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Abstract

Background: Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by

a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current

software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the

classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based

on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary

assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification

workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets),

making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow.

Results: We have developed LTRsift , an interactive graphical software tool for semi-automatic postprocessing of de

novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and

classification functionality, displaying the putative candidate groups, their members and their internal structure in a

hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and

further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies,

we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort.

Conclusions: LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR

retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless

filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing

and refining the output of software for predicting LTR retrotransposons up to the stage of preparing full-length

reference sequence libraries. The LTRsift software is freely available at http://www.zbh.uni-hamburg.de/LTRsift under

an open-source license.
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Background
Large portions of eukaryotic genomes are repetitive, that

is, the sequences in question appear in more than one

genomic location. Repetitive DNA (in the scope of this

paper also referred to as repeats) can be further subdi-

vided into a hierarchy of categories, the most general of

which are simple repeats – for example, satellite DNA or

telomeres – and interspersed repeats, for example, trans-

posable elements (TE). Interspersed repeats are abundant
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in the genomes of many higher organisms. For example,

about 46% of the human genome [1] and 38% of themouse

genome [2] consists of interspersed repeats, most of which

are transposons. These, in turn, are further characterized

by their transposition mechanism: class I transposons or

retrotransposons replicate via an RNA intermediate, while

class II transposons or DNA transposons replicate via a

DNA intermediate [3,4].

An important order of retrotransposons are LTR retro-

transposons, which are less common in animals, but

the predominant order in plants. Similar in structure to

retroviruses (Figure 1), they show long terminal repeat
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Figure 1 Structure of a typical long terminal repeat retrotransposon. Adapted from [5]. AP:Aspartic protease; IN: integrase; LTR: long terminal

repeat; PPT: polypurine tract; RH: RNase H; RT: reverse transcriptase; TSD: target site duplication. The numbers below the illustration denote typical

lengths of the respective component. This example is of the copia-like superfamily, as it shows the IN-RT-RH domain order.

(LTR) sequences at their flanks, with adjacent small direct

repeats resulting from target site integration (target site

duplications or TSD). The sequence between the LTRs

typically encodes polyprotein genes, for example, gag and

pol, containing structural proteins for an intracellular

replication compartment as well as enzymatic functions

required to perform the reverse transcription and inte-

gration process. This includes an aspartic protease (AP),

reverse transcriptase (RT), RNase H (RH), and integrase

(IN) function.

Additionally, several other structural elements are

required for successful transposition. These include the

primer binding site (PBS), which is essential as the start

point for reverse transcription [6-8]. Typically the PBS is

8 to 18 base pairs long and expected to be found directly

downstream of the inner 5′ LTR boundary. In this region

of 8 to 18 nucleotides, it is also highly complementary

to the 3′ region of a transfer RNA of the host organism.

Another important feature is the polypurine tract (PPT),

needed as a primer for plus-strand DNA synthesis. The

A/G-rich polypurine tracts vary in length and are usually

in the range of 8 to 22 bases [8]. Often a U-rich section

(the so-called U-box) can be found just upstream of the

PPT [9].

The presence of these distinctive structural features

have led to the development of various software tools

using these features as markers to identify potential LTR

retrotransposon insertions (called candidates in the scope

of this paper) [10-14]. These tools do not use any external

reference sequence, an approach called de novo identifi-

cation. The rationale behind this approach is that transpo-

son sequences are typically species-specific and a purely

homology-based identification approach is not guaran-

teed to be successful. Instead, for transposon annotation

in newly sequenced genomes with no or only few related

and annotated genomes, a de novo approach is required.

Some tools also detect internal features of the candidates

and exploit their occurrence to improve the candidate

detection results [13] or output the feature annotations for

further analysis [5].

For about a decade, de novo software tools have been

in use, delivering useful results in a variety of detailed

studies covering LTR retrotransposons in insect [5,15,16],

crustacean [17], mammalian [18,19], avian [20], meta-

zoan [21] and plant [22,23] genomes. In these studies, the

prediction is followed by several postprocessing steps to

clean up the result set and to infer additional informa-

tion from the predicted candidate sequences and features.

For example, it is reasonable to separate all candidates

from the analysis set which do not satisfy a given set of

rules (for example, presence of significant open reading

frames or profile hiddenMarkovmodels (pHMM) domain

hits) to identify and discard potential false positives

[5,12,21].

Furthermore, it is desirable to classify each candidate

according to a hierarchical schema consisting of classes,

subclasses, orders, superfamilies and – on the lowest level

– individual families. We will use these terms as defined

in the classification scheme proposed by Wicker and col-

leagues [4]. This schema has been widely accepted despite

some initial discussions regarding its consistency [24] and

originality [25].

It has to be noted that in this paper we will focus on

the order of LTR retrotransposons from the retrotranspo-

son class (class I), as such elements are the result of the de

novo identification tools. However, if more general repeat

detection approaches are used, a preclassification on a

higher level is possible using existing software, for exam-

ple, TEclass [26] on the class level, or REPCLASS [27] up

to the superfamily level.

In the LTR retrotransposon order, several superfami-

lies have been established, for most of which membership

can be determined by the order of protein domains in the

coding region. For example, copia-like elements (IN-RT-

RH configuration) are distinct from gypsy-like elements

(RT-RH-IN configuration). Thus if protein domain loca-

tions are known, subfamily assignment is straightforward.

If protein domain locations are not known, pHMM-

based approaches using superfamily-specific reference

sequences have proven to be successful [21].

A more fine-grained classification groups the candi-

dates into putative families. Most studies perform the

family classification using either sequence-based cluster-

ing of the inter-LTR region of the predicted candidates

[15-17] according to fixed similarity thresholds (for exam-

ple, the 80-80-80 rule [4]), by inferring family membership

from phylogenies [19,20,28] or by using graph clustering

algorithms based on stochastic flow [21], a method that

does not require any arbitrary similarity threshold. Other

methods – though not used in an LTR retrotransposon
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context - follow an aggregation procedure based on pair-

wise distances [29]. Another approach is to obtain sets

of similarity-based clusters per feature (LTR, PBS, PPT,

protein domains and so on), then to combine them adher-

ing to the principle of cluster compatibility [5], arriving

at final family assignments. This approach makes use of

biologically relevant sequence information only and is

expected to work for families containing candidates with

partially deleted or mutated internal regions. A case study

of this method on Drosophila melanogaster candidates

predicted by LTRharvest [14] and annotated using LTRdi-

gest [5] showed that this approach recovers the majority of

the known families in this species, with well-reproduced

reference sequences [5].

However, putting this family classification scheme into

practice is rather complex and time-consuming. A possi-

ble approach would be to augment the tabular file output

of LTRdigest with cluster number data using third-party

matching and/or clustering tools (for example, Vmatch

[30]), then open the augmented table in a spreadsheet soft-

ware (for example, Microsoft Excel or OpenOffice Calc)

and to iteratively sort the candidates by cluster num-

ber, inspecting candidates with identical cluster number

sets and marking compatible groups as putative fami-

lies in the process. Removal of uninteresting candidates

or false positives is in this case only a matter of delet-

ing the corresponding rows in the spreadsheet. While

this manual approach is feasible (but tedious) for smaller

non-mammalian genomes (713 candidates and 25 features

in the D. melanogaster example from [5]), it does not

scale too well with growing candidate sets. This is due

to both the long run times of sorting rows in such soft-

ware and the presentation and/or visualization of results

getting more and more difficult to follow with increasing

candidate and family numbers. Another important issue

is the reproducibility of such a manual approach when

prediction runs are repeated, for example with modified

parameters.

Since the classification as proposed is an algorithmically

well-defined problem, an alternative would be a purely

automatic software implementation of the approach, for

instance using a scripting language. However, a human

expert often would like to inspect and improve the result-

ing family assignments, not only to get an impression of

how the individual families look, but also to verify that no

two families were inadvertently joined, or that one family

could be split up into two at a second glance. Later steps

then would include matching the sequence of a family

representative to a set of reference sequences to identify

relatives to known families, or to create multiple sequence

alignments (MSA) of family members determining varia-

tions across family members. As an alternative to MSAs,

the identification and analysis of units called modules has

been proposed [31].

The final step, after filtering and classification, is

the preparation of a species-specific reference sequence

library of full-length LTR retrotransposons. Consisting

of one representative sequence per putative family, this

library can then be used as a basis for homology-

based identification and classification of incomplete, non-

autonomous insertions or solo LTRs in the whole genome

sequence. This can be done using well-established soft-

ware, for example, based on RepeatMasker [32].

In this manuscript we propose a de novo analysis

approach of LTR retrotransposons relying on a com-

bination of automatic and manually guided interactive

processing of a given dataset. For this approach a com-

prehensive workbench for LTR retrotransposon candidate

postprocessing with the following features is needed:

• intuitive display of a candidate set (for example,

unclassified candidates or putative families) and its

properties in a flexible, concise table representation
• hierarchical display of detected features for each

candidate, including a linear diagram illustrating the

feature locations and orientations
• convenient maintenance of putative families and

their members via a drag-and-drop interface
• flexible, extensible filtering and reassignment of

candidates based on simple, annotation-based rules
• assisted assignment of candidates to putative families,

based on feature sequence matches, single-linkage

clustering and joining of compatible candidates
• automatic selection of candidates suitable for a

reference library
• automatic annotation of candidates with matches to a

reference library
• input and output of library sequences and

annotations in standard output formats (GFF3 [33]

and FASTA) to ensure interoperability with external

preprocessing and/or postprocessing software.

To address this need we have developed LTRsift, an open

source graphical software tool implementing these fea-

tures. As LTRsift is based on a larger software suite that

also includes LTRharvest [14] and LTRdigest [5], a typical

and complete use case will likely include all three tools.

This paper is structured as follows: after familiariz-

ing the reader with the interface and usage of LTRsift,

we present two case studies showing how the software

can assist a researcher in de novo analyses of complete

genomes. First, we perform the Drosophila melanogaster

analysis from the LTRdigest paper [5], exemplifying the

use of the software. In a second use case, we briefly

describe an analysis from scratch using LTRsift on a mam-

malian genome, specifically the gray short-tailed opossum

(Monodelphis domestica) genome. We show that LTRsift

scales for such larger data sets yielding some interesting
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results. We give a comprehensive discussion of the result

and finally conclude with some remarks on the usability of

the software.

Implementation
This section describes the use of the LTRsift software and

the design of its user interface. We explain the import

of input data into the software and the initial prepro-

cessing. Then we describe the components of the LTRsift

window and show what information they depict and how

they allow curation of the candidate sets. We show how to

define filtering rules, possibly incorporating all the infor-

mation given in the annotation file. Finally, we give some

examples for such rules.

Working with data

All data handled by LTRsift are organized as projects.

A project is a collection of data, consisting of the can-

didate annotation, the sequence set the annotations are

based upon (given as an external encoded sequence file

in the GtEncseq format [34] that is produced by soft-

ware coming with LTRsift), and various metadata (such

as the currently open tabs, parameter sets for classifica-

tion/matching, and so on). A user can create a new project

by selecting the ‘New’ entry from the ‘File’ menu. A series

of dialog windows then guides the user through the steps

of specifying all components of the project. The first step

is to specify a project (file) name as well as the initial

annotation and sequence inputs. This is done by choos-

ing the corresponding GFF3 and GtEncseq files from disk.

The GFF3 annotations have to satisfy the following basic

requirements:

• candidates must be of the Sequence Ontology [35]

type ‘LTR retrotransposon’,
• additional features (for example, ‘protein match’,

‘primer binding site’, ‘RR tract’) must be children of

this root type, and
• the GFF3 sequence identifier for all features must

start with ‘seqX ’, where X is the sequence number

(0-based) of the corresponding sequence in the

associated genome, for example, ‘seq3’ references the

fourth sequence in the encoded input index.

The GFF3 output produced by LTRharvest and LTRdi-

gest satisfies these requirements. More information about

the input data formats can be found in Additional file 1,

Section 1.2.

If the user chooses to compute the matches required

for the clustering process, then the second step is param-

eterization of the matching and clustering parameters.

LTRsift utilizes the sensitive and efficient sequence com-

parison software LAST [36] to calculate matches if feature

sequences are longer than 80 nucleotides on average.

If the user has chosen to perform the automatic clas-

sification at this point, the next step is to specify which

features should be used as the basis of classification, that

is, for which features in the annotation cluster numbers

should be compared. In addition, a prefix for automati-

cally assigned family names can be given. Since the notion

of most complete candidates depends on the deviation of

candidates from the group median in terms of LTR and

whole-candidate length [5], deviation thresholds can be

stated as well. All settings can be reviewed and corrected

if necessary before starting the actual import and prepro-

cessing run. This process finally delivers a new project

file, which can later be opened at any time using the

‘Open’ entry from the ‘File’ menu. This allows the user to

continue a previously interrupted session.

User interface

After opening a project file, its content appears in the

main window of LTRsift. The main window is subdi-

vided into four main components (Figure 2). The family

list (Figure 2a) shows the current list of putative fami-

lies, identified by their names. Names are automatically

assigned whenever a new family is created by the classifi-

cation algorithm. However, a family name can be edited at

any time.

A double click on a family opens a new tab holding the

candidate list comprising the family (Figure 2b). Each tab,

labeled with the family name, shows all member candi-

dates of a given family, with columns specifying sequence,

strand, location, LTR and element lengths, and cluster

numbers for all detected features according to a color

code. Colors are user-configurable via a style definition

file. By default LTR, gag-associated domains, AP domains,

RT domains, RH domains and IN domains, as well as

PPT and PBS are displayed in different colors. Candi-

dates which could not be placed unambiguously in one

of the families remain in an ‘unclassified’ tab, as do can-

didates with no cluster numbers (singletons). The rows

making up the candidate list can be sorted according to

the values in any column. Moreover, individual columns

can be hidden to improve legibility on screens with low

horizontal resolution. Candidates can be moved from one

family to another by dragging and dropping the respec-

tive row in the candidate list. Whenever candidates are

deleted from families, they are added to a project-wide list

of unclassified candidates. Candidates deleted from the

list of unclassified candidates will be removed from the

project entirely.

Clicking on an entry in the candidate list displays addi-

tional detailed information. In particular, a hierarchical

tree representation of the candidate features (Figure 2c)

and a linear visualization of the candidate and its com-

ponents (Figure 2d) are displayed. The latter depicts the

candidate together with its genomic location, most likely
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Figure 2 Screenshot of the LTRsiftmain window. (a) Putative family list, (b) candidate list, (c) candidate details, (d) candidate visualization. The

currently loaded project contains 13, 943 candidates from theMonodelphis domestica genome, with the currently selected candidate showing a full

set of detected features (PBS, PPT, protein domains). ORF detection and reference matching have been performed. Additional details, such as PPT

and PBS sequences, Pfam IDs and so on, are available by scrolling to the right in (c). The graphical representation in (d) depicts the retrotransposon

(red) with PPT and PBS as small lines in the two tracks below. The next track shows protein domain matches, coded in different colors. Here

integrase domains are depicted in blue, reverse transcriptase domains in red, protease domains in purple, RNase H domains in gold, and any other

domains in green. The RNase H domain is marked in red because it has been selected in the candidate detail list. The reference match in the track

below (shown in yellow) spans the interior region of the candidate completely, suggesting that it likely is a full-length element. The bottom track

shows open reading frames in blue color. LTR: long terminal repeat; ORF: open reading frame; PBS: primer binding site; PPT: polypurine tract; TSD:

target site duplication.

reading direction and internal features, intuitively spread

out into separate tracks reminiscent of the representation

used in a genome browser such as Ensembl [37].

Augmenting annotations with additional data

LTRsift does not only allow displaying results of the auto-

matic classification, but can also perform additional oper-

ations which add extra information to the annotations

stored in the project. One possible augmentation con-

sists of detecting the longest open reading frames (ORFs)

inside candidates. The ORFs are added to the candi-

date annotations as ‘reading frame’ features. For cross-

referencing the de novo results with custom sequence

data, LTRsift also allows users to match candidates against

external reference sequences by calling BLAST [38] as an

external matching tool. The parameter sets used for all

matching runs are numbered and stored in the project

both for documentation purposes and for simplifying

multiple runs with varying but similar parameters. LTRsift

allows flexible filtering of candidate sets, based on filter-

ing rules defined in a simple programming language (see

next section for more details). Candidates which do or

do not satisfy the filtering conditions (or boolean combi-

nation thereof) can be either unclassified or moved to a

new family entry created on the fly. These postprocess-

ing steps can either be performed on all candidates, on

all candidates in a family, or on an arbitrary selection

of candidates.
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Filtering rule definitions

Besides the described presentation of candidate sets, LTR-

sift allows for flexible filtering of candidates based on

their internal structure or external data. This is done by

evaluating each candidate with regard to a given chain

of annotation-based rules. Each rule specifies one aspect

of the candidate which is satisfied or not, expressed

via a boolean value (true or false). We call these rules

predicates. For example, the presence of detected pro-

tein domains is a predicate, as is the property of being

Copia-like (or Gypsy-like, for that matter). The predicate

is captured in a rule returning the appropriate boolean

value.

When a filtering run is started, candidates are selected

according to rules, keeping a candidate in its original fam-

ily if the evaluation returns the value false. If it returns

the value true, the desired behavior can be selected by

the user. Either the candidate in question is taken out

of a putative family and put back into the unclassified

set. This means that filtered candidates already in the

unclassified set are deleted from the project altogether.

Alternatively the candidate in question can be assigned

to a separate family, newly created for candidates which

were filtered out in this run. Which one of these options

is used can be selected in the filtering dialog (Figure 3).

Rules are chainable: if more than one rule is given, LTR-

sift allows their combination by requiring that all of them

must be true to filter out a candidate (boolean AND),

or that it suffices to have one of them evaluate to true

(boolean OR).

The rule is stored in a text file which is interpreted by

the software when added to the project. Each filtering rule

contains a set of metadata, such as its author contact,

description, and version to ease distributability and repro-

ducability of results (see Additional file 1, Section 1 for

more details).

As the filtering rules are not built into LTRsift itself, but

rather described in Lua, a powerful but simple program-

ming language [39], the filtering functionality is extensible

which gives a user a maximum amount of flexibility. We

will now show example filtering rules to illustrate how

annotation data are accessed.

Filtering by protein domain presence

As the protein domain coding sequences are the main

basis for the matching and clustering steps leading to fam-

ily assignment, a common task is to remove all candidates

which do not contain at least one domain hit.

This task can be solved by a rule implemented in a

function named filter. This function has access to a

representation of each candidate in the form of a directed

acyclic graph in which nodes represent individual features

(for example, LTR, TSD, PBS, . . . ) and edges represent

’part of ’ relationships between such features. The latter

indicate, for instance, that an LTR is part of an LTR retro-

transposon, which in turn is part of a repeated region.

The actual rule defined in the programming language

Lua looks as follows:

function filter(candidate node)

gfi = gt.feature node iterator new

(candidate node)

node = gfi:next()

while not (node == nil) do

if (node:get type() ==

"protein match") then

return false

end

node = gfi:next()

end

return true

end

The rule evaluates whether the candidate contains a

‘protein match’ feature. The traversal stops and returns

false once a node with the type ‘protein match’ is found.

If no such node is found, true is returned. This is the case

when node becomes nil, indicating that all children have

been examined without breaking the loop.

Besides the type, the following additional data are stored

in each node and can conveniently be queried from a

filtering rule:

• the sequence region (for example, chromosome,

contig, and so on) the feature is located on,
• location of the feature on that region in terms of start

and end position (1-based),
• strand (forward/reverse),
• a numeric score value (the meaning of which depends

on the tool which produced this value, for example,

an E-value),
• a set of key-value pairs containing arbitrary named

attributes (for example, feature name/ID, anticodon

for PBS-binding tRNAs, Pfam ID for matching

pHMMs, and so on).

Filtering bymatch coverage

Another use case for the filtering component is to separate

candidates with high local sequence similarity to a refer-

ence sequence set from those that do not contain such

similarities. To give an example, a filtering rule which fil-

ters out all candidates not matching a reference sequence

over at least 80% of their length is easily implemented

(Figure 4).

In the first step (lines 2 to 11), the length of the can-

didate is calculated from the start and end positions of
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Figure 3 Screenshot of the LTRsift filter selection dialog. The left side of the dialog shows the filtering rules added to the project and available

to be used. The right side shows the filtering rules to be applied in the current filtering run. The checkbox next to each rule allows the user to negate

it. This dialog is set to unclassify or delete all candidates not passing the filtering step - in this case, this means all candidates that do not contain

protein domains and no long reference matches. The buttons on the left allow adding rules to the project and removing them again. Moreover

rules can be edited directly from within LTRsift in a simple built-in text editor, avoiding the need to locate and open them in a separate text editor.

Clicking the button on the lower left starts the filtering process.

the node in this connected component with the type

‘LTR retrotransposon’. We only store the length of the last

occurrence of such a node because in a valid annotation

there is only one such node per connected component.

The length is stored in the variable candidate length.

If no “LTR retrotransposon” node was found, we are not

looking at an LTR retrotransposon element (lines 12 to

14). This case can occur when filtering annotation files

in which LTR retrotransposon annotations occur besides

other annotations, e.g. gene annotations, which this rule

is designed to ignore. The second step then iterates over

all features again, comparing the lengths of the matches

Figure 4 Source code (in the programming language Lua) of the filtering rule for selecting/filtering candidates according to reference

match coverage. The function computes the lengths of the candidate and reference matches contained in the candidate. If the length of at least

one reference match exceeds 80% of the candidate length, the function returns false, otherwise true.
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with 80% of the candidate length (line 21) and returns the

appropriate value in the process (lines 16 to 27).

Additional command-line tools

For very large data sets or for scripted processing (for

example, in an automated pipeline), the filtering and clus-

tering functionality is also accessible using command-line

tools, which are part of the GenomeTools package.

Data export

Candidate sequences (in FASTA format) and candidate

annotations (in GFF3 format) can be exported to files.

LTRsift supports exporting all candidates in the whole

project into a single file as well as exporting the mem-

bers of one or more specific families into one or multiple

separate files. This makes it easy to prepare sequence sets

for subsequent external analysis, for example, multiple

sequence alignment.

Software requirements

LTRsift is intended for use on UNIX-like operating sys-

tems, like Linux, Mac OS X or the BSD family of operating

systems. The GUI is built upon the GTK+ version 2 toolkit

for creating graphical user interfaces [40,41], a wide-

spread library component which is already being used as

the basis of many popular free software packages like the

GIMP image editor [42] or the GNOME desktop environ-

ment [43]. GTK+ is included in the majority of currently

available Linux distributions.

The necessary components for parsing and handling

both sequence and annotation data are provided by

the GenomeTools genome analysis library [44], freely

available from http://genometools.org. For drawing the

schematic illustration of each candidate, the AnnotationS-

ketch engine [45] is used, which is based on the Cairo 2D

vector graphics engine [46] for rendering. Again, Cairo is

a standard library very likely to be present on a recent

graphical UNIX or Linux machine. It can be installed on

Mac OS X using one of several package managers, for

example, Fink [47].

As an external component to compute initial matches

for clustering, the LAST software [36] is used and must

be installed on the system. Likewise, for reference match-

ing the BLAST software (version 2.2 and higher) must be

present in order to use this LTRsift feature.

Also, we provide a statically linked version of LTR-

sift for the Linux platform which does not require any

pre-installed version of the GenomeTools shared library.

Results

To illustrate the use of LTRsift in de novo LTR retrotrans-

poson analysis efforts, we performed example analyses of

the Drosophila melanogaster (fruit fly) and Monodelphis

domestica (gray short-tailed opossum) genomes.

Results of the Drosophilamelanogaster analysis

We utilized LTRsift to semi-manually curate and

postprocess putative LTR retrotransposon families

and potential full-length members in the Drosophila

melanogaster release 5.8 genome [GenBank:AE014134,

GenBank:CM000456, GenBank:AE013599, GenBank:CM

000457, GenBank:AE014296, GenBank:CM000458, Gen

Bank:AE014297, GenBank:CM000459, GenBank:AE01

4135, GenBank:AE014298, GenBank:CM000460] from

scratch, detected using LTRharvest and LTRdigest. These

were parameterized with range, similarity and offset

constraints for the detection of LTR pairs, and with

tRNA sequences as well as profile HMMs to annotate

the internal region. These parameters were identical to

the parameters used in previous publications [5,14]. We

refer to Additional file 1 for more details on the param-

eterization of these two external tools. For both the

initial detection and the subsequent LTRsift analysis steps

described below, an Intel Core 2 Duo system (2.4GHz,

4GB RAM, Ubuntu Linux 12.04) was used.

The encoded genome sequence and the sorted GFF3 file

were added to the project using the guided project cre-

ation dialog. Then matching and clustering of all feature

sequences was performed in a matter of minutes, keep-

ing the default parameters in the appropriate dialogs, with

the exception that the query step size (LAST parame-

ter -k) was increased to 10 to speed up the process. We

required matches to span 80% of the shorter sequence and

30% of the longer sequence. For the classification step, all

detected features were used as evidence in the group join-

ing process by selecting all of them in the classification

dialog. As deviation thresholds for putative full-length

candidate detection, an LTR length deviation of 50 bp

and a candidate length deviation of 200 bp were set. No

filtering was done at this time.

After creating the project, the initial classification

resulted in 359 candidates being split up into 48 puta-

tive families, appearing in the putative family list. The

remaining 354 (49.6%) remained unclassified. Afterwards

we discarded all families with less than three members

by using an automatic LTRsift feature which selects such

families and offers to delete them. Of the original 48 fam-

ilies, 37 remained. In the next step, each of the putative

families was individually opened in a new tab and their

members were inspected one after the other by examin-

ing the data displayed in the candidate detail list and the

linear visualization. Special attention was paid to the can-

didate length and the length of the LTRs they contain

as well as their feature composition. Candidates which

obviously lacked features present in the majority of the

members of their family were discarded by deleting them

in LTRsift, placing them back into the group of unclassified

candidates. This was particularly the case when a length

aberration coincided with the loss of a common protein

http://genometools.org
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domain. This situation was regarded as evidence for a

deletion inside the candidate in question. After inspecting

all groups in this way, we had a closer look at the pre-

viously unclassified candidates by opening the respective

tab and manually joined another 134 of them into four

additional groups, again looking at their details. In addi-

tion to cluster compatibility, this joining was based again

on element and LTR length as well as specific features such

as the presence of ORFs and their lengths. For this man-

ual approach, new empty families were created using the

LTRsift GUI and the respective member candidates were

moved into them using the drag-and-drop functionality.

To evaluate which existing families our de novo iden-

tified families correspond to, we used the reference

sequencematching function in LTRsift to compare all can-

didate sequences with the reference sequence set of LTR

retrotransposons used in our previous work [5], contain-

ing 61 sequences. After matching the reference sequences

to the candidates from within LTRsift using BLASTN

(E-value threshold: 0.01), the results are displayed as an

extra track in the candidate visualization. That is, in the

delivered image the matched candidate region is cov-

ered by a separate feature, while the label of the feature

describes the matched region on the reference. We exam-

ined our putative families for consistency according to the

match features and assigned names which incorporate the

recovered reference family (for example, the group corre-

sponding to the existing mdg3 family was called ‘dmel 1

(mdg3)’).

With little effort, we were able to recover 28 of the 61

known families as defined by the reference sequence set

(Table 1). In one case (the family named 412), we obtained

two automatically derived putative families for one refer-

ence family due to the LTR sequences of the candidates

ending up in different clusters, breaking their compati-

bility. The roo family proved to be a difficult family to

recover due to the presence of only short protein domain

matches within their members. However, joining them

on the basis of the LTR sequences alone allowed us to

obtain a putative family of 94 candidates, though not all

of them appeared to be full-length. Another group diffi-

cult to separate was a group of elements belonging to the

Stalker/Stalker2/Stalker3T/Stalker4 families. Members of

all of these were clustered into one large family, possibly

due to the high similarity of their coding sequence.

Seven additional putative families were found which

could not be uniquely matched to any reference fam-

ily. The majority of these consist only of three to five

candidates with widely varying element and LTR lengths.

These candidates are linked only by one protein domain

or LTR sequence match and show short ORFs only. In

some of them, spurious short matches to the Dm88 and

GATE families were found in non-coding areas of these

candidates.

Table 1 Results for theDrosophilamelanogaster use case

Assigned family Reference family Number of candidates

dmel 1 mdg3 12

dmel 3 opus 18

dmel 4 copia 24

dmel 5 springer 6

dmel 6 Burdock 16

dmel 7 diver 8

dmel 8 HMS-Beagle 10

dmel 9 Tirant 19

dmel 10 Tabor 4

dmel 11 Quasimodo 14

dmel 12 Transpac 9

dmel 14 flea 16

dmel 17 invader2 8

dmel 17 2 invader3 7

dmel 18 Max-element 4

dmel 22 3S18 6

dmel 24 McClintock 4

dmel 26 Stalker 25

dmel 32 17.6 18

dmel 33 412 17

dmel 34 412 9

dmel 36 Idefix 5

dmel 39 rover 5

dmel 46 micropia 3

newfam 0 blood 25

newfam 29 HMS-Beagle2 4

newfam 40 297 20

manual gypsy4 7

manual mdg1 17

manual roo 94

This table lists the putative families as assigned during our semi-automatic

evaluation run on the Drosophilamelanogaster genome (left column). The center

column shows the name of the known family represented by that putative

family, obtained frommatching of the candidate sequence against a reference

sequence set. The rightmost column lists the number of candidates in the

respective family. The dmel 26 group (matched to various Stalker sequences)

was not counted as recovered due to the multitude of non-unique matches to

multiple references. Families with the newfam prefix were obtained by

re-running the classification algorithm on subsets of the unclassified candidate

set. Finally, families marked asmanual were derived non-automatically.

We have included the annotation files generated by

LTRsift for this analysis as Additional file 2.

Results of theM. domestica analysis

By contrast, the goal of this analysis was to confirm that

the LTRsift software can handle input data of a scale likely

to be produced in de novo LTR retrotransposon prediction

efforts in large genomes, for example, those of mammals.
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As an example dataset, we applied LTRharvest and LTRdi-

gest to the genome of M. domestica, the gray short-tailed

opossum [48]. It is estimated that 10% of its approxi-

mately 3.5 gigabase genome is comprised of endogenous

retroviruses (ERV) [49,50]. This has been detected in a

homology-based approach searching for protein-coding

sequences known from the Repbase database [51], but not

incorporating the LTRs as structural features for de novo

detection.

The M. domestica sequence (Broad Institute assem-

bly version MonDom5) [GenBank:CM000368, GenBank:

CM000369, GenBank:CM000370, GenBank:CM000371,

GenBank:CM000372, GenBank:CM000373, GenBank:

CM000374, GenBank:CM000375, GenBank:CM000376]

was downloaded from the Ensembl website [52].

The LTRharvest and LTRdigest runs and the subsequent

LTRsift analysis were performed on the same Linux stan-

dard desktop system equipped with the same hardware as

described above.We used a slightly different set of param-

eters than in the Drosophila case because some peculiari-

ties in the fly genome (such as unusual PBS-tRNA binding

offsets) are not known for the opossum genome. In addi-

tion, we used some extra protein domain pHMMs suitable

for mammals (see Additional file 1, Section 3).

The LTRharvest prediction with default parameters

(see Additional file 1, Section 3) delivered 58,684 candi-

dates. We then utilized the command-line filtering tool to

remove all candidates which did not contain any protein

domain hits, reducing the number of candidates to 13,944.

This set of candidates was then loaded into an LTRsift

project and preprocessed. The matches used for clus-

tering were computed with the same settings as in the

Drosophila case (LAST option -k 10, matches need to

span 80% of the shorter sequence and 30% of the longer

sequence). Full-length member deviation thresholds were

identical as well.

Matching and joining of the 13,944 candidates took

about 30 minutes. As a result of the initial classi-

fication on the basis of the parameters above, 171

putative families were created containing 2,015 candi-

dates altogether. There were initially 11,929 candidates

that were unclassified, and 76 of the 171 initial puta-

tive families contained only two members and were

again discarded using the respective LTRsift function-

ality. This left 95 remaining families comprising 1,863

candidates.

A look at the 95 remaining putative families reveals

that the distribution of candidates across the families is

skewed: 937 of the 1,863 candidates are in two puta-

tive families, one with 722 members and one with 215

members. The candidates in the smaller one are linked

via their LTR and RT clusters only. The linear visual-

ization in LTRsift shows that the location of the RT

matches widely varies across the family members. Only

very short ORFs are present. This may suggest that this

family of 215 members is composed of non-autonomous

candidates with many mutations. By contrast, the major-

ity of the members of the second, larger putative family

of 722 members contain a full set of protein domain

hits – that is, protease, RT, RH and IN domains. In

most candidates, hits to a protein domain associated with

Gag were found as well. The candidates are consistently

linked on the basis of these protein domain clusters, as

well as their LTR sequence clusters. ORFs are predom-

inantly longer (up to thousands of bases). We matched

these candidates to known M. domestica ERV sequences

downloaded from Repbase using the LTRsift reference

matching functionality, resulting in partial and full-length

matches to the ERV2 MD, ERV37 MD and ERV11 MD

reference sequences. The other, smaller families, contain-

ing between 3 and 74 members, in many cases showed

full sets of protein domains without being covered by

a reference match, suggesting that there may be poten-

tial for previously undiscovered or unclassified elements.

Some of these protein domains also contain other rel-

evant protein domain hits, such as other Gag domains

(Gag p30, Gag MA and Gag p24) or a potential Env/coat

polyprotein (TLV coat).

To assess the possible number of yet undetected full-

length candidates, we prepared a filter rule selecting only

those candidates with a full set of protein domains. That

is, the protease, RT, IN and RH functions must all be

represented with at least one pHMM hit associated with

that function. We used this rule to select matching can-

didates from the whole candidate set using LTRsift. This

delivered a new group containing 1,009 candidates pass-

ing the filter. Afterwards we used the reference match

coverage filter with threshold 80% to weed out those can-

didates among the 1,009 that were already matched to

a known reference sequence. As a result, we only found

159 candidates with a full set of protein domain hits

which have a match to a reference sequence over at least

80% of their internal sequence or more, leaving 850 still

unmatched and interesting for further analysis. This illus-

trates that LTRsift allows a user to conveniently prepare

interesting subgroups of candidates on the basis of their

features.

Discussion
The advantages of having a specific graphical applica-

tion for classification, postprocessing and curation of LTR

retrotransposon candidates are obvious when compared

with a purelymanual approach. No data conversion is nec-

essary when using de novo candidate detection tools that

are able to output the increasingly common GFF3 format

to represent their results. LTRsift is intended to be used

with the LTRharvest and LTRdigest software that satisfy

this requirement.
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Once input data are imported into a project file, the

project and all associated data are loaded quickly, even

when the number of candidates is in the tens of thousands,

as may occur when analyzing large mammalian genomes.

The window configuration of the user interface, includ-

ing all open tabs, is saved with the project, allowing the

user to continue previously interrupted work in the same

environment. LTRsift displays candidates and their family

memberships in an intuitive way, using commonGUI con-

cepts like drag-and-drop to support manipulation. A user

familiar with web-based genome browsers can intuitively

understand the visual candidate representation. Features

are shown in color-coded tracks and are labeled with addi-

tional information, such as domain names, match targets,

or reading frame and orientation. The view is extensively

configurable using a style file, making it possible to adjust

both colors and other layout options such as font sizes,

as well as enable or disable the display of specific feature

types.

Filtering rules are powerful while easy to write with

basic programming skills. They support extensive access

to the candidate annotation and can be combined to form

more complex conditions, not only allowing the user to

discard candidates but also to add them to new subgroups

that do or do not satisfy the condition described by the fil-

tering rules. Another advantage is that filtering rules are

self-contained in one text file per rule. This makes it possi-

ble to distribute user-defined filtering rules in the research

community.

The matching, clustering and classification components

used in LTRsift have been designed to be modular, making

it possible to quickly add support for new matching tools,

clustering strategies or classification algorithms. A unified

representation of the candidates as graphs allows the same

for other tasks working on annotations and sequences,

creating new annotations in the process.

The currently implemented ORF detection and refer-

ence annotation components are good examples for such

tasks, employing GenomeTools functionality and third-

party tools like BLAST to transparently extend the anno-

tation within the graphical interface.

We are not aware of any other tool for this exact task

of supporting postprocessing and curation of de novo LTR

retrotransposon annotations in a fashion similar to LTR-

sift. There is a graphical tool,VisualRepbase [53], available

to display occurrences of TEs, for example, taken from

the Repbase Update database [51] in a genomic context

together with annotations, for example, downloaded from

the NCBI databases. However, VisualRepbase does not

support the formation of families inside the database, nei-

ther does it display the internal structure of the displayed

elements in terms of features. By contrast, LTRsift does

not take the genomic neighborhood of the candidates into

account.

The classification approach as described in [5] works

well in the Drosophila genome. Nevertheless, a large vari-

ety of clustering and family assignment strategies exists,

and it would be a natural assumption that other, more

sophisticated approaches may work better on candidates

from other genomes. The modular architecture of LTR-

sift allows the user to incorporate alternative classification

strategies in the future, creating a comprehensive and flex-

ible solution for the integration of tools among the diverse

landscape of classification methods.

A basic requirement of our classification approach is the

presence of annotated internal feature sequences, whose

similarities are used to separate candidates into putative

families. Many of the candidates satisfy this requirement.

Unfortunately, in the M. domestica data set no features

were detected in the majority of the candidates. Con-

sequently, these candidates can be either false positives

or non-autonomous copies. While non-autonomous ele-

ments are indisputably important in general, prior anal-

yses have shown that such de novo predicted candidates

are often unreliable and may well be false positives, as we

demonstrated in an earlier use case [5]. However, there are

also non-autonomous elements which still retain internal

features, which can readily be processed using LTRsift and

included in a reference sequence set. This set could then

be used as a starting point for homology-based detection

of more truncated copies in the genome.

World Wide Web-based solutions are becoming

increasingly popular for interactive and sometimes dis-

tributed analysis of structured data sets due to their

platform independence on the user side – only a web

browser is needed to access the data from any loca-

tion with a network connection. We did not follow a

web-based approach for the design and development of

LTRsift. The main reason is that the size of the underlying

genome sequences may well become too large to be con-

veniently uploaded to a web server when analyzing large,

for example, mammalian, genomes. By contrast, the size

of the annotations is of moderate size (approximately 42

MB for the full unfiltered M. domestica candidate set).

The sequence is required to perform sequence-based

analyses like reference matching, ORF finding or simply

to display short motif sequences like PBS and PPT in

the candidate details. Hence uploading the annotation

alone would not suffice to display every interesting bit of

information on the candidates. Instead, we chose to build

LTRsift on an open source GUI platform intended to run

on freely available desktop operating systems. Sharing

project files, for example, via a shared network drive,

allows a distributed annotation.

While parameterization of the filtering rules is cur-

rently only possible by editing the rule files directly, a

useful improvement would be the definition of param-

eter sets, which can then directly be set in the filter
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selection window. This would also allow the use of multi-

ple instances of the same filter with different parameters

without having to copy the file. Another desirable feature

would be support for multiple levels of group member-

ship per candidate. For example, a candidate may appear

in multiple groups, which in this context describe the

candidate on multiple levels: it may appear once in its spe-

cific family, and once in a more general ‘copia-like’ group.

This could be implemented by assigning tags to candi-

dates and allowing queries on the tags to group candidates

together. While functionality to export sequences already

exists, it could be very useful to be able to start exter-

nal tools on given candidate sets (for example, selected

candidates or all members of a putative family). A typical

example for this kind of use would be a multiple sequence

alignment tool such as ClustalX [54] or others. Finally, on

some occasions, exporting the linear candidate visualiza-

tion as an image file would be desirable. Such functional-

ity could easily be implemented as the AnnotationSketch

engine supports output in a variety of vector and bitmap

formats [45].

Conclusions
We have developed LTRsift, a software tool for visualiza-

tion and postprocessing of de novo predicted LTR retro-

transposon annotations. It literally allows the user to ‘sift’

through a possibly large quantity of results from a pre-

diction and annotation software like LTRharvest and/or

LTRdigest, which it was designed to work with. How-

ever, it relies on standard data formats and can also work

on results from other tools, given that the input data

are appropriately formatted. LTR retrotransposons can be

assigned both automatically and manually to groups con-

sidered putative families, which can then serve as a basis

for comprehensive sequence library preparation. To the

best of our knowledge, LTRsift is the first software for this

specific task, implementing not only classification but also

flexible, customizable filtering in a graphical environment.

Relying on a common GUI toolkit from the open source

world, the user interface is familiar to everyday computer

users. LTRsift is efficient enough to allow work with large

datasets consisting of up to tens of thousands of candi-

dates on standard desktop hardware, making it likely to

be used by life scientists preferring a visual, exploratory

hands-on approach to dealing with result data.

Availability and requirements
• Project name: LTRsift
• Project home page:

http://www.zbh.uni-hamburg.de/LTRsift
• Operating system(s): UNIX-like systems, for

example, Linux or Mac OS X
• Programming language: C (GUI software), Lua

(filtering rules)

• Other requirements: GenomeTools version 1.4.2

and higher (not required by the static version), GTK+

2.2.4 and higher
• License: GPL2

Additional files

Additional file 1: Technical information. This PDF file contains

additional information on how to write filtering rules for the LTRsift

software. Besides a description of the rule file structure, it also contains a

documentation of the functions to access the representation of the

candidate annotation and a documentation of the command line tools.

Finally, it lists parameterization details for the example runs.

Additional file 2: Example annotation for D.melanogaster. This

gzipped tar archive contains the annotation GFF3 file created as a result of

our evaluation runs for the D.melanogaster genome, as well as the

corresponding sequence in FASTA format.

Competing interests

The authors declare that they do not have any competing interests.

Author’s contributions

StK conceived and guided the project. SaK and SS developed the software. SS

performed the example runs. SS and StK wrote the manuscript. All authors

read and approved the final version of the manuscript.

Acknowledgements

The authors wish to thank Gordon Gremme for the GenomeTools software,

without which the development of LTRsift would not have been possible.

Received: 3 July 2012 Accepted: 31 August 2012

Published: 7 November 2012

References

1. International Human Genome Sequencing Consortium: Initial

sequencing and analysis of the human genome. Nature 2001,

409(6822):860–921.

2. Mouse Genome Sequencing Consortium: Initial sequencing and

comparative analysis of the mouse genome. Nature 2002,

420:520–562.

3. Finnegan DJ: Eukaryotic transposable elements and genome

evolution. Trends Genet 1989, 5:103–107.

4. Wicker T, Sabot F, Hua-Van A, Bennetzen J, Capy P, Chalhoub B, Flavell A,

Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman A: A

unified classification system for eukaryotic transposable elements.

Nat Rev Genet 2007, 8(12):973–982. [http://dx.doi.org/10.1038/nrg2165]

5. Steinbiss S, Willhoeft U, Gremme G, Kurtz S: Fine-grained annotation

and classification of de novo predicted LTR retrotransposons.

Nucleic Acids Res. 2009, 37:7002–7013. [http://nar.oxfordjournals.org/cgi/

content/full/37/21/7002]

6. Marquet R, Isel C, Ehresmann C, Ehresmann B: tRNAs as primer of

reverse transcriptases. Biochimie 1995, 77:113–124.

7. Mak J, Kleiman L: Primer tRNAs for reverse transcription. J Virol 1997,

71:8087–8095.

8. Wilhelm M, Wilhelm FX: Reverse transcription of retroviruses and LTR

retrotransposons. Cell Mol Life Sci 2001, 58:1246–1262.

9. Wilhelm M, Heyman T, Boutabout M, Wilhelm FX: A sequence

immediately upstream of the plus-strand primer is essential for

plus-strand DNA synthesis of the Saccharomyces cerevisiae Ty1

retrotransposon. Nucleic Acids Res 1999, 27:4547–4552.

10. Bergman CM, Quesneville H: Discovering and detecting transposable

elements in genome sequences. Brief Bioinform 2007, 8:382–392.

11. McCarthy EM, McDonald JF: LTR STRUC: a novel search and

identification program for LTR retrotransposons. Bioinformatics 2003,

19:362–367.

12. Rho M, Choi JH, Kim S, Lynch M, Tang H: De novo identification of LTR

retrotransposons in eukaryotic genomes. BMC Genomics 2007,

8:90.

http://www.biomedcentral.com/content/supplementary/1759-8753-3-18-S1.pdf
http://www.biomedcentral.com/content/supplementary/1759-8753-3-18-S2.gz
http://dx.doi.org/10.1038/nrg2165
http://nar.oxfordjournals.org/cgi/content/full/37/21/7002
http://nar.oxfordjournals.org/cgi/content/full/37/21/7002


Steinbiss et al. Mobile DNA 2012, 3:18 Page 13 of 13

http://www.mobilednajournal.com/content/3/1/18

13. Xu Z, Wang H: LTR FINDER: an efficient tool for the prediction of

full-length LTR retrotransposons. Nucleic Acids Res 2007,

35:W265–W268.

14. Ellinghaus D, Kurtz S, Willhoeft U: LTRharvest, an efficient and flexible

software for de novo detection of LTR retrotransposons. BMC

Bioinformatics 2008, 9:18. [http://www.biomedcentral.com/1471-2105/9/

18]

15. Minervini CF, Viggiano L, Caizzi R, Marsano RM: Identification of novel

LTR retrotransposons in the genome of Aedes aegypti. Gene 2009,

440(1–2):42–49. [http://www.sciencedirect.com/science/article/pii/

S0378111909001590]

16. Marsano RM, Leronni D, D’Addabbo P, Viggiano L, Tarasco E, Caizzi R:

Mosquitoes LTR retrotransposons: a deeper view into the genomic

sequence of Culex quinquefasciatus. PLoS ONE 2012, 7:e30770. [http://

dx.doi.org/10.13712Fjournal.pone.0030770]

17. Rho M, Schaack S, Gao X, Kim S, Lynch M, Tang H: LTR retroelements in

the genome of Daphnia pulex. BMC Genomics 2010, 11:425. [http://

www.biomedcentral.com/1471-2164/11/425]

18. McCarthy EM, McDonald JF: Long terminal repeat retrotransposons of

Musmusculus. Genome Biol 2004, 5:R14.

19. Polavarapu N, Bowen NJ, McDonald JF: Identification, characterization

and comparative genomics of chimpanzee endogenous

retroviruses. Genome Biol 2006, 7:R51. [http://genomebiology.com/

2006/7/6/R51]

20. Huda A, Polavarapu N, Jordan IK, McDonald JF: Endogenous

retroviruses of the chicken genome. Biol Direct 2008, 3:9. [http://www.

biology-direct.com/content/3/1/9]

21. de la Chaux N, Wagner A: BEL/Pao retrotransposons in metazoan

genomes. BMC Evolutionary Biol 2011, 11:154. [http://www.

biomedcentral.com/1471-2148/11/154]

22. McCarthy E, Liu J, Lizhi G, McDonald JF: Long terminal repeat

retrotransposons of Oryza sativa. Genome Biol 2002,

3(10):research0053.1–research0053.11. [http://genomebiology.com/

2002/3/10/research/0053]

23. Wang H, Liu JS: LTR retrotransposon landscape inMedicago

truncatula: more rapid removal than in rice. BMC Genomics 2008,

9:382. [http://www.biomedcentral.com/1471-2164/9/382]

24. Seberg O, Petersen G: A unified classification system for eukaryotic

transposable elements should reflect their phylogeny. Nat Rev Genet

2009, 10(4):276. [http://dx.doi.org/10.1038/nrg2165-c3]

25. Kapitonov VV, Jurka J: A universal classification of eukaryotic

transposable elements implemented in Repbase. Nat Rev Genet 2008,

9:411–412. [http://dx.doi.org/10.1038/nrg2165-c1]

26. Abrusán G, Grundmann N, DeMester L, Makalowski W: TEclass – a tool

for automated classification of unknown eukaryotic transposable

elements. Bioinformatics 2009, 25(10):1329–1330.

27. Feschotte C, Keswani U, Ranganathan N, Guibotsy ML, Levine D:

Exploring repetitive DNA landscapes using REPCLASS, a tool that

automates the classification of transposable Elements in eukaryotic

genomes. Genome Biol Evol 2009, 2009:205–220.

28. Kapitonov VV, Tempel S, Jurka J: Simple and fast classification of

non-LTR retrotransposons based on phylogeny of their RT domain

protein sequences. Gene 2009, 448(2):207–213. [http://www.

biomedsearch.com/nih/Simple-fast-classification-non-LTR/19651192.

html]
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