula with no free occurence of any ↑r∼.

We consider the set {X, X−1, F, F−1, U, U−1} of temporal

operators, and its subsets. As Fφ is equivalent to ⊤Uφ, F

can be omitted from any set which contains U, and the same

is true for F−1 and U−1. As usual, we regard G and G−1 as

abbreviations for ¬F¬ and ¬F−1¬.

Let LTL↓
n(∼;O) be the fragment of LTL↓(∼;O) with n

registers, i.e. where r ∈ {1, . . . , n}.

Models of LTL↓(∼;O) are data words. A data word σ

over a finite alphabet Σ is a nonempty word in Σ<ω or Σω,

together with an interpretation of ∼ as an equivalence re-

lation on word indices. We write |σ| for the length of the

word, σ(i) for its letters where 0 ≤ i < |σ|, and ∼σ for the

interpretation of ∼. Let Σ<ω(∼) and Σω(∼) denote the sets

of all such finite and infinite (respectively) data words. For

a data word σ, let str(σ) be the underlying word in Σ≤ω.

A register valuation v for a data word σ is a finite partial

map from N\ {0} to the indices of σ. An undefined register

value in an atomic formula will make the latter false. Unde-

fined register values will be used for initial automata states.

The satisfaction relation |= is defined as follows. Temporal

operators are interpreted as in LTL, so we show only one.

We also omit the Boolean cases.

σ, i |=v a
def
⇔ σ(i) = a

σ, i |=v ↑r∼
def
⇔ r ∈ dom(v) and v(r) ∼σ i

σ, i |=v Xφ
def
⇔ i + 1 < |σ| and σ, i + 1 |=v φ

σ, i |=v ↓r φ
def
⇔ σ, i |=v[r �→i] φ

2.2. First-order logic over data words

As defined in [4], FO(∼, <, +1, . . . ,+m) denotes first-

order logic over data words, in which variables range over

word indices. We use variable names x0, x1, . . . The predi-

cates xi < xj and xi = xj + k are interpreted as expected.

Each formula has an alphabet Σ, and it may contain unary

predicates Pa(xi) which are satisfied by a data word iff the

letter at index xi is a. When we write φ(xi1 , . . . , xiN
), it

means that at most xi1 , . . . , xiN
occur free in φ.

FOn(∼, <, +1, . . . ,+m) has variables x0, . . . , xn−1.

2.3. Register automata

Suppose Q is a finite set of locations, and n ∈ N. The

set Φ(Q, n) of all transition formulae with respect to Q and

n is defined as follows, where r ∈ {1, . . . , n} and q ∈ Q:

ϕ ::= ⊤ | ⊥ | ↑r∼ | ↑r �∼ | beg | nbeg | end | nend |

ϕ ∧ ϕ | ϕ ∨ ϕ | ↓r ϕ | 〈q, 1〉 | 〈q,−1〉

A transition formula is locationless iff it has no subfor-

mula of the form 〈q, o〉. Otherwise, it is locationful. For any

locationless transition formula ϕ, let ϕ̄ denote its dual, ob-

tained by replacing any atomic subformula by its negation,

and interchanging ∧ and ∨.

A two-way alternating register automaton A is a tuple

〈Σ, Q, qI , n, δ, ρ〉 such that:

• Σ is a finite alphabet;

• Q is a finite set of locations;

• qI ∈ Q is the initial location;

• n ∈ N is the number of registers (given in unary);

• δ : Q × Σ → Φ(Q, n) is the transition function;

• ρ : Q → N specifies ranks such that, whenever 〈q′, o〉
is a subformula of δ(q, a), we have ρ(q′) ≤ ρ(q).

Suppose σ ∈ Σ≤ω(∼). To define runs of A over σ, we

first define a state of A for σ to be a triple 〈i, q, v〉 where

i is an index of σ, q is a location of A, and v is a register

valuation for σ.

Next, we interpret the transition function δ by means of

a satisfaction relation S |=σ,i
v ϕ where S is a finite set of

states for σ and ϕ is a transition formula. The cases for

Boolean constants and operators are standard, and treat-

ments of dual clauses are as expected:

S |=σ,i
v ↑r∼

def
⇔ v(r) ∼σ i and v(r) is defined

S |=σ,i
v beg

def
⇔ i = 0

S |=σ,i
v end

def
⇔ i = |σ| − 1

S |=σ,i
v ↓r ϕ

def
⇔ S |=σ,i

v[r �→i] ϕ

S |=σ,i
v 〈q, o〉

def
⇔ 〈i + o, q, v〉 ∈ S

Now, a run of A of length 0 < κ ≤ ω over σ is a directed

acyclic graph G consisting of:

• for each 0 ≤ j < κ, a finite set G(j) (called a level) of

states of A for σ, and

• for each j with j+1 < κ, an edge relation→j between

G(j) and G(j + 1),

such that:

(i) G(0) = {〈0, qI , ∅〉}, where ∅ is the empty register val-

uation;

(ii) for any j with nonempty G(j), we have j + 1 < κ,

G(j + 1) =
⋃

〈i,q,v〉∈G(j) S〈i,q,v〉 where each S〈i,q,v〉

is some minimal set satisfying S〈i,q,v〉 |=
σ,i
v δ(q, σ(i)),

and 〈i, q, v〉 →j 〈i′, q′, v′〉 iff 〈i′, q′, v′〉 ∈ S〈i,q,v〉.



Observe that, as a consequence of (ii), any finite run is com-

plete, in the sense that its last level G(κ − 1) is necessarily

empty. Note also that, in any valid run, for every 〈i, q, v〉 in

any level, some S〈i,q,v〉 as in (ii) must exist.

Along any path π of a run, the location ranks are non-

increasing. Therefore, if π is infinite, the location ranks

eventually have the same value, which we denote by ρ(π).
A data word is accepted iff it has a run such that, for each

infinite path π, ρ(π) is even. 1

An automaton as above is one-way iff it contains no tran-

sition subformula of the form 〈q,−1〉. For one-way auto-

mata, any successor state of a state 〈i, q, v〉 is of the form

〈i + 1, q, v〉. Over a finite data word σ, any run of a one-

way automaton is finite. Hence, σ is accepted iff it has a

run, i.e. the ranking function ρ is irrelevant.

An automaton is nondeterministic (i.e. existential) iff any

transition subformula which is a conjunction of locationful

formulae is of the form (ϕ∨ϕ′)∧(ϕ̄∨ϕ′′) where ϕ is loca-

tionless. For nondeterministic automata, any successor set

of any state has size at most 1. Thus, any run is a sequence

of states.

An automaton is universal iff any transition subformula

which is a disjunction of locationful formulae is of the form

(ϕ ∧ ϕ′) ∨ (ϕ̄ ∧ ϕ′′) where ϕ is locationless. For universal

automata, any state has at most one successor set. Thus, any

data word has at most one run.

An automaton is deterministic iff it is both nondetermin-

istic and universal.

The classes of register automata above will be denoted

by dCRA(∼), where d ∈ {1, 2} and C ∈ {A, N, U, D}
specify any restrictions on directionality and control. Let

dCRAn(∼) denote the subclass with n registers.

Note 1 The definition of register automata above is suited

to the uses in this paper, and has similarities with definitions

in [6, 5, 16, 23]. Thus, it differs in some technical details

from the definition of register automata in [14, 26, 21]. With

the latter definition, in any state, the registers contain mu-

tually distinct data values (or the default value ♯), and the

previous data value is always held in a register. It can be

checked that, for any automaton with n + 1 registers in the

sense of [14, 26, 21], we can construct an equivalent au-

tomaton with n + 1 registers and an equivalent alternating

automaton with n registers in the sense of this paper.

2.4. Counter automata

A counter automaton (CA), with ε transitions and zero

testing, is a tuple 〈Σ, Q, qI , n, δ, F 〉 where Σ is a finite al-

phabet, Q is a finite set of locations, qI is the initial loca-

tion, n ∈ N is the number of counters (given in unary),

1Recall that we consider only nonempty data words. It is straightfor-

ward to extend the definitions to enable acceptance of the empty data word,

but that is not necessary in this paper.

δ ⊆ Q × (Σ ⊎ {ε}) × L × Q is the transition relation over

the instruction set L = {inc, dec, ifzero} × {1, . . . , n},

and F ⊆ Q is the set of accepting locations.

A counter valuation is a function {1, . . . , n} → N. An

error-free run over w ∈ Σ<ω [resp. w ∈ Σω] is a finite

[resp. infinite] sequence 〈q0, v0〉
w0,l0
−→ 〈q1, v1〉

w1,l1
−→ · · ·

observing the standard interpretation of the instructions

(〈dec, c〉 can be performed only if c is nonzero), where

q0 = qI , v0, v1, . . . are counter valuations, v0 assigns 0 to

each counter, and w = w0w1 . . ..

A finite run is accepting iff it ends with an accepting lo-

cation. An infinite run is accepting iff it contains an accept-

ing location infinitely often.

A Minsky CA has error-free runs. For Minsky CA, fini-

tary nonemptiness is in Σ0
1, and infinitary nonemptiness is

in Σ1
1. Already with 2 counters, infinitary nonemptiness is

Σ1
1-hard [2, Lemma 8], and finitary nonemptiness of deter-

ministic Minsky CA is Σ0
1-hard [19].

An Incrementing CA is defined as a Minsky CA except

that its runs may contain errors which increase one or more

counters. Formally, for counter valuations v and v†, we

write v ≤ v† iff, for all c, v(c) ≤ v†(c). Runs of Incre-

menting CA are defined by replacing the relation
w,l
−→ with

the following: 〈q, v〉
w,l
−→† 〈q′, v′〉 iff there exist v† and v′†

such that v ≤ v†, 〈q, v†〉
w,l
−→ 〈q′, v′†〉, and v′† ≤ v′. When

it is clear from the context that we are considering an Incre-

menting CA, we may write simply
w,l
−→ instead of

w,l
−→†.

Theorem 2 For Incrementing CA, finitary nonemptiness is

decidable and not primitive recursive;2 infinitary nonemp-

tiness is Π0
1-complete.

Proof. Decidability of finitary nonemptiness follows from

the decidability of the coverability problem for Reset Petri

nets [9] by reversing the computations, and non-primitive

recursiveness from an adaptation of the result of [27]. Π0
1-

completeness of infinitary nonemptiness follows by adapt-

ing the proof of [24, Theorem 2], and by Π0
1 membership of

the recurrent-state problem for Insertion Channel Machines

with Emptiness Testing [25]. ⊓⊔

2.5. Languages and decision problems

For an LTL↓(∼;O) sentence φ over an alphabet Σ, let

Lα
Σ(φ) = {σ ∈ Σα(∼) : σ, 0 |= φ}.

For an FO(∼, <, +1) sentence φ over an alphabet Σ, let

Lα
Σ(φ) = {σ ∈ Σα(∼) : σ |= φ}.

For a register automaton A whose alphabet is Σ, let

L<ω(A) [resp. Lω(A)] denote the set of all finite [resp. in-

finite] data words over Σ accepted by A.

2Recall the Ritchie-Cobham property [22, page 297]: a decision prob-

lem (i.e. a set) is primitive recursive iff it is solvable in primitive recursive

time/space.



For a counter automaton C whose alphabet is Σ, let

L<ω(C) [resp. Lω(C)] denote the set of all finite [resp. infi-

nite] words over Σ accepted by C.

The decision problems of satisfiability for a logical frag-

ment, and nonemptiness for a class of automata, are defined

as usual in terms of the languages above. A problem is fini-

tary or infinitary, which specifies word length.

A sentence or register automaton is said to be equivalent

to another one iff they are over the same alphabet and have

the same finitary and infinitary languages.

3. Closure properties

Proposition 3 Over finite and over infinite data words, and

for any d ∈ {1, 2}, dDRAn(∼) and dARAn(∼) are closed

under complement, and dNRAn(∼) is dual to dURAn(∼).

Proof. It can be shown that the dual automaton recognises

the complement language, by adapting complementation of

alternating automata and using determinacy of weak parity

games (see [18]). ⊓⊔

Proposition 4 Over finite and over infinite data words:

(a) Each automata class 1CRA(∼) is closed under inter-

section and union. For intersections of universal or

alternating automata, and for unions of nondetermin-

istic or alternating automata, the maximum of the two

numbers of registers suffices. Otherwise, their sum suf-

fices.

(b) 2URA(∼) is closed under intersection, 2NRA(∼) is

closed under union, and 2ARA(∼) is closed under in-

tersection and union. The maximum of the two num-

bers of registers suffices.

Proof. By branching and product constructions. ⊓⊔

4. Expressiveness

Suppose m ≥ 1. We write Xm [resp. X−m] to denote the

temporal operator made of m ≥ 1 successive operators X

[resp. X−1]. The operators XmF and X−mF−1 are defined

analogously. Let Om denote the following set of temporal

operators: {X, X−1, . . . , Xm, X−m, Xm+1F, X−(m+1)F−1}.

An LTL
↓
1(∼;Om) formula is said to be simple iff any

occurrence of a temporal operator is immediately preceded

by ↓1 (and there are no other occurences of ↓1).

Example 5 Since the Boolean operators and the freeze

quantifier commute, the simple fragment of LTL
↓
1(∼;O1)

can express ↓1 F, ↓1 G and ↓1 XG. Hence, there is a sim-

ple formula in LTL
↓
1(∼;O1) equivalent to the ‘nonces’ sen-

tence G ↓1 XG¬ ↑1∼ which states that no class of ∼ contains

more than one element.

An LTL
↓
1(∼;Om) sentence φ is said to be equivalent

to an FO2(∼, <, +1, . . . ,+m) formula φ′(xj) iff they are

over the same alphabet Σ and, for every σ ∈ Σ≤ω(∼) and

index i of σ, we have σ, i |=∅ φ ⇔ σ |=[xj �→i] φ′(xj).

Proposition 6 (a) For any simple LTL
↓
1(∼;Om) sen-

tence, an equivalent FO2(∼, <, +1, . . . ,+m) formula

is computable in logspace.

(b) For any FO2(∼, <, +1, . . . ,+m) formula φ(xj), an

equivalent simple LTL
↓
1(∼;Om) formula is com-

putable in pspace.

Proof. First, we introduce some convenient notation. Let

O0 =↓1, Ok =↓1 Xk for k ∈ {−m, . . . ,−1, 1, . . . , m},

Om+1 =↓1 Xm+1F, and O−(m+1) =↓1 X−(m+1)F−1. For

j ∈ {0, 1}, let

χ
j
0

def
= x1−j = xj

χ
j
k

def
= x1−j = xj + k (1 ≤ k ≤ m)

χ
j
−k

def
= xj = x1−j + k (1 ≤ k ≤ m)

χ
j
m+1

def
= xj < x1−j ∧

∧

1≤k≤m ¬x1−j = xj + k

χ
j

−(m+1)

def
= x1−j < xj ∧

∧

1≤k≤m ¬xj = x1−j + k

(The equality predicate can be expressed using <.)

We have (a) by the following translations Tj which map

simple LTL
↓
1(∼;Om) formulae to FO2(∼, <, +1, . . . ,+m)

formulae. Any sentence φ will be equivalent to Tj(φ) which

will contain at most xj free. Tj are defined by structural

recursion, by encoding the semantics of simple formulae

into first-order logic, and by recycling variables (to use only

two variables). The Boolean clauses are omitted.

Tj(a)
def
= Pa(xj) Tj(↑1∼)

def
= x1−j ∼ xj

Tj(O
kψ)

def
= ∃x1−j(χ

j
k ∧ T1−j(ψ))

For (b), we proceed by adapting the proof of [10,

Theorem 1]. We define recursively translations T ′
j from

FO2(∼, <, +1, . . . ,+m) formulae φ(xj) to equivalent sim-

ple LTL
↓
1(∼;Om) sentences. The cases of Boolean opera-

tors and one-variable atomic formulae are straightforward.

The remaining case is when φ(xj) is of the form

∃x1−j β(α1(x0, x1), . . . , αL(x0, x1),
ξ1(xj), . . . , ξN (xj), ζ1(x1−j), . . . , ζM (x1−j))

where β is a Boolean formula, and each αi(x0, x1) is a ∼,

< or +k atomic formula. Now, for any −(m + 1) ≤ k ≤

m + 1 and ⊲⊳ ∈ {∼, �∼}, let α
k,⊲⊳
i denote the truth value of

αi(x0, x1) under the assumption χ
j
k ∧ xj ⊲⊳ x1−j . Also, for

any X ⊆ {1, . . . , N}, let ξX
i = ⊤ if i ∈ X , and ξX

i = ⊥
otherwise. T ′

j(φ(xj)) is then computed as
∨

−(m+1)≤k≤m+1

∨

⊲⊳∈{∼, �∼}

∨

X⊆{1,...,N}
(
∧

i∈{1,...,N} T ′
j(ξi(xj)) ⇔ ξX

i

)

∧

Ok(↑1⊲⊳ ∧ β(αk,⊲⊳
1 , . . . , α

k,⊲⊳
L ,

ξX
1 , . . . , ξX

N , T ′
1−j(ζ1(x1−j)), . . . , T

′
1−j(ζM (x1−j)))



The size of the equivalent simple LTL
↓
1(∼;Om) formula

is exponential in |φ|, because the length of the stack of

recursive calls is linear and generalized conjunctions and

disjunctions have at most exponentially many arguments.

For the same reasons, polynomial space is sufficient for the

computation. ⊓⊔

Corollary 7 Over finite and over infinite data words,

simple LTL
↓
1(∼;Om) satisfiability is logspace reducible

to FO2(∼, <, +1, . . . ,+m) satisfiability, and there is a

pspace reduction in the reverse direction.

We now turn to translating temporal formulae to register

automata.

Theorem 8 For any LTL↓
n(∼; X, X−1, U, U−1) sentence, an

equivalent automaton in 2ARAn(∼) is constructible in

logspace. For formulae with only future-time operators, the

automata are one-way.

Proof. By a standard logspace reduction, we can as-

sume that φ over an alphabet Σ is a sentence in LTL↓
n(∼

; X, X−1, U, U−1) extended by the duals ⊥, ∨, X̄, X̄−1, Ū, Ū−1

of ⊤, ∧, X, X−1, U, U−1 (respectively), and that φ is in nega-

tion normal form, i.e. such that ¬ occurs only in front of

atomic formulae.

To construct an equivalent AΣ
φ = 〈Σ, Q, n, qI , δ, ρ〉 in

2ARAn(∼), let Q = cl(φ), where cl(φ) is the set of all

subformulae of φ, and let qI = φ.

The transition function is defined as follows. It is homo-

morphic for ⊤, ⊥, ∧ and ∨ formulae, and the clauses for Ū,

U−1 and Ū−1 are similar to the clause for U.

δ(b, a) = truth value of b = a

δ(¬b, a) = truth value of b �= a

δ(↑r∼, a) = ↑r∼

δ(¬ ↑r∼, a) = ↑r �∼

δ(Xψ, a) = 〈ψ, 1〉

δ(X̄ψ, a) = end ∨ 〈ψ, 1〉

δ(X−1ψ, a) = 〈ψ,−1〉

δ(X̄−1ψ, a) = beg ∨ 〈ψ,−1〉

δ(ψUψ′, a) = δ(ψ′, a) ∨ (δ(ψ, a) ∧ 〈ψUψ′, 1〉)

δ(↓r ψ, a) = ↓r δ(ψ, a)

To complete the construction, for every ψ ∈ cl(φ), let

ρ(ψ) = 2× |ψ|+1 if the outermost construct in ψ is U, and

let ρ(ψ) = 2 × |ψ| otherwise. As required, we have that,

whenever 〈q′, o〉 is a subformula of δ(q, a), ρ(q′) ≤ ρ(q).

Showing L≤ω
Σ (φ) = L≤ω(AΣ

φ ) is routine. ⊓⊔

Example 9 Let φ = G ↓1 XG¬ ↑1∼ be the nonces sen-

tence. Recalling that Gψ is equivalent to ⊥Ūψ, the tran-

sition formulae δ(Gψ, a) in the construction of Theorem 8

G ↓1 XG¬ ↑1∼

G¬ ↑1∼⊥

nend

↓1

nend

↑1∼

Figure 1. A one-way universal RA

simplify to δ(ψ, a)∧(end∨〈Gψ, 1〉). Figure 1 represents the

resulting one-way register automaton. The forks are read as

conjunctions, and edge labels nend and ↑1∼ as implication

premises. Thus, the edges from location G¬ ↑1∼ represent

the transition formula

(↑1∼ ⇒ ⊥) ∧ (nend ⇒ 〈G¬ ↑1∼, 1〉)

or equivalently ↑1 �∼ ∧ (end ∨ 〈G¬ ↑1∼, 1〉). The rank of

location φ is larger than the rank of location G¬ ↑1∼, and

both are even. Observe that the automaton is universal, as

it does not contain a disjunction between locationful transi-

tion subformulae.

5. Upper complexity bounds

The following warm-up theorem contains basic member-

ship results. In some cases, they will be matched by the

hardness results in Section 6.

Theorem 10 Over finite data words, satisfiability for

LTL↓(∼; X, X−1, U, U−1) and nonemptiness for 2ARA(∼)
are in Σ0

1. Over infinite data words, satisfiability for

LTL↓(∼; X, X−1, U, U−1) and nonemptiness for 2ARA(∼)
are in Σ1

1, and nonemptiness for 2NRA(∼) is in Σ0
2.

Proof. For encoding runs of alternating automata, we use

the following observation: a run is accepting iff, at infinitely

many levels we have that, for each state of odd rank, all its

successors at some subsequent level have strictly smaller

ranks. We also note that, for any finite data word, any au-

tomaton has finitely many states. ⊓⊔
In [26], finitary nonemptiness for 1NRA(∼) was shown

to be in NP, but their proof does not carry over to the def-

inition of register automata in this paper: see Note 1 and

Theorem 14.

Theorem 11 Finitary nonemptiness and infinitary non-

emptiness for 1NRA(∼) are in PSPACE.



Proof. By a logspace reduction to satisfiability for

CLTL(N, =), which is PSPACE-complete [8]. ⊓⊔
By Corollary 7 and [4], finitary and infinitary satisfia-

bility for simple LTL
↓
1(∼; X, X−1, XXF, X−1X−1F−1) are re-

ducible to reachability for Petri nets. The latter problem is

decidable, so the former also are. It is not known whether

reachability for Petri nets is elementary.

It was shown in [14, Appendix A] that, over finite data

words, for A in 1NRA1(∼) and A′ in 1NRA(∼), contain-

ment of A′ in A is decidable.3 By Theorem 2 and Propo-

sition 3, the result in [14, Appendix A] is subsumed by the

following theorem. The proofs in [14, Appendix A] and of

Theorem 2 both involve well-quasi-orders.

Theorem 12 For A in 1ARA1(∼) andA′ in 1NRA(∼), fini-

tary [resp. infinitary] nonemptiness of the intersection of A
and A′ is pspace reducible to finitary [resp. infinitary] non-

emptiness of an Incrementing CA.

Proof. Suppose that A = 〈Σ, Q, qI , 1, δ, ρ〉 and A′ =
〈Σ′, Q′, q′I , n, δ′, ρ′〉. We can assume Σ = Σ′.

We first consider finitary nonemptiness. Suppose σ ∈
Σ<ω(∼), 0 ≤ i < |σ|, and G and G′ are partial runs of

A and A′ (respectively) up to ith level. Any element of

G(i) is of the form 〈i, q, v〉, and G′(i) is either a singleton

{〈i, q′, v′〉} or empty.

Observe that the intersection of A and A′ is nonempty

iff, from some such 〈σ, i, G(i), G′(i)〉, an empty (i + 1)th
level is reachable.

Now, quadruples 〈σ, i, G(i), G′(i)〉 as above will be rep-

resented by configurations, which are tuples of the form

〈c, Qu, q′, E, f, ϕb, ϕe〉

where c is a function from P+(Q) (the set of all nonempty

subsets of Q) to N, Qu ∈ P(Q), q′ ∈ Q′ or q′ = ∅, E

is an equivalence relation on a subset of {1, . . . , n}, f is a

function from classes of E to P(Q), ϕb ∈ {beg, nbeg},

and ϕe ∈ {end, nend}.

A configuration 〈c, Qu, q′, E, f, ϕb, ϕe〉 represents a

quadruple 〈σ, i, G(i), G′(i)〉 as above iff:

• for any Q† ∈ P+(Q), c(Q†) is the number of classes

S of ≈ such that π2(S) = Q† and π3(S) is not in the

same class of ∼σ as any v′(r) as below, where ≈ is the

equivalence relation on the set of all 〈i, q, v〉 ∈ G(i)
with v �= ∅ defined by

〈i, q1, [1 �→ j1]〉 ≈ 〈i, q2, [1 �→ j2]〉 ⇔ j1 ∼σ j2

and πk is kth-component tuple projection;

• Qu = {q : 〈i, q, ∅〉 ∈ G(i)};

3The exact statement allows A to have 2 registers, but see Note 1.

• if G′(i) = ∅ then q′ = ∅, otherwise we have

G′(i) = {〈i, q′, v′〉}, r1 E r2 iff r1, r2 ∈ dom(v′) and

v′(r1) ∼σ v′(r2), and f(r̄) = Q† if there exists a class

S of ≈ such that π2(S) = Q† and π3(S) is in the same

class of ∼σ as v′(r), otherwise f(r̄) = ∅;

• ϕb = beg iff i = 0, and ϕe = end iff i = |σ| − 1.

For ϕ a transition formula in A, ϕb ∈ {beg, nbeg}, ϕe ∈
{end, nend}, ⊲⊳ ∈ {∼, �∼}, and Q=, Q �= ∈ P(Q), we write

ϕ �
ϕb,ϕe
⊲⊳ Q=, Q �= iff there exist σ ∈ Σ<ω(∼), 0 ≤ i <

|σ|, a partial function v1 from {1} to {0, . . . , i − 1}, and

a minimal S such that S |=σ,i
v1

ϕ, ϕb = beg iff i = 0,

ϕe = end iff i = |σ| − 1, v1(1) ⊲⊳σ i,

Q= = {q : 〈i + 1, q, [1 �→ i]〉 ∈ S}

Q �= = {q : 〈i + 1, q, [1 �→ j]〉 ∈ S ∧ j �= i}

Observe that it suffices to consider σ with |σ| ≤ 3.

Similarly, for ϕ′ a transition formula in A′, ϕb ∈
{beg, nbeg}, ϕe ∈ {end, nend}, R1, R2 ⊆ {1, . . . , n},

and q′ ∈ Q′, we write ϕ′
�

ϕb,ϕe

R1
q′, R2 iff there exist

σ ∈ Σ<ω(∼), 0 ≤ i < |σ|, a partial function v′1 from

{1, . . . , n} to {0, . . . , i − 1}, and a minimal S such that

S |=σ,i

v′
1

ϕ′, ϕb = beg iff i = 0, ϕe = end iff i = |σ| − 1,

R1 = {r : v′1(r) ∼σ i}, and S = {〈i + 1, q′, v′2〉} with

R2 = {r : i = v′2(r)}. Whenever the above is satisfied

with S = ∅, we write ϕ′
�

ϕb,ϕe

R1
∅. Observe that, in any

case, it suffices to consider σ with |σ| ≤ 3.

We are now ready to begin constructing an Increment-

ing CA C with the alphabet Σ. C will have 2 × (2|Q| − 1)
counters, which we denote by c(Q†) and ĉ(Q†) for Q† ∈
P+(Q). The locations, initial location, transition relation

and accepting locations are constructed so that C performs

the following:

(1) A configuration 〈c, Qu, q′, E, f, ϕb, ϕe〉 is kept in each

state of C. Initially, Qu = {qI}, q′ = q′I , E = f = ∅,

ϕb = beg, and ϕe is chosen (nondeterministically, by

ε transitions).

(2) At this point, C performs an a ∈ Σ transition, chooses

C ∈ {Q† : c(Q†) > 0}∪{r̄ : q′ �= ∅ ∧ r E r}∪{�∼}

which specifies whether the current index is regarded

as belonging to a class represented in the current con-

figuration, and proceeds to compute a successor con-

figuration 〈ĉ, Q̂u, q̂′, Ê, f̂ , ϕ̂b, ϕ̂e〉.

The successor configurations will represent exactly

quadruples 〈σ, i + 1, G(i + 1), G′(i + 1)〉 such that

the current configuration represents 〈σ, i, G(i), G′(i)〉,
and either C = π2(S) for some class S of ≈ whose

register values are in the class of i and where the regis-

ter values in G′(i) are not in the class of i, or C consists

of those registers whose values in G′(i) are in the class



of i, or C = �∼ and there are no register values in G(i)
or G′(i) which are in the class of i.

(3) If q′ = ∅, then q̂′ = ∅. Otherwise, let R1 = ∅ if C =
Q† or C = �∼, and R1 = C if C = r̄. C then chooses

a completion of δ′(q′, a) �
ϕb,ϕe

R1
: either q̂′, R2 or ∅.

– If q̂′, R2 was chosen, C obtains Ê from E by

making the registers in R1 ∪ R2 related only to

each other.

– Otherwise, q̂′ = ∅.

An auxiliary Q∼ ∈ P(Q) is initialised to ∅. At the end

of (6), Q∼ will be equal to {q : 〈i + 1, q, [1 �→ j]〉 ∈
G(i + 1) ∧ j ∼ i}.

(4) While there exists Q† ∈ P+(Q) such that c(Q†) >

0, C chooses and processes a successor set from each

location in Q† with respect to a and C:

– If C = Q†, C chooses, for each q ∈ Q†, Q=
q and

Q �=
q with δ(q, a) �

ϕb,ϕe
∼ Q=

q , Q �=
q . Q∼ is then

updated to Q∼ ∪
⋃

q∈Q† Q=
q ∪ Q �=

q , and C to �∼.

– Otherwise, C chooses, for each q ∈ Q†, Q=
q and

Q �=
q with δ(q, a) �

ϕb,ϕe

�∼ Q=
q , Q �=

q . Q∼ is then

updated to Q∼∪
⋃

q∈Q† Q=
q , and if

⋃

q∈Q† Q �=
q �=

∅, ĉ(
⋃

q∈Q† Q �=
q ) is incremented.

Now, c(Q†) is decremented, and (4) is repeated.

(5) For each q ∈ Qu, C chooses Q=
q and Q �=

q such that

δ(q, a) �
ϕb,ϕe

�∼ Q=
q , Q �=

q . Q∼ is then updated to Q∼ ∪
⋃

q∈Qu
Q=

q , and Q̂u is set to
⋃

q∈Qu
Q �=

q .

(6) For each r̄ such that f(r̄) �= ∅, C chooses and processes

a successor set from each location in f(r̄) with respect

to a and C:

– If C = r̄, C chooses, for each q ∈ f(r̄), Q=
q and

Q �=
q with δ(q, a) �

ϕb,ϕe
∼ Q=

q , Q �=
q . Q∼ is then

updated to Q∼ ∪
⋃

q∈f(r̄) Q=
q ∪ Q �=

q .

– Otherwise (R1 = ∅), C chooses, for each q ∈
f(r̄), Q=

q and Q �=
q with δ(q, a) �

ϕb,ϕe

�∼ Q=
q , Q �=

q .

Q∼ is then updated to Q∼ ∪
⋃

q∈f(r̄) Q=
q . If

q̂′ �= ∅ and r̄ �⊆ R2, then f̂(r̄ \ R2) is set to
⋃

q∈f(r̄) Q �=
q . Otherwise, and if

⋃

q∈f(r̄) Q �=
q �= ∅,

ĉ(
⋃

q∈f(r̄) Q �=
q ) is incremented.

(7) If q̂′ �= ∅ and R1 ∪ R2 �= ∅, f̂(R1 ∪ R2) is set to Q∼.

Otherwise, and if Q∼ �= ∅, ĉ(Q∼) is incremented.

(8) If ĉ(Q†) = 0 for each Q† ∈ P+(Q), Q̂u = ∅, and q̂′ =
∅, C stops at an accepting location if ϕe = end, or goes

to a location from which it accepts all nonempty words

if ϕe = nend. Otherwise, and if ϕe = nend, then ϕ̂b

is set to nbeg, ϕ̂e is chosen, 〈c, Qu, q′, E, f, ϕb, ϕe〉

is replaced by 〈ĉ, Q̂u, q̂′, Ê, f̂ , ϕ̂b, ϕ̂e〉, and C repeats

from (2).

Now, suppose the intersection of A and A′ contains a

finite data word σ. Let G and G′ be runs of A and A′ (re-

spectively) over σ. As above, the levels of G and G′ are rep-

resented by some configurations 〈ci, Q
i
u, q′i, Ei, fi, ϕ

i
b, ϕ

i
e〉

for i = 0, . . . , |σ| − 1. By the construction of C, it has an

error-free accepting finite run, such that the configurations

whenever (2) is begun are exactly 〈ci, Q
i
u, q′i, Ei, fi, ϕ

i
b, ϕ

i
e〉

for i = 0, . . . , |σ| − 1.

Conversely, suppose C has an accepting finite run. Let

〈c̃i, Q̃
i
u, q̃′i, Ẽi, f̃i, ϕ̃

i
b, ϕ̃

i
e〉 for i = 0, . . . , k − 1 be the con-

figurations whenever (2) is begun. By the construction

of C, it has an error-free accepting finite run. More pre-

cisely, the configurations whenever (2) is begun are some

〈ci, Q
i
u, q′i, Ei, fi, ϕ

i
b, ϕ

i
e〉 for i = 0, . . . , k − 1 such that,

for each i, we have ci ⊑ c̃i, Qi
u = Q̃i

u, q′i = q̃′i, Ei = Ẽi,

fi(r̄) ⊆ f̃i(r̄) for all r̄, ϕi
b = ϕ̃i

b and ϕi
e = ϕ̃i

e, where

ci ⊑ c̃i iff there exists an injection

ι : {〈Q†, j〉 : Q† ∈ P+(Q) ∧ j ∈ {1, . . . , ci(Q
†)}} →

{〈Q̃†, j〉 : Q̃† ∈ P+(Q) ∧ j ∈ {1, . . . , c̃i(Q̃
†)}}

such that, whenever ι(〈Q†, j〉) = 〈Q̃†, j̃〉, we have

Q† ⊆ Q̃†. It follows that A and A′ have runs G

and G′ (respectively) over a finite data word σ of length

k, whose levels are represented by the configurations

〈ci, Q
i
u, q′i, Ei, fi, ϕ

i
b, ϕ

i
e〉.

To complete the proof for finitary nonemptiness, poly-

nomial space suffices for the construction of C because: the

number of counters is exponential in |Q|; each branching

or iteration in C is at most polynomial in |Σ| or |Q′|, or

exponential in |Q| or n, and their nesting is bounded by

a constant; for each of the relations ϕ �
ϕb,ϕe
⊲⊳ Q=, Q �=,

ϕ′
�

ϕb,ϕe

R1
q′, R2 and ϕ′

�
ϕb,ϕe

R1
∅, membership is in

PSPACE.

Infinitary nonemptiness is handled in the same way, ex-

cept that the construction is extended in order to transform

alternating weak parity acceptance into nondeterministic

Büchi acceptance, similarly as in the proof of [20, Theo-

rem 5.1]. ⊓⊔

Corollary 13 Finitary [resp. infinitary] satisfiability for

LTL
↓
1(∼; X, U) is pspace reducible to finitary [resp. infini-

tary] nonemptiness of Incrementing CA.

Proof. By Theorems 8 and 12. ⊓⊔

6. Lower complexity bounds

The following result matches PSPACE membership

shown in Theorem 11, even for deterministic automata.



Theorem 14 Finitary nonemptiness and infinitary non-

emptiness for 1DRA(∼) are PSPACE-hard.

Proof. By reducing from QBF. ⊓⊔
By [4] and Corollary 7, reachability for Petri nets is

PTIME reducible to finitary and infinitary satisfiability

for simple LTL
↓
1(∼; X, X−1, XXF, X−1X−1F−1). The former

problem is EXPSPACE-hard, so the latter also are.

We now turn to hardness results for fragments of

LTL↓(∼; X, X−1, U, U−1) without the simplicity restriction,

and for register automata which are not one-way and non-

deterministic.

The following shows that the problems in Theorem 12 in

Corollary 13 are also not easier than nonemptiness of Incre-

menting CA (see Theorem 2), already for nonemptiness of

universal automata and with F instead of U.

Theorem 15 In both finitary and infinitary cases, nonemp-

tiness of Incrementing CA is logspace reducible to satisfia-

bility for LTL
↓
1(∼; X, F) and nonemptiness for 1URA1(∼).

Proof. For the finitary case, suppose C = 〈Σ, Q, qI , n, δ, F 〉
is an Incrementing CA. Let L = {inc, dec, ifzero} ×
{1, . . . , n}, and Σ̂ = Q× (Σ∪ {ε})×L×Q. For any σ ∈
Σ̂<ω(∼), where str(σ) = 〈q0, w0, l0, q

′
0〉〈q1, w1, l1, q

′
1〉 · · ·,

let σ̄ = w0w1 · · ·.
To ensure that σ ∈ Σ̂<ω(∼) corresponds to a run of

C, we constrain the equivalence relation ∼σ. Firstly, there

must not be two 〈inc, c〉 transitions, or two 〈dec, c〉 transi-

tions (with the same c) in the same class. For an 〈ifzero, c〉
transition to be correct, whenever it is preceded by 〈inc, c〉,
there must be an intermediate 〈dec, c〉 in the same class. In-

crementing errors may occur because a 〈dec, c〉 transition

may be preceded by no 〈inc, c〉 in the same class. Such a

〈dec, c〉 transition corresponds to a faulty decrement which

leaves c unchanged. Now, it is easy to check that, for any

run of C, there is a run which differs at most in counter

values and whose only incrementing errors are such faulty

decrements.

More precisely, w ∈ Σ<ω is accepted by C iff w = σ̄

for some σ ∈ Σ̂<ω(∼) which satisfies the following, where

str(σ) = 〈q0, w0, l0, q
′
0〉〈q1, w1, l1, q

′
1〉 · · ·:

(1) for each i, 〈qi, wi, li, q
′
i〉 ∈ δ;

(2) q0 = qI , and for each i > 0, q′i−1 = qi;

(3) for the maximum i, q′i ∈ F ;

(4) there are no c and i < j such that li = lj = 〈inc, c〉
and i ∼σ j;

(5) there are no c and i < j such that li = lj = 〈dec, c〉
and i ∼σ j;

(6) for any c and i such that li = 〈inc, c〉, it is not the case

that, there is j > i with lj = 〈ifzero, c〉 but there is

no k > i with lk = 〈dec, c〉 and i ∼σ k;

(7) there are no c and i < j < k such that li = 〈inc, c〉,
lj = 〈ifzero, c〉, lk = 〈dec, c〉 and i ∼σ k;

An LTL
↓
1(∼; X, F) sentence over Σ̂ which expresses the

conjunction of (1)–(7) can be constructed from C in loga-

rithmic space. (1)–(3) are straightforward. Among (4)–(7),

the most interesting is (7), and the rest can be expressed

similarly. Note how (6) and (7) were formulated to avoid

using the U operator. The following sentence expresses (7):

¬
∨n

c=1 F

(

∨

q,w,q′〈q, w, 〈inc, c〉, q′〉
)

∧

↓1 XF

(

∨

q,w,q′〈q, w, 〈ifzero, c〉, q′〉
)

∧

XF

(

∨

q,w,q′〈q, w, 〈dec, c〉, q′〉
)

∧ ↑1∼

A 1URA1(∼) automaton which accepts exactly those

σ ∈ Σ̂<ω(∼) which satisfy (1)–(7) can also be constructed

in logarithmic space. By Propositions 3 and 4, it suffices,

for each of (1)–(7), to construct in logarithmic space a

1NRA1(∼) automaton which accepts a data word iff it fails

the condition. In fact, (6) and (7) can be treated together,

and this automaton is the most interesting. It makes sure

that σ has a run iff it contains an 〈inc, c〉 instruction, fol-

lowed by no occurence of 〈dec, c〉 in the same class until

〈ifzero, c〉 occurs. Formally, it has locations {0, 1, . . . , n}
where 0 is initial, and the following transition function. (As

the automaton is one-way, we omit the offsets of 1.)

(0, 〈q, w, 〈inc, c〉, q′〉) �→ 0 ∨ ↓1 c

(0, 〈q, w, l, q′〉) �→ 0, otherwise

(c, 〈q, w, 〈dec, c〉, q′〉) �→ ↑1 �∼ ∧ c

(c, 〈q, w, 〈ifzero, c〉, q′〉) �→ ⊤

(c, 〈q, w, l, q′〉) �→ c, otherwise

The infinitary case is obtained similarly, where (3) is re-

placed by:

(3’) for infinitely many i, qi ∈ F , and for infinitely many i,

wi �= ε. ⊓⊔

Corollary 16 Over finite and over infinite words, the fol-

lowing sets of languages are the same:

(i) of the form L(C), where C is an Incrementing CA;

(ii) of the form f(str(L(φ))), where f is a string homo-

morphism and φ is an LTL
↓
1(∼; X, F) sentence;

(iii) of the form f(str(L(φ))), where f is a string homo-

morphism and φ is an LTL
↓
1(∼; X, U) sentence.

Proof. By the proofs of Corollary 13 and Theorem 15. ⊓⊔
Our final result shows that it is impossible, without caus-

ing Σ0
1 or Σ1

1 hardness (see Section 2.4), to extend the prob-

lems in Theorem 12 in Corollary 13 by adding backward



transitions, the F−1 operator, or one more register, even if

we restrict to nonemptiness of universal automata and re-

place U with F. The result should also be compared with

Theorem 10.

The theorem below is stronger than [12, Corollary 1]

and [8, Theorem 3], which showed Σ1
1-hardness of infini-

tary satisfiability for LTL
↓
2(∼; X, X−1, F, F−1) and LTL

↓
2(∼

; X, U). Also, together with Proposition 3, it implies [21,

Theorem 5.1] where finitary nonuniversality for 1NRA(∼)
was shown undecidable. Undecidability of finitary nonemp-

tiness for 2DRA1(∼) was shown in [7, Section 7.3], using

a different encoding.

Theorem 17 In both finitary and infinitary cases, non-

emptiness of Minsky CA is logspace reducible to satisfia-

bility for LTL
↓
1(∼; X, F, F−1) and LTL

↓
2(∼; X, F), and non-

emptiness for 1URA2(∼). In the finitary [resp. infinitary]

case, we also have a logspace reduction to nonemptiness of

2DRA1(∼) [resp. 2URA1(∼)].

Proof. The reductions to problems with F−1 or backward

transitions use encodings as in the proof of Theorem 15.

The reductions to problems with 2 registers use encodings

similar to that in [17, Section 4]. ⊓⊔

7. Concluding remarks

A summary of the results in this paper on the complex-

ity of satisfiability for fragments of LTL↓(∼; X, X−1, U, U−1)
can be found in boldface in the table below. The remaining

entries were shown in [12, 8]. R \ PR means decidable and

not primitive recursive, and ‘co.’ abbreviates ‘complete’.

SAT<ω SATω

registers 1 2 1 2
X, F R \ PR Σ0

1
-co. Π0

1
-co. Σ1

1
-co.

X, U R \ PR Σ0
1-co. Π0

1
-co. Σ1

1-co.

X, F, F−1 Σ0

1
-co. Σ0

1
-co. Σ1

1
-co. Σ1

1-co.
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