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Abstract. LetK be a nonarchimedean local field, let h be a positive integer, and denote
by D the central division algebra of invariant 1/h over K. The modular towers of Lubin-Tate
and Drinfeld provide period rings leading to an equivalence between a category of certain
GLh(K)-equivariant vector bundles on Drinfeld’s upper half space of dimension h − 1 and a
category of certain D∗-equivariant vector bundles on the (h−1)-dimensional projective space.
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0. Introduction. Let p be a prime number. The category of p-adic Galois representa-
tions, i.e. that of continuous representations of the absolute Galois group of a local field on fi-
nite dimensional Qp-vector spaces, has largely been studied through a variety of period rings.
These play a role in J.-M. Fontaine’s description of p-adic Galois representations through
étale (ϕ, Γ )-modules, as well as in the geometrically significant definition of de Rham, semi-
stable and crystalline representations (cf. [20, Theorem 4.23, Chapters 5 and 6]).

In view of the p-adic Langlands program, seeking to generalize the local Langlands
correspondence by matching up p-adic Galois representations with certain continuous repre-
sentations of p-adic reductive groups on nonarchimedean topological vector spaces, it seems
a natural question whether it is possible to also study representations of reductive groups using
suitable rings of periods.

Making use of the towers of Lubin-Tate and Drinfeld–two objects from arithmetic
geometry–we present a first and promising construction, showing that this novel strategy leads
to very interesting results. Let us mention that the Lubin-Tate tower figures most prominently
in the proof of the local Langlands correspondence in characteristic zero by Harris and Taylor
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[26], as well as in Strauch’s purely local proof of the fact that its �-adic cohomology realizes
the Jacquet-Langlands correspondence (cf. [42]).

In order to describe our procedure more precisely, let K be a nonarchimedean local field
of any characteristic, denote by o = oK its valuation ring, choose a uniformizer π = πK

of K , and let h ≥ 1 be an integer. Denote by K̆ the completion of the maximal unramified
extension of K , and by ŏ its valuation ring.

For any integer m ≥ 0 let Y (h)m be the generic fibre of the formal ŏ-scheme parametriz-
ing one dimensional formal o-modules of height h and level structure m, constructed in [14,
Section 4]. It is an étale Galois covering of the rigid analytic open unit polydisc of dimension
h − 1 over K̆. Denoting by D = D

(h)
K the central division algebra of invariant 1/h over K

and by oD its valuation ring, there are commuting left actions of the groupsG(h)0 := GLh(o)

and H(h)
0 := o×

D on Y(h)m and hence on the ring B(h)m := O(Y (h)m ) of its global sections.

Section 1 is concerned with computing the rings of invariants of B(h)m under the ac-
tions of G(h)0 and H(h)

0 (cf. Theorem 1.4 and Corollary 1.6). For any integer m ≥ 1 set

H
(h)
m := 1 + πmoD. Denoting by K̆m the field obtained by adjoining the πm-torsion points

of a one dimensional Lubin-Tate formal o-module to K̆ , we find a G(h)0 × H
(h)
0 -equivariant

isomorphism (B
(h)
m )H

(h)
m � K̆m.

Let X (h)
0 := Ω

(h)
K ×K K̆ , where Ω(h)

K is Drinfeld’s upper half space of dimension h − 1

over K . Interpreting X (h)
0 as the generic fibre of a formal ŏ-scheme parametrizing special

formal oD-modules of height h2, Drinfeld constructed in [15, §3] a family X (h)
m of finite étale

Galois coverings of X (h)
0 with m ≥ 0. Again, there are commuting left actions of G(h)0 and

H
(h)
0 on X (h)

m and hence on the ring A(h)m := O(X (h)
m ) of its global sections.

In Section 2, we compute the rings of invariants of A(h)m under the actions of G(h)0 and

H
(h)
0 (cf. Theorem 2.8 and Corollary 2.10). To this end, we first show that the spaces X (h)

m

are connected (cf. Theorem 2.5). Partially, this result is contained in [22, Théorème 1.1] ,
[18, Lemma 4.5] and [5, Theorem 2.3]), and can also be deduced from the work of P. Boyer
and J.-F. Dat on the cohomology of the Drinfeld tower (cf. [12], for example). We find a

G
(h)
0 ×H

(h)
0 -equivariant isomorphism (A

(h)
m )G

(h)
m � K̆m.

In Section 3 we combine the two modular towers of Lubin-Tate and Drinfeld, setting
Z(h)
m := X (h)

m ×K̆m
Y(h)m and C(h)m := O(Z(h)

m ) for any integer m ≥ 0. There are commuting

left actions of the groups G(h)0 and H(h)
0 on the ring C(h)m whose invariants are computed in

Theorem 3.2. In fact, we find equivariant isomorphisms

O(Z(h)
m )G

(h)
0 � O(Y(h)0 ) and O(Z(h)

m )H
(h)
0 � O(X (h)

0 ) .

We are interested in the following problem. For any integer m ≥ 0 there are natural
morphisms pm : Z(h)

m → X (h)
0 and qm : Z(h)

m → Y (h)0 . Given a G(h)0 -equivariant vector

bundle M on X (h)
0 , when is there an integerm ≥ 0 and an H(h)

0 -equivariant vector bundle N
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on Y(h)0 together with a G(h)0 ×H
(h)
0 -equivariant isomorphism

p∗
m(M) � q∗

m(N )?
Due to Theorem B for quasi-Stein spaces, the category of G(h)0 -equivariant vector bundles of

finite rank on X (h)
0 is equivalent to the category of finitely generated projective A(h)0 -modules

with a semilinear action of G(h)0 via the global section functor (cf. Corollary A.3). We denote
by ( · )∼ the usual quasi-inverse. Using this result, the above problem admits the following
algebraic approach, familiar from the philosophy of period rings for p-adic Galois represen-
tations which we referred to above.

A G
(h)
0 -equivariant vector bundle M = M̃ of finite rank on X (h)

0 is called Lubin-Tate if
there is an integerm ≥ 0 such that the natural map

C(h)m ⊗
B
(h)
0
(C(h)m ⊗

A
(h)
0
M)G

(h)
0 → C(h)m ⊗

A
(h)
0
M

is an isomorphism (cf. Definition 3.4). In this case,

DLT(M) := [(C(h)m ⊗
A
(h)
0
M)G

(h)
0 ]∼

turns out to be an H(h)
0 -equivariant vector bundle of finite rank on Y(h)0 whose definition is

independent of the integer m ≥ 0 (cf. the discussion following Definition 3.4, as well as
Lemma 3.5).

Likewise, an H(h)
0 -equivariant vector bundle N = Ñ of finite rank on Y (h)0 is called

Drinfeld if there is an integerm ≥ 0 such that the natural map

C(h)m ⊗
A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 → C(h)m ⊗

B
(h)
0
N

is an isomorphism (cf. Definition 3.4). In this case,

DDr(N ) := [(C(h)m ⊗
B
(h)
0
N)H

(h)
0 ]∼

is a well-definedG(h)0 -equivariant vector bundle of finite rank on X (h)
0 .

It is a formality to show that the functors DLT and DDr are mutually quasi-inverse equiv-
alences between the categories of Lubin-Tate and Drinfeld bundles on X (h)

0 and Y(h)0 , re-
spectively (cf. Theorem 3.7). The nontrivial part of the theory is rather concerned with the
construction of interesting examples. Using Galois descent, we show that if V and W are
finite dimensional smooth representations of G(h)0 and H(h)

0 over K̆ , respectively, then the
equivariant vector bundles

M(V ) := OX (h)
0

⊗K̆ V and N (W) := OY(h)0
⊗K̆ W

are Lubin-Tate and Drinfeld, respectively (cf. Theorem 3.8). Other examples are provided by
the structure sheaves of the coverings X (h)

m and Y (h)m , respectively (cf. Remark 3.9).
In Lemma 3.10 we show that the ring A

(h)
m (resp. B(h)m ) is (K̆m,G

(h)
m )-regular

(resp. (K̆m,H
(h)
m )-regular) in the sense of [20, Definition 2.8]. In Lemma 3.11 we then give

an alternative characterization for equivariant vector bundles to be Lubin-Tate or Drinfeld. As



220 J. KOHLHAASE

a consequence, the categories of Lubin-Tate and Drinfeld bundles enjoy many good formal
properties (cf. Theorem 3.12).

In order to study objects which are equivariant under the full groups G(h) := GLh(K)
and H(h) := D∗, we consider the Rapoport-Zink spaces X (h)

m and Y(h)
m

of the moduli prob-

lems of Drinfeld and Lubin-Tate, as well as the corresponding period spaces X (h)
0 and Ph−1

K̆

(cf. Section 4). The latter carry actions of G(h) and H(h), respectively, and the notions of
equivariant Lubin-Tate and Drinfeld bundles are generalized in Definition 4.2.

We follow Fargue’s exposition in [19, Chapitre I, Section IV.11], to define an equiva-
lence between the category of H(h)-equivariant coherent modules on Ph−1

K̆
and the category

of so-called H(h)-equivariant cartesian coherent modules on the Lubin-Tate tower (cf. The-
orem 4.1). We use this result to define two mutually quasi-inverse functors, again denoted
by DLT and DDr, between the category of G(h)-equivariant Lubin-Tate bundles on X (h)

0 and
the category of H(h)-equivariant Drinfeld bundles on Ph−1

K̆
(cf. Theorem 4.4). The latter con-

tains the category of all finite dimensional smooth representations of H(h) over K̆ as a full
subcategory (cf. Theorem 4.5).

We closely examine the abelian case of height one (cf. Proposition 4.6) and deduce that
the above correspondence satisfies a general compatibility relation on traces (cf. Theorem
4.7). This raises the question of how it is related to the Jacquet-Langlands correspondence
(cf. Remark 4.8).

The above results rely on a natural functoriality property underlying the moduli prob-
lems of Sections 1 and 2 (cf. Section 5). If L|K is a finite field extension of degree n and
ramification index e, we recall how to obtain GLh(oL)× o×

D
(h)
L

-equivariant morphisms

iL|K : X (h)
em,L → X (nh)

m,K and rL|K : Y(h)em,L → Y(nh)m,K

for any integer m ≥ 0, satisfying certain natural conditions (cf. Proposition 5.1). If the equi-
variant objects under consideration arise from finite dimensional smooth representations, the
pullback functors i*L|K and r*

L|K respect the properties of being Lubin-Tate and Drinfeld, re-
spectively, and commute nicely with the functors DLT and DDr (cf. Theorems 5.2 and 5.3).

Let us point out that also L. Fargues, building on ideas of G. Faltings, constructed a cor-
respondence between certain smooth equivariant objects on the period spaces associated with
the deformation spaces of Lubin-Tate and Drinfeld (cf. [19, Chapitre I, Théorème IV.13.1]).
His correspondence is even an equivalence of topoi and is a formal consequence of the con-
struction of an equivariant isomorphism between the two towers. On the other hand, it does
not seem to apply to coherent module sheaves and is by far more complicated than our explicit
and elementary approach.

Finally, many of our methods and arguments are general enough to hope for similar func-
torial correspondences involving other p-adic period domains and thus other p-adic reductive
groups.
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CONVENTIONS AND NOTATION. Let K denote a nonarchimedean local field, i.e. a
field which is locally compact with respect to the topology defined by a nonarchimedean
nontrivial normalized valuation vK . Let o and k denote the valuation ring and the residue
class field of K , respectively, and let q be the cardinality of k. We choose a uniformizer
π = πK of K and a separable closure ks of k. Let K̆ := K̂nr denote the completion of the
maximal unramified extension of K , and let ŏ denote the valuation ring of K̆ .

If h ≥ 1 is an integer we denote by D = D
(h)
K the central division algebra of invariant

1/h over K . Let Nrd : D → K denote the reduced norm of D over K . The valuation
vK extends to a valuation vD := vK ◦ Nrd on D, and we denote by oD the corresponding
valuation ring of D. We set G(h) := GLh(K) and G(h)0 := GLh(o), as well as H(h) := D∗

and H(h)
0 := o×

D . If R is a ring we denote by Mh(R) the ring of (h× h)-matrices over R. For

any integerm ≥ 1 we let G(h)m := 1 + πmMh(o) and H(h)
m := 1 + πmoD denote the principal

congruence subgroups of G(h) and H(h) of level πm, respectively.

Acknowledgments. The author is grateful to Brian Conrad, Alain Genestier, Laurent Fargues and
in particular to Matthias Strauch for many very helpful discussions.

1. Invariants in the Lubin-Tate tower. For Drinfeld’s theory of formal o-modules
with level structure we refer to [14, §4].

Let C be the category of commutative unital complete noetherian local ŏ-algebras R =
(R,mR) with residue field R/mR � ks . If R is an object of C, if H is a one dimensional
formal o-module over R, and if α ∈ o, then we denote by [α]H = [α]H (X) ∈ R[[X]]
the corresponding endomorphism of H . Recall from [23, Lemma 4.1], that either the power
series [π]H reduces to zero modulo the ideal mRR[[X]] or else there is a uniquely determined
positive integer h and a power series f ∈ ks[[X]] with

[π]H(X)mod mR = f (Xq
h

) and f ′(0) 
= 0 .

In the latter case, the integer h is called the height of the formal o-moduleH .
We fix an integer h ≥ 1 and a one dimensional formal o-module H(h) of height h over

ks which is defined over k. Up to o-linear isomorphism (defined over ks) there is exactly one
such module, and we have

(1) Endo(H(h)) � oD ,

where oD is the valuation ring of the central division algebraD = D
(h)
K of invariant 1/h over

K (cf. [14, Propositions 1.6 and 1.7]).
For any integer m ≥ 0 consider the set valued functor Y

(h)
m on C which associates to an

object R of C the set of isomorphism classes [(H, ρ, ϕ)] of triples (H, ρ, ϕ), where H is a
one dimensional formal o-module of height h over R, ρ is an o-linear isomorphism

ρ : H(h) → H mod mR ,

and ϕ : (π−mo/o)h → (mR,+H ) is a homomorphism of abstract o-modules such that the
power series

∏
α∈(π−mo/o)h(X − ϕ(α)) divides [πm]H(X) in R[[X]].
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If m′ and m are integers with m′ ≥ m ≥ 0 then we define a natural transformation

(2) Y
(h)

m′ → Y(h)
m

by sending the isomorphism class of a triple (H, ρ, ϕ) defined over an object R of C to the
class of the triple (H, ρ, ϕ|(π−mo/o)h) via the o-linear embedding (π−mo/o)h ⊆ (π−m′

o/o)h.
The following fundamental theorem is due to Drinfeld (cf. [14, Propositions 4.2 and

4.3]). In the case m = 0 and o = Zp it was first proved by Lubin and Tate, building upon the
work of Lazard (cf. [31, Theorem 3.1]). If m = 0 and if o is arbitrary, a concise proof can be
found in [43].

THEOREM 1.1 (Lubin-Tate, Drinfeld). Let h ≥ 1 be an integer.
(i) For any integer m ≥ 0 the functor Y

(h)
m is representable by an object R(h)m of C.

The local ring R(h)m is regular.
(ii) If m and m′ are integers with m′ ≥ m ≥ 0 then the homomorphism of local rings

R
(h)
m → R

(h)

m′ induced by (2) is finite and flat.

(iii) The ring R(h)0 is noncanonically isomorphic to the ring ŏ[[t1, . . . , th−1]] of formal
power series in h− 1 indeterminates over ŏ.

For any integer m ≥ 0 there are commuting left actions of G(h)0 and H(h)
0 on the functor

Y
(h)
m for which the morphisms (2) are equivariant. They are given by

(3) (g, d) · [(H, ρ, ϕ)] := [(H, ρ ◦ d−1, ϕ ◦ g−1)] for d ∈ H(h)
0 and g ∈ G(h)0 ,

where the action of H(h)
0 makes use of the identification in (1). The action of the subgroup

{(α, α) ; α ∈ o×} of G(h)0 ×H
(h)
0 on the functor Y

(h)
m is trivial.

For any integerm ≥ 0 we let Y (h)m := (Y
(h)
m )rig be the rigid analytic K̆-variety associated

with the formal ŏ-scheme Y
(h)
m = Spf(R(h)m ) (cf. [28, Section 7]). Let

B(h)m := O(Y (h)m )

be the K̆-algebra of global rigid analytic functions on Y (h)m . By functoriality, Y(h)m and B(h)m
carry commuting left actions ofG(h)0 and H(h)

0 , respectively.

THEOREM 1.2. Let h ≥ 1 be an integer.
(i) For any integer m ≥ 0 the rigid analytic K̆-variety Y(h)m is smooth connected and

quasi-Stein. The K̆-algebra B(h)m is an integrally closed integral domain.
(ii) If m′ and m are integers with m′ ≥ m ≥ 0 then the morphism

(4) Y (h)
m′ → Y (h)m

induced by (2) is a finite étale Galois covering with Galois groupG(h)m /G
(h)

m′ .

(iii) The space Y (h)0 is noncanonically isomorphic to the rigid analytic open unit poly-

disc B̊
h−1
K̆ of dimension h− 1 over K̆ .
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PROOF. All assertions follow from Theorem 1.1 and the properties of the rigidification
functor (cf. [28, Section 7]). That B(h)m is an integrally closed integral domain follows from
Lemma A.1. �

REMARK 1.3. It is a classical result that all formal o-modules of height one over ŏ

are isomorphic (cf. [30, Lemma 2]). In this case R(1)m = ŏm is the valuation ring of the
finite Galois extension B(1)m = K̆m of K̆ obtained by adjoining the πm-torsion points of
any Lubin-Tate formal o-module of height one over o to K̆ (cf. [30, Theorem 3]). We have
Gal(K̆m|K̆) � (o/πmo)× � G

(1)
0 /G

(1)
m for any integerm ≥ 0.

The following result heavily relies on the work [41] of Strauch.

THEOREM 1.4. Let h ≥ 1 and m ≥ 0 be integers.

(i) We have (B(h)m )G
(h)
0 = B

(h)
0 .

(ii) We have (B(h)m )H
(h)
m = K̆m. Viewing K̆m as a left o×-module via the homomor-

phism o× → (o/πmo)× � Gal(K̆m|K̆) (cf. Remark 1.3), the induced left actions of G(h)0 and

H
(h)
0 on K̆m are given by g ·α = det(g)−1(α) and δ ·α = Nrd(δ)(α) for all elements g ∈ G(h)0 ,

δ ∈ H(h)
0 and α ∈ K̆m.

(iii) If N is a finitely generated projective B(h)m -module with a semilinear action of

G
(h)
0 /G

(h)
m , then the natural map B(h)m ⊗

B
(h)
0
NG

(h)
0 → N is an isomorphism.

PROOF. Assertion (i) is a direct consequence of Theorem 1.2. As for (ii) we start with
the following lemma, built upon a result of Gross and Hopkins (cf. [23, Proposition 14.18]).

LEMMA 1.5. We have (B(h)0 )H = K̆ for any open subgroup H of H(h)
0 .

PROOF. If H = H
(h)
0 this follows as in [23, Proposition 14.18]. In the general case

we may assume H to be normal in H(h)
0 , so that (B(h)0 )H is a finite Galois extension of the

field K̆ (note that (B(h)0 )H ⊆ B
(h)
0 is an integral domain by Theorem 1.2). However, K̆ is

algebraically closed in B(h)0 ⊆ K̆[[t1, . . . , th−1]]. �

By [41, Corollary 3.4 and Theorem 4.4], there is an equivariant embedding K̆m ⊆ B
(h)
m

with the actions of G(h)0 and H(h)
0 on K̆m as given above. Note that the actions in [41] are

from the right and are related to our actions by taking inverses. Thus, K̆m ⊆ (B
(h)
m )H

(h)
m .

On the other hand, since the actions of G(h)0 and H(h)
0 on B(h)m commute, the ring

(B
(h)
m )H

(h)
m , which is an integral domain by Theorem 1.2, is finite over (B(h)0 )H

(h)
m = K̆ (cf.

Lemma 1.5). Thus, (B(h)m )H
(h)
m is a field and a finite Galois extension of K̆m in B(h)m . It follows

from [41, Proposition 4.2], that K̆m is separably closed in B(h)m . Indeed, if E|K̆m is a finite
separable extension inside B(h)m then its valuation ring oE is contained in R(h)m (cf. [28, The-
orem 7.4.1]). Let πm and πE be uniformizers of K̆m and E, respectively. There is an integer
e ≥ 1 such that πmoE = πeEoE . By [41, Proposition 4.2], the ring R(h)m /πmR

(h)
m is reduced,
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so that e = 1. Thus, the extension oE|oK̆m is étale. Since oK̆m is strictly henselian we must

have oE = oK̆m and thus E = K̆m. Therefore, (B(h)m )H
(h)
m = K̆m.

Finally, assertion (iii) follows from Corollary A.3 and Theorem A.4. �

COROLLARY 1.6. Let m ≥ 0 be an integer. We have (B(h)m )H = (K̆m)
Nrd(H) for any

open subgroupH of H(h)
0 .

PROOF. As above, the ring (B(h)m )H is a finite Galois extension of (B(h)0 )H = K̆ inside

B
(h)
m . According to the proof of Theorem 1.4 we have (B(h)m )H ⊆ K̆m. Moreover, the field
K̆m is stable under the action of H(h)

0 which factors through the reduced norm. Therefore,

(K̆m)
Nrd(H) = (K̆m)

H ⊆ (B
(h)
m )H ⊆ (K̆m)

H . �

2. Invariants in the Drinfeld tower. For Drinfeld’s theory of special formal oD-
modules we refer to [4], [15] and [21].

We fix an h-dimensional special formal oD-module G(h) of height h2 over ks which is
defined over k. The oD-module G(h) is unique up to isogeny, and there is an isomorphism

(5) EndoD(G
(h))⊗o K � Mh(K)

of K-algebras (cf. [4, Propositions II.5.2 and II.5.3] for the case h = 2).
Let Nilpo denote the category of commutative unital o-algebras in which the image of π

is nilpotent. Define the set valued functor X
(h)
0 on Nilpo by associating with an object R of

Nilpo the set of isomorphism classes [(ψ,G, ρ)] of triples (ψ,G, ρ), where ψ : ks → R/πR

is a homomorphism of o-algebras, G is a special formal oD-module of height h2 over R and
ρ : ψ∗(G(h)) → Gmodπ is an oD-equivariant quasi-isogeny of height zero (cf. [15, §2.A] or
[4, Section II.7.1] for the notion of a quasi-isogeny and of its height).

There are commuting left actions of the groups G(h)0 = GLh(o) and H(h)
0 = o×

D on the

functor X
(h)
0 , given as follows. Any element g ∈ G

(h)
0 defines a quasi-isogeny of G(h) of

height zero via (5), and we set

g · [(ψ,G, ρ)] := [(ψ,G, ρ ◦ ψ∗(tg))] ,
where tg denotes the transpose of g . We emphasize that this definition of the G(h)0 -action

on X
(h)
0 differs from the usual one by the automorphism (g �→ tg−1) of the group G(h) =

GLh(K).
Given a special formal oD-module and an element δ ∈ H

(h)
0 , we let δG be the special

formal oD-module obtained by pulling back the action of oD via conjugation by δ. In this
way, the action of δ−1 onG defines an oD-equivariant quasi-isogeny δ−1 : G → δG of height
zero, and we set

δ · [(ψ,G, ρ)] := [(ψ, δG, ρ ◦ ψ∗(δ−1))] .
Clearly, this action ofH(h)

0 on X
(h)
0 is trivial. Further, the action of the subgroup {(α, α) ; α ∈

o×} of G(h)0 ×H
(h)
0 on the functor X

(h)
0 is trivial.
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Let Ω(h)
K denote Drinfeld’s upper half space of dimension h − 1 over K , obtained by

removing all K-rational hyperplanes from Ph−1
K (cf. [37, §1]). Set X (h)

0 := Ω
(h)
K ×K K̆ .

There is a natural action of the group G(h) = GLh(K) on the space Ω(h)
K which we change

via the automorphism (g �→ tg−1) of the group G(h). It extends to an action on X (h)
0 over

K̆ . We emphasize that we let G(h) act trivially on K̆ . Further, let the group H(h) = D∗ act
trivially on X (h)

0 .
The following fundamental theorem is due to Drinfeld (cf. [15, Theorem 2.A]; see also

[4, Théorèmes II.8.4, II.9.3 and II.9.5], as well as [21, Chapitre III, Théorème 3.1.1]).

THEOREM 2.1 (Drinfeld). Let h ≥ 1 be an integer. The functor X
(h)
0 is

pro-representable by a formal ŏ-scheme which is locally formally of finite type. Its generic
fibre (X(h)0 )rig is G(h)0 ×H

(h)
0 -equivariantly isomorphic to the rigid analytic K̆-space X (h)

0 .

According to Theorem 2.1 there is a universal special formal oD-module over the for-
mal ŏ-scheme X

(h)
0 which may be used to define a certain family of rigid analytic K̆-spaces

(X (h)
m )m≥0 (cf. [15, §3], where these spaces are denotedΣh,m; see also [4, Section II.13], and

[21, Section IV.1]). Each of the spaces X (h)
m carries commuting left actions of the groupsG(h)0

andH(h)
0 , and ifm′ andm are integers withm′ ≥ m ≥ 0 then there are equivariant morphisms

(6) X (h)

m′ → X (h)
m .

The following results are all implicit in the construction of the spaces X (h)
m or follow

from [37, §1 Proposition 4].

THEOREM 2.2. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid analytic
K̆-variety X (h)

m is smooth and quasi-Stein. Ifm′ andm are integers with m′ ≥ m ≥ 0 then the
morphism (6) is finite étale and Galois with Galois group H(h)

m /H
(h)

m′ .

REMARK 2.3. If h = 1 then there are isomorphisms X (1)
m � Sp(K̆m) for all integers

m ≥ 0 with K̆m as in Remark 1.3. The field K̆m is a left o×-module via the homomorphism
o× → (o/πmo)× � Gal(K̆m|K̆). The resulting left actions of G(1)0 = o× and H(1)

0 = o× on
K̆m, obtained by transport of structure, are given by g · α = g−1(α) and δ · α = δ(α) for all
elements g ∈ G(1)0 , δ ∈ H(1)

0 and α ∈ K̆m.

As a supplement to the results [22, Théorème 1.1], [18, Lemma 4.5], and [5, Theorem
2.3], concerning the connected components of the spaces X (h)

m , we shall prove the following
two theorems.

THEOREM 2.4. Let h ≥ 1 be an integer. The rigid analytic K-variety Ω(h)
K is smooth

and geometrically connected. In particular, the ring of global sections of Ω(h)
K ×K F is an

integrally closed integral domain for any complete valued field extension F of K .

PROOF. By [37, §1 Proposition 1], the spaceΩ(h)
K is an admissible open subset of Ph−1

K .

Therefore,Ω(h)
K ×K F is smooth over F .
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Consider the admissible covering (Ω(h)
n )n≥1 of Ω(h)

K , constructed in the proof of [37, §1
Proposition 1], consisting of an increasing sequence of admissible open subsets. According to
the proof of [37, §1 Proposition 6], eachΩ(h)

n admits an admissible covering by open subsets
(Vi,n)i with pairwise non-empty intersections such that each Vi,n is isomorphic to the product
of an open polydisc with a closed polydisc. Thus, each space Vi,n is geometrically connected,
and we may use [10, p. 492] to conclude that so is Ω(h)

K .
The last assertion of the theorem follows from Lemma A.1. �

THEOREM 2.5. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid analytic
K̆-variety X (h)

m is connected and its ring O(X (h)
m ) =: A(h)m of global sections is an integrally

closed integral domain.

PROOF. The group H(h)
0 /H

(h)
m acts transitively on the set of connected components of

X (h)
m . Indeed, any connected component C of X (h)

m is finite and flat over the connected space
X (h)

0 , hence maps surjectively onto X (h)
0 (cf. Proposition A.6). Thus, it suffices to see that

H
(h)
0 acts transitively on the fibre in X (h)

m of any point in X (h)
0 . But here the transitivity

follows from Theorem 2.2 and [3, V.2.2 Théorème 2].
Thus, choosing a connected componentC of X (h)

m and denoting byH ′ its stabilizer group
in H(h)

0 /H
(h)
m , we need to show that H ′ = H

(h)
0 /H

(h)
m . Since H(h)

0 /H
(h)
m is a finite group, it

suffices to show that it is the union of the conjugates of its subgroupH ′ (cf. [1, Exercice I.5.6,
p. 130]).

Let L|K be an extension of degree h and choose an embedding L ↪→ D = D
(h)
K , induc-

ing embeddings L∗ ↪→ H(h) and o×
L ↪→ H

(h)
0 . Denoting by e = eL|K the ramification index

of the extension, we shall recall in Section 5 how to construct an o×
L -equivariant morphism

X (1)
em,L → X (h)

m = X (h)
m,K , where the index indicates which base field the objects refer to. The

space X (1)
em,L = Sp(L̆em) consists of just one point whose image in X (h)

m,K we denote by yL.

By the above reasoning there is an element δ ∈ H(h)
0 such that δ · yL ∈ C. It follows that for

any extension L of K of degree h there is an embedding L ↪→ D such that the image of o×
L

in H(h)
0 /H

(h)
m is contained in H ′.

According to [15, §2], the action of H(h)
0 on X (h)

m extends semilinearly to the full group

H(h). In particular, the action of H(h)
0 on the set of connected components of X (h)

m extends to

an action of H(h). According to [15, §3], the morphism X (1)
em,L → X (h)

m,K is L∗-equivariant.
Choosing L to be totally ramified overK , the point yL is fixed by a uniformizer πL of L, and
the componentC is fixed by the uniformizerΠ := δπLδ

−1 ofD. It follows that the subgroup
H ′ of H(h)/H

(h)
m is normalized by the image of Π .

By abuse of notation, let H ′ ⊆ H
(h)
0 be any subgroup which is normalized by a suitable

uniformizerΠ ofD and which contains a copy of o×
L for any field extension L ofK of degree

h via a suitable embeddingL ↪→ D (e.g. the inverse image ofH ′ inH(h)
0 under the projection

H
(h)
0 → H

(h)
0 /H

(h)
m ). We show that H(h)

0 is the union of the conjugates of H ′. Indeed, let

α ∈ H(h)
0 and let L′ be a maximal commutative subfield of D containingK[α]. According to
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[2, VIII.10.3 Corollaire à la Proposition 3], the field L′ is of degree h overK . By the theorem
of Skolem-Noether (cf. [2, VIII.10.1 Théorème 1]), there is an element δ ∈ H(h) such that
L := δ · L′ · δ−1 has the property that o×

L ⊂ H ′. Writing δ = Πrδ0 with δ0 ∈ H
(h)
0 and a

suitable integer r , we obtain α ∈ δ−1
0 H ′δ0, because H ′ is normalized by Π .

The final assertion of the theorem is now a consequence of Theorem 2.2 and
Lemma A.1. �

REMARK 2.6. In the case where K is a local function field, Genestier constructed
a G(h)0 × H

(h)
0 -equivariant morphism X (h)

m → Sp(K̆m) (cf. [21, Chapitre IV, §2]), the ac-

tions of G(h)0 and H(h)
0 on K̆m being as in Theorem 1.4. Letting Nm be the kernel of the

map H(h)
0 /H

(h)
m → (o/πmo)× induced by the reduced norm Nrd : H(h)

0 → o×, the space

X (h)
m /Nm � X (h)

0 ×K̆K̆m can be thought of as being obtained by trivializing the determinant

of the universal special formal oD-module on X (h)
0 . The construction of an equivariant mor-

phism X (h)
m → Sp(K̆m) in characteristic zero (and for many other moduli spaces) is the sub-

ject of the forthcoming thesis [9] of Chen, as well as of the recent work [27] of Hedayatzadeh.
For the Drinfeld tower, a global construction, relying on Carayol’s strategy [8, Section 4.3] of
computing the geometrically connected components of the spaces X (h)

m , was given in [5].

PROPOSITION 2.7. The field K̆m is separably closed in A(h)m .

PROOF. Let E be the separable closure of K̆ in A(h)m . Since A(h)m is an integral domain
(cf. Theorem 2.5) the field E is stable under the action of the group G′ of elements in G(h)

whose determinant is contained in o× (cf. Section 4 for the extension of the action from
G
(h)
0 to G′). Let K ′ denote the unramified extension of degree h of K , and denote by y the

image of an o×
K ′-equivariant morphism Sp(K̆ ′

m) = X (1)
m,K ′ → X (h)

m,K as in Section 5. Since

K̆ ′ = K̆ , the Galois group of the extension κ(y)|K̆ is a quotient of o×
K ′ ⊂ G′. Since E

embeds o×
K ′-equivariantly into κ(y), it follows that Gal(E|K̆) is an abelian quotient of G′.

Since the commutator subgroup of G′ is SLh(K) and since the determinant on G(h) restricts
to the norm map NK ′|K on (K ′)∗, it follows that E is fixed by all elements α ∈ o×

K ′ such that
NK ′|K(α) = 1. Consider the diagram

(7) Gal(K̆ ′
m|K̆ ′) res ��

�
��

Gal(K̆m|K̆)
�

��
(oK ′/πmoK ′)×

NK′ |K �� (o/πmo)× ,

which is commutative according to the base change property of local class field theory. In fact,
for abelian extensions generated by torsion points of one dimensional Lubin-Tate modules of
height one, it can be proved directly (cf. [44, Theorem 5.9]). It follows that E ⊆ K̆m. �

We are now ready to prove an analog of Theorem 1.4.

THEOREM 2.8. Let h ≥ 1 and m ≥ 0 be integers.
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(i) We have (A(h)m )H
(h)
0 = A

(h)
0 .

(ii) We have (A(h)m )G
(h)
m = K̆m, and the resulting actions of G(h)0 and H(h)

0 on K̆m are
as in Theorem 1.4.

(iii) If M is a finitely generated projective A(h)m -module with a semilinear action of

H
(h)
0 /H

(h)
m , then the natural map A(h)m ⊗

A
(h)
0
MH

(h)
0 → M is an isomorphism.

PROOF. Assertion (i) is a direct consequence of Theorem 2.2. As in Theorem 1.4, as-
sertion (ii) follows from Proposition 2.7 together with the following lemma. Finally, assertion
(iii) follows from Corollary A.3 and Theorem A.4. �

LEMMA 2.9. We have (A(h)0 )G = K̆ for any open subgroupG of G(h)0 .

PROOF. Let z = [z0 : . . . : zh−1] ∈ X (h)
0 ⊂ Ph−1

K̆
be a K̆-rational point (for example

the image in X (h)
0 of the point y which appears in the proof of Proposition 2.7). Multiplying z

by suitable elementary matrices with entries 0 or 1, we obtain a K̆-rational point all of whose
coordinates are different from zero. We again denote it by z.

Let f ∈ A
(h)
0 be G-invariant. Replacing f by f − f (z), we may assume f (z) = 0.

There is an integer m ≥ 0 such that also f (z′) = 0 for any point z′ of the form z′ = [α0z0 :
. . . : αh−1zh−1] with αi ∈ 1 + πmo. Since zi 
= 0 for each index i, the subset (1 + πmo)zi
of K̆ has zi as a limit point. Therefore, an elementary induction argument on h shows that we
must have f = 0. �

The following corollary can be proved like Corollary 1.6.

COROLLARY 2.10. Let m ≥ 0 be an integer. We have (A(h)m )G = (K̆m)
det(G) for any

open subgroupG of G(h)0 .

3. Admissible bundles on the deformation spaces. Let h ≥ 1 and m ≥ 0 be inte-
gers, and set Z(h)

m := X (h)
m ×K̆m

Y(h)m . The morphisms (4) and (6) induce morphisms

(8) Z(h)

m′ → Z(h)
m

for any integer m′ with m′ ≥ m. Set C(h)m := O(Z(h)
m ). Combining Theorem 1.2, Theorem

2.2 and Theorem 2.5, we obtain the following results.

THEOREM 3.1. Let h ≥ 1 be an integer. For any integer m ≥ 0 the rigid analytic K̆-
variety Z(h)

m is smooth connected and quasi-Stein. In particular, the ring C(h)m is an integrally
closed integral domain. If m′ is an integer such that m′ ≥ m then the morphism (8) is finite
étale and Galois.

PROOF. According to [41, Theorem 4.4], the space Y(h)m is geometrically connected
over Sp(K̆m). The connectedness of Z(h)

m is therefore a consequence of Theorem 2.5 and [16,
Théorème 8.4].

The smoothness of Z(h)
m follows from the corresponding properties of X (h)

m and Y(h)m
(cf. Theorems 1.2 and 2.2), as well as from [11, Theorem 4.2.7]. The last reference also
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implies the covering morphisms (8) to be étale. They are finite by the remark following [6,
9.4.4 Corollary 2]. Finally, the property of being Galois is also a formal consequence of the
corresponding fact for the morphisms (4) and (6). Since we will not make use of this result,
we leave the details to the reader.

Finally, the assertions concerning the ring C(h)m follow from Lemma A.1. �

For any two integers h ≥ 1 and m ≥ 0 the rigid analytic K̆m-varieties X (h)
m and Y(h)m

admit admissible coverings by increasing sequences of affinoid subdomains such that the
inclusion maps are relatively compact over K̆m in the sense of [6, Section 9.6.2], and such
that the restriction maps on the corresponding affinoid algebras have dense image. It follows
from [17, Proposition 2.1.16] and [36, Propositions 16.5 and 20.7], that A(h)m and B(h)m are
nuclear K̆m-Fréchet spaces in the sense of [36, §19].

If V andW are two locally convex vector spaces over a complete nonarchimedean valu-
ation field F then we denote by V ⊗̂FW the complete projective tensor product of V and W
over F (cf. [36, §17]).

It follows from the above results as well as from [6, 9.6.2 Lemma 1], [17, Proposition
1.1.29], and [36, Corollary 20.14], that C(h)m is a nuclear K̆m-Fréchet space and that there is a
natural topological isomorphism

C(h)m � A(h)m ⊗̂K̆m
B(h)m .

Note that by a cofinality argument the topologies of A(h)m , B(h)m and C(h)m do not depend
on the choice of the admissible affinoid coverings chosen above. It follows that the groups
G
(h)
0 and H(h)

0 act on A(h)m and B(h)m by continuous K̆-linear automorphisms. According to

Theorems 1.4 and 2.8 the actions of G(h)0 and H(h)
0 on the common subalgebra K̆m of A(h)m

and B(h)m agree. By continuity, we obtain commuting diagonal left actions of G(h)0 and H(h)
0

on C(h)m .

THEOREM 3.2. For any two integers h ≥ 1 and m ≥ 0 there are isomorphisms

(C
(h)
m )H

(h)
0 � A

(h)
0 and (C(h)m )G

(h)
0 � B

(h)
0 which are G(h)0 -equivariant and H(h)

0 -equivariant,
respectively.

PROOF. Given the results of Theorems 1.4 and 2.8, the two assertions follow from the
following general fact by first considering the invariants under the open subgroups H(h)

m and
G
(h)
m , respectively. �

LEMMA 3.3. Let F be a field which is spherically complete with respect to a nonar-
chimedean valuation, and let V and W be F -Fréchet spaces. Let Γ be a group acting on V
by continuous F -linear automorphisms and endow W with the trivial Γ -action. If one of V
or W is nuclear in the sense of [36, §19], then

(V ⊗̂FW)
Γ � V Γ ⊗̂FW .

PROOF. Denote by W ′ the space of continuous F -linear functionals on W . Given a
nonzero element λ ∈ W ′ endow the quotient Wλ := W/ ker(λ) with the quotient topology
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which makes it a one dimensional F -vector space with its natural topology. Due to the Hahn-
Banach theorem, the natural map

W →
∏
λ∈W ′

Wλ

is continuous and injective (cf. [36, Corollary 9.3]). Endow V/V Γ with the quotient topology
and consider the commutative diagram

0 �� V Γ ⊗̂FW ��

��

V ⊗̂FW ��

��

(V/V Γ )⊗̂FW ��

��

0

0 ��
∏

λ∈W ′
VΓ ⊗F Wλ ��

∏
λ∈W ′

V ⊗F Wλ ��
∏

λ∈W ′
(V/V Γ )⊗F Wλ �� 0 .

We shall need several properties of the complete projective tensor product over F which
can be proved as in the archimedean context. Notably, the complete projective tensor product
commutes with arbitrary direct products (cf. [24, I.1.3 Proposition 6]). It coincides with the
usual tensor product if both spaces are Hausdorff and if one of the factors is finite dimensional
over F , endowed with its natural topology. It follows from the nuclearity and metrizability
assumptions, as well as from [24, I.1.2 Proposition 3 and II.3.1 Corollaire à la Proposition 10],
that the two rows in the above diagram are exact. The vertical arrows are injective according
to [24, I.1.2 Proposition 3]. Since the middle arrow is Γ -equivariant and since (V ⊗F Wλ)

Γ �
V Γ ⊗F Wλ for all λ ∈ W ′, the result follows. �

Let BX (h)
0
(G

(h)
0 ) denote the category of G(h)0 -equivariant vector bundles of finite rank on

X (h)
0 . Recall from Corollary A.3 that the global section functor is an equivalence between

BX (h)
0
(G

(h)
0 ) and the category of finitely generated projective A(h)0 -modules with a semilinear

action of G(h)0 . Given such a module M , we denote by M̃ the associated equivariant vector

bundle. If m ≥ 0 is an integer, we let the groupG(h)0 act diagonally on C(h)m ⊗
A
(h)
0
M .

Similarly, let BY(h)0
(H

(h)
0 ) denote the category of H(h)

0 -equivariant vector bundles of fi-

nite rank on Y(h)0 . Results and conventions analogous to those for BX (h)
0
(G

(h)
0 ) apply.

DEFINITION 3.4. (i) A G
(h)
0 -equivariant vector bundle M = M̃ of finite rank on X (h)

0
is called Lubin-Tate if there is an integerm ≥ 0 such that the natural map

(9) C(h)m ⊗
B
(h)
0
(C(h)m ⊗

A
(h)
0
M)G

(h)
0 → C(h)m ⊗

A
(h)
0
M

is an isomorphism.
(ii) An H(h)

0 -equivariant vector bundle N = Ñ of finite rank on Y(h)0 is called Drinfeld
if there is an integerm ≥ 0 such that the natural map

(10) C(h)m ⊗
A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 → C(h)m ⊗

B
(h)
0
N

is an isomorphism.



LUBIN-TATE AND DRINFELD BUNDLES 231

Assume that M = M̃ is a Lubin-Tate bundle on X (h)
0 . Choose an integer m ≥ 0 as in

Definition 3.4 and let x ∈ X (h)
m be any point. Then x corresponds to a closed maximal ideal

m of A(h)m . One can show that m is of finite codimension over K̆m, so that the sequence

0 → m⊗̂K̆m
B(h)m → C(h)m → κ(x)⊗K̆m

B(h)m → 0

is exact. We obtain from (9) that the natural map

(κ(x)⊗K̆m
B(h)m )⊗

B
(h)
0
(C(h)m ⊗

A
(h)
0
M)G

(h)
0 → (κ(x)⊗K̆m

B(h)m )⊗
A
(h)
0
M

is an isomorphism. Since the right-hand side is a finitely generated projective module over
κ(x)⊗K̆m

B
(h)
m and since the latter is faithfully flat overB(h)0 (cf. Theorem 1.2 and Proposition

A.5), it follows that (C(h)m ⊗
A
(h)
0
M)G

(h)
0 is a finitely generated projective B(h)0 -module of the

same rank asM . Moreover, via the action ofH(h)
0 on C(h)m , which commutes with that ofG(h)0

and is trivial on A(h)0 , we obtain an H(h)
0 -equivariant vector bundle

(11) DLT(M) := [(C(h)m ⊗
A
(h)
0
M)G

(h)
0 ]∼

of finite rank on Y (h)0 . Similarly, if N = Ñ is a Drinfeld bundle on Y (h)0 and if the integer
m ≥ 0 is as in Definition 3.4 then

(12) DDr(N ) := [(C(h)m ⊗
B
(h)
0
N)H

(h)
0 ]∼

is a G(h)0 -equivariant vector bundle on X (h)
0 of the same rank as N .

LEMMA 3.5. (i) If M = M̃ is a G(h)0 -equivariant vector bundle of finite rank on X (h)
0

such that the map (9) is bijective for some integer m ≥ 0 then it is also bijective for any
integer m′ ≥ m, and the natural homomorphism C

(h)
m ⊗

A
(h)
0
M → C

(h)

m′ ⊗
A
(h)
0
M induces an

isomorphism on G(h)0 -invariants.

(ii) If N = Ñ is an H(h)
0 -equivariant vector bundle of finite rank on Y(h)0 such that the

map (10) is bijective for some integer m ≥ 0 then it is also bijective for any integer m′ ≥ m,
and the natural homomorphism C

(h)
m ⊗

B
(h)
0
N → C

(h)

m′ ⊗
B
(h)
0
N induces an isomorphism on

H
(h)
0 -invariants.

PROOF. As for (ii), note that the isomorphism (10) is H(h)
0 -equivariant if we let H(h)

0

act on C(h)m on the left and diagonally on the right-hand side. Tensoring with C(h)
m′ over C(h)m

and passing to H(h)
0 -invariants, we obtain the isomorphism

(C
(h)

m′ ⊗
B
(h)
0
N)H

(h)
0 � (C

(h)

m′ ⊗
A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 )H

(h)
0 .

Since (C(h)m ⊗
B
(h)
0
N)H

(h)
0 is a projective A(h)0 -module, it follows from Theorem 3.2 that

the right-hand side is naturally isomorphic to

(C
(h)

m′ )H
(h)
0 ⊗

A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 � (C(h)m ⊗

B
(h)
0
N)H

(h)
0 ,
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proving the second claim. The first claim is obtained by tensoring with C(h)
m′ over A(h)0 and

once again using (10) for the integerm. Assertion (i) can be proved analogously. �

COROLLARY 3.6. If M andN are Lubin-Tate and Drinfeld bundles on X (h)
0 andY (h)0 ,

respectively, then the vector bundles DLT(M) and DDr(N ) are independent of the integers
m ≥ 0 appearing in Definition 3.4.

Denote by BLT
X (h)

0

(G
(h)
0 ) and BDr

Y(h)0

(H
(h)
0 ) the full subcategories of BX (h)

0
(G

(h)
0 ) and

BY(h)0
(H

(h)
0 ) consisting of all Lubin-Tate and Drinfeld bundles, respectively.

THEOREM 3.7. If M is a Lubin-Tate bundle on X (h)
0 then DLT(M) is a Drinfeld bun-

dle on Y(h)0 . If N is a Drinfeld bundle on Y (h)0 then DDr(N ) is a Lubin-Tate bundle on X (h)
0 .

The assignments

DLT := (M �→ DLT(M)) and DDr := (N �→ DDr(N ))

are mutually quasi-inverse equivalences of categories between BLT
X (h)

0

(G
(h)
0 ) and BDr

Y(h)0

(H
(h)
0 ).

PROOF. Let M = M̃ be a Lubin-Tate bundle on X (h)
0 . The isomorphism (9) of C(h)m -

modules is H(h)
0 -equivariant if we let H(h)

0 act diagonally on the left-hand side and via its

action on C(h)m on the right-hand side. Since M is a projective A(h)0 -module we have

(C(h)m ⊗
A
(h)
0
M)H

(h)
0 � (C(h)m )H

(h)
0 ⊗

A
(h)
0
M � M

by Theorem 3.2. It follows that DLT(M) is Drinfeld and that DDr(DLT(M)) � M, naturally
in M.

Similarly, one can show that DDr(N ) is Lubin-Tate if N is Drinfeld and that in this
case DLT(DDr(N )) � N , naturally in N . Since the assignments DLT and DDr are obviously
functorial, the theorem is proved. �

A large class of Lubin-Tate and Drinfeld bundles is provided by the following con-
struction. Denote by Rep∞

K̆
(G

(h)
0 ) and Rep∞

K̆
(H

(h)
0 ) the categories of smooth representa-

tions of G(h)0 and H(h)
0 on finite dimensional K̆-vector spaces, respectively. If V is an ob-

ject of Rep∞
K̆
(G

(h)
0 ) then, via the diagonal G(h)0 -action, M(V ) := (A

(h)
0 ⊗K̆ V )

∼ is a G(h)0 -

equivariant vector bundle of finite rank on X (h)
0 . Similarly, N (W) := (B

(h)
0 ⊗K̆ W)

∼ is an

H
(h)
0 -equivariant vector bundle of finite rank on Y (h)0 for any objectW of Rep∞

K̆
(H

(h)
0 ).

THEOREM 3.8. If V andW are objects of Rep∞
K̆
(G

(h)
0 ) and Rep∞

K̆
(H

(h)
0 ), respectively,

then the equivariant vector bundles M(V ) and N (W) are Lubin-Tate and Drinfeld, respec-
tively.
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PROOF. Since dimK̆ (V ) < ∞ there is an integerm ≥ 0 such that the action of G(h)0 on

V factors throughG(h)0 /G
(h)
m . By Theorem 1.4 the natural map

(13) B(h)m ⊗
B
(h)
0
(B(h)m ⊗K̆ V )

G
(h)
0 → B(h)m ⊗K̆ V

is bijective. Note that by Lemma 3.3 and Theorem 2.8

(C(h)m ⊗K̆ V )
G
(h)
0 � ((C(h)m )G

(h)
m ⊗K̆ V )

G
(h)
0 � (B(h)m ⊗K̆ V )

G
(h)
0 .

Therefore, tensoring (13) with C(h)m over B(h)m , we obtain that M(V ) is Lubin-Tate. That
the H(h)

0 -equivariant vector bundle N (W) is Drinfeld follows by a similar reasoning. �

REMARK 3.9. If V is a finite dimensional smooth representation of G(h)0 over K̆

then the H(h)
0 -equivariant vector bundle DLT(M(V )) on Y(h)0 is typically not of the form

N (W) for any object W of Rep∞
K̆
(H

(h)
0 ). If for example m ≥ 0 is an integer and if V :=

K̆[G(h)0 /G
(h)
m ] withG(h)0 acting through the left regular representation, then one can check that

DLT(M(V )) � OY(h)m . Likewise, DDr(N (K̆[H(h)
0 /H

(h)
m ])) � OX (h)

m
for any integerm ≥ 0.

We are now going to study the formal properties of the categories of Lubin-Tate and
Drinfeld bundles.

Let B be a ring carrying the action of a group Γ . Assume E := BΓ to be a field and let
F ⊆ E be a subfield. Recall from [20, Definition 2.8], that B is called (F, Γ )-regular if B is
an integral domain such that Quot(B)Γ = BΓ and such that any element f ∈ B spanning a
one dimensional Γ -stable F -subspace of B is a unit.

LEMMA 3.10. For any integer m ≥ 0 the rings A(h)m and B(h)m are (K̆m,G
(h)
m )-regular

and (K̆m,H
(h)
m )-regular, respectively.

PROOF. Note first that B(h)m is an integral domain and that (B(h)m )H
(h)
m = K̆m by Theo-

rems 1.2 and 1.4.
We will first show that Quot(B(h)0 )H

(h)
m = K̆ for any integer m ≥ 0. Since B(h)0 is

integrally closed in its field of fractions, Lemma 1.5 shows that it suffices to treat the case
m = 0. Let f1, f2 ∈ B

(h)
0 with f2 nonzero, such that F := f1/f2 ∈ Quot(B(h)0 ) is H(h)

0 -
invariant. According to the proof of [23, Proposition 14.18], there is a K̆-rational point y ∈
Y (h)0 whose H(h)

0 -orbit is Zariski dense. Thus, f2(y) 
= 0. Set α := f1(y)/f2(y) ∈ K̆ and

consider F ′ := f1 −αf2 ∈ B(h)0 . It follows from theH(h)
0 -invariance of F that F ′(y ′) = 0 for

all y ′ ∈ H(h)
0 y. Thus, F ′ = 0 and F = α ∈ K̆.

In the general case, Quot(B(h)m )H
(h)
m is integral over Quot(B(h)0 )H

(h)
m = K̆ ⊂ B

(h)
m . Since

B
(h)
m is integrally closed in its field of fractions (cf. Theorem 1.2) we have Quot(B(h)m )H

(h)
m =

(B
(h)
m )H

(h)
m .

Now assume f ∈ B
(h)
0 to span an H(h)

m -stable one dimensional K̆-subspace of B(h)0 for
some integerm ≥ 0. We show that f is a unit. Let {h1, . . . , hn} be a set of representatives of
H
(h)
0 /H

(h)
m in H(h)

0 and set f̃ := ∏
i hi · f . The element f̃ of B(h)0 is nonzero and spans an
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H
(h)
0 -stable subspace. Therefore, the action of H(h)

0 on f̃ is given by a character χ : H(h)
0 →

K̆∗. According to Lemma 1.5 it will suffice to show that χ is trivial.
According to the proof of [23, Proposition 14.18], the stabilizer group of the above point

y ∈ Y (h)0 is the group of units o×
K ′ of the valuation ring of the unramified extension K ′ of

degree h of K via some embedding o×
K ′ ↪→ H

(h)
0 . It follows from our assumptions that the

image of f̃ in κ(y) = K̆ is nonzero. Since the induced action of o×
K ′ on κ(y) is trivial, it

follows that χ |o×
K ′ = 1.

Further, the restriction of the reduced norm map Nrd : H(h)
0 → o× to o×

K ′ is surjective.

Together with [34, Corollary 4.1.2], this implies that any element of H(h)
0 is a product of an

element in o×
K ′ and a commutator in H(h)

0 . Thus, χ = 1.

In the general case let f ∈ B
(h)
m span a one dimensional H(h)

m -stable K̆m-subspace and
consider the norm f̃ := N

B
(h)
m |B(h)0

(f ) = ∏
g∈G(h)0 /G

(h)
m

g · f of f in B(h)0 . Since the actions

of G(h)0 and H(h)
0 on B(h)m commute and since the restriction of N

B
(h)
m |B(h)0

to K̆m is a power of

NK̆m|K̆ (cf. Theorem 1.4) it follows that f̃ spans a one dimensional H(h)
m -stable K̆-subspace

in B(h)0 . By the above reasoning we have f̃ ∈ (B(h)0 )× and thus f (
∏

g 
=1 g · f )f̃−1 = 1.

The ring A(h)m can be treated similarly. �

LEMMA 3.11. (i) For any G(h)0 -equivariant vector bundle M = M̃ of finite rank on

X (h)
0 and for any integer m ≥ 0 the natural map

(14) A(h)m ⊗K̆m
(A(h)m ⊗

A
(h)
0
M)G

(h)
m → A(h)m ⊗

A
(h)
0
M

is injective. The vector bundle M is Lubin-Tate if and only if there is an integer m ≥ 0 such
that the map (14) is bijective.

(ii) For any H(h)
0 -equivariant vector bundle N = Ñ of finite rank on Y(h)0 and for any

integer m ≥ 0 the natural map

(15) B(h)m ⊗K̆m
(B(h)m ⊗

B
(h)
0
N)H

(h)
m → B(h)m ⊗

B
(h)
0
N

is injective. The vector bundle N is Drinfeld if and only if there is an integerm ≥ 0 such that
the map (15) is bijective.

PROOF. Using Lemma 3.10 the injectivity of the maps (14) and (15) can be proved as
in [20, Theorem 2.13].

If (15) is a bijection then W := (B
(h)
m ⊗

B
(h)
0
N)H

(h)
m is a finite dimensional K̆m-vector

space carrying a semilinear action of H(h)
0 /H

(h)
m . By Theorem 2.8 the natural map

(16) A(h)m ⊗
A
(h)
0
(A(h)m ⊗K̆m

W)H
(h)
0 → A(h)m ⊗K̆m

W

is an isomorphism. Since it is A(h)m -linear it is even a topological isomorphism with respect
to certain natural Fréchet topologies on both sides (cf. the remarks preceding [40, Proposition
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3.7]). Taking the complete tensor product with B(h)m over K̆m, we obtain an isomorphism

C(h)m ⊗
A
(h)
0
(A(h)m ⊗K̆m

W)H
(h)
0 → A(h)m ⊗̂K̆m

B(h)m ⊗K̆m
W .

Likewise, the map (15) is a topological isomorphism so that the right-hand side can be
identified with C(h)m ⊗

B
(h)
0
N . By Lemma 3.3 we have

(17) (A(h)m ⊗K̆m
W)H

(h)
0 � (C(h)m ⊗

B
(h)
0
N)H

(h)
0 ,

and the above isomorphism turns out to be the natural homomorphism

C(h)m ⊗
A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 → C(h)m ⊗

B
(h)
0
N .

Therefore, N is Drinfeld.
Conversely, if (10) is an isomorphism for some integer m ≥ 0 then, passing to H(h)

m -
invariants on both sides and using Theorem 1.4 and Lemma 3.3, we obtain

A(h)m ⊗K̆m
(B(h)m ⊗

B
(h)
0
N)H

(h)
m � (C(h)m ⊗

B
(h)
0
N)H

(h)
m � A(h)m ⊗

A
(h)
0
(C(h)m ⊗

B
(h)
0
N)H

(h)
0 .

Here we used that (B(h)m ⊗
B
(h)
0
N)H

(h)
m is a finite dimensional K̆m-vector space because

of the injectivity of (15). Tensoring with C(h)m over A(h)m and using (10) again, we obtain that
the natural map

C(h)m ⊗K̆m
(B(h)m ⊗

B
(h)
0
N)H

(h)
m → C(h)m ⊗

B
(h)
0
N

is bijective. As seen before, the ring C(h)m has a quotient which is faithfully flat over B(h)m .
Thus, we can deduce that (15) is bijective for the integerm. The analogous assertion in (i) can
be proved similarly. �

As a consequence of the two preceding lemmas we obtain the following result.

THEOREM 3.12. The categories of Lubin-Tate and Drinfeld bundles are strictly full
subcategories of BX (h)

0
(G

(h)
0 ) and BY(h)0

(H
(h)
0 ), respectively, which are closed under direct

sums, tensor products and duals. The equivalences DLT and DDr commute with these struc-
tures. Let

0 → M1 → M2 → M3 → 0

be a sequence of homomorphisms of G(h)0 -equivariant vector bundles of finite rank on X (h)
0

and assume M2 to be Lubin-Tate. If the sequence is exact on the left (resp. on the right) then
M1 (resp. M3) is Lubin-Tate, as well, and the induced sequence

(18) 0 → DLT(M1) → DLT(M2) → DLT(M3) → 0

is exact on the left (resp. on the right). Analogous results hold for sequences in BY(h)0
(H

(h)
0 ).

PROOF. The properties of being strictly full and of admitting direct sums are clear.
It is also clear that the functors DLT and DDr commute with direct sums. Given an exact
sequence of G(h)0 -equivariant vector bundles of finite rank on X (h)

0 as above, write Mi = M̃i
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for i = 1, 2, 3, let m ≥ 0 be an integer, set Wi := (A
(h)
m ⊗

A
(h)
0
Mi)

G
(h)
m , and consider the

commutative diagram

0 �� A(h)m ⊗K̆m
W1 ��

� �

��

A
(h)
m ⊗K̆m

W2 ��
� �

��

A
(h)
m ⊗K̆m

W3� �

��

0 �� A(h)m ⊗
A
(h)
0
M1 �� A(h)m ⊗

A
(h)
0
M2 �� A(h)m ⊗

A
(h)
0
M3 �� 0 .

The vertical maps are injective according to Lemma 3.11. Using the flatness of the ring
homomorphismA

(h)
0 → A

(h)
m (cf. Proposition A.5), it is straightforward to check that together

with the vertical arrow in the middle also the one on the left (resp. on the right) is bijective
once the initial sequence is exact on the left (resp. on the right). In this situation it follows that
also the sequence

0 → W1 → W2 → W3 → 0

is exact on the left (resp. on the right). Tensorizing with B(h)m over K̆m and passing to
G
(h)
0 /G

(h)
m -invariants we obtain that the sequence (18) is exact on the left (resp. on the right)

(cf. Theorem A.4 and the analog of (17)).
Assuming M = M̃ to be Lubin-Tate there is an integerm ≥ 0 such that the natural map

(14) is G(h)m -equivariantly bijective. Putting M∗ := M∗(X (h)
0 ) = Hom

A
(h)
0
(M,A

(h)
0 ), there is

an isomorphism

(19) (A(h)m ⊗
A
(h)
0
M∗)G

(h)
m � HomK̆m

((A(h)m ⊗
A
(h)
0
M)G

(h)
m , K̆m) ,

from which one obtains the isomorphism

(20) A(h)m ⊗K̆m
(A(h)m ⊗

A
(h)
0
M∗)G

(h)
m � A(h)m ⊗

A
(h)
0
M∗ .

Using Lemma 3.11 one concludes that the dual bundle M∗ is Lubin-Tate. Further, the
analog of (17) leads to a natural isomorphism DLT(M∗) � DLT(M)∗ of H(h)

0 -equivariant

vector bundles on Y (h)0 . In particular, the category of Drinfeld bundles is closed under duals,
too.

The assertions concerning tensor products can be proved as in [20, Theorem 2.13]. The
details are left to the reader. �

4. Admissible bundles on the period spaces. In order to extend the equivalence in
Theorem 3.7 to objects which are equivariant under the full groups G(h) = GLh(K) and
H(h) = (D

(h)
K )∗, we need to pass to the corresponding Rapoport-Zink spaces X (h)

m and Y (h)
m

,
i.e. to allow quasi-isogenies of arbitrary heights in the moduli problems of Sections 1 and 2
(cf. [35, Definition 2.15]).

Recall that there are decompositions

X (h)
m =

∐
n∈Z

X (h),n
m and Y(h)

m
=

∐
n∈Z

Y(h),nm ,
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where X (h),n
m (resp. Y(h),nm ) is the open subspace on which the universal quasi-isogeny has

height nh (resp. n). All spaces X (h),n
m (resp.Y(h),nm ) are noncanonically isomorphic toX (h),0

m =
X (h)
m (resp. Y(h),0m = Y(h)m ). For any two integers m′ and m with m′ ≥ m ≥ 0 and for any in-

teger n there are finite étale Galois morphisms X (h),n

m′ → X (h),n
m and Y(h),n

m′ → Y(h),nm which,
for n = 0, are given by (4) and (6).

For each integer m ≥ 0 there is a left action of H(h) on the space Y (h)
m

such that

δ(Y (h),nm ) = Y(h),n−vD(δ)m for all integers n and all elements δ ∈ H(h). It restricts to the action
of H(h)

0 on Y (h)m considered in Section 1. Further, the covering morphisms Y (h)
m′ → Y(h)

m
are

H(h)-equivariant.
There is also a left action of G(h)0 on Y (h)

m
, commuting with the action of H(h) and

respecting the components Y (h),nm . For n = 0 it is the action considered in Section 1. It
extends to a left action ofG(h) on the family (Y(h)

m
)m≥0 in the following sense.

If U ⊆ G
(h)
0 is an open subgroup then we choose an integer m ≥ 0 such that G(h)m ⊆ U

and set Y(h)U := Y (h)
m
/U with the induced action of H(h). If g ∈ G(h) is an element such that

gUg−1 ⊆ G
(h)
0 then there is an H(h)-equivariant isomorphism

g : Y(h)U → Y(h)
gUg−1 .

If U ⊆ G
(h)
0 is an open subgroup and if g1, g2 ∈ G(h) are elements such that g1Ug−1

1 ⊆
G
(h)
0 and g2g1Ug−1

1 g−1
2 ⊆ G

(h)
0 then the diagram

Y (h)U
g1 ��

g2g1 ����
��

��
��

��
Y (h)

g1Ug−1
1

g2�����������

Y (h)
g2g1Ug−1

1 g−1
2

commutes.
If U and U ′ are open subgroups of G(h)0 such that U ′ ⊆ U then there are morphisms

qU ′,U : Y(h)
U ′ → Y(h)U . If in particular U ′ = G

(h)

m′ and U = G
(h)
m for integers m′ and m with

m′ ≥ m ≥ 0 then qU ′,U is the covering morphism (4). Set qU := q
U,G

(h)
0

.

Following [19, Chapitre I, Section IV.11], a left H(h)-equivariant cartesian coherent
module on the Lubin-Tate tower is a family (NU)U⊆G(h)0

of left H(h)-equivariant coherent

modules NU on Y(h)U for any open subgroup U of G(h)0 together with H(h)-equivariant iso-
morphisms

iU ′,U : q∗
U ′,U (NU) → NU ′ and cg : (g−1)∗(Ng−1Ug) → NU

for any two open subgroupsU ′ andU ofG(h)0 such thatU ′ ⊆ U and for all elements g ∈ G(h)
such that g−1Ug ⊆ G

(h)
0 . These are subject to the obvious cocycle relations.



238 J. KOHLHAASE

There is a left action of H(h) on Ph−1
K̆

and an étale H(h)-equivariant rigid analytic mor-
phism

Φ : Y(h)0 → Ph−1
K̆

,

the so-called period morphism, whose restrictionΦ0 := Φ|Y(h)0 to Y(h)0 is the morphism con-
structed in [23, Section 23]. Given a coherent H(h)-equivariant module F on Ph−1

K̆
consider

the family

Φ∗∞(F) := ((Φ ◦ qU)∗(F))U⊆G(h)0

of H(h)-equivariant coherent modules on the Lubin-Tate tower.

THEOREM 4.1. The functor (F �→ Φ∗∞(F)) is an equivalence between the category of
H(h)-equivariant coherent modules on Ph−1

K̆
and the category of H(h)-equivariant cartesian

coherent modules on the Lubin-Tate tower.

PROOF. This can be proved as in [19, Chapitre I, Proposition IV.11.20]. �

Given a vector bundle M on X (h)
0 (resp. N on Ph−1

K̆
) which is equivariant with respect

to G(h) (resp. H(h)) we denote by resG
(h)

G
(h)
0

M (resp. resH
(h)

H
(h)
0

N ) the G(h)0 -equivariant vector

bundle on X (h)
0 (resp. the H(h)

0 -equivariant vector bundle on Ph−1
K̆

) obtained by restriction of

the action fromG(h) to G(h)0 (resp. from H(h) to H(h)
0 ).

DEFINITION 4.2. (i) A G(h)-equivariant vector bundle M = M̃ of finite rank on X (h)
0

is called Lubin-Tate if theG(h)0 -equivariant vector bundle resG
(h)

G
(h)
0

M is Lubin-Tate in the sense

of Definition 3.4 (i).
(ii) An H(h)-equivariant vector bundle of finite rank on Ph−1

K̆
is called Drinfeld if the

H
(h)
0 -equivariant vector bundle Φ∗

0 (resH
(h)

H
(h)
0

F) on Y(h)0 is Drinfeld in the sense of Definition

3.4 (ii).

In order to relate the categories of Lubin-Tate and Drinfeld bundles we need to examine
the actions of G(h) and H(h) on the inductive limit of the rings of sections of the spaces X (h)

m

and Y(h)
m

.

For any integer n and any integer m ≥ 0 we let A(h),nm := O(X (h),n
m ) and B(h),nm :=

O(Y (h),nm ), so that

A(h)m :=
∏
n∈Z

A(h),nm and B(h)m :=
∏
n∈Z

B(h),nm

are the rings of global sections of X (h)
m and Y (h)

m
, respectively. We endow them with the

product topology of the K̆-algebras A(h),nm and B(h),nm . The above covering morphisms allow
us to define

(21) A(h)∞ := lim−→mA(h)m and B(h)∞ := lim−→mB(h)m ,
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endowed with the topology of the locally convex inductive limit in the sense of [36, §5.E].
Further, the actions ofG(h) and H(h) give rise to commuting continuous K̆-linear left actions
of G(h) and H(h) on A(h)∞ and B(h)∞ .

For any integer m ≥ 0 we let E(h),nm and F (h),nm denote the separable closure of K̆ in
A
(h),n
m and B(h),nm , respectively. We know from Proposition 2.7 and the proof of Theorem

1.4 that each of these fields is isomorphic to K̆m, hence is Galois over K̆ . It follows that
the subalgebra

∏
n E

(h),n
m (resp.

∏
n F

(h),n
m ) of A(h)m (resp. B(h)m ) is stable under the action of

G(h) × H(h). Using Theorems 1.4 and 2.8 one can show
∏
n E

(h),n
m and

∏
n F

(h),n
m to be

G(h) ×H(h)-equivariantly isomorphic.
In order to ease the notation we identify all fields E(h),nm and F (h),nm with K̆m. Define the

rigid analytic K̆-variety

Z(h)
m :=

∐
n∈Z

X (h),n
m ×K̆m

Y(h),nm

and denote by C(h)m := O(Z(h)
m ) = ∏

n∈Z C
(h),n
m its ring of global sections, endowed with the

product topology. Here

C(h),nm := O(X (h),n
m ×K̆m

Y(h),nm ) � A(h),nm ⊗̂K̆m
B(h),nm

for every integer n. We also set C(h)∞ := lim−→mC(h)m , endowed with the topology of the locally
convex inductive limit.

There are K̆-linear diagonal actions of G(h) and H(h) on C(h)∞ such that for each integer
m ≥ 0 the induced action ofG(h)0 ×H(h)

0 on C(h)m coincides with the one considered in Section
3.

THEOREM 4.3. For any integer m ≥ 0 there are G(h)0 × H(h)-equivariant isomor-

phisms (C(h)∞ )G
(h)
m � (B(h)∞ )G

(h)
m � B(h)m . For any integer m ≥ 0 there are G(h) × H(h)-

equivariant isomorphisms (C(h)∞ )H
(h)
m � (A(h)∞ )H

(h)
m � A(h)m . Further, (A(h)∞ )G

(h) � (B(h)∞ )G
(h)�

(C(h)∞ )G
(h) � (B(h)∞ )H

(h) � K̆ , and there are G(h)-equivariant isomorphisms (A(h)∞ )H
(h) �

(C(h)∞ )H
(h) � A

(h)
0 .

PROOF. Ifm′ ≥ m is an integer, the subrings A(h)
m′ , B(h)

m′ and C(h)
m′ of A(h)∞ , B(h)∞ and C(h)∞ ,

respectively, are stable under the actions ofG(h)m andH(h)
m . The first assertions of the theorem

follow from Theorems 1.4, 2.8 and Lemma 3.3 together with the following consideration.
Let n be an integer and let δ ∈ H(h) be such that vD(δ) = −n. The element δ defines

G
(h)
0 -equivariant isomorphisms

A
(h)

m′ → A
(h),n

m′ and B
(h)

m′ → B
(h),n

m′ ,

whence (A(h),n
m′ )G

(h)
m = K̆m and (B(h),n

m′ )H
(h)
m � K̆m.

Any element β ∈ (B(h)∞ )H
(h)

is contained in some subring B(h)m . It follows that β ∈ B(h)m ,
embedded into B(h)m via the direct product of the integral powers of some uniformizer of D.

Since the projection B(h)m → B
(h)
m is H(h)

0 -equivariant, we obtain β ∈ K̆ from Theorem 1.4.
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The H(h)-invariants of A(h)∞ and C(h)∞ can be computed by the same strategy, using Theorems
2.8 and 3.2.

As seen above, we have (A(h)m )G
(h)
m = ∏

n∈Z K̆m, and this algebra is stable under the ac-
tion ofG(h) with SLh(K) acting trivially. Embedding K̆m diagonally via some element whose
determinant has valuation 1, we deduce as above that (A(h)∞ )G

(h) = K̆ by using Theorem 2.8.
Finally, any of the subrings B(h)m (resp. C(h)m ) of B(h)∞ (resp. C(h)∞ ) is stable under the action

of G(h)0 , so that (C(h)∞ )G
(h) � (B(h)∞ )G

(h) ⊆ B(h)0 . Let f ∈ B(h)0 ⊂ B(h)∞ be invariant underG(h).
Choosing g ∈ G(h) with vK(det(g)) = 1, we see that f is determined by its restriction to the
space Y(h)0 = Y(h),00 .

According to the proof of [23, Corollary 23.21], there are closed rigid analytic polydiscs
D1, . . . ,Dn in Y(h)0 such that the restrictions Φ : Di → Φ(Di) of the period morphism are
isomorphisms and such that the subsets Φ(Di) form an affinoid covering of Ph−1

K̆
.

We obtain sections fi ∈ O(Φ(Di)) viaΦ∗(fi) = f |Di and claim that fi and fj coincide
on Φ(Di) ∩ Φ(Dj) for any two indices i and j . Since Ph−1

K̆
is reduced, this can be checked

pointwise. If yi ∈ Di and yj ∈ Dj are such that Φ(yi) = Φ(yj ) then there is an element

g ∈ G(h), an integer m ≥ 0 and a point y ′
i in Y(h)

m
lying above yi such that g : Y(h)

m
→ Y(h)0

is defined and maps y ′
i to yj (cf. [23, p. 82], [35, Section 5.50], or [42, Proposition 2.6.7]).

Since the compositions with Φ of the morphism g and the covering morphism Y (h)
m

→ Y(h)0
agree, there is a commutative diagram

κ(Φ(yi)) = κ(Φ(yj )) ��

��

κ(yi)

��
κ(yj ) g

�� κ(y ′
i) .

But then fi(Φ(yi)) = fj (Φ(yj )) by the G(h)-invariance of f .
Therefore, the family (f1, . . . , fn) gives rise to a global section on Ph−1

K̆
. Since

O(Ph−1
K̆

) = K̆ we obtain f |D1 ∈ K̆ and then f ∈ K̆ since Y (h)0 is normal and connected (cf.
Theorem 1.2 and [10, Lemma 2.1.4]). �

Given a G(h)-equivariant Lubin-Tate bundle M = M̃ on X (h)
0 , we claim that the natural

map

(22) C(h)∞ ⊗B(h)0
(C(h)∞ ⊗

A
(h)
0
M)G

(h)
0 → C(h)∞ ⊗

A
(h)
0
M

is bijective. Note first that, as in the proof of Theorem 4.3, A(h)0 is identified with the ring of

H(h)-invariants of C(h)∞ by embedding it diagonally via the integral powers of a fixed element
δ ∈ D with valuation −1. Choose an integer m ≥ 0 so that the map (9) is bijective. For any
integer n we then have

(C(h)m ⊗
A
(h)
0
M)G

(h)
0 � (C(h),nm ⊗

A
(h)
0
M)G

(h)
0
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via δn ⊗ idM . Since M is finitely presented over A(h)0 (cf. Proposition A.2), the naturalG(h)0 -
equivariant map

C(h)m ⊗
A
(h)
0
M →

∏
n∈Z

(C(h),nm ⊗
A
(h)
0
M)

is bijective (cf. [3, Exercice I.2.9, p. 62]). Since the module (C(h)m ⊗
A
(h)
0
M)G

(h)
0 is finitely

presented over B(h)0 (cf. the discussion following Definition 3.4), the same reference together
with the above reasoning implies that the natural map

B(h)0 ⊗
B
(h)
0
(C(h)m ⊗

A
(h)
0
M)G

(h)
0 → (C(h)m ⊗

A
(h)
0
M)G

(h)
0

is bijective. Therefore,

C(h)m ⊗
B(h)0

(C(h)m ⊗
A
(h)
0
M)G

(h)
0 � C(h)m ⊗

B
(h)
0
(C(h)m ⊗

A
(h)
0
M)G

(h)
0 ,

where B(h)0 is embedded into C(h)m via the integral powers of δ. Thus, by the base extension of

the isomorphism (9) from C
(h)
m to C(h)m via the integral powers of δ, we obtain that the natural

map

C(h)m ⊗
B(h)0

(C(h)m ⊗
A
(h)
0
M)G

(h)
0 → C(h)m ⊗

A
(h)
0
M

is bijective. Passing to the direct limit over all integers m′ ≥ m, and using Lemma 3.5, we
obtain the desired bijectivity of (22).

We obtain the H(h)-equivariant vector bundle N
G
(h)
0

:= [(C(h)∞ ⊗
A
(h)
0
M)G

(h)
0 ]∼ of finite

rank on Y(h)0 such that N
G
(h)
0

|Y(h),n0 � [(C(h),nm ⊗
A
(h)
0
M)G

(h)
0 ]∼ for some integer m ≥ 0 and

any integer n.
The bijection (22) is G(h)m -equivariant with respect to the diagonal action on both sides.

Since (C(h)∞ ⊗
A
(h)
0
M)G

(h)
0 is a projective B(h)0 -module, passing toG(h)m -invariants and tensoring

with C(h)∞ over B(h)m shows that the natural map

C(h)∞ ⊗
B(h)m

(C(h)∞ ⊗
A
(h)
0
M)G

(h)
m → C(h)∞ ⊗

A
(h)
0
M

is bijective for any integer m ≥ 0. We obtain an H(h)-equivariant vector bundle N
G
(h)
m

:=
[(C(h)∞ ⊗

A
(h)
0
M)G

(h)
m ]∼ of finite rank on Y (h)

m
satisfying q∗

G
(h)
m

(N
G
(h)
0
) � N

G
(h)
m

.

Given a compact open subgroup U of G(h)0 set NU := q∗
U(NG

(h)
0
), which is an H(h)-

equivariant vector bundle of finite rank on Y(h)U with global sections (C(h)∞ ⊗
A
(h)
0
M)U .

The diagonal action of G(h) on C(h)∞ ⊗
A
(h)
0
M induces on the family (NU)U the structure

of an H(h)-equivariant cartesian module on the Lubin-Tate tower, in which all modules NU

are locally free of finite rank. According to Theorem 4.1 it corresponds to anH(h)-equivariant
vector bundle of finite rank on Ph−1

K̆
which, by abuse of notation, we denote by DLT(M). By
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construction there is an H(h)
0 -equivariant isomorphism

(23) Φ∗
0 (resH

(h)

H
(h)
0

DLT(M)) � DLT(resG
(h)

G
(h)
0

M) .

Conversely, if F is an H(h)-equivariant Drinfeld bundle on Ph−1
K̆

then the natural map

(24) C(h)∞ ⊗
A
(h)
0
(C(h)∞ ⊗B(h)0

Φ∗(F)(Y (h)0 ))H
(h) → C(h)∞ ⊗B(h)0

Φ∗(F)(Y(h)0 )

is an isomorphism. Indeed, the B(h)0 -moduleΦ∗(F)(Y(h)0 ) is finitely presented so that there is
an H(h)-equivariant isomorphism

C(h)m ⊗
B(h)0

Φ∗(F)(Y(h)0 ) �
∏
n∈Z

C(h),nm ⊗
B
(h),n
m

Φ∗(F)(Y(h),n0 )

for any integer m ≥ 0. The embedding of C(h)m ⊗
B
(h)
0
Φ∗(F)(Y(h)0 ) into the right-hand side

via the integral powers of a uniformizer of D induces an isomorphism

(C(h)m ⊗
B
(h)
0
Φ∗(F)(Y(h)0 ))H

(h)
0 � (C(h)m ⊗

B(h)0
Φ∗(F)(Y(h)0 ))H

(h)

for any integer m ≥ 0. The bijectivity of (24) follows from Lemma 3.5 and the fact that
Φ∗(F)|Y(h)0 = Φ∗

0 (F) is Drinfeld in the sense of Definition 3.4. As a consequence,

DDr(F) := [(C(h)∞ ⊗B(h)0
Φ∗(F)(Y(h)0 ))H

(h) ]∼

is a vector bundle of finite rank on X (h)
0 . Further, the action ofG(h) on C(h)∞ induces on DDr(F)

the structure of a G(h)-equivariant vector bundle. By construction there is a G(h)0 -equivariant
isomorphism

(25) resG
(h)

G
(h)
0

DDr(F) � DDr(Φ
∗
0 (resH

(h)

H
(h)
0

F)) .

As in Section 3 we denote by BX (h)
0
(G(h)) and BPh−1

K̆

(H (h)) the category of

G(h)-equivariant vector bundles of finite rank on X (h)
0 and the category of H(h)-equivariant

vector bundles of finite rank on Ph−1
K̆

, respectively. The full subcategories consisting of Lubin-
Tate and Drinfeld bundles are marked with a corresponding superscript. The following result
is a direct consequence of Theorems 3.7, 4.1, (23) and (25).

THEOREM 4.4. If M is a G(h)-equivariant Lubin-Tate bundle on X (h)
0 then DLT(M)

is anH(h)-equivariant Drinfeld bundle on Ph−1
K̆

. If F is anH(h)-equivariant Drinfeld bundle

on Ph−1
K̆

then DDr(F) is a G(h)-equivariant Lubin-Tate bundle on X (h)
0 . The assignments

DLT := (M �→ DLT(M)) and DDr := (F �→ DDr(F))
are mutually quasi-inverse equivalences of categories between BLT

X (h)
0

(G(h)) and BDr
Ph−1
K̆

(H (h)).

As for the formal properties of the categories of Lubin-Tate and Drinfeld bundles on X (h)
0

and Ph−1
K̆

, Theorem 3.12 has an exact analog which we refrain from repeating.
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Let RepK̆ (H
(h)) denote the category of finite dimensional representations of H(h) over

K̆ . Given an object ρ of this category set F(ρ) := OPh−1
K̆

⊗K̆ ρ, which is an H(h)-equivariant

vector bundle of finite rank on Ph−1
K̆

. Since F(ρ)(Ph−1
K̆

) � ρ as an H(h)-representation over

K̆ , the functor (ρ �→ F(ρ)) from RepK̆ (H
(h)) to BPh−1

K̆

(H (h)) is an embedding of categories.

We say that a finite dimensional representation ρ ofH(h) over K̆ is Drinfeld if the H(h)-
equivariant vector bundle F(ρ) on Ph−1

K̆
is Drinfeld in the sense of Definition 4.2. In this case

we set DDr(ρ) := DDr(F(ρ)) and have isomorphisms

(26) DDr(ρ) � [(C(h)∞ ⊗K̆ ρ)
H(h) ]∼ and ρ � (C(h)∞ ⊗

A
(h)
0

DDr(ρ)(X (h)
0 ))G

(h)

in BX (h)
0
(G(h)) and RepK̆ (H

(h)), respectively.

Given a finite dimensional representation V of G(h) over K̆ we shall also consider the
G(h)-equivariant vector bundle M(V ) := (A

(h)
0 ⊗K̆ V )

∼ on X (h)
0 .

THEOREM 4.5. Any finite dimensional smooth representation ρ of H(h) over K̆ is
Drinfeld. If V is a finite dimensional smooth representation of G(h) over K̆ then the G(h)-
equivariant vector bundle M(V ) on X (h)

0 is Lubin-Tate.

PROOF. This follows from (23), (25) and Theorem 3.8. �

Note that by Remark 3.9 the essential images of the functors DLT(M( · )) and F( · ) do
not seem to agree.

PROPOSITION 4.6. Identifying the category ofG(1)- andH(1)-equivariant vector bun-
dles on X (1)

0 = Sp(K̆) and P0
K̆

= Sp(K̆) with the category of finite dimensional represen-

tations of G(1) and H(1) over K̆ , respectively, we have BLT
X (1)

0

(G(1)) = Rep∞
K̆
(G(1)) and

BDr
P0
K̆

(H (1)) = Rep∞
K̆
(H (1)). IdentifyingG(1) and H(1) with K∗ we have

trDDr(ρ)(α) = trρ(α)

for any finite dimensional smooth representation ρ of K∗ over K̆ and any element α ∈ K∗.

PROOF. In this case we have A(1)m = B
(1)
m = C

(1)
m = K̆m for all integers m ≥ 0.

According to Lemma 3.11, the restriction of any Lubin-Tate (resp. Drinfeld) representation of
G(1) (resp. H(1)) to some suitable subgroup G(1)m (resp. H(1)

m ) is trivial. The converse is the
content of Theorem 4.5.

If ρ is a finite dimensional smooth representation of H(1) over K̆ , consider the isomor-
phism

C(1)∞ ⊗K̆ DDr(ρ) � C(1)∞ ⊗K̆ ρ ,

which is checked to be K∗-equivariant with respect to the C(1)∞ -linear extension of the action
of K∗ on ρ and DDr(ρ), respectively. �

The compatibility with traces in Proposition 4.6 extends to a more general situation. For
this, let g ∈ G(h) be regular elliptic, i.e. assume its minimal polynomial µg (t) ∈ K[t] to be
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irreducible and separable of degree h. Denote by L := K[g] � K[t]/(µg (t)) the subfield of
Mh(K) generated by g . Let C denote the completion of an algebraic closure of K . The fixed
points xi of g in Ph−1

K (C) correspond bijectively to the eigenspaces of g in Ch, hence to the
h distinct roots α1, . . . , αh of µg in C. We have κ(xi) � K[αi] � L for all indices i, and all

points xi are contained in Ω(h)
K (C).

Note also that there is a K-linear isomorphism of fields τ : C → C with τ (αi) = αj for
any two indices i and j . Since g is K-linear we have τ (xi) = xj . Thus, all points x1, . . . , xh

are conjugate overK and have the same underlying image in Ω(h)
K .

Now let M be a G(h)-equivariant vector bundle of finite rank on X (h)
0 � Ω

(h)
K ×K K̆ .

For any point x ∈ X (h)
0 (C) the reduction M ⊗ κ(x) of M at x is a finite dimensional κ(x)-

linear representation of the stabilizer subgroup G(h)x of G(h) at x. If g ∈ G
(h)
x we denote by

trM⊗κ(x)(g) ∈ κ(x) the trace of g on M ⊗ κ(x).
Recall that there is a bijection between the set of conjugacy classes of regular elliptic el-

ements inG(h) and the set of conjugacy classes of certain elements inH(h). It is characterized
by the identity of the corresponding minimal polynomials overK .

THEOREM 4.7. Let h ≥ 1 be an integer, let g ∈ G(h) be regular elliptic and let
δ ∈ H(h) be a representative of the conjugacy class corresponding to the conjugacy class of
g in G(h). If ρ is a finite dimensional smooth representation of H(h) over K̆ then

(27) trDDr(ρ)⊗κ(x)(g) = trρ(δ)

for any fixed point x ∈ X (h)
0 (C) of g .

PROOF. Choose a representative δ ∈ D of the conjugacy class corresponding to g and
consider the subfield L := K[δ] of D. Since L is of dimension h over K we shall construct
in Section 5 an embedding L ↪→ Mh(K) and an L∗-equivariant morphism iL|K : X (1)

em,L →
X (h)
m,K for any integer m ≥ 0. Here e = eL|K denotes the ramification index of L over K .

For m = 0, the morphism iL|K defines a fixed point x ′ of the image g ′ of δ in G(h) under the
embedding L∗ ↪→ G(h).

According to the base change property exhibited in Theorem 5.3, there is an
L∗-equivariant isomorphism

(DDr(ρ)⊗ κ(x ′))⊗κ(x ′) L̆ � DDr(resH
(h)

L∗ (L̆⊗K̆ ρ)) .

Thus, Proposition 4.6 implies that

(28) trDDr(ρ)⊗κ(x ′)(g ′) = trρ(δ) .

According to the theorem of Skolem-Noether (cf. [2, VIII.10.1 Théorème 1]) there is an
element γ ∈ G(h) such that γ g ′γ−1 = g . Setting x := γ · x ′, the element γ induces an
isomorphism of fields γ : κ(x) → κ(x ′) and a K̆-linear bijection

DDr(ρ)⊗ κ(x) → DDr(ρ)⊗ κ(x ′) ,
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compatible with γ . Thus, x is a fixed point of g and γ (trDDr(ρ)⊗κ(x)(g)) = trDDr(ρ)⊗κ(x ′)(g ′).
It follows from (28) and the fact that trρ(δ) lies in K̆ that

trDDr(ρ)⊗κ(x)(g) = trρ(δ) .

The element γ induces a bijection between the fixed points of g ′ and those of g . By the
arguments just given we may assume g = g ′ and x = x ′.

Let x ′′ ∈ X (h)
0 (C) be a second fixed point of g . According to our preliminary remarks

the points x and x ′′ are conjugate overK . Thus, there is a K-linear isomorphism τ : K̆ → K̆

of fields such that x ′′ is the image of the L∗-equivariant morphism

X (1),(τ )
0,L

i(τ )L|K �� X (h),(τ )
0,K

�� X (h)
0,K

of K̆-varieties. Here Z(τ) := Z ×K̆ K̆
(τ ) denotes the base extension along τ for any rigid K̆-

variety Z, and Z(τ) → Z is the natural projection. Denote by τ̃ : κ(x ′′) → L̆(τ ) the induced
homomorphism of fields over K̆. Using the embedding τ : K̆ → K̆ → L̆ in the construction
of the morphism iL|K of Section 5, we obtain precisely the morphism i(τ )L|K . Therefore,

(DDr(ρ)⊗ κ(x ′′))⊗κ(x ′′) L̆
(τ ) � DDr(resH

(h)

L∗ (L̆(τ ) ⊗K̆ ρ))

and τ̃ (trDDr(ρ)⊗κ(x ′′)(g)) = τ (trρ(δ)), as above. Since the restriction of τ̃ to the subfield K̆ of
κ(x ′′) coincides with τ , the latter equation implies that trDDr(ρ)⊗κ(x ′′)(g) = trρ(δ). �

REMARK 4.8. The space of global sections of a G(h)-equivariant vector bundle M
of finite rank on X (h)

0 is a K̆-Fréchet space with an action of G(h) by continuous K̆-linear
automorphisms. This construction gives rise to many interesting examples of locally analytic
representations in the sense of [39, Section 3] (cf. [38] and [33]).

A first attempt to define the trace of a locally analytic representation, at least in special
cases, was made by Diepholz in [13]. It is not clear if it covers our situation. If g ∈ G(h) is a
regular elliptic element one might alternatively choose an embedding κ(x)→ C for any fixed
point x ∈ X (h)

0 (C) of g . Assuming the integer h to be prime to the characteristic of K we set

trM(g) := 1

h

∑
x∈X (h)

0 (C)

g·x=x

trM⊗κ(x)(g) ∈ C ,

and call trM(g) the trace of g on M. With this convention Theorem 4.7 implies the more
suggestive formula

trDDr(ρ)(g) = trρ(δ)

for any finite dimensional smooth representation ρ of H(h) over K̆ .
This compatibility with traces raises the question of how the restriction of the equivalence

in Theorem 4.4 to finite dimensional smooth representations of H(h) over K̆ is related to the
Jacquet-Langlands correspondence.

If ρ is a finite dimensional smooth representation of H(h) over K̆ , the naive approach of
considering the subspace ofG(h)-smooth vectors in DDr(ρ) or in its continuous K̆-linear dual
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does not yield anything useful. If for example ρ = K̆ is the trivial representation of H(h),
then O(DDr(K̆)) = O(X (h)

0 ) = A
(h)
0 , by Theorem 4.3. It follows from Lemma 2.9 that the

subspace of G(h)-smooth vectors of the latter is just K̆, i.e. the trivial representation of G(h).
On the other hand, the bundles DDr(ρ) carry an additional piece of structure. Namely,

they come equipped with a G(h)-equivariant integrable connection. The corresponding de
Rham complex is simply the ρ-isotypic component of the de Rham complex of OX (h)

m
for

m sufficiently large. It is tempting to wonder about the connection between the smooth
G(h)-representation associated to ρ via the Jacquet-Langlands correspondence and the de
Rham cohomology of DDr(ρ). For example, the smooth G(h)-representation corresponding
to the trivial representation ρ = K̆ is the Steinberg representation. According to a theo-
rem of Schneider and Stuhler, the latter also coincides with the continuous K̆-linear dual of
Hh−1

dR (X (h)
0 ,OX (h)

0
) = Hh−1

dR (X (h)
0 ,DDr(K̆)) (cf. [37, §3 Theorem 1 and §4 Lemma 1]).

5. Functoriality. Let L be a field extension ofK which is of finite degree, and denote
by n := [L : K], e = eL|K and f = fL|K its degree, its ramification index and its residue class
degree, respectively. All objects of the previous sections will be marked with an additional
index L or K , according to which base field they refer to.

Fix an embedding K̆ ⊆ L̆ over K and consider the induced embedding ŏK ⊆ ŏL. Since
the residue class fields of ŏK and ŏL coincide, restriction of scalars defines an embedding
resL|K : CL → CK . If h ≥ 1 and m ≥ 0 are integers then the restriction Y

(h)
m,K ◦ resL|K of

the set valued functor Y
(h)
m,K to the subcategory CL of CK is represented by the formal scheme

Spf(R(h)m,K⊗̂ŏK ŏL) = Y
(h)
m,K ×ŏK ŏL.

Fix an integer h ≥ 1. Via restriction of scalars, the one dimensional formal oL-module
H(h)
L of height h over ks is a one dimensional formal oK -module of height nh. In particular,

there is an isomorphism H(h)
L � H(nh)

K (cf. [14, Proposition 1.7]), giving rise to an embedding
of rings

(29) o
D
(h)
L

� EndoL(H
(h)
L ) ⊆ EndoK (H

(h)
L ) � EndoK (H

(nh)
K ) � o

D
(nh)
K

.

For any integerm ≥ 0 we define a natural transformation

(30) rL|K : Y
(h)
em,L → Y

(nh)
m,K ◦ resL|K

of set valued functors on CL as follows.
Given an object R = (R,mR) of CL and an isomorphism class in Y

(h)
em,L(R), represented

by a triple (H, ρ, ϕ), define its image under rL|K(R) to be the isomorphism class in Y
(nh)
m,K(R)

represented by the triple (H ′, ρ′, ϕ′) where H ′ is obtained from H via restriction of scalars.
Further, ρ′ is the composition of ρ with the fixed isomorphism H(h)

L � H(nh)
K . Finally, choos-

ing an oK -linear isomorphism oL � onK , we obtain an oK -linear isomorphism

(π−em
L oL/oL)

h = (π−m
K oL/oL)

h ∼→ (π−m
K oK/oK)

nh

and define ϕ′ to be the composition of its inverse with ϕ.
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The identification oL � onK defines an embedding

(31) G
(h)
0,L ↪→ G

(nh)
0,K .

Letting G(h)0,L and H(h)
0,L act on Y

(nh)
m,K ◦ resL|K via restriction along the embeddings (29) and

(31), the transformation rL|K becomesG(h)0,L ×H
(h)
0,L-equivariant.

Since the functors Y
(h)
em,L and Y

(nh)
m,K ◦ resL|K are representable, the transformation rL|K

corresponds to the homomorphism r*
L|K : R(nh)m,K ⊗ŏK ŏL → R

(h)
em,L which is the image of the

identity on R(h)em,L under rL|K(R(h)em,L). By abuse of notation we also write rL|K and r*
L|K for the

inducedG(h)0,L ×H
(h)
0,L-equivariant morphisms

rL|K : Y (h)em,L → Y (nh)m,K ×K̆ L̆ and r*
L|K : B(nh)m,K ⊗K̆ L̆ → B

(h)
em,L

of the associated rigid L̆-spaces and their rings of global sections, respectively.

PROPOSITION 5.1. Let L|K be a field extension of finite degree n and ramification
index e, and let h ≥ 1 be an integer.

(i) If m and m′ are integers with m′ ≥ m ≥ 0 then the diagram

Y(h)
em′,L

rL|K ��

��

Y(nh)
m′,K ×

K̆ L̆

��
Y (h)em,L

rL|K �� Y(nh)m,K ×K̆ L̆

is commutative.
(ii) If m ≥ 0 is an integer then the diagram

Y(h)em,L
rL|K ��

��

Y (nh)m,K ×K̆ L̆
�� Y(nh)m,K

��
Sp(L̆em) �� Sp(K̆m)

is commutative and G(h)0,L ×H
(h)
0,L-equivariant. The actions of G(h)0,L and H(h)

0,L on Sp(K̆m) are

given by det−1
L : G(h)0,L → o×

L and NrdL : H(h)
0,L → o×

L , respectively, composed with the
homomorphism

o×
L

NL|K→ o×
K → (oK/π

m
KoK)

× � Gal(K̆m|K̆) .
PROOF. Assertion (i) is obvious. As for (ii), the upper row is G(h)0,L ×H

(h)
0,L-equivariant

by construction, and so are the vertical arrows with respect to the action exhibited in Theorem
1.4. In particular, r*

L|K restricts to an equivariant homomorphism

K̆m = (B
(nh)
m,K)

H
(nh)
m,K ⊆ (B

(nh)
m,K)

H
(h)
em,L → (B

(h)
em,L)

H
(h)
em,L = L̆em ,
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giving the bottom row of the diagram. According to Theorem 1.4, the last assertion in (ii)
follows from the fact that the restrictions of detK : G(nh)0,K → o×

K and NrdK : H(nh)
0,K →

o×
K to G(h)0,L and H(h)

0,L coincide with NL|K ◦ detL and NL|K ◦ NrdL, respectively. For the

determinant this is well-known (cf. [1, III.9.4 Proposition 6]). Given α ∈ H
(h)
0,L, choose a

maximal commutative subfield L′ of D(h)L containing α. It is of dimension h over L, so that

its image in D(nh)K is a maximal commutative subfield containingK and α. We have

NrdK(α) = NL′|K(α) = NL|K ◦ NL′|L(α) = NL|K ◦ NrdL(α) . �

Note that the embeddings H(h)
0,L ↪→ H

(nh)
0,K and G(h)0,L ↪→ G

(nh)
0,K extend to embeddings

H
(h)
L ↪→ H

(nh)
K andG(h)L ↪→ G

(nh)
K . Without giving the details, we remark that the morphisms

rL|K extend to G(h)L ×H
(h)
L -equivariant morphisms

rL|K : Y(h)em,L → Y(nh)m,K ×K̆ L̆

of the corresponding Rapoport-Zink spaces. These give rise to a continuous G(h)L × H
(h)
L -

equivariant homomorphism r*
L|K : B(nh)∞,K → B(h)∞,L of topological K̆-algebras, as well as to an

H
(h)
L -equivariant morphism

rL|K : Ph−1
L̆

→ Pnh−1
K̆

×K̆ L̆ .

As for the Drinfeld tower, given a field extensionL|K of finite degree n, an integer h ≥ 1
and starting from a K-linear embedding D(h)L ↪→ D

(nh)
K , Drinfeld constructed in [15, §3], a

closed embedding

(32) iL|K : X
(h)
0,L → X

(nh)
0,K ×ŏK ŏL .

Its construction relies on the fact that o
D
(nh)
K

⊗o
D
(h)
L

G(h)L is a special formal o
D
(nh)
K

-module

of height (nh)2 over ks , hence is isomorphic to G(nh)K (cf. [15, §2.1]). Any such isomorphism
induces an embedding

(33) Mh(L) � Endo
D
(h)
L

(G(h)L )⊗oL L ↪→ Endo
D
(nh)
K

(G(nh)K )⊗oK K � Mnh(K)

of K-algebras, giving rise to an embedding of the subgroup of G(h)L consisting of elements

with determinant in o×
L into the subgroup of G(nh)K consisting of elements with determinant

in o×
K . It follows from its functorial construction that the morphism iL|K is G(h)0,L × H

(h)
0,L-

equivariant.
We denote by iL|K : X (h)

0,L → X (nh)
0,K ×K̆ L̆ the induced morphism of rigid analytic L̆-

varieties. According to [15, §3] it induces closed equivariant embeddings iL|K : X (h)
em,L →

X (nh)
m,K for any integerm ≥ 0, where e = eL|K denotes the ramification index of the extension

L|K . We denote by i*L|K : A(h)em,L → A
(nh)
m,K the induced continuous equivariant homomor-

phisms of K̆-Fréchet algebras.
Proposition 5.1 has an exact analog in this situation which we refrain from repeating.
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Again, the morphims iL|K extend toG(h)L ×H(h)
L -equivariant morphisms iL|K : X (h)

em,L →
X (nh)
m,K ×K̆ L̆ between the corresponding Rapoport-Zink spaces and give rise to a continuous

G
(h)
L ×H

(h)
L -equivariant homomorphism

i*L|K : A(nh)∞,K → A(h)∞,L

of topological K̆-algebras. We also denote by iL|K the inducedG(h)L -equivariant morphism

iL|K : X (h)
0,L � X (h)

0,L/H
(h)
L → X (nh)

0,K � X (nh)
0,K /H

(nh)
K .

We shall now study the behavior of Lubin-Tate and Drinfeld bundles under pull back
along iL|K and rL|K, respectively. If Γ is a locally profinite group and if Γ ′ is a closed subgroup
then we denote by res = resΓ

Γ ′ : Rep∞
K̆
(Γ ) → Rep∞

K̆
(Γ ′) the restriction functor.

THEOREM 5.2. Let L|K be a field extension of finite degree n, and let h ≥ 1 be an
integer. The two diagrams

Rep∞
K̆
(G

(nh)
0,K )

M ��

res ◦(L̆⊗
K̆
( · ))

��

BX (nh)
0,K
(G

(nh)
0,K )

i*L|K
��

Rep∞
L̆
(G

(h)
0,L)

M �� BX (h)
0,L
(G

(h)
0,L)

and

Rep∞
K̆
(H

(nh)
0,K )

N ��

res ◦(L̆⊗
K̆
( · ))

��

BY(nh)0,K
(H

(nh)
0,K )

r*
L|K

��

Rep∞
L̆
(H

(h)
0,L)

N �� BY(h)0,L
(H

(h)
0,L)

are commutative. In particular, i*L|K(M(V )) and r*
L|K(N (W)) are Lubin-Tate and Drinfeld

bundles on X (h)
0,L and Y(h)0,L whenever V and W are finite dimensional smooth representations

of H(nh)
0,K andG(nh)0,K over K̆ , respectively. In this case there are natural isomorphisms

DLT(i*L|K(M(V )))� r*
L|K(DLT(M(V ))) and(34)

DDr(r*
L|K(N (W)))� i*L|K(DDr(N (W)))(35)

in BY(h)0,L
(H

(h)
0,L) and BX (h)

0,L
(G

(h)
0,L), respectively.

PROOF. The commutativity of the two diagrams is clear, so that the second assertion
is a consequence of Theorem 3.8. In the proof of the latter we saw that there is a natural
H
(nh)
0,K -equivariant isomorphism

(36) DLT(M(V )) = (C
(nh)
m,K ⊗K̆ V )

G
(nh)
0,K � (B

(nh)
m,K ⊗K̆ V )

G
(nh)
0,K
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for any object V of Rep∞
K̆
(G

(nh)
0,K ) if the integer m is chosen so that G(nh)m,K acts trivially on V .

Further, the natural map

B
(nh)
m,K ⊗

B
(nh)
0,K

(B
(nh)
m,K ⊗K̆ V )

G
(nh)
0,K → B

(nh)
m,K ⊗K̆ V

is a G(nh)0,K -equivariant isomorphism. Since the B(nh)0,K -module DLT(M(V )) is projective, pas-

sage to G(h)0,L-invariants gives

(B
(nh)
m,K ⊗K̆ V )

G
(h)
0,L � (B

(nh)
m,K)

G
(h)
0,L ⊗

B
(nh)
0,K

(B
(nh)
m,K ⊗K̆ V )

G
(nh)
0,K .

Tensoring with B(nh)m,K over (B(nh)m,K)
G
(h)
0,L shows that the natural G(h)0,L-equivariant homo-

morphism

B
(nh)
m,K ⊗

(B
(nh)
m,K )

G
(h)
0,L
(B

(nh)
m,K ⊗

K̆
V )

G
(h)
0,L → B

(nh)
m,K ⊗

K̆
V

is bijective.

Note that (B(nh)m,K)
G
(h)
0,L is the ring of global sections of Y(nh)m,K /G

(h)
0,L. Since the covering

Y (nh)m,K → Y (nh)0,K is finite étale and Galois, so is the covering Y (nh)m,K → Y(nh)m,K /G
(h)
0,L. In partic-

ular, the homomorphism (B
(nh)
m,K)

G
(h)
0,L → B

(nh)
m,K is faithfully flat (cf. Theorem 1.2 and Proposi-

tion A.5). It follows that the (B(nh)m,K)
G
(h)
0,L -module (B(nh)m,K ⊗K̆ V )

G
(h)
0,L is projective. Thus, there

are H(h)
0,L-equivariant isomorphisms

(37) (B
(h)
em,L ⊗

K̆
V )

G
(h)
0,L � B

(h)
0,L ⊗

B
(nh)
0,K

(B
(nh)
m,K ⊗

K̆
V )

G
(nh)
0,K .

In particular, i*L|K(M(V )) is trivialized by B(h)em,L. Combining the above with the natural
isomorphisms

DLT(i
*
L|K(M(V ))) � (B

(h)
em,L ⊗K̆ V )

G
(h)
0,L

and (36), this proves (34). The functoriality assertion in (35) can be proved analogously. �

For vector bundles coming from smooth representations, the functoriality properties of
Theorem 5.2 extend to the equivalence in Theorem 4.4 involving the full groups G(nh)K and

H
(nh)
K .

THEOREM 5.3. Let L|K be a field extension of finite degree n and let h ≥ 1 be an in-
teger. If ρ is an object of Rep∞

K̆
(H

(nh)
K ) then the G(h)L -equivariant vector bundle i*L|K(DDr(ρ))

on X (h)
0,L is Lubin-Tate. In fact, there is a naturalG(h)L -equivariant isomorphism

(38) i*L|K(DDr(ρ)) � DDr(res
H
(nh)
K

H
(h)
L

(L̆⊗K̆ ρ)) .

PROOF. As in the proof of Theorem 3.8 we see that there is an integer m ≥ 0 and
G
(nh)
0,K -equivariant isomorphisms

DDr(ρ) � (A(nh)m,K ⊗K̆ ρ)
H
(nh)
K � (A

(nh)
m,K ⊗K̆ ρ)

H
(nh)
0,K .
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Thus, we may argue as before. �

A. Results from rigid geometry. We will prove several results from rigid geometry
for which we could not find suitable references. Throughout the appendix, let F be a field
which is complete with respect to a nontrivial nonarchimedean valuation.

LEMMA A.1. If Z is a normal connected rigid analytic F -variety then the ring of
global sections of Z is an integrally closed integral domain.

PROOF. It follows from [10, Lemma 2.1.4], that S := O(Z) is an integral domain.
Further, Z admits an affinoid covering (Zi)i∈I such that all affinoid spaces Zi are normal
and connected. By [10, Lemma 2.1.4] and [3, V.1.5 Corollaire 3], each of the rings Si :=
O(Zi) is an integrally closed integral domain. The sheaf axioms imply that also S is integrally
closed. �

Let Z be a rigid analytic F -variety. We call vector bundle of finite rank on Z a coherent
locally free OZ-module M such that

(39) sup
z∈Z

{rkOZ,z
Mz} < ∞ .

If Z has only finitely many connected components then the global finiteness condition (39) is
satisfied by any coherent locally free OZ-module.

PROPOSITION A.2. Let Z be a quasi-Stein rigid analytic F -variety such that
supz∈Z{dim(OZ,z)} < ∞. The global section functor is an equivalence between the cate-
gory of vector bundles of finite rank on Z and the category of finitely generated projective
O(Z)-modules.

PROOF. Let (Zi)i∈N be an affinoid covering exhibiting Z as a quasi-Stein space. It
follows from Theorem B (cf. [29, Satz 2.4]) that the assignment M �→ M̃, with M̃(Zi) :=
O(Zi) ⊗O(Z) M , is quasi-inverse to the global section functor, considered on the larger cat-
egory of coherent module sheaves on Z. A proof of this fact in the more general setting of
possibly noncommutative analogs of O(Z) can be found in [40, Section 3]. Any finitely gen-
erated projective O(Z)-moduleM is finitely presented and hence is contained in the essential
image of the global section functor (cf. [40, Corollary 3.4]). Evidently, the sheaf M̃ is locally
free of finite rank.

Conversely, if M is a vector bundle of finite rank then M(Z) is a finitely generated
projective O(Z)-module. Indeed, by [3, VIII.1.3 Proposition 8] and our assumption, there is
an index i0 such that dim(O(Zi)) = dim(O(Zi0)) for all indices i ≥ i0. The claim can now be
proved along the lines of [25, p. 84], proof of Théorème 1. It is here that we need the global
bound (39). �

Let Z be a rigid analytic F -variety endowed with the left action of a group Γ . Recall
that an OZ-module M is called left Γ -equivariant if there is a family of isomorphisms cγ :
(γ−1)∗(M) → M, γ ∈ Γ , satisfying the relations c1 = idM and cγ2 ◦ (γ−1

2 )∗(cγ1) = cγ2γ1

for any two elements γ1, γ2 ∈ Γ .
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By spelling out the definition of an equivariant sheaf, the following corollary is an im-
mediate consequence of Proposition A.2.

COROLLARY A.3. Let Z be a quasi-Stein rigid analytic F -variety endowed with the
action of a group Γ . Assuming supz∈Z{dim(OZ,z)} < ∞, the global section functor is an
equivalence between the category of Γ -equivariant vector bundles of finite rank on Z and the
category of finitely generated projective O(Z)-modules carrying a semilinear action of Γ .

By reducing to a local situation, the following theorem can be proved using general facts
on étale Galois descent for schemes (cf. [7, Example 6.2.B]).

THEOREM A.4. If f : Z → Z′ is a finite étale Galois morphism of rigid analytic
F -varieties, and if Γ denotes the corresponding Galois group, then the inverse image functor
f ∗ is an equivalence between the category of coherent OZ′-modules and the category of
Γ -equivariant coherent OZ-modules. A quasi-inverse is given by the functor sending a Γ -
equivariant coherent OZ-module M to f∗(M)Γ . Locally free sheaves correspond to locally
free sheaves of the same rank.

PROPOSITION A.5. Let f : Z → Z′ be a finite flat morphism of quasi-Stein rigid
analytic F -varieties and set R := O(Z) and S := O(Z′). Assuming Z to have only finitely
many connected components and supz′∈Z′{dim(OZ′,z′)} < ∞, the S-module R is finitely
generated and projective. If, moreover, Z is non-empty, and if Z′ is normal and connected,
then R is faithfully flat over S.

PROOF. If Z has only finitely many connected components then the OZ′ -module f∗OZ

is locally free of finite rank in the strong sense of (39). Thus, under the assumptions on Z′, R
is a finitely generated projective S-module according to Proposition A.2.

It follows from Lemma A.1 that S is an integral domain. If Z is non-empty then R is
nonzero, and the flat homomorphism S → R is injective. Since it is also finite, it follows
from [3, II.2.5 Corollaire 4 and V.2.1 Théorème 1], that R is faithfully flat over S. �

PROPOSITION A.6. Let f : Z → Z′ be a finite flat morphism of rigid analytic F -
varieties. If Z is non-empty and if Z′ is connected then f is surjective.

PROOF. The image of f is a Zariski closed subset of Z′ by [6, 9.6.3 Proposition 3]. If
U ⊆ Z′ is an affinoid subdomain then the restriction of f to f −1(U) is a finite flat morphism
of affinoid spaces. According to [32, Theorem I.2.12], the subset f (f−1(U)) of U is Zariski
open. It follows that f (Z) is Zariski open in Z′. Since the image of f is non-empty the
connectedness of Z′ implies that f (Z) = Z′. �
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