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ABSTRACT

In this paper we describe a tool for a model-based approach to
verifying compositions of web service implementations. The tool
supports  verification of properties created from design
specifications and implementation models to confirm expected
results from the viewpoints of both the designer and implementer.
Scenarios are modeled in UML, in the form of Message Sequence
Charts (MSCs), and then compiled into the Finite State Process
(FSP) process algebra to concisely model the required behavior.
BPEL4WS implementations are mechanically translated to FSP to
allow an equivalence trace verification process to be performed. By
providing early design verification and validation, the
implementation, testing and deployment of web service
compositions can be eased through the understanding of the
behavior exhibited by the composition. The approach is
implemented as a plug-in for the Eclipse development environment
providing cooperating tools for specification, formal modeling,
verification and validation of the composition process.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Checking;

General Terms
Design, Languages, Verification.

Keywords
Web Service Compositions, Choreography, Model-Checking,
BPEL4WS, WS-CDL.

1. INTRODUCTION

A Web Services Architecture (WS-A)[1] is an emerging distributed
software architecture that harnesses the flexibility and reach of the
internet with that of extended distributed systems engineering
practices. Web Service composition languages, such as the
Business Process Execution Language (BPEL4WS)[2], aim to
fulfill the requirement of a coordinated and collaborative service
invocation specification to support long running transactions and
multi-service scenarios. However, a composition alone does not
fulfill the requirement of an assured collaboration in cross-
enterprise service domains. Participating services must adhere to
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policies set out to support these collaborative roles in a WS-A with
permissions and obligations constraining the interactions between
services. Whilst policies are generally considered to be resource
access based (e.g. security and access control permissions),
obligations are equally important in ensuring collaboration is
conducted in an appropriate manner and that the behavior exhibited
by participating clients is suitable in a given scenario. This issue is
collectively wrapped up in the term Web Service Choreography [3].
In addition the design and implementation of service components in
this architecture style must support the original policies as defined
by the service owners. These interacting services can be
constructed using various emerging standards and managed by
multiple parties in their domain of interest and as such the task of
linking these activities across workflows within this domain is
crucial. Therefore, of clear interest is the need to support such
engineering tasks as process verification, partner service usability,
and other property checking to verify the roles of web service users
and their actions [4]. There is also high value in providing a
simulated workflow mechanism to visually compare expected with
simulated results of a workflow invocation which can increase
expectations of a successful outcome prior to deployment [5].

In this paper, we elaborate on the approach discussed in our earlier
work on web service composition verification [6, 7] and illustrate
an implementation of the approach in Eclipse to support mechanical
engineering tasks that aid designers and implementers of web
service compositions.

2. BACKGROUND

Web Service composition languages aim to fulfill the requirement
of a coordinated and collaborative service invocation specification
to support long running and multi-service transactions. This is seen
as an important element of making web services viable for wide
spread use, and to provide a closer representation of business
transactions in cross-domain enterprises. The effect of using earlier
architecture styles has been prone to issues of semantic failure and
difficulties in providing the necessary compensation handling
sequences [8]. This has been attributed to the strict binding of
services with specific technologies. Where previously designers of
the workflow had to work very closely with the developers of the
technical solution, we now have a mechanism to support
technology independent workflow service invocation. This
provides an opportunity for the designers to concentrate on exactly
what is required from the workflow without hindrance from
technical limitations implementation effort. Web Service
compositions can also be seen as the implementation layer of a
Multi-Stakeholder Distributed System (MSDS) [9]. An MSDS is
defined as; “a distributed system in which subsets of the nodes are
designed, owned, or operated by distinct stakeholders. The nodes of



the system may, therefore, be designed or operated in ignorance of
one another, or with different, possibly conflicting goals”. With a
service-oriented architecture the focus is on interaction with
multiple parties and the behavior could be somewhat ad-hoc
depending on the requirements of the partner services. The
desirable element here is that to concisely reason about the
applicability of a solution we must be able to determine if a
distributed solution is correctly orchestrated. Properties to satisfy
this verification may consist of a series of questions about the
composition; for example; if a request to purchase a product is sent
to a partner process, will the process eventually confirm the
purchase?

One key part of the verification in this context is to check the trace
equivalence with reference to the actions of the design
specification, and specifically which order the requests are made
and replies sent to the services of the workflow. Whilst there have
been other attempts to use model-checking techniques for reliable
web service verification, such as in [10-11], there has been little
published on the process of using message sequence charts and
combining these with translated web service workflow language
specifications to verify and validate possible service interactions
against those specified in the requirements.

3. THE APPROACH

The approach, illustrated in Figure 1 and fully described in [6], is
undertaken as follows. A designer, given a set of web service
interaction requirements, specifies a series of MSCs to describe
how the services will be used and to model how each service
interacts (i.e. invokes, receives or replies) in a given service
scenario. The resulting set of scenarios is composed and
synthesized to generate a behavioral model, in the form of the
Finite State Process (FSP) calculus and then compiled in to a
Labelled Transition System (LTS).
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Figure 1 An Approach to ngorous Web Service Composition
Development

The service implementation is undertaken by a BPEL4WS
engineer, who builds the BPEL4WS process directly from either
specification or requirements. The BPELAWS implementation and
its semantics are used to generate a second behavioral model by a
process of abstracting the BPELAWS with respect to data, and to
yield a model of interaction based upon specified semantics applied
to BPEL4WS through the FSP algebra. Verification and validation
consists of comparing and observing traces of these two transition
systems. The approach can assist in determining whether the
implementation contains all the specified scenarios of the design
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and whether any additional scenarios exhibited by the
implementation are acceptable to the end-user. In addition, checks
can be made on the models with respect to desirable general global
properties such as absence of deadlock and liveness (using model-
checking). Feedback to the users is in the form of MSCs. The
approach is to hide the underlying LTS representations and let the
user view only the BPLE4WS specifications or the MSCs as a
simple intuitive and visual formalism accessible to most engineers
[12].

4. TOOL IMPLEMENTATION

The tool was originally written as a prototype plug-in to the
existing LTSA tool suite [13]. This provided the groundwork for a
Java implementation that collaborated in other extensions to the
suite, such as the Message Sequence Chart editor and graphical
LTS Draw functions, and which could contribute to future
extensions. LTSA uses the FSP to specify behaviour models. From
the FSP description, the tool generates a LTS model. The user can
animate the LTS by stepping through the sequences of actions it
models, and model-check the LTS for various properties, including
deadlock freedom, safety and progress properties. The MSC
extension builds on this introducing a graphical editor for MSCs
and by generating an FSP specification from a scenario description
[12]. FSP code is generated for the architecture, trace and constraint
models described previously. LTSA model checking capabilities
(for safety and liveness checks) are then used to detect implied
scenarios. The LTSA-WS Eclipse plug-in architecture (Figure 2)
leverages the previous work and utilises the model-view-controller
pattern.
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Figure 2 Tool Component Architecture

The service implementation model is the BPELAWS XML source
code, and used managed by editing in the form of a standard XML
editor. The model is also parsed to provide useful editor functions,
such as content outline and syntax highlighting. Parsing is also
performed upon restore or save actions, whereby the translation
function is called to view activities specified in the composition.
The BPEL4WS engineer is able to build one or many web service
compositions which aids in enterprise service decomposition. For
each composition selected, the engineer can either translate a single
composition or compose multiple compositions for choreography
and translate them in to FSP by way of changing editor views. The
translation module is written as an independent module (itself
potentially a web service), which takes as input a BPEL4WS



implementation and in turn, traverses the source building a
representation model in FSP. The mapping semantics from
BPEL4WS to FSP has been reported in [6], although a full guide is
given as a technical report in [14]. A partial view of a BPEL4AWS
process for a marketplace service is given in Figure 3 and
associated translation view in Figure 4.
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Figure 3 Partial BPEL4WS Process structure for Marketplace
Composition
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Figure 4 BPEL4WS Translation to FSP View

Multiple composition translation includes interaction mapping by
employing a choreography linking algorithm[14] to check partner
links between services invoke, receive and reply actions. In
addition, the MSC specification synthesized to FSP using the
LTSA-MSC plug-in can be included in the composed model. To
enable this, a visual mapping table is available to the implementer
to link activities in design and implementation. Results of checks
provide implementers and designers with useful details such as
missing interaction cycles (e.g. a missing receive or reply action).
Checks are undertaken by the main LTSA function module. An
output view summaries actions undertaken by the LTS compiler,
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and reports on property violations, such as deadlock, liveness or
other safety properties. For example, a check on the marketplace
process given previously provided the following results on a safety
property check:
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Figure S BPEL4WS Process Trace to Violation

From the trace, we can observe that through the sequence of
requests, the buyer is able to agree, yet the seller is able to submit a
disagreement. This is in breach of a design property which if a
buyer agrees to a price then the seller cannot subsequently disagree.
The BPEL4WS engineer can make a change in the BPEL to reflect
this, or the designer can introduce a requirement back into the MSC
design. Iteration of the MSC synthesis, BPEL4WS translation and
property checking provides the main essence of the approach.
Another use of the approach is to translate and verify service
compositions against WS-CDL documents which is an emerging
standard to define permitted service interaction policies between
partners. The extensibility of our tool provides for future
specification translations to be added and used as additional models
for verification of process sequences. Although we have suggested
that dead-lock and trace equivalence are the only permitted
properties to verify, the user can also specify further properties
(such as progress of specific actions in a composition) by manually
adding FSP progress definitions before verification. We would like
to provide a graphical aid for this as part of our future work desires.
Figure 6 illustrates example LTS views of the process models that
can be analysed in our tool for both BPEL4WS and WS-CDL.

5. CONCLUSIONS AND FUTURE WORK

We have presented a tool to integrate specifications and
implementations for rigorous engineering of web service
compositions and their choreography. Using the Eclipse framework
opens the potential to link the tool with a network of other Eclipse
plug-in contributions and aims to simplify the number of different,
bespoke tools used in software engineering as a whole. Indeed,
amongst these contributions are commercial BPEL4AWS graphical
editors, although the reader is invited to browse plug-in web sites as
the list of contributors is continuously expanding. The LTSA-WS
plug-in and specifically the version supporting BPELAWS,; is being
considered for use on a number of medium sized case studies,
including within projects undertaken by University College London
and the UK Police IT Organization (PITO), and we are keen to
evolve the tool to support a growing number of web service
standard notations.. BPEL4WS provides a work for forming an
XML specification language for defining and implementing
business process workflows for web services.
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