
http://wrap.warwick.ac.uk/

Original citation:
Ashcroft, E. A. and Wadge, W. W. (1976) Lucid, a nonprocedural language with iteration.
Coventry, UK: Department of Computer Science. (Theory of Computation Report). CS-
RR-011

Permanent WRAP url:
http://wrap.warwick.ac.uk/46307

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46307
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF

COMPUTATION

REPORT

lof esb

No. tl
Luoid,

a nonprocedural language
with iterationf ollowed b9

o9 soon qs

ouFput

Pepa rtrnen t of Computer Sc ience
tln ivers ity of tJarwi ck
c0r",fllTRY cvA 7AL
l:ll0Lf ilD.

Apnil 1975

Lucid, a nonprocedural language with iteration.

by

E.A. As hcroft
Computer Science Department

University of Waterloo
Water'loo, 0ntario, Canada

and

l^1.W. Wadge

Computer Science DePartment
University of Warwick

Coventry, l.lanvickshire, England

* This wgrk was supported by the Canadian l'lational
Research Council and the U.K. Science Research Council.

Abs tra ct

Lucid is a forrnal systenrin vth'ich programs can be vtri tten and

proofs of progranis carried out. Tlre proofs are particularly easy to

follow and straightforivard to produce because the statements in a Lucid

proEram are simply axionts fr"onr which the proof proceeds b)''(almost)

conventional logical reasoning, with the help oF a fet'l axjoms and

rules of inferettce for the special Lucid functions.

As a programiiti ng l anguage, Luci d i s unconventional because ,

among other things, the order of statentents js irrelevant and assignment

statements are equations. Neverthelessr Lucid programs need not look

nruch difierent than iterative programs in a conventional structured

programming language using assignnent and cond'it'ional statements and ioops

CR .qate-gg_l3: : 5 .24, 5 .21 .

!!gy__pllrgses: progran proving, formal systems, semantics, iteration,

structured progranimi ng.

*ji'

o. !rilo{!:!-gL
There has be en tnucit rvork done recently on tcchni ques of progrant

proving, but nevertheless nost progranrners still makc little if any effort

to ver j fy thei r proErams forin,'t11y. Perhaps the ma jn obstacle j s the fact

that tttosl. pncaramming languages are not rmathematicalr despite thejr use o'F

some mathematical notation. This means that in proving a program jt js

neccssary either to translate the program into mathematjcal notation (e.g.

into the relatjonal calculus) or to treat the program as a static object to

which tnathenratical assertjons are attached. In ejther case, the larrguage

in rvhich assertions and proofs are expressed is clifferent (often radically

different) fronr the language in which programs are lvritten. Moreover, vrildly

nonnratheniatical features such as pointer variables and side effects make it

even nrore difficult for proofs to be completely formal.

Our ajm is to overcome this obstacle with a single fornal s5'stem

called Luc'id in which programs can be written and proofs carrjed out. A Lucid

program carr be thought of as a collect"ion of commands descrjbing an algorithm

in ternis of assignments and loops; but at the same tjme Lucjd'is a strictly

denotational language, and the statenents of a Lucjd program can be interpreted

as true nathenratjcal assert1ons about the results and effecis of tne progranr.

For exarnple, arr assignment statement in Lucr'd can be considered as a state-

ment of iclentjty, an equation. A correctness proof of a Lucid program procceds

di rectly f ronr the program text, the statements of thc program bei ng the ax'ior:ls

f rorn whi clr tlre properti es of the progranr are Cer j vcd, 1.he rul es of i nference

being basjcally thosc of fjrst order logic vrith quancifjers. Furthermorc, jn

Luc j d r^Je are not res tri cted to provi flg only part'ia1 coi^rectness or on 1y

termjnatjr:n or only equiva'lencc of programs - Lucid can be used to express nany

types of reasoning.

-2-

Formal deta'ils of the syntax and semant'ics of Lucid, and of the rules

of inference and thejr formal justificatjon are given in tl]. In this paper

we vrjll describe the language and rules of inference informal'ly, outljne a

sample proof and also indicate vrays of implementing the language. (Several

imp'lementat'ions have been completed, and others are under development.)

I . General Prj nc'iplel

There a'lready exist formal mathemati cal systems vrhi ch can serve as

programming ianguages. For example, the fol lowing recursiori equations

root(n) = s(0,.l ,n)

s(j,j,n) = if j>n then j else s(i+l ,j+2i+3,n)

can be cons'idered both as a recipe for computing the inieger square root of

n and also as assertjons about the partial functjons root and s. From the

program, considered as a set of assertions, t^le can forma'liy derive the

asserti on

root(n)2 < n & n . (root(n)+t)2.

The prob'lem is that most progranirners find tlie purely recurs'ive

approach too restrictjve and are therefore iikely to use iteration to express

the same square root algorjthm, in an "imperative" language such as F0RTRAII:

READ , N

I=0
J-l

l0 IF(J.GT.N) G0 T0 20

J=J+2*l+3
l=l+l
G0 T0]0

20 t,Jt{lT[,I
ErlD

-3-

Al though statetnents I i ke I = 0 are suggesti ve of mathemati cs , the pFogrdm cls

a wliole cannot be consjdered as a set of assert'ions because of statements

such as I = I{'l and G0 T0
.l0,

vthich are nonsense or meaning'less as mathematics.

The tvto mai n nonntathentat'ical features 'in programni ng i arrguages arc

transfer and assignment, but the d'ifficulty in eljnrinat'ing theni is the fact

that iteratjon seerns to nrake essential use of these features, and programners

find them 'natural'. So if rve are to keep 'iteratjon we must fjnd a way of

nraking assignment and control flow mathematica'l'ly nespectable.

Lucid does this by explic'it1y distjnguishing betvreen the initjal

value of a variable in a loop (JU:.! i), the value of the variab'le during the

current iteration (simply i) and the value on the next'iteration (lg& t).

In addition, Lucid has the binary operation g:^:gQt_{s, which extracts values

fron a 1oop. In Luc'id the square root program js

(l) N=Jitt!input

(2) Ji€!l=0
(3) Ju:.!J=t
(4) [eI!J=J+2xl+3
(5) rc$i=I+l
(6) output = I g,l_g-gpn as J>l'l

The meaning of the program, considered as a collectjon of comnrands, is fairly

c'lear: statement (l) inputs i'I, statements (2) and (3) ini tial'ize the loop

variablcs I and J, staterirents (4) and (5) , vrhen executed repeatedly, generate

successive values of the 10op rT6piables, and statenrent (6) ternrjnates the loop

and outputs the result. The loop is impljcit in the usc of firs! and 1ext.

-4-

But vre can also consider the statements as true matheniatical

assertions about'the histories of the variables. For example, statement

(4) merely asserts that at each stage in the history of i the value of I

at the next stage is the current value of I p'lus one. l4ore prtrcisely, we

define a history (or even better, a "world-l'ine") to be an infinite sequence,

i.e. a function with domain rV(=i9,.l,...]). The variables and expressions jn

Lucid folnaily denote not single data objects, but ratherinfjnite sequences of

data objects. The i-th value of the sequence which, say, "X" denotes can be

thought of as the value which X lvould have on the j-th jteration of the Ioop for

X, if the program 'in rvhich X occurs were executed as a set of commands.

If the variables and expressions are to formally denote sequences,

then symbo'ls I j ke il+rr and "!gI!" must be interpreted as denot'ing operations on

sequences. The ordinary data operatjons and relations and logical connectives vrork

'pointwise': 'if "X" denotes (xO,x1 ,x2,...) and "Y" denotes <Jg,y1 ,!2,...) then

rrX+Ylr must derrote (x'+yg,xl+yl ,xZ+!2, . . .>, because the val ue of X+Y on the

i-th jterat'ion wjll be the value of X on the i-th iteration plus the value of

Y on the i-th'iteration. llote that "3", for exampie, must denote the infjn'ite

sequence each component of which is three. Note also that the 'truth value'

of an assert'ion such as rrX>Y rr 'is also an i nf i n'ite sequence and so may be

ne'ither "T" (each component true) nor "F" (each contponent false) .

The meaning of the special Luc'id functjons (Ii$!, [gI!, etc.)

can not,r be made cl ear. The val ue of nex-t X on the i -th i terati on i s the

-5

value of X on the i+lst iterat'ion; thus if "X" denotes (xO,x', ,Xr, " '),

,'tq$ X,' denotes tire sequence (x., ,x2,X3,...); sirnilarly "IiI:! X" denotes the

sequence (xg,Xg,X0,...). Furthermoreo jf "P" denotes (P0,p1,?2,"') then

,,X gg':p.o-[^€ P" denotes a*j,tj,*j,...), vrhere i js the unique natural number

such that p, is tr"ue and p.i'is false for all i less than j (x g:^r"qp,I^R: P

is undef ined 'if no such j exjsts, i .e. it is an infjn'ite sequence of undefined

elenrents). (Later ue vrill also use a function bijhgllg, t'rhere "bilbgflp P"

clenotes (true,Pg,Pg & Pl ,P0 & pl PZ, ' ' ')')

hle will say that an expression I is constant or denotes a constant

if E = Jit:.t E. Note that JU:! A and A gl:Qg[-g:, B, w'i]l be constant for

any express'ions A and B. Also all literals such as 3 and T denote constants.

Apply1ng these def jni tions to the statements of the Luc'id square

root progranr, \.Je see that statenrents (2)-(5) catt be irue only if I is (0,.|,2'...>

and J js <l ,4,9,.|6,...). Furthermore, if input is, say, <12,8,.|4'...) then N

must be <.|2,.|2,12,...>, J > N must be (false,false,false,true'...> and so

output'vrhjchisequa1toIggJge[-3.:,J>l'l,mustbe(3,3,3,'..>.

resul t agrees rvi th our i ntui t'ive understancji ng of the effect of rexecut'ing
'

the program 'in the convent'ional sense.

l^le can now say vrhat we mean by a (simple) Lucjd program. In

general, a Lucid program is a set of equations defining a set of variables.

A variable V may be clefined directly, by an equation of the form

V = E,

or jnductively,by a pa'ir of equations of the form

JiI:T V = EO

!s$ v = E.

in e'ither case E can be an arbitrary eXpression not containing rt-rr or r'-'", bLlt

the expression EO niust be syntactically constant, i.8. bui1t up frorn data

-6-

constants, terms of the fornr fitsj X or X .q:*:.q,9[^"4,s P, and other variables

defincd equal to syntact'ical1y constant expressiotts, by applying data

operations, relations and iogical connectjves. Every variable appearing in the

program except "input" must be defined, and no variable may be defined twlce.

This definit'ion is very general, but nevertheless it. can be shown

by standard fixed point methods that every program has a unique meaning'in

the following Sense: no matter what value is given to the variable "input"

there exists a minimal (least defined) solution to the program, consi.jered

as a set of equat'ions . The val ue thi s sol ut'ion gi ves to the var j abl € "output"

can therefore be defined as the output of the program. Note that the values

of input and output are histories, which can be thought of as streams.

Using this semantics we can derjve general axioms and rules such as

firs!(x+y) = Ii.c:.! x + ftr:! y

which allow us to reason about programs without referring explicitly to sequences.

In fact, proofs can be made knowing very little of the formal semant'ics. l^le

therefore proceed directly to a correctness proof ot tne sample program.

2. A Sample Proof

Our goal is to derive the assertion output? < et:l input. (output+1)2

from the text of the Luc'id program (considered as a set of assertions) together

wjth tlre assumption integel Jfff! inp,.it & IU:.! input > 0.

The first step is to establish J = (I+l)2 using the basic Lucjd

induction rule, whjch states tlrat for any assertion P,

Ijf:"! P, P * Jt€I! P l== P

(where for any assertjon A artd set f of assertions, I l-. A means that if

everything in f is true, then A is true).

-7 -

Taking P to be "J = (I+t)2" we have

LU:.1 P = fltl!(J = (t+t)z)

= (HL1I J = (tU:l I+l)2)

= (t = (ort)2)

which, of course, is true. i,{ol Vre assume that J = (l+t)2 iu true at some

stage in the 'iteration. Then we have

!S$J=J+2xI+3

= (i+l)' + ZxI + 3 (by the assumption)

= ((i+t) * t)Z

= (lgx! i*t)Z

= !g$((r*i)z)

and so we have m$(J = (t+t)Z). Thus

(J = (l+t)2) * rcl!(,.t = (I+t)Z)

is alvrays true, since we were reasoning only about a sing'le stage in the

iteration. (fnls comment w'ill be explained in the next section")

l,le can nor,{ apply the'induction rule and conclude that J = (i+t)2 is

always true.

(Reasoning using the induction rule'is the Lucid anaiog of the jnduc-

t'i ve asserti on r:rethod of program provi ng . Note that we use properti es of

integers in the proof in a very cavalier manner, without worryinE that r,Je are

actual 1y talking about infinite sequences of integens.)

-8-

In Lucid, "=" denotes true equality so since we have proved that
22

J = (l+1)" (i.e. J and (I+l)'have the same histories) every occurrence

of J in the program may be replaced by (I+1)2. This produces the fo'llowing

equivalent "cleaned up" program:

N = li5,! input

ti-€! I = o

rc$l=I+l
2

output = I g:-gggn^-gs (I=l)- > N.

The value of output is the value i has when (l+l)Z t N is true

for the first time; therefore, to prove that

output2<N & N<(output+])2

we prove that the analogous assertion is true of I when (l+l)2 ' N is true

for the first time, i.e. we prove

222(l'<N & N<(l+1)') i":^:ggl^.$, (i+1)'>N.

To do this we use Lucid's as soon as induction rule:

eIe$$UJ(Q), fi.n!(P), P&rQ * tgI!(P) F P & Q gl_tpgg*g: Q

2 .2
with P = I'(N and Q = (I+l)'> N (gyg!.tgAl]1(a) is defined to be T

g:"*i"ggLg.:, a). This rule states that if Q is eventually true, and if P

stays true at least until that time,then P and Q are both true when Q is

true for the first time. This rule is the Lucid ana'log of the Hoare whjle

rule (see t51)

P ,r rQ {B} P

ffi
except that it also deals with termination.

9-

Simple calculations verify

t
tit.:,! (I' < N)

and

22t(I' < N) n ((i+t)" N) * ngXl(r. < N)

so that to invoke the rule we need on'ly establish

gJS$lgUJ ((I+t)2 ' N).

Th'is is the Lucid analog of proving termination for this program, and we use

the basic Lucid 'termination rule'

integer K, K' !g1! K F gXg$ggUJ (t(. 0)

with K=N-(l+t)2.

We can now apply the g:^Igg!_gs induction rule, giving

(I2 < N) ,r N < (r+1)2 g:^-S.q,g!^-es (I+1)2 , r,t

as desir"ed. Finally we use rules such as

(x+Y) {t*gggn,*qt, Q = (x .el-:pg!^,u, Q) + (v g.g._gqg!_e: a)

to 'push' the g,s-,,ggQ,0*gg past all the pointw.ise operations on the left:
and then the rule

eventuailv(Q) F ((Il-5gI X) eg_:go_t,*e"g a) = fiIS! x

and the fact that I and N are constants give us

(I e,e.*Sgg[*g: (r+t)2, N)2 * ru & N < ((r gs*_s_.gg]*e.e, (r+t)2, N)*r)2

Then substituting "output" for "I gp^:gggg,l, (l+1)2 r Jr1,, and,,first.input,,

for "N" we have

output2<N & N< (output+'l)2

and this completes the proof.

- l0 -

3. Proofs

The example has i I lustrated nrost of tlre ax joms and rules for

sitnpie Lucjd proofs. l'le w jl I summarise these here. Tlre formal syster,r js

gi ven in deta'il 'in [l] . In some way i t can be consi dered to be a tense

1ogic, a sort of modal logic for expressing reasoning about t'ime.

The appropriateness of such logics for reasoning about programs has been

recogni zed by Burs tal I [3] .

Lucid proofs proceed mainly by straightfonvard mathemat'ical

reasoning, using properties of the data domain, and properties of 1ogic.

In addition, v/e use properties of the Lucid functions.

Properties of _tlre Data ilomain:

Any axioms or rules of inference that are valid for the bas'ic

data domain D are also valid in the context of Lucjd proofs. For example,

in the proof above we used axioms l'ike

0+l = I and

vx[(x+2)Z = *2 * 4xx + 4].

However, there is one thing to be careful of. The data donrain D

must include an rundefinedrelement.l, and the axioms and rules must be

valid in the presence of this undefined element. For example, Vx -(x = x+i)

is not valid since r = r+].

lggi cal Properligs-:

In tlte same way t^re can use most of the axioms and rules in inference

of ordinary iogic (e.g. frorn A and B infer A & B). The few r^re cannot use

fajl ejther because tve must allow an 'undefined' truth value, or because i/e

are talking about sequences. The law of the excluded middle fajls because

of the undefined truth value, and the deduction theorem fails because of

sequences.

- tl

The first 1aw, the law of the excluded middle, asserts that

either A or -A is true, and it fails because A may be undefined (the

'result' of a computatjon that does not ternlinate).

S'ince the I aw of the excl uded mi ddl e fai I s so does reason'ing by

contradictjon. Also certain propositjonal calculus tautologies become in-

valid, such as (A -' g) + -ff v B.

There are weaker vers'ions of the law of the excluded middle,

and reasoning by contrad"ictjon, that do work, namely, (R = t) y -(ff = T)

is true, and from A + F we can conclude -(A = T).

With practice it is easy to avoid the few pitfalls caused by

the undefined truth value.

The second rule, the deduction theorem, allows us to infer

A + B (,,A implies B") from a proof of B rvhich has A as an assumption

(tfris "discharges" the assurnption). It fajls because of the way in which

the truth of Lucid assertions depends on time. For example, from i = 0

("I is always zero") we can derive m.{! I = 0, but I = 0 * [RI! I = 0 is not

valid because * and = work pointwise. This type of inference is correct,

hovrever, if in the proof of B we did not substjtute equa'ls for equals within

the scope of a Lucid function, and did not use any special rule of

'inference, like the induction rule, vrhich depends on Lucid functions

(Lucid g11ggl- are admiss'ib1e). This restricted sort of reasoning corresponds

to considering one particular stage in an jteration.

Lucid Propert_ies:

Axioms The most useful property is that I!ffJ and [qxt commute

with data operations and relations so that, e.g.

-12-

a) [irl!(x+v) = fi"cpj(x) + fi-$,!(Y)

next(X+Y) = nP$(X) + n,g&(Y)

(x+y) qs**s*o_q0^A: Q = (X,g5^"e.gp!^"$, Q) + (Y g:^f.qgLg:, a)

b) fi-$^! Lirs! X = I!ryJ x

!"e$ Ji€! X = li.n! x

Rules of Inference

a) LU:.!P,P+!g$PFP

b) e$$ge!JQ, LjI:!P, P &rQ-r[gII PFP & Qgp^SBgI^.$,Q

c) elsllggl]J Q F ((rirst x) ff^-sggg-g.€, Q) = .ti-$,! x

d) 'integer K, K'm$ K ts eUgt1|ggl.U (K. 0)

4. Progranmi ng

Th'is paper is not intended to be a guide to programming in Lucid,

but to indicate the new approach to prograrn prov'ing that the ideas behind

Lucid provide. But programming in Lucid is in some ways qu'ite different from

conventional imperative programming, and the formal semantics outl'ined in

section I 'is not the best guide. We therefore present here a more informal,

operational approach to the semantics of Luc'id programs. This section is

thus an explanation of, but not an addition to, the formal definitions of

programs and their semantics given in section l.

- 13 -

The basic idea of the'inforrnal approach is to regard a Lucjd

program as built up from simple 1oops. The sinrplest loop consists of a

singie variable defined inductively in terms of itself and some constants;

for examp'le,

^fi-r:.t v = I

[95! V = 2xV'

l^le can interpret a loop like this as hav'ing the effect of first'initla'lizing

the varjable V, and then repeatedly reassigning to'it, so that it takes on

(in this case) the values 1,2,4,.,, l^le call a variable vrhich, ljke V,

'is'inductively defined, a loop variable. .Norv jn general r.re may have tvro or

more loop variables defined in terms of each other, so that they form

essentially a single 1oop. For example, if

J,i.lr* U = I

fu:,! v = I

lg&u=v

m&V=U*V

then U and V must be computed together, because the computation of the

values of either U or V for the next iteration requires the current values

of both U and V. It is important to realize that the formal semant'ics

implies that u and V are updated fug_&neo!:lX. This po'int can be macle

clearer by introducing tup'ling'into the language, so that the loop above can

be rewri tten as

fi€!(u,v) = (l,l)

,tg{!(u,v) = (v,u+v)

-t4-

i'Je can therefore interpret this loop as having the effect of first initial-

izing the entire vector (U,V) of loop variables and then repeatedly re-

assigning to 'it, so that it takes on the values (l,l), (.l,2), (2,3) ,

A 'loop nray have, besides the loop variables, other variables

def ined di rectly in ternts of the loop variables. In tlre fol loviing loop

Ii.€! v = I

W = 100/V

!%! V = (Y+w)/Z

the variable l^l'is of this type. These variables, which mjght be cal'led

"auxiliary variables", are essentialiy recomputed from the loop variables

on each iteration, and so their values need not be carried over from one

iteration to the next. In a sense the Lucid loop variables correspond

to the ittdex variables of an Algol for-1oop, and the aux'iliary variables

correspond to variables local to a block within the Algol 1oop.

Values can be extracted from a'loop using g:_:gg1-$, as in the

square root program, and the second argunrent of the g:,gq,g!_.€ can be thougirt

of as the ternti nati on cond'iti on . A 'loop
can use a constant def ined el se-

where; we can therefore link loops by extract'ing a value from one and

using it in another. This implies that the fjrst loop has to be computed

first, and the loops are concatenated. For example, if

Iigpj(I,F) = (l,l)

!.e&(l,F) = (l+l ,(l+l)xP)

14 = F R"g^-egA!^-eS I eq '10

Jtr$K=M

lg1j K = K/2

- 'ls -

then the result of the (l,F) loop is used to 'initial'ize the K 'loop,
so

that the latter cannot start until the constant M has been computed.

tses'ides concatenating 1oops, t,/e can also nest them, as will be

shown in the next section. l,le therefore have al I the basi c control structures

of structured prograniming, except for tlre cond'itional statement. Lucid has

no cond'itional statement, but it has the condi tional expression (semantically,

the ternary function if...then...e_]se is just another funct'ion vihich, like

add'ition, works pointwise on histories). Thus we can vrite the Eucliclean

algorithm for fjnding the gcd of two posjtive'integer constants N and M

as fol I ows :

Ju:!(X,Y) = (N,M)

!g&(X,Y) = if X . Y !h[(x,y-x) else (x-v,v1

output = Xg:^:pp1^,ep,X eq Y

We see therefore that programming in Luc'id is not completeiy

different from programming in a conventional imperative language w'ith assign,

ment, cond'itionals and whi le 1oops. It 'is important to realize, hov/ever,

that Lucid manages to treat assignment statements as equations, and to make

ioops 'impf icit, only by 'impos'ing restrictions on the use of assignment.

These restrictions alI follow from the fact that a variable'in a progranl

can have only one definition, whether direct or inductjve.

For a directly defined variable, the restrict,ion js that the variable

can be assigned to at only one piace in the progranr. For exampie, the tlvo

equati ons

X=Y+l

X=AxB

cartnot both appear i n tlre sanre program.

- 16 -

For an inductively defined varjable, the restrjctjon is that the

variable can be assigned to only twice in the program, once for injtial'iza-

tion and once for updating. For one thing, this means that a'loop variable

cannot be updated tvrice; thus the equations

rc$V=3xV

rc$V=V*l
cannot both appear in the same program. if an interrnecl'iate value is needed

a separate variable must be used, €.g.

Vl = 3xV

!e$ V = Vl+].

The restriction on induct'ive definition also means that every'loop variable

must be updated, r^rhether tlre value is changed or not. The fo1'lorving

statement cannot appear in a program

ifX<Ythen!g1!Y=Y-X

because jt is not even an equation, Instead, we must urrite

!,€I! Y = if X < Y then Y-X u_'lsr: y.

In a sense, Lucid allovls on'ly 'controlred' or. 'manageabie, use

of assignment in much the sanre way as a conventional structured programnring

language allols only controlled or manageable use of transfer.

5 . i,les ted Loops_

A cotttpletely general approach to iterat'iorr niust al l0\/ nesting of
'loops. For exanlple, a program to test a pos jtive 'inte ger i'i for prineness

might, in a main 1oop, generate success'ive val ues 2,3,4,. ". of potential

div'isors of i{ using a variable I, and 'in an inner loop generate for each

-17 -

value of I successive mult'ip1es of I using a variable J. It'is sufficient

to cons i der nrul t'ip'les of I startl ng wi th I2; theref ore , for each val ue j

of I the variable J should take on the values i2, (i+l).i , (i+Z)i,...

c1ear1y, the history of the variable J is not simply a sequence

of data itcms but rather a sequence of sequences. In the same way, the

history of a variable defined at the third level of nesting is a sequence

of sequences of sequences, that of a variable defined at the fourth luvel

js a four d'inrensional sequence, and so on.

[,le can make precr'se th'i s more genera 1 concept of hi story by

alloiving variables and expressions to denote functions of more than one

integer time parameter. Thus in the program discussed above, the value of I

would depend on only one parameter tO, vrhereas that of J would depend on tr,ro

parameters tO and t., . To avojd messy type d'istinctions we define every

generalized h'istory to be a funct'ion of an jnfinite sequence tot., t2...

of di sti nct ti me parameters , i .e. a f unct'ion f rom the set ,V'v of i nf.in.ite

sequences of natural numbers into the set of data objects. lle can assume,

however, that any'indivjdual value of one of these historjes is determjned

by only a finjte number of these parameters. In particular, the value of a

varjable defined at nesting 1eve1 n depends on onll tot.1...tn so that

itt a sense the rentaining time parameters are'dunmy variables'added for

conveni ence.

Ordinary data operations are defined pointw'ise as beforen and

the special Lucid funct'ions are defined as pointrvise extensions to the 2nd,

3rd etc. tinre parameters. Thus the value of X+y at ,time' t(= t'tltZ...)

- lB -

is the value of X at tirle t plus the value of Y at time [; the value

of rc$(X) at tinre i is the value of X at tinie (tO*])tt tZ. . .; and the value

of X gtj.a,g!^gt P at tinre ['is the value of X ,rt time stlt,... where P js

true at tinie stltz... arrd false al tjme rtfz... for all r < s (it suclr an s

exists). It is easily verifieC that the axjoms and rules given in section 3

rema'in val i d under thi s new i nterprei"at.ion .

I n addi t'ion to the s tandard Luci d f uncti ons rve lrave a s peci ai

functi on Jg.!g:.! vrhi ch gi ves us access to the extra time pararreters . The

value of JC!p:! X at tinre t't.,tZ... is the value of X at iinre t.,tetl...

Its effect'is to'increase the number of tjme parameters upon vrhjch a h'istory

depends, so that for example if X js a function of tO and t., oniy, l-glg11 X

depends on to, tl , and tr. Tlre defini t'ion of program given jn section

is nrodif ied to allor,r lg!g,l! io be used in expressioris, and to allow

variabl es to be def i ned by equati ons of the forrn

]g!P:J v = A

provided the expression A is syntactically constant.

i t 'i s the f unction lgtgs_! whi ch permi ts nes ti ng . For exampl e,

the program to test for primeness given belovr has a sutrloop which is

''invoked' for each value of I, and which on each invocation returns a value

Id'ivl'{ wh'ich is true iff some value of J 'is equa'l to ii. This is done by

referring in the subloop to the latest value of I (and N), and by defininq

the latest val ue of Id'ivi{ to be the resul t of the as soon as . ilere i s the

conrpl ete prograrrr.

- 19 -

(l) N=J,in!input

(2) .fir:tI=l
(3) Jits! J = JgIe:I I *]slegj I

(4) !p-{!J=J+lgle":lI
(s) .l"s!p,qt ldivi'{ = J eq lgtp"gl N g:^Spgt_gg J > le!g,g! I'{

(6) [S.&I=itl
(7) output = -Idivi{ al_s.oon-R: IdivN v IxI > N.

Lines (3)-(5) constitute the nested 1oop. In general, using the latest

value of a variable in a loop has the effect of mak'ing that variable

'giobal' or rexterrralr to a 1oop, and defining the latest value of a

variable in a loop has the effect of'passingr'it out of the loop.

The obvious problen wjth l-g!€i,J
'is that "it clutters up programs

and niight be expected to clutter up proofs even more. Fortunately, there

'is a convenient and suggestive 'abbrev'iat'ion' lvhich allolvs us to avoid

using IRk:,!. l.le introduce two special symbols, "begin_" and "erd",

and allow assertions (statements) in a program to be p'laced betiveen begin-end

pairs nested to any depth. t,.|e interpret the enclosing of text by these

begin-end brackets as having the effect of applying Jg!S:"i to every 91oba1

variable in the text (a variable is g1oba1 if it occurs outs'ide the text).

In other words, a begin-end pair can be removed'if every occurrence of each

global variable V in the enclosed text'is replaced by "JELq* V".

cn
-L(J-

Here 'is lhe above program rvritten in bsgin-end form.

N = Jjf:! input

.tin! r = 2

bcgr Il

Jiti! J = IxI

!eX.! J = J+I

Idivl'l = J eq N g:"-sPgt-3: J ;: I'i

end

[P.{! I = I*]

output = 'Id'ivl'{ gs--lpgg-.gg Idivit v ixI > ['1.

The begin-end notation permits a simp'le operationai interpretation: jnsjde

a nested loop, the g1oba1 variables are 'frozent (constant). Nesting using

begin-end is therefore s'inrilar to nestjnq in an imperative lanEuage, but

with tvro important restrict'ions: globa.is ricfjneci by equations outs'ide a

loop cannot be altered inside the loop, ar-,d irioi-rals defined inside the loop

(like tiie variable Id'ivN) cannot be referreij tc two or more levels out.

These restrictions are necessary to ensure that the result of reniov'ing the

begi n 's and end's i s a lega'l program.

Using our semantics we can derive rules which allot,t us to use

begin-end and avoid Lglg:! in proofs as rvell as 'in prcrgrams. The first rule

al lorvs us to add to the statements in a loop anything der jve d frorn the 'loop

statenents pl us the assunrption that V = JLtt! V f cr" cvery var j ab ie V g'loba1

to the 1oop. The second rule allor^/s us to move jri and out of a loop any

assertions about global varjables which do ttot have a:ny occurrences of

thc Lucid furrctions. For exanple, in verifying Lhc i:rime progr0nr rre vrould

-21

first prove fgf I and i > 0 outside the inner 1oop. using the second

ru1c, we ntove thcse asscrt'ions (pi us certain assuniptions about N) into the

i nner 1 oop . Then 'i ns i de the 1 oop these asserti ons p'l us the ass urripti ons

I = J:-t:! I and i'{ = .fifgl N give us Idivi,l = ik 2sk & k<N & Ixk = N.

Sjnce this contains no Lucid functjons or local variables it may be brought

back outsitle the ioop and from it we eventually obta'in

output = 3m fk 2<k & k<l\ & kxm = [il. (For a more complete proof of thjs

program, see t2].) This method of 'nested proofst permits reasoning about

programs with nested loops to be reduced to reasoning about simple 1oops.

6. implementat'ion

S'ince Luci d has no prescri bed operatio!al semant"ics , a

variety of methods of implementation are possible, depending on the data

obiects and operations used, and on the subset of the language to be

'impl emented. One approach i s to use analys i s of the program i n ternrs of

loops (as described in sectjon 4) to translate the program into an'imperative

language, €.g. assembly code. Such a compiler has been yrritten ('in the

language B) by Chris Hoffnrann at the University of tlaterloo, and it runs

under TSS on the l'loneylell 6050. The compiled code runs in tinre comparable

to that of equ'ivalent Al gol programs.

Another interesting possjbi li ty is to represent programs 'in

ternrs of data f I or^r networks rough'ly of the type described i n t(ahn t4]

The advantage of this method is that independent computatjons can be carried

out in para ll el . Luci d 'is parti cularly vre11 su'ited for tlii s sort of

inrlllementation s'ince there are no si de ef fects , ancJ the seman ti cs 'irnposes

no 'seciuenci ngr of cornputations other than that requi recl by the data dependenc'ies .

-22-

There are, hor,/ever, two probl enrs associated wj th ei ther of these

nethods. The first is that not every lega1 program can be broken down

into s'iniple loops or translate d into data flovr nets. Sonre of the worst

examples arise vthen a variable js defined jn terms of its own future.

Thus the equations

tlti"L i'{ = 7

[%! i'l = ii-l

output = if N < I then I

elseN*!RI!output

are a iegal program, the program has a minimal solution, and the solutjon

gives as the value of output the stream of values <5040,720, l20,24,6,

2, l, l, 1,...). It computes the factoriai.by 'recursing' jnto the future.

Bi zarre programs I i ke the above can of co urse be di sal I olved by s imp'le

syntacti c restri cti ons .

The second more ser j ous probl em i s that even vli th fa'i r1y

conventional programs the compiled code or data net may perform more

computation than necessary and the program may not termjnate even though

the formal senrantics implies that output is defjned. The function

g:^lppl^3s is responsible for most of these problenrs. For example, assume

rrXrr is <fa1se,fa1se,fa1se,true,...,) then

"Y .g:^Fgglj: X" should give (y3,y3,...>

where y3 is the value of Y at "time" g (tfre fourth e lerient of "Y"). [Jut "Y"

may be (7,'undefined',2,5,...>, where each value of Y 'is the result of some

inner loop say. Clearly, to conipute Y g:^_tpg!^_g.f X ive nrust not try to

compute Y unti 1 we have to, i .e. at "t'ime" 3, or ive w jl I get stuck in the

-23-

non-ternlinating second invocation of the inner 1oop. But to evaluate y,

we lttay have to use the values of other variables at "previous" times. At

any given time we cannot decide urhat values of the variables will

definitely be needed in the future, and it is unsafe to evaluate an

expression unless its value is defin'ite1y needed because we may get stuck

in a non-terminating computation.

These implementations are nevertheless partly correct, in that

. any defined value of output computed vli'11 be the value specified by the

formal sentantics. Furthermore, it is possjble to formulate conditions under

which these implementations are compietely correct, aithough these condi-

tions are not syntactic.

There is also a third, rather simple method, wh.ich.is completeiy

correct. The idea is to fol lor'r the fornial semant'ics closely, making no

attempt to interpret the time paranieters as actual time. The imp'lementation

is instead demand drjven, a dematrd being a request for some variable at

some partjcular "time". The fjrst demand js for the value of output at

t'inre 0, and this generates further ruqu.rts for other variables at other

times. This algorithm as it stands is very inefficjent,but can be enormously

intpnoved by the simple strateg.fc of storing some of the computed values for

future use. Trvo intenpreters have been wri tten that fol I olv th'is scheme,

one at the University of Waterloo (Tom Carg'ill) and one at the University

of Wanvick (David l.4ay) . An interesting feature of this method 'is that r't

can nake use of extra store (for value of variables) as'it beconres available.

even i n the rni ddl e of a cornputat'ion .

-24-

7 . Extensions

There are, besides iteration, several other features so far not

djscussed vrhich a prograrilner would expect to find in a high level program-

ming larrguage. These include arrays, structured data and user defined, possib'ly

recurs'ive, functions. I'iaturally any such extensjons must be conrpatible with

the denotational approach; the addit'ion of imperat'ive features l,rould make the

rules of inference invalid. Funct'ion definitions offer no real di fficuity,

because, as was noted in section 1, recursion equatjons are simply assertions.

The addition of arrays is not quite so straightfonvard, but is possible if

we allow the value of a variable to depend on space as well as time

parameters (David Mayrs interprebr deals wjth arrays 'in this way). Details

will be given in a subsequent paper.

It is interesting to consider extens'ions that are suggested by

Lucid itsel f , and tvhi ch do not necessari'ly correspond to features in

convent'ional imperative progranrming languages. A simple example is the

bi nary functi on egll€Ueg_U t

.tir*(n JeUe.usg-PJ s) = JiIs! A

and !S$(A Je.Upged_QJ B) = $.

Thus the equations

Iicgl I = l,

rc$l =I+l

can be replaced by

I = I fol loured by I+l .

-25 -

A less triv'ial extcnsion is thc b'inary function 1^rfrqnevqr:

X rrhenevcr P = if first P then(first X follovred bv'
-d-^,,w?wd

next X vrhenever next P) else

next X vrlrenever next P.

The value of x uJgl"gvg1 P is therefore the sequence cons'isting of those

values of X for wltich P is true, so that in the notation of section l, if

P begins (false,true,false,false,true,...> then X 11h^elgvgl1 P begins

(x1 ,x4,...>. t,lote that X q^s So_o!_g,g P is simply I!f:t(X WlglSf.SI P) .

Here'is a sinrple prograrn us'ing Hlg[gJgI:

output = input Wlg,lgy.gf(input ne I ' v lgII 'input ne ' ') .

If input is a stream of characters, output is the result of

'compressing b'lanks' in input, i .e. the result of replac'ing consecutive

blanks by single blanks. llote that this cannot be done wjth only the

other Luc'id functions, because input and output can get arbitrarily out

of step.

The folloning progranr (due to GiIlcs Kahn) uses [l]g0gygr and

fuUpgg!-py in the definition of a recursive nonpointrrise funct'ion (definecl

functions do ttot have to work pointwise, another interesting feature of Lucid):

output = sieve (N)

where N=2followedbvi'l+l

and for any I

s'i eve(I) = Jttt! I J,q|-qged_pJ

sieve(i ylerc$r(l mod tlf"f! I)ne 0) .

The value of output is the stream of prirne nuntbers in increasing

order.

-26-

8. References

t'll Ashcroft, E.A. and Wadge, W.W., "Lucid: a Formal System for l^Jriting
and Proving Programs", to appear in the SIAM Journa'l of Computing.

l2) Ashcroft, E.A. and Wadqe, W.W., "Program Proving hjithout Tears".
Proc. Int. Symposium on Proving and Improving Programs,
Arc et Senans (.|975)

t3l Burstal'1, R., "Program Proving as Hand Simulation w'ith a Little
Induction", Proceedings IFIP Congress, 1974, Stockho'lm.

t4l Kahn, G., "A Preliminary Theory for Parallel Programs", Research
Report No. 6, IRIA, France (Jan.

.|973),

t5l Hoare, C.A.R., "An axiomatic basis for computer programming",
Communications of the ACM 12, No. 'l0,

576-580.

