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Abstract. We study the fluid flow at the interface between elastic solids with randomly rough surfaces. We
derive (approximate) analytical expressions for the fluid flow factors which enter in the equation describing
the fluid flow, and for the frictional shear stress factors which enter in the equation for the frictional shear
stress. Numerical results for a rubber cylinder with surface roughness sliding on a flat lubricated substrate,
under “low” and “high” pressure conditions, are presented and discussed. Finally we discuss the role of
the fluid-induced elastic deformations of the surface roughness profile.

1 Introduction

The influence of surface roughness on fluid flow at the in-
terface between solids in stationary or sliding contact is a
topic of great importance both in nature and technology.
Technological applications includes leakage of seals, mixed
lubrication, and removal of water from the tire-road foot-
print. In nature fluid removal (squeeze-out) is important
for adhesion and grip between the tree frog or Gecko adhe-
sive toe pads and the countersurface during raining, and
for cell adhesion.

Almost all surfaces in nature and most surfaces of
interest in tribology have roughness on many different
length scales, sometimes extending from atomic distances
(∼ 1 nm) to the macroscopic size of the system which
could be of order ∼ 1 cm. Often the roughness is fractal-
like so that when a small region is magnified (in general
with different magnification in the parallel and orthogonal
directions) it “looks the same” as the unmagnified surface.

Most objects produced in engineering have some par-
ticular macroscopic shape characterized by a radius of
curvature (which may vary over the surface of the solid)
e.g., the radius R of a cylinder in a combustion engine.
In this case the surface may appear perfectly smooth to
the naked eye but at short enough length scale, in gen-
eral much smaller than R, the surface will exhibit strong
irregularities (surface roughness). The surface roughness
power spectrum C(q) of such a surface will exhibit a roll-
off wavelength λ0 ≪ R (related to the roll-off wave vec-
tor q0 = 2π/λ0) and will appear smooth (except for the
macroscopic curvature R) on length scales much larger
than λ0. In this case, when studying the fluid flow be-
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tween two macroscopic solids, one may homogenize the
microscopic fluid dynamics occurring at the interface, re-
sulting in effective fluid flow equations describing the av-
erage fluid flow on length scales much larger than λ0, and
which can be used to study, e.g., the lubrication of the
cylinder in an engine. This approach of eliminating or in-
tegrating out short length scale degrees of freedom to ob-
tain effective equations of motion which describes the long
distance (or slow) behavior is a very general and powerful
concept often used in physics.

In the context of fluid flow at the interface between
closely spaced solids with surface roughness, Patir and
Cheng [1, 2] have shown how the Navier-Stokes equations
of fluid dynamics can be reduced to effective equations
of motion involving locally averaged fluid pressure and
flow velocities. In the effective lubrication equation the so
called flow factors occur, which are functions of the lo-
cally averaged interfacial separation ū. They showed how
the flow factors can be determined by solving numerically
the fluid flow in small rectangular units with linear size of
order of (or larger than) the roll-off wavelength λ0 intro-
duced above, and by averaging over several realizations.
However, with the present speed (and memory) computa-
tional limits fully converged solutions using this approach
can only take into account roughness over two or at most
three decades in length scale. In addition, Patir and Cheng
did not include the long-range elastic deformations of the
solid walls in the analysis. Later studies have somehow
attempted to include elastic deformation using the con-
tact mechanics model of Greenwood-Williamson (GW) [3],
but it is now known that this theory (and other asperity
contact models [4]) does not correctly describe contact
mechanics because of the neglect of the long-range elas-
tic coupling between the asperity contact regions [5, 6].
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In particular, the relation between the average interfa-
cial separation ū and the squeezing pressure p, which is
very important for the fluid flow problem, is incorrectly
described by the GW model [7–9].

Patir and Cheng’s research activity was followed by
many other studies on how to eliminate or integrate out
the surface roughness in fluid flow problems (see, e.g.,
refs. [10–12]). Most of these theories involves solving nu-
merically for the fluid flow in rectangular interfacial units
and, just as in the Patir and Cheng approach, cannot in-
clude roughness on more than ∼ 2 decades in length scale.
In addition, in some of the studies the measured rough-
ness topography must be “processed” in a non-trivial way
in order to obey periodic boundary conditions (which is
necessary for the Fast Fourier Transform method used in
some of these studies).

Tripp [13] has presented an analytical derivation of the
flow factors for the case where the separation between the
surfaces is so large that no direct solid-solid contact oc-
curs. He obtained the flow factors to first order in 〈h2〉/ū2,
where 〈h2〉 is the ensemble average of the square of the
roughness amplitude and ū the average surface separa-
tion. The result of Tripp has recently been generalized to
include elastic deformations of the solids [14,16].

Many surfaces of practical importance have roughness
with isotropic statistical properties, e.g., sandblasted sur-
faces or surfaces coated with particles typically bound by
a resin to an otherwise flat surface, e.g., sandpaper sur-
faces. However some surfaces of engineering interest have
surface roughness with anisotropic statistical properties,
e.g., surfaces which have been polished or grinded in one
direction. The theories of Patir and Chen [1, 2] and of
Tripp [13] can be applied also to surfaces with anisotropic
statistical properties. The surface anisotropy is often char-
acterized by a single number, the so-called Peklenik num-
ber γ, which is the ratio between the decay length ξx and

ξy of the height-height correlation function 〈h(x, y)h(0, 0)〉
along the x- and y-directions, respectively, i.e. γ = ξx/ξy.
Here it has been assumed that the x-axis is oriented along
one of the principal direction of the anisotropic surface
roughness.

In this paper we present a new approach to calculate
the fluid flow at the interface between two elastic solids
with randomly rough surfaces. We derive analytical ex-
pressions for the fluid pressure and shear flow factors, φp

and φs, which enter in the basic equation of fluid flow at
interfaces, and the frictional shear stress factors φf , φfs

and φfp, which enter in the expression for the frictional
shear stress. We also discuss how lubricant shear thinning
can be included in the analysis.

2 Fluid flow between solids with random

surface roughness

Consider two elastic solids with randomly rough surfaces.
Even if the solids are squeezed in contact, because of the
surface roughness there will in general be non-contact re-
gions at the interface and, if the squeezing force is not

Fig. 1. An elastic solid (block) with a rough surface in contact
with a rigid solid (substrate) with a flat surface. The substrate
moves with the velocity v0 while the block is stationary.

too large, there will exist non-contact channels from one
side to the other side of the nominal contact region. We
consider now fluid flow at the interface between the solids.
We assume that the fluid is Newtonian and that the fluid
velocity field v(x, t) satisfies the Navier-Stokes equation

∂v

∂t
+ v · ∇v = −1

ρ
∇p + ν∇2v,

where ν = η/ρ is the kinetic viscosity and ρ the mass den-
sity. For simplicity we will also assume an incompressible
fluid so that

∇ · v = 0.

We assume that the non-linear term v · ∇v can be ne-
glected (which corresponds to small inertia and small
Reynolds number), which is usually the case in fluid flow
between narrowly spaced solid walls. For simplicity we as-
sume the lower solid to be rigid with a flat surface, while
the upper solid is elastic with a rough surface. We intro-
duce a coordinate system xyz with the xy-plane on the
surface of the lower solid and the z-axis pointing towards
the upper solid, see fig. 1. The lower solid moves with the
velocity v0 parallel to the upper (stationary) solid. Let
u(x, y, t) be the separation between the solid walls and
assume that the slope |∇u| ≪ 1. We also assume that
u/L ≪ 1, where L is the linear size of the nominal con-
tact region. In this case one expects that the fluid velocity
varies slowly with the coordinates x and y as compared
to the variation in the orthogonal direction z. Assuming
also a slow time dependence, the Navier Stokes equations
reduces to

η
∂2v

∂z2
= ∇p.

Here and in what follows v = (vx, vy), x = (x, y) and ∇ =
(∂x, ∂y) are two-dimensional vectors. Note that vz ≈ 0 and
that p(x) is independent of z to a good approximation.
The solution to the equations above can be written as

v =
1

2η
z(z − u(x))∇p +

(

1 − z

u(x)

)

v0, (1)

so that v = v0 on the solid wall z = 0 and v = 0 for
z = u(x). Integrating over z (from z = 0 to z = u(x))
gives the fluid flow vector

J = −u3(x)

12η
∇p +

1

2
u(x)v0. (2)
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Fig. 2. The black area is the contact between two elastic
solids with randomly rough surfaces as obtained using molec-
ular dynamics. For surfaces which have fractal-like roughness
the whole way down to the atomic length scale, the contact at
the highest magnification (atomic resolution) typically consists
of nanometer-sized atomic clusters. Adapted from ref. [17].

Mass conservation demands that

∂u(x, t)

∂t
+ ∇ · J = 0, (3)

where the interfacial separation u(x, t) is the volume of
fluid per unit area. In this last equation we have allowed
for a slow time dependence of u(x, t) as would be the case,
e.g., during fluid squeeze-out from the interfacial region
between two solids. If an elastic body with a rough sur-
face is sliding at a constant velocity on a rigid flat surface
in a fluid, then u(x, t) will (in the reference frame of the
moving body) be time independent, and the time deriva-
tive in (3) will vanish. However, if both bodies have sur-
face roughness u(x, t) may vary rapidly with time. How-
ever, the ensemble average of u(x, t), which is the quantity
which enters in the effective equations below, may still be
time independent. In this case the effective (or homoge-
nized) mass conservation equation reads ∇ · J̄ = 0, where
J̄ = 〈J〉 denote ensemble averaging.

3 Roughness on many length scales: effective

equations of fluid flow and fluid flow factors

The fluid flow at the interface between contacting solids
is a very complex problem, in particular at high squeezing
pressures where a network of flow channels with rapidly
varying width and height may prevail at the interface.
This is illustrated in fig. 2 which shows the contact area
(black) between two elastic solids with randomly rough
surfaces. At pressure higher than that used in the figure,

the contact area (black) may percolate which will have a
drastic influence on the interfacial fluid flow properties.

Equations (2) and (3) describe the fluid flow at the
interface between contacting solids with rough surfaces.
One way to integrate out the surface roughness is by using
the Renormalization Group (RG) procedure. In this proce-
dure one eliminates or integrates out the surface roughness
components in steps and obtains a set of RG flow equa-
tions describing how the effective fluid equation evolves
as more and more of the surface roughness components
are eliminated. One can show that after eliminating all
the surface roughness components, the fluid current (given
by (2)) takes the form

J̄ = A(ū)∇p̄ + B(ū)v0, (4)

where A and B are 2 × 2 matrices, and where ū(x, t) and
p̄(x, t) now are locally averaged quantities. In general, A
and B depend also on ∇p̄ (see ref. [15] and below).

Equation (4) is usually written as

J̄ = − ū3φp(ū)

12η0
∇p̄ +

1

2
ūv0 +

1

2
hrmsφs(ū)v0, (5)

where the pressure flow factor φp and the shear flow factor
φs in general (for anisotropic surface roughness) are 2× 2
matrices.

Let us define the 2×2 matrix (we use polar coordinates
so that the wave vector q = q(cos φ, sin φ)) [14]

D(q) =

∫

dφ C(q)qq/q2

∫

dφ C(q)
, (6)

with the surface roughness power spectrum [18]

C(q) =
1

(2π)2

∫

d2x 〈h(x)h(0)〉e−iq·x, (7)

where 〈. . .〉 stands for ensemble average, and where h(x) is
the height profile. For roughness with isotropic statistical
properties, C(q) will only depend on q = |q| and in this
case D(q) will be diagonal with D11 = D22 = 1/2.

We will assume most of the time that D(q) is indepen-
dent of q and in this case (6) is equivalent to

D =

∫

d2q C(q)qq/q2

∫

d2q C(q)
. (8)

In this case, in the coordinate system where D is diagonal
the matrices φp and φs will be diagonal too. Note that
Tr D = D11+D22 = 1, and in the coordinate system where
D is diagonal we can write D11 = 1/(1 + γ) and D22 =
γ/(1 + γ), where γ = ξx/ξy is the Peklenik number. Note
that D11(1/γ) = D22(γ). If D(q) (see (6)) depends on q,
we may still define (in the coordinate system where D(q) is
diagonal) γ = −1+1/D11 as before, but the xy-coordinate
system where D(q) is diagonal may depend on q (in which
case the rotation angle, ψ(q), of the x-axis relative to some
fix axis, is important information too; see ref. [14]). In this
case γ will depend on q and we will refer to γ(q) as the
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Fig. 3. Effective medium theories take into account random
disorder in a physical system, e.g., random fluctuations in the
interfacial separation u(x). Thus, for a n-component system
(e.g., where the separation u takes n different discrete val-
ues) the flow in the effective medium should be the same as
the average fluid flow obtained when circular regions of the
n-components are embedded in the effective medium. Thus,
for example, the pressure p at the origin calculated assuming
that the effective medium occurs everywhere must equal the
average

P

cipi (where ci is the concentration of component i)
of the pressures pi (at the origin) calculated with the circular
inclusion of component i = 1, . . . , n.

Peklenik function (and ψ(q) as the Peklenik angle). Note
that since D(q) is a symmetric tensor and since Tr D = 1
the D-matrix has only two independent components. Thus
it is fully defined by the Peklenik function γ(q) and the
Peklenik angle ψ(q).

For large separation between the surfaces compared
to the surface roughness amplitude, the surface roughness
must have a negligible influence on the fluid flow. This
implies that φp → 1 and φs → 0 as ū/hrms → ∞. Hence,
the effective Reynolds equation reduces to the classical
Reynolds equation for smooth surfaces as the film thick-
ness becomes large relative to the rms roughness.

We now show how one may derive approximate expres-
sions for φp and φs to be included in eq. (5).

4 Fluid pressure flow factor φp

Fluid flow at the interface between contacting solids is a
very complex process due to the many interconnected flow
channels at the interface (see fig. 2). We have used the 2D
Bruggeman effective medium theory [19–22] to calculate
(approximately) the pressure flow factor. This treatment
takes into account the network of flow channels. The basic
physics behind the effective medium theory is illustrated
in fig. 3. For a two-component system, one assumes that
the flow in the effective medium should be the same as the
average fluid flow obtained when circular regions of the
two components are embedded in the effective medium.
Thus, for example, the pressure p at the origin calculated
assuming that the effective medium occurs everywhere
must equal the average c1p1 + c2p2 of the pressures p1

and p2 calculated with the circular inclusion of the two
components 1 and 2, respectively.

Using the 2D Bruggeman effective medium theory we
get φp = 12η0σeff/ū3 where, for an anisotropic system, the
effective medium flow conductivity σeff is a 2 × 2 matrix.
Introduce a xy coordinate system and choose the x-axis
along the principal axis of the D-matrix. In this case we

can consider σeff as a scalar which satisfies

1

σeff
=

∫

duP (u)
1 + γ

γσeff + σ(u)
, (9)

where P (u) is the probability distribution of interfacial
separations, and where

σ(u) =
u3

12η0
. (10)

Fluid flow along the y-axis is given by a similar equation
with γ replaced with 1/γ. The probability distribution
P (u) of interfacial separations has been derived in ref. [23]
(see also sect. 9). Here we note that P (u) has a delta
function at the origin u = 0 with the weight determined
by the area of real contact

P (u) =
A

A0
δ(u) + Pc(u), (11)

where Pc(u) is a continuous (finite) function of u. Substi-
tuting this in (9) gives

1

σeff
=

A

A0

1 + γ

γσeff
+

∫

duPc(u)
1 + γ

γσeff + σ(u)
. (12)

This equation is easy to solve by iteration.
In fig. 4(a) we show the the pressure flow factors φp

as a function of the average interfacial separation ū, for
anisotropic surfaces with the Peklenik numbers γ = 1/3,
1 and 3. Note that φp = 0 for ū < ūc, where ūc is the av-
erage interfacial separation where the area of real contact
percolates in the direction orthogonal to the fluid flow.
In the Bruggeman effective medium theory this occurs
when the area of real contact equals A/A0 = γ/(γ + 1).
Thus for γ = 1/3, 1 and 3 the contact area percolates, i.e.
no fluid flow occurs along the considered direction, when
A/A0 = 1/4, 1/2 and 3/4, respectively. This explains why
φp vanishes at much larger (average) interfacial separation
(and hence smaller contact area) for γ = 1/3 as compared
to γ = 3.

In obtaining the results in fig. 4(a) we have used the
Persson contact mechanics theory for the contact area A
and the probability distribution P (u) (see sect. 9). This
theory depends on the elastic energy Uel stored in the
asperity contact regions and in this paper we use the sim-
plest version for Uel (see ref. [14]), where the γ-parameter
(not the Peklenik number) = 1. Comparison of the theory
predictions with numerical simulations for small systems
has shown that γ ≈ 0.45 gives the best agreement between
theory and the (numerical) experiments. However, using
γ = 0.45 (or γ 
= 1 in general) results in much longer com-
putational time, with relative small numerical changes as
compared to using γ = 1.

5 Fluid shear flow factor φs

Assume that the normal pressure is so high that the area
of real contact percolate. In this case φp = 0 and the
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Fig. 4. The pressure and shear flow factors φp and φs, as a
function of the average interfacial separation ū, for anisotropic
surfaces with the Peklenik numbers γ = 1/3, 1 and 3. In all
cases the angular average power spectrum is of the type shown
in fig. 9 with H = 1 and hrms = 0.3 µm.

fluid at the interface is trapped in the roughness cavities
of the upper (stationary) solid so that the fluid current
J = 0. Thus we conclude that when ū < uc, where uc is
the average separation between the surfaces when the area
of real contact first percolate, then φs(ū) = −ū/hrms. On
the other hand for 〈h2〉/ū2 ≪ 1 we have

φs = −3hrms

ū
D.

Using D = 1/(1 + γ) this gives

φs = − 3

1 + γ

hrms

ū
.

Again, the flow factor along the y-axis is given by a similar
equation with γ replaced with 1/γ. We can interpolate
between the two limiting behavior using

φs = −ū/hrms, (13a)

for ū < ūc and

φs = −
(

hrms

ū
+

(1 + γ)

3

(ū − ūc)

hrms

)−1

, (13b)

for ū > ūc. This function is continuous for u = uc as
expected.

In fig. 4(b) we show the shear flow factor φs as a func-
tion of the average interfacial separation ū. Note that for
very large ū we have φp = 1 and φs = 0. We will refer to
these as trivial fluid flow factors. Note also that φs < 0,
so that this flow term reduces the fluid flow. This is due
to the stagnant fluid in the valleys of the stationary rough
surface (upper surface in fig. 1).

6 Frictional shear stress factors φf , φfs and

φfp

The shear stress induced by the fluid is

σfluid = −η0
∂vx

∂z
=

η0v0

u(x)
− 1

2
[2z − u(x)]∇p, (14)

where z = 0 on the lower surface and z = u(x) on the
upper surface. The total shear stress is

σ = (1 − a(x))σfluid + a(x)σf , (15)

where the last term is the contribution from the area of
real contact and where a(x) is 1 at dry contact, and 0 else-
where. Moreover a = 〈a(x)〉 = A/A0 is the (normalized)
contact area calculated with the contact pressure pcont(x),
as given, e.g., by the Persson’s contact mechanics theory.
Using (14) and (15) gives the total frictional (tangential)
stress on the bottom solid

〈σ〉 = σ̄ = η0v0

〈

1

u

〉

+
1

2
〈u∇p〉 + aσf , (16)

where
〈

1

u

〉

=

∫ ∞

u∗

duP (u)
1

u
. (17)

As before, P (u) is the probability distribution of inter-
facial separations. Note that P (u) depends on the local
(average) contact pressure pcont(x). In (17) we have intro-
duced a cut-off distance u∗ > 0 of order a few nanometer.
This takes into account that the fluid cannot be described
using continuum mechanics when the separation is of or-
der a few nanometers. In addition, the relation between
the shear stress and the shear rate for nanometer thick
confined (fluid) films will not be linear (as for a Newto-
nian fluid), but will behave more like a soft solid. The to-
tal frictional stress acting on the upper solid is also given
by (16). This can be seen as follows. The shear stress from
the fluid acting on the upper solid is given by (14) with
z = u(x)

σfluid =
η0v0

u(x)
− 1

2
u(x)∇p. (18)

However, there will be an additional frictional stress acting
on the upper solid induced by the pressure p and given by

−p∇u = −∇(pu) + u∇p,
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where −∇u is the tangential component of the unit vector
orthogonal to the surface z = u(x) at point x (we assume
|∇u| ≪ 1). We are interested in the friction force and
can neglect contribution −∇(pu) because the integral over
the total surface this term vanish. Adding the term u∇p
to (18) gives the expression (16) for the total frictional
stress acting on the upper solid.

When the contact area percolates (for ū < ūc), the
fluid trapped in the cavities must satisfy J = 0 or

J = −u3(x)

12η0
∇p +

1

2
u(x)v0 = 0.

Thus for ū < ūc

u∇p = 6η0v0
1

u

and

〈u∇p〉 = 6η0v0

〈

1

u

〉

. (19)

On the other hand for ū ≫ hrms we have, using (A.9),

〈u∇p〉 = ū∇p̄ + 〈u1∇p1〉

= ū∇p̄ +

∫

d2q C(q)
qq

q2
·
(

6η0

ū3
v0 −

3

ū
∇p̄

)

= ū∇p̄ + 〈h2〉D
(

6η0

ū3
v0 −

3

ū
∇p̄

)

.

This expression is valid to first order in 〈h2〉/ū2 and to
this order it can be approximated as (neglecting the fluid
induced asperities flattening)

〈u∇p〉 =
ū3

ū2 + 3〈h2〉D∇p̄ +
6η0

ū3
〈h2〉Dv0. (20)

We can smoothly interpolate between the result (19) for
ū < ūc and (20) valid for ū ≫ hrms using

〈u∇p〉 =
ū2(ū − ūc)θ(ū − ūc)

ū2 + 3〈h2〉D ∇p̄

+
6η0

〈u−1〉−1 + θ(ū − ūc)(ū − ūc)(ū2/〈h2〉)D−1
v0,

(21)

where θ(x) = 1 for x > 0 and zero otherwise. This expres-
sion is exact for ū < ūc and exhibits the asymptotically
correct behavior for ū ≫ hrms. In addition it is continuous
at ū = ūc.

Following Patir and Cheng, we write the average shear
stress as

σ̄ = (φf + φfs)
η0v0

ū
+ φfp

1

2
ū∇p̄ +

A

A0
σf , (22)

where

φf = ū

〈

1

u

〉

, (23)

φfs =
3ū

〈u−1〉−1 + θ(ū − ūc)(ū − ūc)(ū2/〈h2〉)D−1
, (24)

 0
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φfp
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3

Fig. 5. The friction pressure and shear stress factors φfp and
φfs, as a function of the average interfacial separation ū, for
anisotropic surfaces with the Peklenik numbers γ = 1/3, 1 and
3. In all cases the angular average power spectrum is of the
type shown in fig. 9 with H = 1 and hrms = 0.3 µm.

and

φfp =
ū(ū − ūc)θ(ū − ūc)

ū2 + 3〈h2〉D . (25)

In fig. 5 we show the friction pressure and shear stress
factors φfp and φfs, as a function of the average interfacial
separation ū, for anisotropic surfaces with the Peklenik
numbers γ = 1/3, 1 and 3. Note that, as expected, for very
large ū we have φf = φfp = 1 and φfs = 0. We will refer
to these as trivial friction factors. Note also that the φfs

contribution to the shear stress is positive. The physical
origin of this contribution can be understood as follows:
The fluid in the valleys of the stationary rough surface
(see fig. 1) will be mostly stagnant and hence the effective
fluid film thickness (which undergoes shear) in the valley
regions will be thinner (say ũ) than given by the local film
thickness u. This will result in a higher frictional shear
stress ηv0/ũ than expected if ũ were the local interfacial
separation ū.

7 Viscosity of confined fluids: shear thinning

It is well known that the viscosity of fluids at high pres-
sures may be many orders of magnitude larger than at
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low pressures. Using the theory of activated processes,
and assuming that a local molecular rearrangement in a
fluid results in a local volume expansion, one expects an
exponential dependence on the hydrostatic pressure η =
η0 exp(p/p0), where typically (for hydrocarbons or poly-
mer fluids) p0 ≈ 108 Pa (see, e.g., refs. [24, 25]). Here we
are interested in (wetting) fluids confined between the sur-
faces of elastically soft solids, e.g., rubber or gelatin. In
this case the pressure at the interface is usually at most of
order of the Young’s modulus, which (for rubber) is less
than 107 Pa. Thus, in most cases involving elastically soft
materials, the viscosity can be considered as independent
of the local pressure.

It has been observed experimentally [26, 27], and also
found in Molecular Dynamics (MD) simulations [28, 29],
that the effective viscosity η (defined by σ = ηv/u, where
σ is the shear stress, u the separation between the surfaces
and v the relative velocity) of very thin (nanometer thick-
ness) fluid films confined between solid walls at low pres-
sure may exhibit non-Newtonian properties. In addition,
for nanometer wall-wall separations, a finite normal stress
is necessary for the squeeze-out, i.e., the “fluid” now be-
haves as a soft solid and the squeeze-out occurs in a quan-
tized way by removing one monolayer after another with
increasing normal stress [30]. In the present study we will
consider the solid-like monolayers which may be attached
to the solid walls as part of the solids and characterized
with a shear stress σf . The latter can be considered as
independent of the local normal stress at the low stresses
which prevail when at least one of the solids is made from
a rubber-like material.

Many fluids, in particular polymer fluids, e.g., high
viscosity silicon oil, undergoes shear thinning at relative
low shear rate. The viscosity is often well approximated
by

η(u, v) =
η0

1 + (η0/B)γ̇n
, (26)

(or similar empirical relations, see e.g. ref. [31]) where the
shear rate γ̇ = v/u and where the exponent n is typically
n ≈ 0.9 [26]. If η0 is in units of Pa s and γ̇ in units of s−1,
then B ≈ 8.0 × 104. In this model shear thinning start
when γ̇ ≈ γ̇c = (B/η0)

1/n. For example, for silicon oil
with the low shear rate viscosity η0 = 10Pa s the critical
shear rate γ̇c ≈ 104 s−1. In the theory above we can take
into account the dependence of η on the interfacial sepa-
ration u (and the sliding velocity v) by simply replacing
η0 in (5) with η given by (26). Note that this is equivalent
to a modification of the pressure flow factor and will, from
a numerically point of view, not lead to a more complex
problem than without the shear thinning. It is also nec-
essary to include the shear thinning when calculating the
frictional shear stress. Thus in (22)–(24) we replace the
term 〈u−1〉 with

〈

η(u, v)

η0u

〉

=

∫ ∞

u∗

duP (u)
η(u, v)

η0u
, (27)

while in the velocity factor η0v/ū in (22) remains un-
changed. Observe that the probability distribution of in-
terfacial separations, P (u), depends on pcont(x). We show

below that shear thinning will strongly reduce the diver-
gence of u−1 as u → 0, and make the result less sensitive
to the exact value of the cut-off u∗.

8 Elastic asperity deformation by the fluid

pressure

The surface roughness profile will deform not just be-
cause of the direct contact between the solids, but also
because of the rapidly fluctuating fluid pressure distri-
bution which prevails at the asperity length scale. This
effect was neglected in the analysis presented above and
in most earlier studies of this subject. We have recently
studied the influence of the fluid pressure on the rough-
ness profile and shown that the fluid pressure effectively
reduces the roughness amplitude and introduce surface
roughness anisotropy which we refer to as dynamically in-
duced anisotropy [15].

The power spectrum of the deformed surface profile
can be written (approximately) as

C̃(q) =
C(q)

|S(q)|2 , (28)

where

S(q) = 1 +
6

E∗ūq3
(iq) ·

[

∇p̄ − 2η

ū2
v0

]

. (29)

Note that |S(q)| > 1, so that the fluid pressure distri-
bution effectively smooths the surface profile. Note also
that even if the surface roughness is isotropic, the effec-
tive surface profile during sliding will be anisotropic. In
the study below we will not include the deformation of
the surface roughness profile by the fluid pressure, but we
will calculate C̃(q) from the interfacial and pressure dis-
tributions obtained without accounting for the effects of
fluid deformations on the surface roughness profile (non-
self-consistent procedure).

9 Elastohydrodynamics for cylinder

Consider the stationary sliding of a cylinder on a flat rough
substrate. The ensemble-averaged fluid flow vector J̄ sat-
isfies ∇ · J̄ = 0 or dJ̄x/dx = 0. Thus J̄x = v0u

∗/2 where
u∗ is a constant. Using the x-component of (5) gives

− ū3φp(ū)

12η0

dp̄

dx
+

1

2
ūv0 +

1

2
hrmsφs(ū)v0 =

1

2
v0u

∗, (30)

or
dp̄

dx
=

6η0v0

ū3φp(ū)
(ū + hrmsφs(ū) − u∗) , (31)

where φs and φp have been determined in sects. 4 and 5.
Hereinafter we will denote the (locally averaged) fluid
pressure p̄ as pfluid(x, t). When solving for the fluid flow
between macroscopic surfaces with roughness, in a mean-
field type of treatment one writes the local nominal pres-
sure (i.e., the pressure locally averaged over surface area
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with linear dimension of order the wavelength λ0 of the
longest surface roughness component) as [32]

p(x, t) = pfluid(x, t) + psolid(x, t), (32)

where pfluid and psolid are locally averaged nominal fluid
pressure and solid wall-wall contact pressure, respectively.
The fluid pressure satisfies (31), while the contact pres-
sure psolid can be related to the interfacial separation
ū(x, t) using the contact mechanics theory of Persson (see
refs. [7, 8]). In particular, for large enough average surface
separation it can be shown that [7]

psolid ≈ βE∗e−ū/u0 ,

where β and u0 can be calculated from the surface rough-
ness power spectrum. Here we will briefly review the con-
tact mechanics model of Persson which we use in this
study.

Consider the frictionless contact between two elastic
solids with the Young’s elastic modulus E0 and E1 and the
Poisson ratios ν0 and ν1. Assume that the solid surfaces
have the height profiles h0(x) and h1(x), respectively. The
elastic contact mechanics for the solids is equivalent to
those of a rigid substrate with the height profile h(x) =
h0(x)+h1(x) and a second elastic solid with a flat surface
and with the Young’s modulus E and the Poisson ratio ν
chosen so that [33]

1 − ν2

E
=

1 − ν2
0

E0
+

1 − ν2
1

E1
. (33)

The contact mechanics formalism developed elsewhere
[7,8,34,35] is based on studying the interface between two
contacting solids at different magnification ζ. When the
system is studied at the magnification ζ it appears as if
the contact area (projected on the xy-plane) equals A(ζ),
but when the magnification increases it is observed that
the contact is incomplete (see fig. 6), and the surfaces
in the apparent contact area A(ζ) are in fact separated
by the average distance ū(ζ), see fig. 7. The (apparent)
relative contact area A(ζ)/A0 at the magnification ζ is
given by [8, 34]

A(ζ)

A0
=

1

(πG)1/2

∫ p0

0

dσ e−σ2/4G = erf
( p0

2G1/2

)

, (34)

where

G(ζ) =
π

4

(

E

1 − ν2

)2 ∫ ζq0

q0

dqq3C(q) (35)

and where the surface roughness power spectrum

C(q) =
1

(2π)2

∫

d2x〈h(x)h(0)〉e−iq·x.

Here 〈. . .〉 stands for an ensemble average and p0 =
psolid(x, t). The height profile h(x) of the rough surface
can be measured routinely today on all relevant length
scales using optical and stylus experiments.

Fig. 6. A rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has rough-
ness on many different length scales and the rubber makes
partial contact with the substrate on all length scales. When
a contact area is studied at low magnification it appears as
if complete contact occur, but when the magnification is in-
creased it is observed that in reality only partial contact occurs.

Fig. 7. An asperity contact region observed at magnification ζ.
It appears that complete contact occurs in the asperity contact
region, but when the magnification is increasing to the highest
(atomic scale) magnification ζ1, it is observed that the solids
are actually separated by the average distance ū(ζ).

The quantity ū(ζ), defined as the average separation
between the surfaces in the apparent contact regions ob-
served at the magnification ζ (see fig. 7), can be calculated
from [8]

ū(ζ) =
√

π

∫ q1

ζq0

dq q2C(q)w(q, ζ)

×
∫ ∞

p(ζ)

dp′
1

p′
e−[w(q,ζ)p′/E∗]2 , (36)

where p(ζ) = p0A0/A(ζ) and

w(q, ζ) =

(

π

∫ q

ζq0

dq′ q′3C(q′)

)−1/2

.

We define u1(ζ) to be the (average) height separating
the surfaces which appear to come into contact when the
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magnification decreases from ζ to ζ − ∆ζ, where ∆ζ is
a small (infinitesimal) change in the magnification. u1(ζ)
is a monotonically decreasing function of ζ, and can be
calculated from the average interfacial separation ū(ζ) and
A(ζ) using (see ref. [8])

u1(ζ) = ū(ζ) + ū′(ζ)A(ζ)/A′(ζ). (37)

One can show [22] from the equations above that, as the
applied squeezing pressure p0 → 0, for the magnifications
most relevant for calculating fluid flow (e.g., the leak rate
of seals) u1 → ū.

The probability distribution P (u) of interfacial sepa-
rations u can be written as P (u) = (A/A0)δ(u) + Pc(u),
where [23]

Pc ≈ 1

A0

∫

dζ
[−A′(ζ)]

(2πh2
rms(ζ))

1/2

×
[

exp

(

− (u − u1(ζ))2

2h2
rms(ζ)

)

+ exp

(

− (u + u1(ζ))2

2h2
rms(ζ)

)]

.

(38)

Here h2
rms(ζ) is the mean-square roughness including

only roughness wavelength components with q > q0ζ,
which can be obtained from the surface roughness power
spectrum using

h2
rms(ζ) =

∫ q1

q0ζ

d2q C(q).

Note that

∫ ∞

0

duPc(u) =
1

A0

∫ ζ1

1

dζ[−A′(ζ)] =
A(1) − A(ζ1)

A0
.

Since A(ζ1) = A is the area of real contact and A(1) = A0

the nominal contact area, the probability normalization
condition

∫ ∞

0

duP (u) =
A

A0
+

A0 − A

A0
= 1

is satisfied. Using (38) we can calculate the effective fluid
conductivity (for anisotropic roughness) using

1

σeff
=

A

A0

1 + γ(ζ1)

γ(ζ1)σeff

+
1

A0

∫

dζ
[−A′(ζ)]

(2πh2
rms(ζ))1/2

∫ ∞

0

du
1 + γ(ζ)

γ(ζ)σeff + σ(u)

×
[

exp

(

− (u−u1(ζ))2

2h2
rms(ζ)

)

+ exp

(

− (u+u1(ζ))2

2h2
rms(ζ)

)]

,

(39)

where σ(u) = u3/12η. This equation is very general but
assumes that the Peklenik angle ψ is constant. If the
Peklenik angle depends on ζ (or q = q0ζ), the more gen-
eral theory developed in ref. [14] must be used. However,
in many practical applications one expects the Peklenik

angle to be nearly constant, e.g., for surfaces polished
or grinded in one direction, or for surfaces where the
anisotropy is generated dynamically (see sect. 8).

The elastic deformation equation links the average
pressure p(x, t) to the avegare interfacial separation ū [33].
For a cylinder contact

ū(x) = u0 +
x2

2R
− 2

πE∗

∫ ∞

−∞

dx′ p(x′) ln

∣

∣

∣

∣

x − x′

x′

∣

∣

∣

∣

, (40)

where u0 is the average central separation (i.e. u0 = u(x =
0)). u0 can be calculated with the load balance equation

∫ ∞

−∞

dx′ p(x′) = FN/L. (41)

Equations (30), (32), (36) (for ζ = 1), (40) and (41) rep-
resent 5 equations for the 5 unknown variables p, pfluid,
psolid, ū and u0. In the theory presented above, cavitation
is assumed to occur only on the macroscopic scale.

10 Numerical results

We will present numerical results to illustrate the theory
developed above. We focus on the contact between a rub-
ber cylinder (radius R) with surface roughness and a flat
hard substrate (e.g., glass) lubricated by a fluid. We will
consider two different cases, namely one case with rela-
tive low nominal rubber-substrate contact pressure and a
second case with very high contact pressure as is typical
for many engineering application, e.g., for wiper blades or
syringes. Details about the adopted numerical procedure
for the resolution of the lubrication problem are reported
in appendix B.

The low-pressure system consists of a rubber cylinder
with the radius R = 1 cm and an elastic modulus E =
10MPa with three different (self-affine fractal) surfaces
with the root-mean-square roughness hrms = 0.3, 1 and
3µm and fractal dimension Df = 2.2. The power spectra
of the hrms = 0.3µm surface is shown in fig. 8 (red line).
The load on the cylinder per unit length FN/L = 100N/m,
giving a (static) Hertz contact region with the half-width
aH = 0.31mm, and the maximum and average Hertz con-
tact pressures pmax = 0.21 MPa and pav = 0.16MPa, re-
spectively.

The high pressure system consists of a rubber cylinder
with the radius R = 0.7mm and elastic modulus E =
3MPa with a (self-affine fractal) surface with root-mean-
square roughness hrms = 0.3µm and fractal dimension
Df = 2. The power spectra of the surface is shown in
fig. 8 (blue line). The load on the cylinder per unit length
FN/L = 200N/m giving a (static) Hertz contact region
with the half-width aH = 0.21mm, and the maximum
and average Hertz contact pressures pmax = 0.60 MPa and
pav = 0.47 MPa, respectively. We also consider a higher
load case with FN/L = 1000N/m, where the (static) Hertz
contact region has the half-width aH = 0.47 mm, and the
maximum and average Hertz contact pressure are pmax =
1.35 MPa and pav = 1.06MPa, respectively.
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Fig. 8. (Colour on-line) Two surface roughness power spectra
used in the calculations. The logarithm (with 10 as basis) of
the power spectrum as a function of the logarithm of the wave
vector. Red curve: the surface is a self-affine fractal for q >
q0 = 104 m−1 with fractal dimension Df = 2.2 (Hurst exponent
H = 0.8). The large wave vector cut off q1 = 7.8 × 109 m−1.
For qL < q < q0 the power spectrum is constant with qL =
103 m−1. Blue curve: q0 = 316 m−1 and the fractal dimension
Df = 2 (Hurst exponent H = 1). The large wave vector cut
off q1 = 3.16 × 108 m−1. For qL < q < q0 the power spectrum
is constant with qL = 3.16 × 104 m−1. The root-mean-square
roughness of both surface is hrms = 0.3 µm.

10.1 Low-pressure system

In fig. 9 we show the logarithm (with 10 as basis) of the
friction coefficient as a function of the logarithm of the
product ηv between the viscosity η and the velocity v. The
fluid viscosity η = 0.1Pa s and the rubber cylinder has
surface roughness with power spectra of the type shown
in fig. 8 (red curve), with the root mean square (rms)
roughness hrms = 3, 1 and 0.3µm. The solid lines include
all fluid flow and friction shear stress factors, while the
dashed lines are with trivial frictional shear stress factors
(φf = φfp = 1 and φfs = 0). In all cases shear thinning is
included and the shear stress in the area of real contact is
σf = 1MPa. In the hydrodynamic region (high velocity),
where ū ≫ hrms, all the surfaces give the same friction as
expected. That is, when the interfacial separation is every-
where much larger than the surface roughness amplitude,
then the friction is independent of the surface roughness.
Moreover, when the surface roughness amplitude increases
the minimum in the friction curves moves to higher veloc-
ities [32]. In the boundary lubrication limit (low veloci-
ties) the friction increases when the surface roughness de-
creases. This just reflects the dependence of the area of
real contact on the surface roughness amplitude, since we
have assumed that the shear stress σf is independent of
the normal stress.

Note that the difference between the full calculation
(solid lines), and the result obtained when using trivial
friction shear stress factors (dashed lines), increases as the
surface roughness increases. The difference is mainly due
to the approximation φf = 1, i.e., the use (in the calcula-
tion of the frictional shear stress) of 〈u〉−1 (dashed lines)
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Fig. 9. (Colour on-line) The logarithm (with 10 as basis) of
the friction coefficient as a function of the logarithm of the
product ηv between the viscosity η and the velocity v. For
an elastic cylinder (radius R = 1 cm, elastic modulus E =
10 MPa) sliding on a hard substrate in a fluid with viscosity
η = 0.1 Pa s. The cylinder has surface roughness with a power
spectrum of the type shown in fig. 8 (red curve), with the root-
mean-square (rms) roughness hrms = 3, 1 and 0.3 µm. The
frictional shear stress in the area of real contact σf = 1 MPa.
The load on the cylinder per unit length FN/L = 100 N/m. The
static Hertz contact region has half-width aH = 0.31 mm and
the maximum and average Hertz contact pressure are pmax =
0.21 MPa and pav = 0.16 MPa, respectively. The solid lines
include all flow factors while the dashed lines are with trivial
frictional shear stress factors (φf = φfp = 1 and φfs = 0). All
cases include shear thinning.

in contrast to the correct result 〈u−1〉 used in the full cal-
culation (solid lines). This approximation is more severe
the larger the surface roughness.

In fig. 10 we show the logarithm of the friction co-
efficient as a function of the logarithm of ηv for the
hrms = 3µm surface. The solid blue line is the full theory
while the dashed blue line is the result with trivial fric-
tional shear stress factors (both curves from fig. 9). The
green line is the result with trivial fluid flow and frictional
shear stress factors, and all cases include shear thinning.
As pointed out above, the large difference between the full
calculation and the other cases is mainly due to the dif-
ference between using ū−1 = 〈u〉−1 (the two lower curves)
and 〈u−1〉 (upper curve, full theory).

In fig. 11 we show the same results as in fig. 10 but for
the hrms = 1µm system in fig. 9. Note that in this case
with lower surface roughness the difference between using
ū−1 = 〈u〉−1 (the two lower curves) and 〈u−1〉 (upper
curve, full theory) is much smaller than in the case of
larger roughness in fig. 10.

In fig. 12 we show the friction coefficient as a func-
tion of the logarithm of ηv for the (a) hrms = 3µm and
(b) hrms = 1µm surfaces. The solid red and blue line
represent the full theory while the dashed red and blue
lines are the result with trivial frictional shear stress fac-
tors (both curves from fig. 9). The green lines represent
the full theory without shear thinning. Note that without
shear thinning the friction curve exhibits a local maximum
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Fig. 10. (Colour on-line) The logarithm (with 10 as basis) of
the friction coefficient as a function of the logarithm of the
product ηv between the viscosity η and the velocity v for the
hrms = 3 µm system in fig. 9. The solid blue line is the full the-
ory while the dashed blue line represent the result with trivial
frictional shear stress factors (both curves from fig. 9). The
green line represent the result with trivial fluid and frictional
shear stress factors. All cases include shear thinning (see text
for details).
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Fig. 11. (Colour on-line) The logarithm (with 10 as basis) of
the friction coefficient as a function of the logarithm of the
product ηv between the viscosity η and the velocity v for the
hrms = 1 µm system in fig. 9. The solid blue line is the full
theory while the dashed blue line is the result with trivial fric-
tional shear stress factors (both curves from fig. 9). The green
line is the result with trivial fluid and frictional shear stress
factors. All cases include shear thinning (see text for details).

close to the velocity where the friction curve would exhibit
the minimum when shear thinning is included. This effect
is due to the influence of shear thinning on the u−1 singu-
larity in the term 〈η(u)u−1〉 which occurs in the expres-
sion for the frictional shear stress (see (16)). That is, the
shear thinning reduces the u−1 singularity and hence the
contribution to the friction from the term 〈η(u)u−1〉 (see
sect. 7). Note that the influence of the shear thinning in-
creases as the surface roughness amplitude hrms increases.

 0
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Fig. 12. (Colour on-line) The friction coefficient as a function
of the logarithm (with 10 as basis) of the product ηv between
the viscosity η and the velocity v for the (a) hrms = 3 µm and
(b) hrms = 1 µm systems in fig. 9. The solid red and blue line
represent the full theory while the dashed red and blue line
represent the result with trivial frictional shear stress factors
(both curves from fig. 9). The green lines represent the full
theory without shear thinning.

In fig. 13 we show the same results as in fig. 12 but with
a logarithmic scale for the friction coefficient.

All the numerical results presented above are for sur-
faces with roughness with isotropic statistical properties.
In fig. 14 we show the friction coefficient as a function of
the logarithm of the product ηv for anisotropic surfaces
with the Peklenik numbers γ = 1/3, 1 and 3. In all cases
the angular averaged power spectrum is of the type shown
in fig. 9, with H = 0.8 and hrms = 3µm. The blue lines
represent the full theory with shear thinning, while the
green lines represent the full theory without shear thin-
ning.

Figure 15 shows the measured friction coefficient as
a function of the product ηv (log-log scale) for the con-
tact between a (hard) spherical ball and a flat rubber sur-
face [36]. Results are shown both for a relative smooth
surface (hrms ≈ 0.1µm) and for another rubber surface
which was crosslinked against a sandblasted and uni-
directionally polished or grinded surface with hrms ≈
10µm. The lubricant fluid in the study (mixtures of glyc-
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Fig. 13. (Colour on-line) The logarithm (with 10 as basis)
of the friction coefficient as a function of the logarithm of the
product ηv between the viscosity η and the velocity v for the (a)
hrms = 3 µm and (b) hrms = 1 µm systems in fig. 9. The solid
red and blue line represent the full theory while the dashed
red and blue line represent the result with trivial frictional
shear stress factors (both curves from fig. 9). The green lines
represent the full theory without shear thinning.

erol and water) is not known to shear thin (or shear thin at
very high shear rate) and this may effectively contribute
towards the generation of the “bump” in the friction curve
for the rough surface, in agreement with our theory pre-
dictions. On the very smooth surface no such bump is ob-
served, which also agrees with our theory predictions (be-
cause the singularity u−1, in the contribution to the fric-
tional shear stress, is less important for smooth surfaces).

In fig. 16 we show the fraction of the load carried by
the area of real contact (a) and the relative contact area
(b), as a function of the logarithm of the product ηv for
anisotropic surfaces with the Peklenik numbers γ = 1/3, 1
and 3. In all cases the angular average power spectrum is
of the type shown in fig. 9 with H = 0.8 and hrms = 3µm
and using the full theory with shear thinning. Note that in
the mixed lubrication region, when γ decreases the area
of real contact and the load carried by the contact re-
gions decrease. This is the expected result because γ < 1
corresponds to surface roughness where the “groves” are
aligned along the cylinder axis resulting in (pressurized)
fluid trapped in the groves and in a reduced area of real
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Fig. 14. (Colour on-line) The friction coefficient as a function
of the logarithm (with 10 as basis) of the product ηv between
the viscosity η and the velocity v for anisotropic surfaces with
the Peklenik numbers γ = 1/3, 1 and 3. In all cases the angular
average power spectrum is of the type shown in fig. 9 with
H = 0.8 and hrms = 3 µm. The blue lines represent the full
theory with shear thinning, while the green lines represent the
full theory without shear thinning.

Fig. 15. The friction coefficient as a function of the product ηv
between the viscosity η and the velocity v (log-log scale) for the
contact between a smooth ball and a (nominally) flat rubber
surface. The smooth and rough surfaces have rms roughness
hrms ≈ 0.1 and ≈ 10 µm, respectively.

contact and friction. On the other hand, for γ > 1, the
groves are in the sliding direction and result in more ef-
fective fluid removal than for isotropic surface roughness.
Note that this is only expected for the cylinder geometry:
for a circular contact region both γ > 1 and γ < 1 re-
sult in enhanced fluid removal, as compared to the case of
isotropic roughness (γ = 1), because of fluid squeeze-out
(in the x- or y-direction) along the groves.

The study presented above does not include the de-
formations of the asperities by the fluid pressure but the
asperities are only deformed by the contact pressure. We
can estimate the influence of the fluid pressure on the as-
perity deformations using (28). In fig. 17 we show (a) the
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Fig. 16. (Colour on-line) The fraction of the load carried by
the area of real contact (a) and the relative contact area (b),
as a function of the logarithm (with 10 as basis) of the product
ηv between the viscosity η and the velocity v for anisotropic
surfaces with the Peklenik numbers γ = 1/3, 1 and 3. In all
cases the angular average power spectrum is of the type shown
in fig. 9 with H = 0.8 and hrms = 3 µm. All cases using the full
theory with shear thinning.

root-mean-square roughness amplitude hdeformed
rms (in units

of the original (undeformed) hrms roughness amplitude),
and (b) the Peklenik factor as a function of the logarithm
(with 10 as basis) of the product ηv between the viscosity
η and the velocity v. The results are for the surface with
the H = 0.8 power spectra in fig. 9 with hrms = 1µm (red
curve) and 3µm (blue curve, see also [16]).

In fig. 18(a) we show the original (green lines, from
fig. 9) and the modified (red lines and blue lines) surface
roughness power spectra for the H = 0.8 power spectra
in fig. 9 with hrms = 1µm (red curves) and 3µm (blue
curves). In fig. 18(b) we show for the same surface the
Peklenik function γ(q). The results shown are for all slid-
ing velocities, but the individual lines are so closely spaced
that they cannot be resolved. Only the region q < 106 m−1

is shown as there is no modification of the power spectra
for larger q. That is, the local fluid pressure only modi-
fies (flattens) the long-wavelength roughness and, between
those, mainly the long-wavelength roughness asperities
with wave vector aligned with the sliding velocity [15].
This is illustrated schematically in fig. 19 where we show
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Fig. 17. (Colour on-line) The (a) root-mean-square roughness
amplitude hdeformed

rms (in units of the original (undeformed) hrms

roughness amplitude) and (b) the modified Peklenik factor as
a function of the logarithm (with 10 as basis) of the product
ηv between the viscosity η and the velocity v. For the H = 0.8
power spectra in fig. 9, with hrms = 1 µm (red curve) and 3 µm
(blue curve).

how the fluid flow deforms the big asperities (gray ellipses)
while the small asperities remain unchanged (small black
circles). The figure indicates the average shape of asperi-
ties; in reality asperities have fractal-like shape. Note that
the deformations of the asperities is such as to facilitate
the fluid flow (i.e., to reduce the flow resistance).

One may include the fluid-pressure–induced modifi-
cation of the surface roughness profile in the numerical
study by repeating the fluid dynamics calculation with the
modified power spectra (which will be different for each
sliding velocity v0) and the Peklenik function γ(ζ) (with
q = q0ζ) shown in fig. 18. By performing this procedure
several times (i.e., several iterations) one can obtained a
converged solution where the power spectra and Peklenik
function (as a function of q = q0ζ) no longer change with
each new iteration.

10.2 High-pressure system

We now consider an elastic cylinder (radius R = 0.7mm,
elastic modulus E = 3 MPa) sliding on a hard substrate in
a fluid with viscosity η = 12.5Pa s. The cylinder has sur-
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Fig. 18. (Colour on-line) (a) The original (green lines, from
fig. 9) and the modified (red lines and blue lines) surface rough-
ness power spectra for the H = 0.8 power spectra in fig. 9 with
hrms = 1 µm (red curves) and 3 µm (blue curves). (b) The
Peklenik function γ(q) for the same surfaces as in (a). Results
shown for all sliding velocities (10−6 m/s < v < 10 m/s) but
the individual lines are so closely spaced that they cannot be
resolved. Only the region q < 106 m−1 is shown as there is no
modification of the power spectra for larger q.

Fig. 19. The fluid flow deforms the big asperities (gray el-
lipses) while the small asperities remains unchanged (small
black circles). The figure indicates the average shape of the
asperities as in reality asperities have fractal-like shape.

face roughness with the power spectra shown in fig. 8 (blue
curve), with the root-mean-square (rms) roughness hrms =
0.3µm. Figure 20 shows the friction coefficient as a func-
tion of the logarithm (with 10 as basis) of the product ηv
between the viscosity η and the velocity v. The frictional
shear stress in the area of real contact σf = 1.36 MPa and
the load on the cylinder per unit length FN/L = 200N/m.
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log (ηv) (Pa m)

μ

Fig. 20. (Colour on-line) The friction coefficient as a function
of the logarithm (with 10 as basis) of the product ηv between
the viscosity η and the velocity v. For an elastic cylinder (radius
R = 0.7 mm, elastic modulus E = 3 MPa) sliding on a hard
substrate in a fluid with viscosity η = 12.5 Pa s. The cylinder
has surface roughness with a power spectrum of the type shown
in fig. 8 (blue curve), with the root-mean-square (rms) rough-
ness hrms = 0.3 µm. The frictional shear stress in the area of
real contact σf = 1.36 MPa. The load on the cylinder per unit
length FN/L = 200 N/m. The static Hertz contact region has
half-width aH = 0.21 mm and the maximum and average Hertz
contact pressure are pmax = 0.60 MPa and pav = 0.47 MPa, re-
spectively. The solid red line is the full theory while the dashed
red line is the result with trivial friction flow factors. The green
line is the full theory without shear thinning.
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Fig. 21. (Colour on-line) The same data as in fig. 20 but with
the logarithm (with 10 as basis) of the friction coefficient as a
function of the logarithm of the product ηv.

The solid red line is the full theory while the dashed red
is the result with trivial friction factors. The green lines
is the full theory without shear thinning.

In fig. 21 we show the same data as in fig. 20 but with
the logarithm (with 10 as basis) of the friction coefficient
as a function of the logarithm of the product ηv.

In fig. 22 we show the friction coefficient as a func-
tion of the product ηv. The red curve is for the load
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Fig. 22. (Colour on-line) The friction coefficient as a function
of the logarithm (with 10 as basis) of the product ηv between
the viscosity η and the velocity v. For an elastic cylinder (radius
R = 0.7 mm, elastic modulus E = 3 MPa) sliding on a hard
substrate in a fluid with viscosity η = 12.5 Pa s. The cylinder
has surface roughness with a power spectra of the type shown in
fig. 8 (blue curve), with the root-mean-square (rms) roughness
hrms = 0.3 µm. The frictional shear stress in the area of real
contact σf = 1.36 MPa. Red curve: the load on the cylinder per
unit length FN/L = 200 N/m (from fig. 20). Blue curves: the
load on the cylinder per unit length FN/L = 1000 N/m. The
solid blue is the full theory while the dashed blue curve is the
result with trivial friction flow factors. For the load FN/L =
1000 N/m the static Hertz contact region has half-width aH =
0.47 mm and the maximum and average Hertz contact pressure
are pmax = 1.35 MPa and pav = 1.06 MPa, respectively.

(per unit length) on the cylinder FN/L = 200N/m (from
fig. 20), while the the blue curves are for the load FN/L =
1000N/m. The solid blue curve is the full theory while
the dashed blue curve is the result with trivial friction
factors. Note that in the hydrodynamic region the friction
coefficient depends on the load FN roughly like predicted
by µ ∼ log(ηv/FN) but this scaling is not obeyed in the
mixed lubrication velocity range. The nominal pressure
in the (nominal) contact area when FN/L = 1000N/m
(which is of order ∼ 1MPa) is typical for applications to
syringes (between the ribs of the rubber stopper and the
glass or polymer container), and the friction coefficient
close to the minimum of the µ(v) curve is in good agree-
ment with the measured friction coefficient [37].

Let us now consider anisotropic surfaces. In fig. 23 we
show the friction coefficient as a function of the logarithm
of ηv for anisotropic surfaces with the Peklenik numbers
γ = 1/3, 1 and 3. Note that decreasing γ lowers the friction
because of the (pressurized) fluid trapped in the groves
of the roughness profile. As discussed before, this is the
case for a cylinder geometry with the groves aligned along
the cylinder axis. For the ball-on-flat configuration the ef-
fect of an anisotropic roughness is instead less predictable,
since the fluid flow direction varies at different contact po-
sitions, resulting consequently in different removal rates of
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Fig. 23. (Colour on-line) The friction coefficient as a function
of the logarithm (with 10 as basis) of the product ηv between
the viscosity η and the velocity v for anisotropic surfaces with
the Peklenik numbers γ = 1/3, 1 and 3. In all cases the angular
average power spectrum is of the type shown in fig. 9 with
H = 1 and hrms = 0.3 µm. All cases using the full theory with
shear thinning.

the fluid from the interface, and therefore in different fric-
tional behaviors.

For the same systems as in fig. 23 we show in fig. 24
the fraction of the load carried by the area of real contact
(a) and the relative contact area (b), as a function of the
logarithm of the product ηv. It is remarkable that even for
large contact area, most of the load is carried by the fluid.
The reason is that at the lowest velocity the area of real
contact is close to the percolation limit and fluid becomes
trapped at the interface (there are no channels for fluid
squeeze-out) and the fluid becomes highly compressed and
carry most of the load. This effect is only observed when
the load is so high that the (nominal) contact pressure
becomes so large to cause the area of real contact to be
close to the percolation threshold.

11 Summary and conclusion

We have studied the fluid flow at the interface between
elastic solids with randomly rough surfaces. We have de-
rived (approximate) analytical expressions for the fluid
flow factors which enter in the equation describing the
fluid flow, and for the frictional shear stress factors which
enter in the equation for the frictional shear stress. Numer-
ical results for a rubber cylinder with surface roughness
sliding on a flat lubricated substrate, under “low” and
“high” pressure conditions, have been presented and dis-
cussed. We have also discussed the role of the fluid-induced
elastic deformations of the surface roughness profile.

One of the main problems at present in order to
(accurately) calculate the friction force as a function
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Fig. 24. (Colour on-line) The fraction of the load carried by
the area of real contact (a) and the relative contact area (b),
as a function of the logarithm (with 10 as basis) of the product
ηv between the viscosity η and the velocity v for anisotropic
surfaces with the Peklenik numbers γ = 1/3, 1 and 3. In all
cases the angular average power spectrum is of the type shown
in fig. 9 with H = 1 and hrms = 0.3 µm. All curves have been
calculated using the full theory with shear thinning.

of the sliding velocity (Stribeck curve), in particular
in the mixed lubrication velocity region, is the rather
limited knowledge about the rheological properties of
thin confined lubricant films. We have demonstrated
that even bulk shear thinning may strongly influence
the friction, in particular in the transition region from
hydrodynamic to mixed lubrication. Some knowledge
about thin-film rheology has been gained from molecular
dynamics studies [29], and from measurements using the
surface forces apparatus [26, 38], but these studies do
not cover the whole range of film thickness and velocities
involved in most practical applications.
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Appendix A. Perturbation calculation of flow

factors

Here we derive an effective flow equation by integrating
out the short-wavelength roughness. We first extend the
result of Tripp by including the elastic deformations of
the solid walls induced by the pressure in the fluid (see
also [15]). We will assume that there is no real contact
between the two solids, i.e., a fluid film will separate the
solid walls everywhere.

Appendix A.1. Flow factors for 〈h2〉/ū2 ≪ 1

Assume that the surface roughness is given by the height
coordinate z = h(x). Let ū be the average separation be-
tween the surfaces. We assume first h/ū ≪ 1 and perform
a perturbation expansion in the small parameter h/ū. Let
us write the fluid pressure as

p = p0 + p1 + p2 + . . . , (A.1)

where p0 is the pressure to zero order in h (so that
p0 = 〈p0〉), p1 to first order in h and so on. Let u(x) =
ū+u1(x)+u2(x) denote the local surface separation, where
ū = 〈u〉 is the average separation (〈. . .〉 stands for ensem-

ble averaging), u1 = h+K̂p1 and u2 = K̂(p2−〈p2〉), where
h(x) denotes the surface roughness profile in the absence

of elastic deformations with 〈h〉 = 0, and K̂(p1 + p2) de-
note the elastic deformation displacements of the walls
due to the fluid pressure. Here K̂ is an integral operator

K̂p(x) =

∫

d2x′ K(x − x′)p(x′).

In wave vector space the right-hand side of this equation
becomes a product K(q)p(q), where from the theory of
elasticity K(q) = −2/qE∗, where E∗ = E/(1−ν2) (where
E is Young’s modulus and ν the Poisson ratio). Note that
〈u1〉 = 〈u2〉 = 0.

The fluid flow current is given by

J = − u3

12η
∇p +

1

2
uv.

Thus to second order in h we get

J = − ū3

12η
∇(p0 + p1 + p2) −

3ū2u1

12η
∇(p0 + p1)

−3(ū2u2 + ūu2
1)

12η
∇p0 +

1

2
(ū + u1 + u2)v. (A.2)

The ensemble average of this equation gives

〈J〉 = − ū3

12η
∇〈p0 + p1 + p2〉

−3ū2

12η
〈u1∇p1〉 −

3ū〈u2
1〉

12η
∇p0 +

1

2
ūv, (A.3)
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where we have used that 〈u1〉 = 〈u2〉 = 0. Using that

∇ · J = 0,

we get from (A.2) to zero order in h

∇2p0 = 0.

The first-order contribution gives

− ū3

12η
∇2p1 −

3ū2

12η
∇ · (u1∇p0) +

1

2
v · ∇u1 = 0. (A.4)

We define

p1(q) =
1

(2π)2

∫

d2x p1(x)e−iq·x

p1(x) =

∫

d2q p1(q)eiq·x

and similar for h(x). Substituting these results in (A.4)
gives

ū3

12η
q2p1(q) − 3ū2

12η
u1(q)(iq) · ∇p0 +

1

2
v · (iq)u1(q) = 0

or using that u1(q) = h(q) + K(q)p1(q),

p1(q) =
1

S(q)

(

3

ūq2
(iq) · ∇p0 −

6η

ū3q2
v · (iq)

)

h(q)

(A.5)
where

S(q) = 1− 3

ūq2
K(q)(iq) ·∇p0 +

6η

ū3q2
K(q)(iq) ·v. (A.6)

Thus we get

u1(q) = h(q) + K(q)p1(q) = h(q)/S(q). (A.7)

Next, note that

〈h(q)h(q′)〉 =

1

(2π)4

∫

d2xd2x′ 〈h(x)h(x′)〉eiq·x+iq′·x′

=

1

(2π)4

∫

d2xd2x′ 〈h(x − x′)h(0)〉eiq·x+iq′·x′

=

1

(2π)4

∫

d2xd2x′ 〈h(x − x′)h(0)〉eiq·(x−x
′)+i(q′+q)·x′

=

1

(2π)4

∫

d2xd2x′ 〈h(x)h(0)〉eiq·x+i(q′+q)·x′

=

1

(2π)2

∫

d2x 〈h(x)h(0)〉eiq·xδ(q + q′) =

C(q)δ(q + q′). (A.8)

Using this equation and (A.5) and (A.7) gives

〈u1∇p1〉 =

∫

d2qd2q′ (iq′)〈u1(q)p1(q
′)〉ei(q+q

′)·x

=

∫

d2q
C(q)

|S(q)|2
qq

q2
·
(

6η

ū3
v − 3

ū
∇p0

)

. (A.9)

Substituting this result in (A.3) gives

〈J〉 = A(ū)∇p̄ + B(ū)v, (A.10)

where p̄ = 〈p0 + p1 + p2〉, and where the 2 × 2 matrices
A and B can be written as A = −ū3φp/(12η) and B =
ū/2 + hrmsφs/2 with the flow factor matrices

φp = 1 +
3

ū2

(

〈u2
1〉 − 3

∫

d2q
C(q)

|S(q)|2
qq

q2

)

= 1 +
3〈u2

1〉
ū2

(1 − 3D̃), (A.11)

and

φs = − 3

ūhrms

∫

d2q
C(q)

|S(q)|2
qq

q2
= − 3〈u2

1〉
ūhrms

D̃. (A.12)

Here we have defined the 2 × 2 matrix

D̃ =

∫

d2q C̃(q)qq/q2

∫

d2q C̃(q)
,

where C̃(q) = C(q)/|S(q)|2 [15]. In deriving (A.10) we
have used that to order h2 one can replace terms like
h2∇p0 with h2∇p̄. Note also that

〈u2
1〉 =

∫

d2qd2q′〈u1(q)u1(q
′)〉 =

∫

d2qd2q′
〈h(q)h(q′)〉
S(q)S(q′)

=

∫

d2q
C(q)

|S(q)|2 =

∫

d2q C̃(q).

In the derivation above we have assumed hrms/ū ≪ 1.
However, it is likely that the final result is valid under
a more general condition, namely that the difference in
the corrugation of the substrate and the deformed bot-
tom surface of the block is small compared to ū; that
is, 〈u2

1〉/ū2 ≪ 1. For elastically very soft solids such as
gelatin, this condition may be satisfied under quite gen-
eral conditions.

Note that including the fluid-pressure–induced (short
wavelength) deformations of the surface roughness pro-
file is equivalent to using a deformed surface profile ob-
tained by replacing h(q) with h̃(q) = h(q)/S(q). The
resulting surface will be anisotropic with the asperities
deformed so that they are on the average elongated along
the fluid flow direction. We will refer to the surface rough-
ness anisotropy, resulting from the elastic deformations (at
the roughness length scale) induced by the fluid flow, as
dynamically induced anisotropy in contrast to the static
surface roughness anisotropy, which may prevail before
contact between the solids [15].

Appendix A.2. Integrating out length scales

Let us assume that the (effective) viscosity η depends on
the interfacial separation u(x) and the velocity v. Let us
write A = −u3/[12η(u, v)] and B = u/2. In this case the
fluid flow current is given by

J = A(u)∇p + B(u)v
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or on index form (sum over repeated indices is implicitly
understood)

Ji = Aij(u)∂jp + Bij(u)vj .

Thus to second order in h we get

J = A(ū)∇(p0 + p1 + p2)

+A′(ū)u1∇(p0 + p1) +

(

A′(ū)u2 +
1

2
A′′(ū)u2

1

)

∇p0

+

(

B(ū) + B′(ū)(u1 + u2) +
1

2
B′′(ū)u2

1

)

v. (A.13)

The ensemble average of this equation gives

〈J〉 = A(ū)∇〈p0 + p1 + p2〉

+A′(ū)〈u1∇p1〉 +
1

2
A′′(ū)〈u2

1〉∇p0

+

(

B(ū) +
1

2
B′′(ū)〈u2

1〉
)

v, (A.14)

where we have used that 〈u1〉 = 〈u2〉 = 0. Using that

∇ · J = 0,

we get from (A.13) to zero-order in h

Aij∂i∂jp0 = 0.

The first-order contribution gives

Aij∂i∂jp1 + A′
ij∂i(u1∂jp0) + B′(ū)∂iu1vj = 0. (A.15)

We define

p1(q) =
1

(2π)2

∫

d2x p1(x)e−iq·x,

p1(x) =

∫

d2q p1(q)eiq·x

and similar for h(x). Substituting these results in (A.15)
gives

Aij(−qiqj)p1(q)+A′
iju1(q)(iqi)∂jp0+B′

ij(iqi)u1(q)vj = 0,
(A.16)

or, using that u1(q) = h(q) + K(q)p1(q),

p1(q) = S−1(Aijqiqj)
−1

(

A′
ijiqi∂jp0 + B′

ijiqivj

)

h(q),
(A.17)

where

S(q) = 1 − K(q)(Aijqiqj)
−1

(

A′
ijiqi∂jp0 + B′

ijiqivj

)

.
(A.18)

Thus we get

u1(q) = h(q) + K(q)p1(q) = S−1h(q). (A.19)

Using (A.8) and (A.17) and (A.19) gives

〈u1∇p1〉 =

∫

d2qd2q′ (iq′)〈u1(q)p1(q
′)〉ei(q+q

′)·x

= −
∫

d2q
C(q)

|S(q)|2
qq

Aijqiqj
· (A′∇p0 + B′v) .

(A.20)

If we denote

F =

∫

d2q
C(q)

|S(q)|2
qq

Aijqiqj
(A.21)

then using (A.14) and (A.20) gives

〈J〉 =

(

A − A′FA′ +
1

2
A′′〈u2

1〉
)

∇p̄

+

(

B − A′FB′ +
1

2
B′′〈u2

1〉
)

v, (A.22)

where p̄ = 〈p0 + p1 + p2〉. In deriving (A.22) we have used
that to order h2 one can replace terms like h2∇p0 with
h2∇p̄. Note also that

〈u2
1〉 =

∫

d2qd2q′〈u1(q)u1(q
′)〉 =

∫

d2qd2q′
〈h(q)h(q′)〉
S(q)S(q′)

=

∫

d2q
C(q)

|S(q)|2 =

∫

d2q C̃(q).

If we assume A = −u3/(12η0) (where η0 is independent
of u) and B = u/2 then (A.22) takes the form

〈J〉 = − ū3

12η0
φp∇p̄ +

1

2
ūv +

1

2
hrmsφsv,

with the flow factor matrices φp and φs given by (A.11)
and (A.12), respectively.

In the calculation above we derived the pressure and
shear flow factors to first order in 〈u2

1〉/ū2. We can extend
the theory to higher order in 〈u2

1〉/ū2 by using a Renormal-
ization Group (RG) type of procedure. Thus we will elim-
inate or integrate out the surface roughness components
in steps and obtain a set of RG flow equations describing
how the effective fluid equation evolves as more and more
of the surface roughness components are eliminated.

Assume that after eliminating all the surface roughness
components with wave vector |q| = q > ζq0 the fluid
current (given by (1)) takes the form

J = A(ū)∇p + B(ū)v, (A.23)

where A and B are 2 × 2 matrices. We now add to ū a
small amount of roughness

h =

∫

(ζ−∆ζ)q0<q<ζq0

d2q h(q)eiq·x. (A.24)

This will result in an interfacial separation

u(x) = ū + u1(x) + u2(x),

where u1 = h+ K̂p1 and u2 = K̂(p2 −〈p2〉), where p1 and
p2 are the changes in the fluid pressure to first and second
order in h. Consider now the current

J = A(ū + u1 + u2)∇p + B(ū + u1 + u2)v.
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Following the derivation presented above we obtain to sec-
ond order in h the current (from here on we denote ū = u
for simplicity)

〈J〉 =

(

A(u) +
1

2
〈u2

1〉A′′(u) − 〈u2
1〉A′(u)MA′(u)

)

∇p̄

+

(

B(u) +
1

2
〈u2

1〉B′′(u) − 〈u2
1〉A′(u)MB′(u)

)

v,

(A.25)

where M = F/〈u2
1〉. Note that this equation has the same

general form as the original equation (A.23). If we denote
the matrices A and B in the original equation (A.23) as
A(u, ζ) and B(u, ζ) to indicate that these were the matri-
ces obtained after eliminating all wave vector components
of h with q > ζq0, then the new matrices obtained by
eliminating the additional roughness with wave vectors
between (ζ − ∆ζ)q0 < q < ζq0 become

A(u, ζ − ∆ζ) = A(u, ζ) +
1

2
〈u2

1〉A′′(u, ζ)

−〈u2
1〉A′(u, ζ)MA′(u, ζ), (A.26)

B(u, ζ − ∆ζ) = B(u, ζ) +
1

2
〈u2

1〉B′′(u, ζ)

−〈u2
1〉A′(u, ζ)MB′(u, ζ). (A.27)

Since ∆ζ is small we can expand the left-hand side to
linear order in ∆ζ. Furthermore note that

〈u2
1〉

∆ζ
=

1

∆ζ

∫

(ζ−∆ζ)q0<q<ζq0

d2q C̃(q)

=
1

∆ζ

∫ ζq0

(ζ−∆ζ)q0

dqq

∫ 2π

0

dφ C̃(q cos φ, q sin φ)

= ζq2
0

∫ 2π

0

dφ C̃(ζq0 cos φ, ζq0 sin φ) = −ζ−1H(u, ζ),

(A.28)

where

H(u, ζ) = −q2

∫

dφ C̃(q), (A.29)

q = q0ζ, q = q(cos φ, sin φ) and where the integral is from
0 to 2π. We also get

M =

∫

dφ C̃(q)qq(Aijqiqj)
−1

∫

dφ C̃(q)
. (A.30)

In these equations C̃ = C(q)/|S(q)|2 with

S(q) = 1 − iK(q)(Aijqiqj)
−1q · (A′∇p0 + B′v) , (A.31)

with K(q) = −2/qE∗. From (A.26), (A.27) and (A.28) we
get

∂A

∂ζ
=

[

1

2
A′′(u, ζ) − A′(u, ζ)M(u, ζ)A′(u, ζ)

]

ζ−1H(u, ζ),

(A.32)

∂B

∂ζ
=

[

1

2
B′′(u, ζ) − A′(u, ζ)M(u, ζ)B′(u, ζ)

]

ζ−1H(u, ζ).

(A.33)

These equations together with (A.25) show how the equa-
tion for the flow current evolves as more and more rough-
ness is included in the analysis. The macroscopic flow cur-
rent (corresponding to ζ = 1) is given by (A.23) with
A = A(u, 1) and B = B(u, 1). The appropriate boundary
condition to be used when integrating (A.32) and (A.33)
are that at the shortest length scale (corresponding to
the magnification ζ1) A(u, ζ1) = −u3/[12η(u, v)] and
B(u, ζ1) = u/2. In addition we need boundary conditions
along the u-axis. These are that A = B = 0 for u = 0
and A = −u3/[12η0] and B = u/2 as u → ∞, since for
very large separation the roughness will have a negligible
influence on the fluid flow.

Since the magnification ζ may span many decades in
length scale (say from nanometer to mm) it is for numeri-
cal purposes convenient to introduce µ = log(ζ). Thus if ζ
varies from 1 to, say, 106, µ will vary from 0 to ≈ 14. We
now consider all our fields as a function of µ rather than
ζ and get

∂A

∂µ
=

[

1

2
A′′(u, µ) − A′(u, µ)M(u, µ)A′(u, µ)

]

H(u, µ)

(A.34)

∂B

∂µ
=

[

1

2
B′′(u, µ) − A′(u, µ)M(u, µ)B′(u, µ)

]

H(u, µ).

(A.35)

If we neglect elastic deformation (i.e., K(q) = 0) and
assume that the rough surface has isotropic statistical
properties, then Aij = δijA(u, ζ) and Bij = δijB(u, ζ).

Thus from (A.30) Mij = δij [2A(u, ζ)]−1 and

H = −q2

∫

dφC(q) = ζ
d

dζ
〈h2〉ζ ,

substituting these relations into (A.32) and (A.33) gives

∂A

∂ζ
=

1

2

[

A′′(u, ζ) − [A′(u, ζ)]2

A(u, ζ)

]

d

dζ
〈h2〉ζ (A.36)

∂B

∂ζ
=

1

2

[

B′′(u, ζ)−A′(u, ζ)B′(u, ζ)

A(u, ζ)

]

d

dζ
〈h2〉ζ . (A.37)

As shown in ref. [14] it is easy to solve these equations
using perturbation theory to arbitrary order in the surface
roughness amplitude h. Since A → u3/(12η0) and 〈h2〉ζ →
0 as ζ → ζ1 we can write

A(u, ζ) = u3/(12η0) + a1(u)〈h2〉ζ + a2(u)〈h2〉2ζ + . . . .
(A.38)

Since B → u/2 and 〈h2〉ζ → 0 as ζ → ζ1 we can write

B(u, ζ) = u/2 + b1(u)〈h2〉ζ + b2(u)〈h2〉2ζ + . . . . (A.39)
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Appendix B. Solution algorithm

Equations (30), (32), (36) (for ζ = 1), (40) and (41) have
been solved (numerically) with two different approaches
depending on the lubrication regime (i.e. the sliding veloc-
ity) corresponding to the calculation contact conditions.
For our problem we adapted the BLP and MHLS algo-
rithms successfully applied in ref. [32] for the resolution
of the mixed-elastohydrodynamic ball-on-flat lubrication
problem. Two different numerical procedures are required
due to the different analytical character of the system of
equations under investigation at different lubrication con-
ditions (see also ref. [32]). The computational domain is
discretized with a constant grid size δx. Both numerical
approaches require the discretization of the elastic inte-
gral (40)

ūi = u0 + fi +
∑

h

(

Dh
i − Dh

0

)

ph, (B.1)

where ūi is the separation at the grid point (i), u0 is the
central separation, fi is the undeformed shape of the con-
tact and Dh

i is the discrete elastic kernel, with the trans-

lational invariance and symmetry property Dh
i = D

|h−i|
0 .

We use the convergence criteria

N1/2

√

∑

i

(

sn
i − sn−1

i

)2

∑

i

∣

∣sn−1
i

∣

∣

< εs,

where sn
i is ūn

i or pn
s,i or pn

f,i (in this appendix B we denote

pfluid as pf and psolid as ps).

Appendix B.1. BLP for boundary lubrication

In the boundary regime, the effect of the fluid on the con-
tact behavior is almost negligible. Thus, the solution of
the dry contact problem will dominate the solution of the
complete problem. In this case, the main algorithm loop
is shown in fig. 25.

The BLP is an iterative contact solver (m-index loop)
connected to a successive under-relaxation (SUR) process
for the numerical convergence error dumping. To initialize
the calculation, a Hertzian contact pressure, or a solution
from a different velocity run can be used. In each itera-
tion, the fluid solver updates the fluid pressure with the
actual approximation [pm

f,i]
′ from the previous separation

ūm−1
i . After convergence check and under-relaxation of

the fluid pressure (with αf in the range = 10−1 to 10−3,
the higher for smaller roughness), the load conservation
is applied by rescaling fluid and solid pressure and up-
dating the central separation. With the scaled pressure
fields, the elastic integral is performed, followed by a con-
vergence error check and under-relaxation of the actual
separation approximation (with αu in the range = 10−1

to 10−3, the higher for smaller roughness). Finally, from
the relaxed separation, the solid pressure is updated and
under-relaxed (αc = 0.5), and the load conservation is

[        ]
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Fig. 25. BLP main loop.

performed again by scaling the pressure fields. In our cal-
culations, a convergence separation error of 10−5 and a
convergence fluid pressure error of 10−4 were used.

The fluid solver (the l-index loop, inside the m-index
loop) is an iterative solver based on the finite difference
method to discretize (30), by means of central second-
order difference for both sides of the equality. The error
relaxation is achieved by Gauss Seidel (GS) sweeps

Ei

[

pl
f,i

]′
= −

(

Ai

[

pl
f,i−1

]′
+ Bip

l
f,i+1

)

+ Li,

if pl−1
f,i > 0, or [pl

f,i]
′ = 0 if pl−1

f,i ≤ 0. Here pl−1=0
f,i = pm−1

f,i .

For SUR

pl
f,i = pl−1

f,i + α
(

[

pl
f,i

]′ − pl−1
f,i

)

,

where α is generally in the range 0.6 to 0.8. The l-index
loop is stopped after reaching a convergence error of 10−7.
The calculation of frictional fluid stress is trivial. For
the asperity-asperity interaction numerical approach, see
ref. [34].
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Fig. 26. MHLS main loop.

Appendix B.2. MHLS for mixed and hydrodynamic
lubrication

In the mixed and hydrodynamic regimes the asperities
contact plays a minor role because of the increased sep-
aration due to the higher fluid pressure. In this case the
BLP algorithm is not able to relax the residuals, and the
BLP procedure starts to diverge as soon as the fluid pres-
sure becomes of the same order as solid pressure. This is a
consequence of the non-linear coupling between the fluid
pressure and the separation in the lubricant equation (30),
that is not adequately handled in the BLP method. We
now briefly describe the MHLS algorithm (see fig. 26)
which is able to handle this situation.

The algorithm is an iterative solver of the Reynolds
equation coupled with the asperity interaction problem
reformulated as a Fredholm problem. For the mixed and
hydrodynamic range, the complete problem solution is
driven (or dominated) by the fluid equation. For large sep-
aration (hydrodynamic range), the MHLS becomes simply
an elastohydrodynamic lubrication (EHL) solver. The al-
gorithm requires input solution fields (e.g. from a previ-
ously obtained BLP solution, or simply using a Hertzian-
like fluid pressure) in order to initialize the system. The
relevant features are the Reynolds sweep algorithm (RSA),
the central separation updater (CSU) and the Fredholm
solver (FS).

The RSA updates the fluid pressure solution by one-
sweep-relaxing of the residuals of the Reynolds equation.
By considering the general m-iteration, the residuals of
the fluid equation take the form

Lm
i = φ̄m

s,i+1ū
m
i+1 − φ̄m

s,i−1ū
m
i−1

−
[

Am
i pm

f,i−1 + Bm
ij pm

f,i+1 + Em
ij pm

f,i

]

, (B.2)

where (30) was discretized by means of second-order cen-
tral difference scheme for both sides of the equality, and we
have defined φ̄s = 1+ hrms

ū φs. The coefficients of (B.2) are

Am
i =

(

φpū
3
)m

i−1/2

2

λδx
, Bm

i =
(

φpū
3
)m

i+1/2

2

λδx
,

Em
i = − 2

λδx

[

(

φpū
3
)m

i−1/2
+

(

φpū
3
)m

i+1/2

]

(B.3)

and implicitly depend on the fluid solution (through the
elastic deformation coupling and the flow factors sepa-
ration dependence). λ = 6η0v0. The fluid pressure is up-
dated by a Newton-Rapson (NR) step

∑

a

∂Lm−1
i

∂pf,a

(

pm
f,a − pm−1

f,a

)

= −Lm−1
i ,

otherwise, if pm
f,a ≤ 0 then pm

f,a = 0.

(B.4)

Observe that (B.4) cannot be solved with direct methods
(a simple matrix inversion does not account for the cavita-
tion condition, that is, it will solve a fluid equation that is
not valid in all the domain). For this reason, the domain is
divided into two zones, namely a high fluid pressure zone
C1 and a cavitation zone C2.

Equation (B.4) is computationally simplified by con-
sidering the singularity of the elastic kernel,

−Lm−1
i =

∑

a

∂Lm−1
i

∂pf,a

(

pm
f,a − pm−1

f,a

)

, (B.5)

a ∈ [i − 2, i + 2] , i ∈ C1,

and

−Lm−1
i =

∂Lm−1
i

∂pm−1
f,i

(

pm
f,i − pm−1

f,i

)

, (B.6)

i ∈ C2.

A SUR is applied at the end of the relaxation sweep,
with relaxation factor of order 0.1.

The CSU updates the central separation

∆ūm
0 = −αc∆Fm if ∆Fm

c · ∆Fm ≥ 0,

∆ūm
0 = 0 otherwise,

(B.7)

where

∆Fm = FN/L − δx

∑

i

pm
i ,

∆Fm
c =

∑

i

pm
i −

∑

i

pm−1
i ,

and where αc is in the range 10−2 to 1 (e.g., αc can be
put equal to ūn−1

0 /(FN/L) when starting from a previous
velocity step solution). Equation (B.7), without the logical
condition, is widely used by the EHL community to close
the system of equations. However, the inequality condition
introduces a logical damping into the convergence history
of the contact solutions, and this has been shown to largely
improve the convergence speed of the calculation [32].
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After the update of the central separation, the shape
of the contact is determined by solving the coupled elastic
and solid contact equations as a Fredholm type of inte-
gral equation. The FS solves the latter by a NR method.
Considering that ūi > 0, (B.1) can be rewritten as

0 = gi = −1 +
ū0 + fi +

∑

h

(

Dh
i − Dh

0

)

[pf,h + ps (ūh)]

ūi
.

(B.8)
By considering the form of the elastic kernel, the Jacobian
J can be approximated

[J]
l
i ≈ δl

i

∂gi

∂ūl

and so

ūl
i = ūl−1

i

⎡

⎢

⎣
1 + αfs

gl−1
i

1 + gl−1
i −

(

D0
0 − Di

0

)

[

∂ps

∂ū

]

ūl−1

i

⎤

⎥

⎦
,

i 
= 0,

where αfs is generally between 0.1 to 1 (the higher value
for the hydrodynamic region, where gn

i → 0). In our calcu-
lations, a target convergence error for fluid pressure field
is 5 × 10−7, with an average gi of 10−6. After the update
of separation, the loop restarts from RSA.
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