
39

LTTP Protection - A Pragmatic Approach to Licensing

Ziirich, January 13th, 1994

R. Hauser and K. Bauknecht

lnstitut fiir Informatik, Universitiit Ziirich, Winterthurerstr. 190, 8057 Ziirich, Switzerland,
hauser@acm.org, baukn@ifi.unizh.ch

Abstract. Licensing is a topic of increasing importance for software publishers and users. More and

more, software licensing is performed electronically by mechanisms running on the system on which

the licensed software operates. In order to facilitate the use and management of such licensing systems

and to enable economic software usage in enterprise-wide computer systems, various organizations

are formulating requirements and defining architectures and standard interfaces for license systems.

The trustworthiness of these systems is essential because large amounts of revenue can depend on

them. A long term solution called Stateful Access Control (SAC) has been proposed, which aims for

maximal flexibility in the definition of the license policy and still minimizes the restrictions inferred

by the system. To achieve a satisfactory long-term solution like SAC requires a perfectly orchestrated

effort by all partners reaching from the hardware and operating system provider to the application

developer. Because this cannot be expected to happen all at once, migration strategies must be

developed with modes of operation pursuing an optimum for not yet totally satisfactory intermediary

states. Tamper Evidence is the "weak" security level addressed by this paper. A Licensing Trusted

Third Party (L TTP) employing a minimum of dedicated security hardware is proposed as such an

intermediate solution. It is an "add-on" to currently existing systems without the security pitfalls of

today's licensing mechanisms and which assumes less trust in the license administrators.

1. INTRODUCTION

An increasing number of software users is currently gaining experience with network licensed

software. Whether the application broadcasts its serial number across the LAN to detect copies

of itself or whether a floating license system is installed or other - the experiences are not only

pleasant. Also, administrators are unhappy, if they have to administer several license

management systems in parallel for each offered software package. The facilitate this,

important members of the industry have defined a common licensing application interface [l]

which unfortunately only relies on security by obscurity due to secrets hidden in the application

code. A long-term solution integrating licensing with access control has therefore been

proposed with SAC [2]. This paper expects the ubiquitous bundling of highly trusted hardware

with each CPU in distributed systems to be more than one technology generation away and thus

this research addresses systems with only a limited amount of trusted hardware.

The purpose of this article is therefore to analyze the gap between such long-term solutions

and current approaches and to develop short- and mid-term solutions on this migration path. The

proposed minimal trusted hardware called Licensing Trusted Third Party (L TTP) is essentially

a "trusted signing and logging robot''.

J. H. P. Eloff et al. (eds.), Information Security — the Next Decade

© IFIP International Federation for Information Processing 1995

LITP protection 535

Security purists may remain skeptic about the proposed solutions because their strength

cannot be described with orders of magnitude of complexity for the algorithm to be

circumvented, but just by informal arguments that it is "hard" to remove all the embedded

obstacles and that detection and prosecution is enabled only after the fact for most imaginable

attacks.

In section 2, the nature of the problem and the range of applicable assumptions are discussed

and a set of comprehensive goals is developed. Section 3 first outlines an architecture based on

the mentioned LTIP. Then, it is shown how the system can be made more flexible through

cooperation with other interdomain-capable security sub-systems. Last, it is outlined how to

accommodate multi-level sales- and distribution methods and some implementation aspects are

examined.

2. THE PROBLEM

2.1. Goals and Threats addressed by current Licensing Systems.

In the past, an application developer was forced at an early stage to make the fundamental

decision between implementing a licensing subsystem by himself and using an existing generic

licensing system which was hard to later abandon. This very inflexible situation lead to the

definition of a "License Service Application Programming Interface" (LSAPI[l]) with the

following goals, among others:

- provide license system independence (G 1)

- isolate the product code from the licensing policy (G2)

- provide the ability to establish, beyond reasonable doubt, when tampering evidently has

occurred. (G3)

Different licensing systems can in theory be linked to applications without changing the

application source if both comply to this API. This tamper evidence is defined as follows:

Code designed to be "tamper evident" requires an overt act of programming

to subvert it.

"Such an overt effort can serve as evidence in copyright violation prosecutions by organizations

such as the Software Publishers Association." Tampering can be detected by means of strong

integrity checksums. The LSAPI authors propose to provide security by using challenges of the

applications and responses from the license servers both based on a shared secret. This obsoletes

transmitting the secret directly over the networks, thus makes eavesdropping and message

alterations useless, and therefore addresses the following threat:

Users cannot subvert the licensing system in a properly configured system without

tampering with their applications. This tampering can be made decently hard (seep. 26

of [l]).

The authors of the LSAPI, however, only address settings with entirely trustworthy

administrators of license servers and they aim for an architecture which requires tampering on

a "per application" basis. This forces subverters not only to perform one single act of

tampering, but forces them to tamper constantly with each new software package and release.

536 Pan Eleven Access Control

Therefore they enclose the secrets in each application instead of only including it only once, for

example in the file system client.

2.2. Threats not yet addressed and Additional Goals

License systems compliant to the LSAPI challenge mechanism do not necessarily counter the

following attacks:

I) Proper license requests might be granted even though they originate from a foreign

domain that is financially independent from the license serving domain.

(License stealing)

2) The system administrator can clone a license server on a different machine thereby

doubling the usage of the legally obtained licenses.

3) The licensing subsystem is readable by the system administrators. Therefore, they can

observe its secrets and algorithms and can write afake license server which intercepts

all license requests and either positively grants them all or only does so by imminent

exhaustion, or reroutes them to extra-domain license servers to be robbed without

leaving visible traces in the existing code. Standardized APls facilitate such attempts.

Attack I) can happen if the licensing system is installed in an open network 1 that contains

several license domains using the same licensing system and the same applications. This is

understandably a concern of the buyers of a licensing system and licensed application. At a first

glance, this seems, however, not to directly concern the software publishers and the license

system provider. But they become aware as soon as different domains start to pool their licenses

because according to capacity theory, the denial rate of a pool of 2x is lower than two separated

and disconnected pools of x in allocative license policies.

Taking also these three threats into account, the proposed design adopts the goals of LSAPI

and aims to also fulfil the following new goals:

- To motivate the system operators not to subvert the system to at least the same extent as

the users, a reasonable architecture therefore also strives for tamper evidence on the

license server side. (G4)

- Deny illicit requests from foreign domains. (G5)

2.3. Refinement of Assumptions and New Requirements

The security of current licensing systems relies much on obscurity. The concepts discussed here

are not conflicting with approaches which obfuscate code. This is assumed to be useful to a

certain extent for raising the threshold for potential subverters, but once the obscure information

is discovered, it can easily be reproduced and is no longer protective. Therefore,

"Security by obscurity" measures should never be the only security barrier and

therefore should only be applied in addition to other means

such as tamper evidence. Therefore, this paper does not focus on obfuscation techniques.

To make tamper evidence an effective concept, inspection of the code is part of the operating

procedures of the proposed licensing scheme. Therefore, the design below is based on the

following additional assumptions:

I. No fire-wall machine hinders foreign, illegitimate requests to reach the license server.

LITP protection 537

- Upon arrival of an inspection team, the system is not changed by some automatic re

configuration potentially hiding subversion, i.e. it can be examined in its normal

operation state. (Al)

And:

- It is assumed that the routing in a domain is never subverted in disfavour of the domain

from inside that domain. No license system administrators or super-users would subvert

the routing of their domain in order to permit foreign entities to obtain licenses illicitly.

(A2)

- no hardware is tampered with (this is normally highly evident except for "exchange

attacks"[3] where the security enforcing hardware is entirely replaced by some flawed,

but from outside seemingly identical device). (A3)

Countering attack 2) becomes more delicate. This means that also the license administrator must

be subjected to "tamper-evidence". The cloning of attack 2) can be prevented if the license

server is aware of where it is running.

With the above assumption of properly operating hardware (A3) one could envision

employing additional hardware identification information to provide server-side tamper

evidence. The code of the license subsystem requests from the hardware such unalterable IDs

and then compares them with the same information that was hard coded into the license server

and client during installation or software distribution. Candidates for this not alterable

information are the unique processor ID ("uname -m" on AIX machines) or the network adapter

providing its physical address (e.g. "lscfg -v ltokO"), etc.

This approach to prevent subversions suspected from the administrator side is likely to fail

due to several problems:

- Hills[4] advocates reconfigurable system calls for operating systems; uname is one such

system call. The system call on a machine containing a cloned license server can be

reconfigured to instead of reading the real processor ID just returning the ID of a

legitimate server machine from which the false server was cloned. To avoid this problem,

the server designer could go one step ahead in this "arms race" and not rely on the

respective system calls, but query the hardware containing that ID directly (kernel access

structures might allow this).

- If virtual memory management is present in the operating system, the software can be

subverted not on disk and not even in memory but only when the page which performs

the license checks is accessed. The subverter defines a page exception which "on the fly"

patches out the relevant code to be transferred to the processor for execution.

Conclusion:

Achieving strong "tamper evidence" without controlling all software layers between the

concerned software and the trusted hardware is infeasible.

Therefore, running a license server as a user mode program will not work, the solution would

be to have a self-contained "license server system" without any kernel underneath. This way,

system operators cannot configure and extend this system at their discretion. This requires the

pertinent code to be loaded from trustworthy permanent storage. Providing also such special

storage leaves this approach close to using dedicated tamper resistant license hardware anyway

538 Part Eleven Access Control

(e.g Palmer's Citadel [5]). If tamper-evident applications were to take the approach of running

directly on the hardware only one application could be "booted" on a machine at a time.

Furthermore, tying software to hardware is cumbersome since it greatly reduces the

flexibility for allocating hardware resources. Also, each component defect may lead to a

significant availability decrease even though enough replacement components may be ready.

Additionally, this whole effort only prevents an administrator from "one-to-one" cloning the

server with a brute force approach on a different machine. It still does not prevent the system

administrator from building the mentioned "faked license server" based on the observable

secrets.

The conclusion is therefore to employ message origin authentication which is not only based

on secret within the code, but also on location information. The flexibility to use backup

machines during defects of primary machines is restored by allowing a set of locations, i.e.

machines, to run the license server code. The trustworthiness of such location information will

be discussed when describing the protocol. The logs of the L TTP will be analyzed by trusted

authorities and will show evidence whether the primary machines are really idle due to defects

or whether both the backup and the primary machines are illegitimately in simultaneous

operation. The avoidance of observable secrets in combination with this log analysis are

contended to also discourage attacks of type 3).

To this point, the LTTP provides two technical services for tamper-evidence: signing and

logging. These two services are only effective, if they are complemented by two administrative

actions: The mentioned analysis of the LTTP log and an inspection of the code-user's

infrastructure to determine whether the pertinent code has been tampered with. Tampering

should become evident by an integrity evaluation of the inactive code constituting the system.

(Tamper evidence by observation).

Tampering, however, can also become evident by inspecting the runtime behaviour of a

system. Under the assumption (Al) that the system's behaviour is not changed when inspectors

visit, this is a relatively effective approach to verify the compliance to contractually agreed

license policies. (Tamper evidence by simulation of active code)

A main component of such an inspection certainly is to verify whether a domain with n

legitimate instances of a licensed application would still grant the (n+l)th illegitimate license

request. Such inspection by simulation has the advantage that intrusive snooping around in the

system to find altered code with a different name than the original application or to find cloned

servers loses priority. The circumvention of this inspection process would require a totally new

class of subversions such as the following one relying on the limited amount of time available

to inspectors: "Fake servers are present in the system, but if usage pattern experiences a

conspicuous change even the fake clones would follow the proper license policy and deny the

n+ 1th request". Attacks of this level of sophistication are beyond the scope of this paper.

This analysis of the licensing problem leads to the following new classification of achievable

security goals and necessary measures to get there.

LITP protection 539

- security can be enforced only if highly tamper resistant hardware is connected to each

involved CPU by a trusted path. No tampering of software is possible without tampering

this hardware.

- security tampering can always be made evident if all software between the tamper prone

code and the properly executing hardware is trusted.

Any weaker configuration still can make tampering hard but no weaker security criterium has

been defined to which it reasonably could comply. Also, it is always subject to the following

trade-offs:
- a layered software architecture provides for portability and flexibility. However each

layer also introduces attack points for subverters.

- Policy independence was originally stated as a goal, but this is directly conflicting with

the goal to force a subverter to tamper on a per application basis.

3. THE LTTP APPROACH

In this section, a new architecture is proposed which employs some minimal and trusted

hardware in just one location of the system. For each license domain, this LTIP is equipped

with a different asymmetric key pair.

It forces the subverter with administrative privileges at least to tamper at the client side

although not necessarily evident inside the concerned application if the licensed code does not

directly run on the hardware. For that purpose, the server side is split in two parts: the license

server under full control of the license administrator and this additional licensing trusted third

party (LTIP). This LTIP can also be present in the system several times in redundance to

provide high availability and thus be resistant, for example to equipment failures. In order to

allow other license servers inside the same domain to access the L TIP when for example their

collocated LTIP is analyzed or in repair, the LTIP must not only exclusively be addressable

locally, but also over the network as if it was a separate host, even though the it might be in the

same physical machine. If multiple L TTPs are present in a domain, the logs must be merged for

the mentioned analysis.

This L TIP is assumed to place a threshold high enough to significantly discourage

tampering and thus to justify the extra effort of managing this additional hardware device.

3.1.Architecture

In figure 1, Ey(X) = Z is the notation for the encryption of X by the public key of Y, Dy(Z) is

the decryption of cryptogram Z and yields X again. If Z is a plaintext, Dy(Z) is a signature of Z

which can be verified employing Ey by the assumed crypto-algorithm.

3.1.1. License Request

Flow 1 contains an encrypted nonce produced by the application. This nonce is present to link

the license request phase with the license release phase. Only the L TIP and the application itself

know this nonce. An attacker can only know this nonce illicitly if the applications nonce

generation process is subverted2 or the application keeping state about this nonce is inspected

2. This nonce generation is implemented maximally avoiding system calls.

540 Part Eleven Access Control

and potentially altered in memory at run-time. This approximates a "per instance" tamper

evidence. Flow 1 contains furthermore either a previously obtained nonce from the license

server or a timestamp of the application which is only partially trustworthy.

FIGURE 1: Protocol including Release

1 ~ --=-=----
application _.. - - - 2-

license server

client

LTIP

Flow 1: [a, A, ELTIP (nal, n 8, ta, IDa(pr,na, ...),XaJ, H ([.. J , ELTIP)

Flow2: D8 (a, ELTIP (nal, n 8, L, t8, s, ID8(pr, na, ...), X8)

Flow3:

- User Operation -

Flow4: (Release Start)

Flow 5:

Legend:

a the application host address(= license client address)

A application identifier/name

EL TIP (Ila) = nonce encrypted by the application

L the license token

= the license server address

ta = the application client timestamp

ID(pr,na, ...) =processor ID/network adaptor ID/ ... of the application host/license serv

X = optionally further license policy relevant data like expiry etc.

ASP = application software publisher

H(X,Y)= a hash of message X integrity-protected by secret Y

License stealing from outside is avoided by authenticating the license request from the

application to the license server. This authentication uses location information of the application

(A, IDa(pr, na, ...)) and the LTTP's public key. The license server maintains a list of the permitted

location information of its clients. This location information and the public key are both not true

secrets preventing the attacks 2 and 3, but they can pragmatically be assumed to be relatively

secret with respect to "license domain outsiders".

Because everybody inside the domain knows the ELTIP• there is little protection against one

insider spoofing another. There is also little incentive to do so except for the license release

LITP protection 541

message as explained below. One insider spoofing another, becomes a problem if license usage

is accounted by the domain with an "individual charge-back" system. Therefore, the

recommendation is not to individually account for usage unless a system is in place which is

capable of strongly authenticating each user as outlined in section 3.2.

Under normal circumstances, the sender address in the packet is sufficient to filter out

illegitimate foreign license requests. Outside attackers could forge their packet's sender

addresses to be from within a license domain even though in reality they come from outside.

This can significantly block licenses until the license server and L TTP recover from their

inability to deliver the response. However, the intruder would not gain any direct advantage by

this. If no precautions are taken, several other threats exist on this level:

I) an intruder could intercept the routing protocol updates between the routers of the

license domain and its neighbouring domain and cause internal routers to believe an

external machine to be part of the internal domain.

2) packets from foreign domains could flood the license server and therefore lead to a

denial of service situation.

Re I : There are two approaches to counter this threat:

- the interdomain routing protocol updates can be authenticated if a trust relation exists with

some entity in that domain [6].

- if no trust relation exists with outside routers and still connectivity is to be maintained,

the domain internal routers must be able to implement rigid semantic checks. This forces

routing updates with foreign domains only to concern the availability status and requires

topology changes either to be within the scope of sophisticated semantic rules or to be

installed by manual configuration.

Re 2: If trust relations to entities in foreign domains exist, each datagram can be tagged with a

visum [7] and be prevented from leaving its home domain by its home gateway. Alternatively,

internal routers could prevent external packets from reaching the license server application by

essentially removing all external routes to that application. If the application ports are served by

the same physical connection and network adaptor as the other ports of the same host, the

described sophistication of filtering at the transport level is useless against denial of service

attacks. Even though the license server port is theoretically open, the physical resources can be

exhausted by the intruder by flooding another port on the same machine which is not filtered

out. Therefore, even though not considered by the initial scenario layout of this paper, firewalls

preventing all traffic to reach the license servers on the network level may well be a reasonable

solution.

Internal location information

If the authority about the license server and about the network are separated, a Network Trusted

Computing Base NTCB (see for example "TCP/IP Security par 45" in [8]) can be installed

based on a trusted network architecture [9]. However, if these authorities coincide, there is little

which can be done against local fake servers or server clones. One can hope that the effort for

message interception or kernel alteration3 to provide wrong network adapter numbers and

3. Especially consistently maintaining such alterations without relinquishing to other services and update benefits

depending on the same features.

542 Part Eleven Access Control

processor IDs etc. combined with the not negligible probability to be discovered during

inspection is discouraging enough.

Flow 2 is signed with the private key 0 8 of the license server. It is assumed that the license

administrator who is the only party able to observe that key will not convey that key to anybody

who could use it in disfavour of the domain. The license server decides whether to grant the

license very much in the same way as current license servers do. Negative responses are directly

sent to the application because the LTTP is supposed to only log positive license events.

Negative responses are also signed with 0 8 in order to prevent denial-of-service attacks from

outside. Positive responses are furthermore enhanced by a timestamp, a license token, and

potentially some policy information to be evaluated by the application. This license token

contains a unique license identifier, the list of locations of permitted license servers and backup

machines, and possibly further license policy information such as expiration date of the license

etc. This token is evaluated and signed by the application software publisher (ASP) during the

sale of the license. In principle, the 0 8 would identify the license server sufficiently but to force

the attacker with administrative privileges more towards tampering, the location information of

the license server is added. The attacker therefore has to subvert this location retrieval function

to make the one-to-one cloning attack successful.

The L TIP shows the following behaviour when constructing flow 3:

1) it analyzes the incoming messages (flow 2):

- messages from a foreign domain are rejected,

- messages whose license server timestamp is out of the tolerance window are considered

replays and are discarded,

- messages with a mismatch between the license server address in the data part and the

protocol information header are discarded,

- messages to a foreign domain are permitted,

2) it then adds to the message:

- a timestamp

- the sender address of the license server which it retrieves from its own networking

device (thus from the header information of the network packets and not from the data

part).

Then, this message is signed and sent to the application.

3) it contains a write only memory/WORM for an activity log where all relevant data is

written to allowing a log analysis after the fact.

Re 1: With this mechanism, the L TIP delegates the decision whether to accept a request from

a foreign domain or not to the license server and its authentication and access control

infrastructure. Illegitimate requests are discarded by the license server. Legitimate requests

from foreign domains are discussed in the section 3.2.

Re 2: The timestamp of the L TIP is present to prevent replays. The L TTP view of the location

of the originating license server is provided to enable the application to check whether this is

consistent with the list of permitted licenses servers inside the token. If not, the application

refuses to accept the license granting message. This signature performed with Dr.TI'P is verified

by the client together with the other signatures. This makes it impossible to circumvent the

licensing scheme without subverting the client side because the client checks the message with

LITP protection 543

the public keys hard coded into it (ELTIP• Es, EASP• ...).These signatures can be performed with

any of the known asymmetric encryption technologies like RSA[lO], DSS[l l], etc. The private

key Dr.TIP is unretrievably sealed into the L TIP. Questions of key exchange for the LTTP and

DAsP are not considered because the LTTP is assumed to be relatively cheap and potentially

physically replaced as soon as its storage capacity is exhausted. The procedure to exchange all

licenses and all the code with its embedded keys are considered to be too expensive if the L TTP

hardware is not exchanged simultaneously.

Re 3: This provides the license policy analysis team with the raw data about past license usage

patterns which gives hints about contract-compliance of the participants of an inspected system.

Another problem is the generation and installation of the applications and license servers which

must be "domain-individualized" by hard-coding the public keys and location information into

them. The ASPs can choose whether they want the license domain administrator to give them

the domain's ELTIP in order to place it themselves in the code or whether this can be delegated

to some installation program. Such an installation program is certainly another target for

subversion attacks. In the first case, the ASP is trusted not to disclose that public key (ELTIP) to

others than members of that domain because of the described approach to defeat license

stealing. The same decision has to be taken for the list oflegitirnate license server processor IDs,

license server network adaptor IDs, etc., if they are to be included into the application at all.

3.1.2. Release Phase

Flow 4: The license to be released is identified by its token. The nonce of the application is the

same which already traveled flow 1-3 in the original request encrypted under EL'ITP· Not

encrypting it alone anymore proves to the L TIP that the same application instance which

originally requested the license also released it. Without this protection, an inside attacker could
have the application regularly request the license, but shortly after the granting period the

attacker would assemble a release message and immediately free the license even though it is

still in use. Problems may arise, if the application eventually tries to renew its license after the

grace period4 and all licenses are exhausted at that time, but this is not different from the

situation a user might experience after a temporary, involuntary segmentation of the license

domain's network.

If the LTTP is more intelligent than just being a signing robot and it could retrieve logged

messages and evaluate whether the application's nonce has already been released in another

release message. If yes, it would log the request and raise an alarm, if not it could retrieve the

license token and add it to the release message. The application client in this case no longer

needs to send back the license token.

Flow 5: The LTTP also logs the release message (flow 4) together with the sender address

retrieved from its own network infrastructure. Then, the LTIP signs the content plus a

timestamp of its own with ~TIP· If the grace period is very long, a 6th flow is recommended

with which the license server acknowledges the receipt of the release message to the

4. The grace period determines for how long the application is permitted to continue operation after it
fails to contact the license server. It is also the period after which the license server is permitted to

hand out a license again even though it never received a release message.

544 Part Eleven Access Control

application. Otherwise, an attacker could remove from the network all attempts to send a flow

5 to create a denial-of-service situation - thus, each granted license would be maximally blocked

from the license server's point of view.

3.2. Kerberos Security with Generic API Available

FIGURE 2: Protocol including Release in the Presence of a System Authentication Service

TGS

+'
Oa I I Ob

,,~

application- -4- - - 2-

license server

client

LTTP

Flowl: K(a,s)(a, A, EL1TP (nal ,ta, Xa), T(s,a)

Flow2: Ds (a, ELTIP (nal, L, ID8(pr, na, ...), s, t8, X8)

Flow3:

- User Operation -

Flow4: (Release Start)

Flows:

Legend:

a the application host address (= license client address~

A application identifier/name

EL TIP (na) = nonce encrypted by the application

L = the license ID token

s = the license server address

ID(pr,na, ...) =processor ID/network adaptor ID/ ... of the application host/license se

t8 the application client timestamp

X optionally further license policy relevant data like expiry etc.

ASP application software publisher

K(a,s) = Shared Kerberos session key between a and s

T(s,a) = Ticket for s containing K(a,s)

TGS = Ticket Granting Server

LITP protection 545

If Kerberos[l2] or equivalent security (e.g. KryptoKnight [13]) is available, two improvements

of the protocols are possible. First, it can be used to fully authenticate the traffic between the

application and the license server without relying on the partial secrecy of the L TIP public key

and the location information of the application. In Kerberos parlance, the license server can be

configured to be a regular application server (a ticket for this application server will be obtained

with flow Oa and Ob). Second, this provides additional flexibility to a user having access to

several domains. When operating in one domain, he can still obtain a ticket for the license server

of his other domain and submit a request there. As described before, the signing L TTP is

allowed to send responses to outside clients, but never to receive requests from outside servers

and therefore supports this scenario. The license server is now allowed to accept license

requests from outside domains if appropriate interdomain authentication protocols are

available[l4, 15] for deciding whether access is to be granted or not.

3.3. Further Issues

3.3.1. License Production Delegation

If the software publisher chooses to distribute the software by a multilevel sales organization,

again the use of an L TTP is proposed to strengthen the integrity of the reseller's license creation

tool. The range of licenses delegated to the reseller is specified as follows:

DAsp(license IDX - license ID Z)

In order to create a valid license, the reseller has to chose one number out of the available license

ID range [X .. Z] and combine it with this delegated range and have it signed by an LTTP.

Two aspects must be observed by this approach:

1) Which LTIP is to be chosen for this "witnessing operation"?

- If the reseller also maintains the local license domain, the same °LTTP can be used.

- More likely, the reseller is not located in the local domain. Then, the reseller's ELTTP

can either be communicated out-of-band to the installation program which puts it in the

application code or the delegator always includes this key in the delegation certificate

as in the example below.

2) Having a complete log is now very important in order to discourage multiple creation of

the same license. However, such a log still does not prevent the reseller from copying

the created license and selling it several times to different and independent license

domains. This can be prevented by having the reseller's L TIP sign some identification

of the targeted license domain (domain's IP mask, ELTTP• etc.). A non subverted

application can thus detect if it is served with an illegitimate license intended for another

domain.

A generic model for implementing similar delegation structures is proposed by Gasser et al.

[16], or Neuman's restricted proxies [17].

546 Part Eleven Access Control

FIGURE 3: Example of a Nested License Token for a three-level Distribution Hierarchy

This is the license number 267, with 30 minutea grace period and usable in the license
domain "test . com". D ASP is equivalent to D . The ELTfP of the target domain needs
not being enclosed in the token because it is installed in the application code. If many
levels of distribution are present, the tokens may grow to a size which is difficult to
handle. Taking current cryptanalysis-techniques into account, each of these public keys
and explicit signatures will be of at least 512 bit length. This leads to at least 4 KBit
signature data for this example.

3.3.2. Implementing Tamper Evidence

First, any library to provide tamper evidence must not be implemented as a shared library nor a

dynamically linked library. If the library is not statically linked with each application, the

system loses the "per-application" tamper property because the users normally have the right to

reconfigure and exchange such shared or dynamically linked libraries.

Furthermore, the design should support tamper evidence by simulation by supporting

runtime observation of the license events. This means that the application must be able to show

the license request as well as the response in a window. The same real-time observation

facilities should also be available in the license server and the involved L TTPs. Therefore the

mentioned simulation of the n+ 1th illegitimate request can be monitored at each involved entity

and any message interception and alteration or omission of one of the three involved entity

becomes evident.

4. CONCLUSION

The purpose of this paper was to provide an intermediate level of trust for licensing

architectures without requiring special purpose security hardware for each involved entity. It

was found that the tamper-evidence by observation property can be provided if the system

administrators are trustworthy or the license relevant code runs directly on trustworthy

hardware.

However, if the administrator's trustworthiness is arguable, only "tamper evidence by

runtime simulation" of license denial situations is achievable as a "hard security criterium"

under the somewhat cumbersome assumption that a system does not change its behaviour due

to the arrival of inspectors.

The then proposed architecture is a compromise which is contended to be a pragmatic

optimum between providing incentives to properly follow license agreements on the one hand

and additional hardware and other inflexibilities burdened on the system maintenance on the

other hand. This additional hardware called "Licensing Trusted Third Party" L TTP is described

and the necessary protocols to effectively employ this LTTP are explained. If the LTTP is

minimally configured to be only a signature and logging robot, it can even provide tamper

evidence properties to applications which were originally not proponents the L TTP approach.

The trusted third party analyzing the log could still detect infringements of the licensing policy

of such an application if its publishers adhere to a generally intelligible policy specification.

The L TTP approach, however, lacks the following features provided by SAC:

LTTP protection 547

- non-executing, ''passive" data such as fonts cannot be license-protected.

- the user cannot copy/rename/patch the code available to him at his discretion without

opening the possibility of escaping the license control.

- the code implementing the licensing system is redundantly present in each application

binary. Therefore, it cannot afford to be very sophisticated without significantly

increasing the overall system's storage devoted to license control.

For the cost of the "per application" property, instead of each application, the file-system

daemon could be implemented in a tamper-evident way. Such a file system client could then

implement these SAC features missing in the proposed L TIP architectures.

If the per application property is to be maintained, an application programming interface

(API) similar to the LSAPI and the pertinent libraries implementing it are very desirable.

Acknowledgments: The comments from Michael Steiner, Michael Waidner, Gene Tsudik, and

Phil Janson have been very helpful.

REFERENCES

[1] License Service Application Programming Interface. Lester Waters, 1 Microsoft Way,

5/2024, Redmond, WA 98052-6399, May 1992. available from lsapi@microsoft.com.

[2] R. Hauser. "Does licensing require new access control techniques?" Communications of

the ACM, 37(11):48-55, November 1994. Originally presented at the 1st ACM

Conference on Computer and Communications Security, Nov. 3-5, 1993, Fairfax,

Virginia.

[3] W. Mayerwieser and R. Posch. "Prohibiting the Exchange Attack calls for Hardware

Signature." In B. Fortrie, editor, 10th International Information Security Conference IFIP

SEC'94, Curacao, Dutch Antilles, May 1994.

[4] T. Hills. "Structured interrupts." ACM OSR, 27(1):51-68, Jan. 1993. A note on it in ACM

OSR 28,2 p. 88ff.

[5] S. R. White, S. H. Weingart, W. C. Arnold, and E. R. Palmer. "Introduction to the citadel

architecture: Security in physically exposed environments." Technical Report RC 16672,

IBM Research Division, Thomas J.Watson Research Center, Yorktown Heights, NY

10598, May 1991. Version 1.4.

[6] B. Kumar and J. Crowcroft. "Integrating security in inter domain routing protocols."

ACM SIGCOMM Computer Communication Review, 23(5):36-51, October 1993. Dept.

of Comput. Sci., Univ. Coll. London, UK.

[7] . D. Estrin, J. C. Mogul, and G. Tsudik. "Visa protocols for controlling interorganizational

datagram flow." IEEE Journal on Selected Areas in Communications, 7 (4):486-497, May

1989.

[8] IBM. "AfX version 3.2 hypertext information base library." CD-ROM, October 1993.

10th Edition, Bar Code for ordering: SC 23-2163-10.

[9] B. Thomson, E. S. Lee, P. I. P. Boulton, M. Stumm, and D. M. Lewis. "A trusted network

architecture." Technical report, Computer Systems Research Institute CSRI, University

of Toronto, Ontario, CanadaM5S 1A4, October 1988.

[10] R. L. Rivest, A. Shamir, and L. M. Adleman. "A method for obtaining digital signatures

and public-key cryptosystems." Journal of the ACM, 21(2):120-126, February 1978.

548 Part Eleven Access Control

[11] U. S. National Institute of Standards and Technology NIST. "Digital Signature Standard

(DSS), Federal Register 56," August 1991.

[12] J. T. Kohl and B. C. Neuman. "The Kerberos network authentication service (VS)." RFC

1510, 1993.

[13] R. Molva, G. Tsudik, E. Van Herreweghen, and S. Zatti. "KryptoKnight authentication

and key distribution system." In 1992 European Symposium on Research in Computer

Security, pages 155-174, 1992.

[14] F. Piessens, B. de Decker, and P. Janson. "Interconnecting domains with heterogeneous

key distribution and authentication protocols." In Proceedings of the IEEE Symposium on

Research in Security and Privacy, pages 66-81, Oakland, CA, May 1993. The Institute of

Electrical and Electronics Engineering IEEE Inc.: Computer Society Press.

[15] J. T. Kohl, B. C. Neuman, and T. Y. Ts'o. "The evolution of the Kerberos authentication

service." In Proceedings of the Spring 1991 EurOpen Conference, 1991.

[16] M. Gasser and E. McDermott. "An architecture for practical delegation in a distributed

system." In Proceedings of the JEEE Symposium on Research in Security and Privacy,

Research in Security and Privacy, pages 20-30, Oakland, CA, May 1990. The Institute of

Electrical and Electronics Engineering IEEE Inc.: Computer Society Press.

[17] C. B. Neuman. "Proxy-based authorization and accounting for distributed systems." In

13th lntemational Conference on Distributed Computing Systems, pages 283-291, May

1993.

