
Lucasian Criteria for the Primality of N=h2n-\

By Hans Riesel

Abstract. Let v, = v\-i — 2 with i/0 given. If vn—2 = 0 (mod N) is a necessary and sufficient

criterion that N = h-2" — 1 be prime, this is called a Lucasian criterion for the primality

of N. Many such criteria are known, but the case h — 3A has not been treated in full

generality earlier. A theorem is proved that (by aid of computer) enables the effective

determination of suitable numbers v0 for any given JV, if h < 2". The method is used on all

JV in the domain h = 3(6)105, n á 1000. The Lucasian criteria thus constructed are ap-

plied, and all primes N = h-2" — 1 in the domain are tabulated.

Introduction. Let u0 ^ 3 be a given integer, and define uv = m?_i — 2 for v = 1,

2, 3, • • •. The numbers u, are said to form a Lucasian sequence with its first element

= Mo- If h is odd and if 2" > h, then necessary and sufficient criteria for the primality

of N = h -2" — 1 exist, and are known for many values of h and n. These criteria

are of the following type : For a suitable value of wo, the number N is prime, if and

only if un-2 = 0 (mod N). If h = 1, the value u0 = 4 will fit for all odd values of

n (Lehmer [2]), and u0 = 3 will fit for all n = 3 (mod 4), (Lucas [3]). If h = 3, the

value Mo = 5778 will fit for n = 0, 3 (mod 4) (Lehmer [2]). If h = 6a ± 1 and 3 i N,
the value u0 = (2 + a/3)a 4- (2 - V3)A will fit for all n (Riesel [4]).

The mentioned necessary and sufficient criteria for the primality of the numbers

N = h-2n — 1 are said to be of Lucas' type. The importance of these criteria lies

in the fact that they are the most efficient primality criteria hitherto deduced.

Apart from the results, mentioned above, and some other similar results, like-

wise of limited generality, nobody seems to have undertaken a systematic study of

the problem of finding a Lucasian criterion for a given combination of h and n. This

is, no doubt, due to the large volume of computation needed in trying out different

possibilities for u0. By use of electronic computers, however, this is a feasible task,

and the objective of this paper is to show how it can be done. Finally, we have

used the technique to find all primes N = 2>A ■ 2n — 1 for all odd A ^ 35 and all

n g 1000.

Known Results, Needed in our Proofs. We take the following well-known

Theorems 1—2 from the arithmetical theory of quadratic fields K(\/D) (see, e.g.,

Hardy and Wright : Theory of Numbers) for granted :

Theorem 1 (Fermat's Theorem in K(\/D)). If a is an integer in the quadratic

field K(VD), if p is an odd rational prime, and if (a, p) = 1 in K(\/D), then

oT1 - 1 (mod p) ,    if (D/P) = 1 ,

av+i = aâ (mod p) ,    if (D/P) =  -1 .

(D/P) means Legendre's symbol, and D is a square free integer.

Theorem 2. // a natural number K exists, such that

aK = — 1 (mod p) ,

then a smallest natural number fc exists, such that
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a   = —1 (mod p) ,

and

K = fc • (an odd number).

The smallest natural number e, such that

a" = 4-1 (mod p) ,

is e = 2k.

Two Theorems, Basic for Lucasian Criteria. We now proceed to prove the follow-

ing two theorems :

Theorem 3. If N is a prime, (D/N) = —1,

(a + bVD)2               . /An a2 - b2D
a =-'- ,   and    (r/N)-= -1 ,

then

aarwi%m _i(modAr).

a, b and r are rational integers. If D = 1 (mod 4), however, a and b may both be odd

integers times 1/2. It is no loss to omit this possibility, since a multiplication of a, b,

and r1/2 = (a2 — 62D)1/2 by the same constant does not change the theorem.

Proof.

aor+»/i = (a + WD)*+i/rv+»n

m (a 4- bVD)ia - bVD)/(r(N-1)/2-r) = a  ~hD (r/N)

s -1 (mod TV) ,

according to Theorem 1.

Theorem A.IfN = h-2n—\,h<2n,n'^2,h is odd, a is an integer of K(\/D)

of the form a = (a + by/Df/\a2 - WD\, (a, N) = 1 in K(y/D), and

„<*+«/* s _i (mod TV),

then N is a prime.

Proof. Let p be an arbitrary prime factor of N. Then obviously,

„CWWi. -l(modp).

According to Theorem 2, then (N + l)/2 = h •2n~1 = k-u, where fc is the smallest

exponent > 0 with ak = — 1 (mod p), and u is an odd integer. Thus fc = 2n_1 5,

where 8 divides h. The smallest e > 0 with ae = 1 (mod p) will then be e = 2fc =
2n-5 ^ 2n.

Now, Theorem 1 gives

a(p-l)/2  =   (o + 6VD)P-7|a2  _  6*fl|(P-I)/l

55 O"2 ~pb2¿)|) (m0d P) '   Íf(0/P) = +!

and
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(P+D/2
a -fffraí^f551) *"*'>■   «CD«-1.

By squaring, we get

a'*1 s 1 (mod p) .

Now, since e ^ 2", we find that p ± 1 S: 2n for any prime factor p of A/. The smallest

possible p would then be p = 2n — 1. Since N is no square (N = 3 (mod 4), since

n è 2), a factorization of TV would yield

N = p-q^ p(p + 2) ^ (2n- 1)(2"4- 1) = 27!-2"- 1 > A-2n- 1 = N ,

a contradiction. Thus N is prime.

Lucasian Criteria for Primality. The Theorems 3 and 4 together form the basis

for the both necessary and sufficient Lucasian prime-criteria for numbers of the

form h ■ 2n — 1, if A is odd and < 2", and n ^ 2. Suppose that we have found num-

bers D, a, b, and r = |a2 — b2D\, such that all the conditions in Theorem 3 are ful-

filled. Then, since

/   Ä-2«    ,        —Ä-2sx2 fc-28+1    ,        -A-2»+1     ,    r,
(a       4- a        )    = a + a 4-2

we find the recursion formula

if we choose

Furthermore,

U a-i-i  — Us Z

h-is -h-2s
Us = a       -\- a

h-in—2 _ft.2«-2
_2 = a ~r a

= a-*-2"-V-2"-14-l)=0(mod7V)

will be a necessary and sufficient condition for the primality of AT", since a-*'2" is a

unit of K(VD). (Nia) = aa = (a2 - b2D)2/\a2 - b2D\2 = 1), and so a and or*'2"-2

are units of K(\/D). So, since «0 = a* 4- a-*, we get the following:

Theorem 5 (Lucas' Criteria for A -2" — 1). Suppose that n^2,h is odd < 2",

N = h ■ 2" - 1, r = |a2 - 62Z)| with square free D,a= (a 4- bVD)2/r, iD/N) = -1,

and (r/A/") (a2 — b2D)/r = — 1. TAen a necessary and sufficient condition that N shall

be prime is that

un-2 = 0 (mod N) ,

if u, = m2_i — 2 with Mo = ah 4- a-*.

Remark. It would be possible to give a weaker condition than A < 2n in the same

way as is shown in [4].

Since a is a unit of Ki^/D), a = e', where s = 1, 2, 3, • • •, and e is a fundamental

unit of Ki-\PD). If e has a representation of the form e = (a + b^/Dy/r, s must be

odd, since an even number s in this case would give already aw+1) /4 = — 1 (mod N)

in Theorem 3, and thus Un-z — 0 (mod N). The simplest choice of a is thus a = e, if

e = (a 4- VD~)2/r, and a = «2, if t lacks such a representation.
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Table 1.

Values of D and representations of the fundamental units e = (a -\- bVD)2/r in
K(VD) for vi = e 4- e_1 ^ 100. In some cases ê is used instead of e.

v\ D (a2 - b2D)/r Vi I) a b      r        (a2 - b2D)/r

3
4
5

9
10
11
12
13
15
16
17
19
20
21
22
24
25
20
27
28
29
30
31
32
33
35
36
37
38
39
40

43
44

.)
3

21
2

15
77
6

13
3.-)

1
1
3
1
3
7
2
3
5

165 11
221 13

7 3
285 15
357 17

11 3
437 19
30 5

143 11
69 9
42 6
29 5

195 13
93 9
14 4

957 29
255 15

1085 31
1221 33
323 17

1365 35
10 3

1517 37
399 19

41 1677 39
42 110 10

205 15
483 21

45 2021 43
46 33 6
48 23 5
49 2397 47
50 39 6
51 53 7
53 2805 51

4
2

12
1
6

28
2
4

10
44
52
2

60
68
2

76
5

22
12
6
4

26
12
2

1 116
1 30
1 124
1 132
1 34
1 140
1 1
1 148
1 38
1 156
1
1
1
1 172
1 3
1 2
1 188

10
20
42

3
4

-I,*2

-]

_ ■

-1,

+

+

-1

+

-1

+

+
+

1 204

■1, ê
-1

65
66

54 182 13
55 3021 53
56 87 9
57 3245 55
58 210 14
59 3477 57
60 899 29
61 413 21
63 3965 61
64 1023 31

469 21
17 4

67 4485 65
68 1155 33
69 4757 67
70 34 6
71 5037 69
72 1295 35

213 15
38 6

75 5621 73
76 1443 37

237 15
95 10

1599 39

1

73
74

77
78
80

105 10
85 9

1763 41
7221 83
462 21

7565 85
88 215 15
89 7917 87
90 506 22
91 8277 89
92 235 15
93 8645 91
94 138 12
95 9021 93
96 47 7
97 1045 33
99 9797 97

100   51 7

82
83
84
85
86
87

13
1 212

6
220

14
228
58
28

1 244
62
28

1
1 260

66
268

2
1 276

70
12
2

1 292
74
12
5

78
81 6557 79 1 316

5
4

82
332
21

1 340
10

348
22

356
10

1 364
6

372
2

44
1 388
1   2

+

-1,

+

4-

+

+

+

+
+

We thus find that, given A and n, the "only" thing to do is to try different values

of D and check if the fundamental unit e (or sometimes c2) of K(y/D) fits into the

conditions of Theorem 5. Having found D and a, we can calculate uQ (or, if N is

large, preferably u0 (mod N)) by using the well-known recursion for vv = a" 4- a.-":
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Do = 2 ,    Vi = a 4- a~l ,    vy = (a + aTX)vy-i — tV-2 .

The Choice of D and v\. As usual in problems with conditions on (D/N), it turns

out that a certain value of D will fit for values of n in certain arithmetic series,

provided A is fixed. It is possible to state all the results in this form, but it is a rather

complicated and impractical way of describing the situation. Instead one can try

to find a D for each combination of A and nina certain region.

In which order are the different D's to be tested? Since nothing in particular is

known about the D's in the general case, the author chose to try the values of D in

increasing order of magnitude for the numbers vi = a + a~l. This gives the smallest

possible values of uo. However, it was then first necessary to find a connection be-

tween D and V\. This is simple. Since vi = a -p a-1, we find a2 — Via 4-1 = 0, and

D = the square free part of (vP — 4). For the different values of D we then find the

representations of e = (a + b\/D)2/r, if any, in [1]. The result is given in Table 1

for all vi 5Í 100. The values of vi = x2 — 2 (resembling a2 4- a~2) and vi = xz — 3a;

(resembling a3 + a~3) and so on, are omitted from Table 1.

The following values of D are lacking representations of e of the form

e = (a + by/Df/r-.D = 5, 2, 13, 29, 10, 53, 17, and 85 (if vi ^ 100). This fact is, in
Table 1, indicated by "e2" in the column for (a2 — b2D)/r. These cases are particu-

larly interesting, since r is then 1 or 4, and (r/A7) = 4-1 for all values of AT". They

are also the only cases (in the table) where (r/N) is always = -f-1 (r is a perfect

square). Furthermore, (a2 — b2D)/r = — 1 in these cases, and so the condition

in Theorem 5 is fulfilled for all N. Thus each of these particular values of D gives a

Lucasian criterion for N, if only the one condition, (D/N) = —1, is fulfilled. It

thus makes it a little less complicated in these cases to write down, in form of dif-

ferent arithmetic series, those combinations of A and n for which the corresponding

value of D can be used to construct a Lucasian criterion for N. For D = 5, e.g.,

we find

if and only if

h-2" - 1 = ±2 (mod 5)

or

h-2n = 3,4 (mod5) .

The following combinations of h and n satisfy one of these congruences :

A = 1 (mod 5) and n = 2, 3 (mod 4)

h = 2 (mod 5) and n = 1, 2 (mod 4)

h = 3 (mod 5) and n = 0, 3 (mod 4)

h = 4 (mod 5) and n = 0, 1 (mod 4).

To avoid unnecessary testing we may remark that D cannot be any divisor of

2A, because (D/N) = 4-1 in these cases. A preliminary search for small prime factors

of AT" is worthwhile, since such a discovery obviates the necessity of testing N for

primality.
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The Computations. According to the preceding scheme, the author has run a

program to find a possible D for every N = A -2n — 1 in the range h = 3(6)105 and

n ^ 1000. (As has already been pointed out in the Introduction, vi = 4 will fit for

all other odd values of A, unless 3|AT.) We succeeded in finding a D or a small factor

for every N in this range. The largest value of vi needed was vi = 57 (for A" =

63.23m _ !)_

Table 2.

All primes 3A-2" - 1 for n g 1000.

3A n

3 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306,
324, 391, 458, 470, 827

9 1, 3, 7, 13, 15, 21, 43, 63, 99, 109, 159, 211, 309, 343, 415, 469, 781, 871,
939

15 1, 2, 4, 5, 10, 14, 17, 31, 41, 73, 80, 82, 116, 125, 145, 157, 172, 202,
224, 266, 289, 293, 463

21 1, 2, 3, 7, 10, 13, 18, 27, 37, 51, 74, 157, 271, 458, 530, 891
27 1, 2, 4, 5, 8, 10, 14, 28, 37, 38, 70, 121, 122, 160, 170, 253, 329, 362,

454, 485, 500, 574, 892, 962
33 2, 3, 6, 8, 10, 22, 35, 42, 43, 46, 56, 91, 102, 106, 142, 190, 208, 266,

330, 360, 382, 462, 503, 815
39 3, 24, 105, 153, 188, 605, 795, 813, 839
45 1, 2, 3, 4, 5, 6, 8, 9, 14, 15, 16, 22, 28, 29, 36, 37, 54, 59, 85, 93, 117,

119, 161, 189, 193, 256, 308, 322, 327, 411, 466, 577, 591, 902, 928,
946

51 1, 9, 10, 19, 22, 57, 69, 97, 141, 169, 171, 195, 238, 735, 885
57 1, 2, 4, 5, 8, 10, 20, 22, 25, 26, 32, 44, 62, 77, 158, 317, 500, 713
63 2, 3, 8, 11, 14, 16, 28, 32, 39, 66, 68, 91, 98, 116, 126, 164, 191, 298,

323, 443, 714, 758, 759
69 1, 4, 5, 7, 9, 11, 13, 17, 19, 23, 29, 37, 49, 61, 79, 99, 121, 133, 141, 164,

173, 181, 185, 193, 233, 299, 313, 351, 377, 540, 569, 909
75 1, 3, 5, 6, 18, 19, 20, 22, 28, 29, 39, 43, 49, 75, 85, 92, 111, 126, 136,

159, 162, 237, 349, 381, 767, 969
81 3, 5, 11, 17, 21, 27, 81, 101, 107, 327, 383, 387, 941
87 1, 2, 8, 9, 10, 12, 22, 29, 32, 50, 57, 69, 81, 122, 138, 200, 296, 514, 656,

682, 778, 881
93 3, 4, 7, 10, 15, 18, 19, 24, 27, 39, 60, 84, 111, 171, 192, 222, 639, 954
99 1, 4, 5, 7, 8, 11, 19, 25, 28, 35, 65, 79, 212, 271, 361, 461

105 2, 3, 5, 6, 8, 9, 25, 32, 65, 113, 119, 155, 177, 299, 335, 426, 462, 617, 896

For each N without a small prime factor, the prime character was established

by a second program, which checks un-2 = 0 (mod N). For A ^ 3A, h g 151, and

n ^ 1000, this work was recently done by Williams and Zarnke [5]. For A = 3(6)105,

and n ^ 1000, the author did the corresponding work, using the previously found

values of »i. The results are given in Table 2. Comparing our results with those of

Robinson [6], we incidentally found some large prime twins,* namely

* Editorial note: The two largest pairs here, 9-2211 + 1 and 45-2m ± 1 were both found by

Emma Lehmer in 1964. While they have not been previously published, they are known to a

number of investigators.
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9-243±l,     9-263±l,    9-2211±l,

45-2189±l,    75-243±l,   and   99-266±l.

The computing time was approximately 10~8 n3 seconds to test A • 2n — 1 on an

IBM/360 model 75 computer.

In analogy to the Cullen numbers (primes of the form n -2n -f- 1), we may note

that n -2" - 1 is prime for n = 2,3, 6, 30, 75, and 81 for n g 110.
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