
LTSA-WS: A Tool for Model-Based Verification of Web
Service Compositions and Choreography

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer
Department of Computing, Imperial College London

180 Queen’s Gate, SW7 2BZ
United Kingdom

{hf1,su2,jnm,jk}@doc.ic.ac.uk

ABSTRACT
In this paper we describe a tool for a model-based approach to
verifying compositions of web service implementations. The tool
supports verification of properties created from design
specifications and implementation models to confirm expected
results from the viewpoints of both the designer and implementer.
Scenarios are modeled in UML, in the form of Message Sequence
Charts (MSCs), and then compiled into the Finite State Process
(FSP) process algebra to concisely model the required behavior.
BPEL4WS implementations are mechanically translated to FSP to
allow an equivalence trace verification process to be performed. By
providing early design verification and validation, the
implementation, testing and deployment of web service
compositions can be eased through the understanding of the
behavior exhibited by the composition. The approach is
implemented as a plug-in for the Eclipse development environment
providing cooperating tools for specification, formal modeling,
verification and validation of the composition process.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Checking;

General Terms
Design, Languages, Verification.

Keywords
Web Service Compositions, Choreography, Model-Checking,
BPEL4WS, WS-CDL.

1. INTRODUCTION
A Web Services Architecture (WS-A)[1] is an emerging distributed
software architecture that harnesses the flexibility and reach of the
internet with that of extended distributed systems engineering
practices. Web Service composition languages, such as the
Business Process Execution Language (BPEL4WS)[2], aim to
fulfill the requirement of a coordinated and collaborative service
invocation specification to support long running transactions and
multi-service scenarios. However, a composition alone does not
fulfill the requirement of an assured collaboration in cross-
enterprise service domains. Participating services must adhere to

policies set out to support these collaborative roles in a WS-A with
permissions and obligations constraining the interactions between
services. Whilst policies are generally considered to be resource
access based (e.g. security and access control permissions),
obligations are equally important in ensuring collaboration is
conducted in an appropriate manner and that the behavior exhibited
by participating clients is suitable in a given scenario. This issue is
collectively wrapped up in the term Web Service Choreography [3].
In addition the design and implementation of service components in
this architecture style must support the original policies as defined
by the service owners. These interacting services can be
constructed using various emerging standards and managed by
multiple parties in their domain of interest and as such the task of
linking these activities across workflows within this domain is
crucial. Therefore, of clear interest is the need to support such
engineering tasks as process verification, partner service usability,
and other property checking to verify the roles of web service users
and their actions [4]. There is also high value in providing a
simulated workflow mechanism to visually compare expected with
simulated results of a workflow invocation which can increase
expectations of a successful outcome prior to deployment [5].

In this paper, we elaborate on the approach discussed in our earlier
work on web service composition verification [6, 7] and illustrate
an implementation of the approach in Eclipse to support mechanical
engineering tasks that aid designers and implementers of web
service compositions.

2. BACKGROUND
Web Service composition languages aim to fulfill the requirement
of a coordinated and collaborative service invocation specification
to support long running and multi-service transactions. This is seen
as an important element of making web services viable for wide
spread use, and to provide a closer representation of business
transactions in cross-domain enterprises. The effect of using earlier
architecture styles has been prone to issues of semantic failure and
difficulties in providing the necessary compensation handling
sequences [8]. This has been attributed to the strict binding of
services with specific technologies. Where previously designers of
the workflow had to work very closely with the developers of the
technical solution, we now have a mechanism to support
technology independent workflow service invocation. This
provides an opportunity for the designers to concentrate on exactly
what is required from the workflow without hindrance from
technical limitations implementation effort. Web Service
compositions can also be seen as the implementation layer of a
Multi-Stakeholder Distributed System (MSDS) [9]. An MSDS is
defined as; “a distributed system in which subsets of the nodes are
designed, owned, or operated by distinct stakeholders. The nodes of

Copyright is held by the author/owner(s).
ICSE’06, May 20-28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

771

the system may, therefore, be designed or operated in ignorance of
one another, or with different, possibly conflicting goals”. With a
service-oriented architecture the focus is on interaction with
multiple parties and the behavior could be somewhat ad-hoc
depending on the requirements of the partner services. The
desirable element here is that to concisely reason about the
applicability of a solution we must be able to determine if a
distributed solution is correctly orchestrated. Properties to satisfy
this verification may consist of a series of questions about the
composition; for example; if a request to purchase a product is sent
to a partner process, will the process eventually confirm the
purchase?

One key part of the verification in this context is to check the trace
equivalence with reference to the actions of the design
specification, and specifically which order the requests are made
and replies sent to the services of the workflow. Whilst there have
been other attempts to use model-checking techniques for reliable
web service verification, such as in [10-11], there has been little
published on the process of using message sequence charts and
combining these with translated web service workflow language
specifications to verify and validate possible service interactions
against those specified in the requirements.

3. THE APPROACH
The approach, illustrated in Figure 1 and fully described in [6], is
undertaken as follows. A designer, given a set of web service
interaction requirements, specifies a series of MSCs to describe
how the services will be used and to model how each service
interacts (i.e. invokes, receives or replies) in a given service
scenario. The resulting set of scenarios is composed and
synthesized to generate a behavioral model, in the form of the
Finite State Process (FSP) calculus and then compiled in to a
Labelled Transition System (LTS).

Tool

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and
Validated
Services

BPEL4WS

implementations

Composition
Processes

Composition
Semantics

Requirements

Web
Service

Standards

MSCs

BPEL4WS
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Figure 1 An Approach to Rigorous Web Service Composition

Development

The service implementation is undertaken by a BPEL4WS
engineer, who builds the BPEL4WS process directly from either
specification or requirements. The BPEL4WS implementation and
its semantics are used to generate a second behavioral model by a
process of abstracting the BPEL4WS with respect to data, and to
yield a model of interaction based upon specified semantics applied
to BPEL4WS through the FSP algebra. Verification and validation
consists of comparing and observing traces of these two transition
systems. The approach can assist in determining whether the
implementation contains all the specified scenarios of the design

and whether any additional scenarios exhibited by the
implementation are acceptable to the end-user. In addition, checks
can be made on the models with respect to desirable general global
properties such as absence of deadlock and liveness (using model-
checking). Feedback to the users is in the form of MSCs. The
approach is to hide the underlying LTS representations and let the
user view only the BPLE4WS specifications or the MSCs as a
simple intuitive and visual formalism accessible to most engineers
[12].

4. TOOL IMPLEMENTATION
The tool was originally written as a prototype plug-in to the
existing LTSA tool suite [13]. This provided the groundwork for a
Java implementation that collaborated in other extensions to the
suite, such as the Message Sequence Chart editor and graphical
LTS Draw functions, and which could contribute to future
extensions. LTSA uses the FSP to specify behaviour models. From
the FSP description, the tool generates a LTS model. The user can
animate the LTS by stepping through the sequences of actions it
models, and model-check the LTS for various properties, including
deadlock freedom, safety and progress properties. The MSC
extension builds on this introducing a graphical editor for MSCs
and by generating an FSP specification from a scenario description
[12]. FSP code is generated for the architecture, trace and constraint
models described previously. LTSA model checking capabilities
(for safety and liveness checks) are then used to detect implied
scenarios. The LTSA-WS Eclipse plug-in architecture (Figure 2)
leverages the previous work and utilises the model-view-controller
pattern.

Multi-page Editor

LTSA
BPEL

Translator

BPEL
Editor View

MSC
Synthesis

FSP
Editor View

MSC
Editor View

Result Views

Compiler
View

LTS Draw
View

LTS
Animator

translateviewtranslate

results

view

action

state

composeview

lts

Figure 2 Tool Component Architecture

The service implementation model is the BPEL4WS XML source
code, and used managed by editing in the form of a standard XML
editor. The model is also parsed to provide useful editor functions,
such as content outline and syntax highlighting. Parsing is also
performed upon restore or save actions, whereby the translation
function is called to view activities specified in the composition.
The BPEL4WS engineer is able to build one or many web service
compositions which aids in enterprise service decomposition. For
each composition selected, the engineer can either translate a single
composition or compose multiple compositions for choreography
and translate them in to FSP by way of changing editor views. The
translation module is written as an independent module (itself
potentially a web service), which takes as input a BPEL4WS

772

implementation and in turn, traverses the source building a
representation model in FSP. The mapping semantics from
BPEL4WS to FSP has been reported in [6], although a full guide is
given as a technical report in [14]. A partial view of a BPEL4WS
process for a marketplace service is given in Figure 3 and
associated translation view in Figure 4.

Figure 3 Partial BPEL4WS Process structure for Marketplace

Composition

Figure 4 BPEL4WS Translation to FSP View

Multiple composition translation includes interaction mapping by
employing a choreography linking algorithm[14] to check partner
links between services invoke, receive and reply actions. In
addition, the MSC specification synthesized to FSP using the
LTSA-MSC plug-in can be included in the composed model. To
enable this, a visual mapping table is available to the implementer
to link activities in design and implementation. Results of checks
provide implementers and designers with useful details such as
missing interaction cycles (e.g. a missing receive or reply action).
Checks are undertaken by the main LTSA function module. An
output view summaries actions undertaken by the LTS compiler,

and reports on property violations, such as deadlock, liveness or
other safety properties. For example, a check on the marketplace
process given previously provided the following results on a safety
property check:

Seller MarketPlace Buyer

offerproduct
requireproduct

buyerAgreed

reply.submit.sellerreply

sellerRequirePrice

buyerrRequirePrice

reply.submit.buyerreply

sellerDisagree

Figure 5 BPEL4WS Process Trace to Violation

From the trace, we can observe that through the sequence of
requests, the buyer is able to agree, yet the seller is able to submit a
disagreement. This is in breach of a design property which if a
buyer agrees to a price then the seller cannot subsequently disagree.
The BPEL4WS engineer can make a change in the BPEL to reflect
this, or the designer can introduce a requirement back into the MSC
design. Iteration of the MSC synthesis, BPEL4WS translation and
property checking provides the main essence of the approach.
Another use of the approach is to translate and verify service
compositions against WS-CDL documents which is an emerging
standard to define permitted service interaction policies between
partners. The extensibility of our tool provides for future
specification translations to be added and used as additional models
for verification of process sequences. Although we have suggested
that dead-lock and trace equivalence are the only permitted
properties to verify, the user can also specify further properties
(such as progress of specific actions in a composition) by manually
adding FSP progress definitions before verification. We would like
to provide a graphical aid for this as part of our future work desires.
Figure 6 illustrates example LTS views of the process models that
can be analysed in our tool for both BPEL4WS and WS-CDL.

5. CONCLUSIONS AND FUTURE WORK
We have presented a tool to integrate specifications and
implementations for rigorous engineering of web service
compositions and their choreography. Using the Eclipse framework
opens the potential to link the tool with a network of other Eclipse
plug-in contributions and aims to simplify the number of different,
bespoke tools used in software engineering as a whole. Indeed,
amongst these contributions are commercial BPEL4WS graphical
editors, although the reader is invited to browse plug-in web sites as
the list of contributors is continuously expanding. The LTSA-WS
plug-in and specifically the version supporting BPEL4WS, is being
considered for use on a number of medium sized case studies,
including within projects undertaken by University College London
and the UK Police IT Organization (PITO), and we are keen to
evolve the tool to support a growing number of web service
standard notations.. BPEL4WS provides a work for forming an
XML specification language for defining and implementing
business process workflows for web services.

773

LTS Draw ViewMachine and
Animator View

Composition
Outline

Compiler and
Log Output

MSC Editor
BPEL4WS

Editor
WS-CDL
Editor

Figure 6 LTSA-WS in Eclipse: View of compositions as BPEL4WS, MSC and LTS Process

We plan to expand the approach to consider dynamic analysis of
policies for service interactions in service choreography and also the
analysis of service composition deployments on distributed
architectures. In this paper we presented an approach towards our
goals in the form of a static analysis tool for MSCs, and an
implementation tool for equal requirements in BPEL. This work has
been funded partly by the STATUS ESPIRIT project (IST-2001-
32298), the EPSRC READS project (GR/S03270/01) and by an IBM
Innovation Award (2005). The plug-in is available for download from
the following web page: http://www.doc.ic.ac.uk/ltsa.

6. REFERENCES
[1] W3C-WS-A, “Web Services Architecture (WS-A),” vol. 2004:

W3C Working Group Note 11 February 2004, 2002.
[2] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S.

Thatte, and S. Weerawarana, “Business Process Execution
Language For Web Services, Version 1.1,” 2003.

[3] W3C-WSCI, “Web Service Choreography Interface (WSCI)
1.0,” W3C - Web Services Choreography Working Group
2002.

[4] R. Akkiraju, D. Flaxer, H. Chang, T. Chao, L.-J. Zhang, F. Wu,
and J.-J. Jeng, “A Framework for Facilitating Dynamic e-
Business via Web Services,” presented at OOPSLA 2001 -
Workshop on Object-Oriented Web Services, Tampa, FL,
2001.

[5] C. Karamanolis, D.Giannakopoulou, J.Magee, and S.Wheater,
“Modelling and Analysis of Workflow Processes,” Imperial
College of Science, Technology and Medicine, London 1999.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based
Verification of Web Service Compositions,” presented at

Eighteenth IEEE International Conference on Automated
Software Engineering (ASE), Montreal, Canada, 2003a.

[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Compatibility
for Web Service Choreography,” presented at 3rd IEEE
International Conference on Web Services (ICWS), San Diego,
CA, 2004a.

[8] O. Bukhres and C.J.Crawley, “Failure Handling in
Transactional Workflows Utilizing CORBA 2.0,” presented at
10th ERCIM Database Research Group Workshop on
Heterogeneous Information Management, Prague, 1996.

[9] R. J. Hall, “Open Modeling in Multi-stakeholder Distributed
Systems: Model-based Requirements Engineering for the 21st
Century,” presented at Proc. First Workshop on the State of the
Art in Automated Software Engineering, U.C. Irvine Institute
for Software Research, 2003.

[10] X. Fu, T. Bultan, and J. Su, “WSAT: A tool for Formal
Analysis of Web Services,” presented at 16th International
Conference on Computer Aided Verification (CAV), Boston,
MA, 2004.

[11] S. Nakajima, “Model-Checking Verification for Reliable Web
Service,” presented at OOPSLA 2002 Workshop on Object-
Oriented Web Services, Seattle, Washington, 2002.

[12] S. Uchitel and J. Kramer, “A Workbench for Synthesising
Behaviour Models from Scenarios,” presented at the 23rd IEEE
International Conference on Software Engineering (ICSE’01),
Toronto, Canada, 2001.

[13] J. Magee and J. Kramer, Concurrency - State Models and Java
Programs: John Wiley, 1999.

[14] H. Foster, “A Guide to Mapping BPEL4WS to FSP,”
Department of Computing, Imperial College London,
Technical Report 2003b.

774

