THE UNIVERSITY OF

WARWICK

Original citation:

Ashcroft, E. A. and Wadge, W. W. (1976) Lucid, a nonprocedural language with iteration.
Coventry, UK: Department of Computer Science. (Theory of Computation Report). CS-
RR-011

Permanent WRAP url:
http://wrap.warwick.ac.uk/46307

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your rese

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/46307
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF
COMPUTATION
REPORT

N | 2"

+ + No.11

Lucid,
a nonprocedural language
Followed by with iteration

f » — latest J«)

followed by

eq | £
E.A.Ashcroft
WW.Wadge

as yoonay

VAR
> latest)

/

(as soonas) First

output ‘ inPut

Penartment of Computer Science]
University of Varwick April 1976
COVENTRY CV4 7AL

CHELAND.

*
Lucid, a nonprocedural language with iteration,

by

E.A.Ashcroft
Computer Science Department
University of Waterloo

Waterloo, Ontario, Canada

and

W.W. Wadge
Computer Science Department
University of Warwick
Coventry, Warwickshire, England

* This work was supported by the Canadian National
Research Council and the U.K. Science Research Council.

Abstract

Lucid is a formal system in which programs can be written and
proofs of programs carried out. The proéfs are particularly easy to
follow and straightforward to produce because the statements in a Lucid
program are simply axioms from which the proof proceeds by -(almost)
conventional logical reasoning, with the help of a few axioms and
rules of inference for the special Lucid functions,

As a programming language, Lucid is unconventional because,
among other things, the order of statements is irrelevant and assignment
statements are equations. Nevertheless; Lucid programs need not look
much different than iterative programs in a conventional structured

programming language using assignment and conditional statements and loops.

CR categories: 5.24, 5.21,

Key phrases: program proving, formal systems, semantics, iteration,

structured programming.

0. Introduction

There has been much work done recently on techniques of program
proving, but nevertheless most programmers still make little if any effort
to verify their programs formally. Perhaps the main obstacle is the fact
that nost programming languages are not 'mathematical' despite their use of
some mathematical notation., This means that in proving a pfogram it is
necessary either to translate the program into mathematical notation (e.gl
into the relational calculus) or to treat the program as a static object to
which mathematical assertions are attached, In either case, the language
in which assertions and proofs are expressed is different (often radically
different) from the language in which programs are written. Moreover, wildly
nonmathematical features such as pointer variables and side effects make it
even more difficult for proofs to be completely formal.

Our aim is to overcome this obstacle with a single formal system
called Lucid in which programs can be written and proofs carried out. A Lucid
program can be thougnt of as a collection of commands describing an algorithm
in terms of assignments and loops; but at the same time Lucid is a strictly
denotational language, and the statements of a Lucid program can be interpreted
as true mathematical assertions about the results and effects of the program.
For example, an assignment statement in Lucid can be considered as a state-
ment of identity, an equation. A correctness proof of a Lucid program proceeds
directly from the program text, the statements of the program being the axions
from which the properties of the program are derived, the rules of inference
being basically thosec of first order logic with quantifiers, Furthermorc, in
Lucid we are not restricted to proving only partial correctness or only
termination or only equivalence of programs - Lucid can be used to express many

types of reasoning,

Formal details of the syntax and semantics of Lucid, and of the rules
of inference and their formal justification are given in [1]. In this paper
we will describe the language and rules of inference informally, outline a
sample proof and also indicate ways of implementing the language. (Several

implementations have been completed, and others are under development.)

1. General Principles

There already exist formal mathematical systems which can serve as

programming languages. For example, the following recursion equations

root(n) s(0,1,n)

s{(i,j,n) = if j>n then i else s(i+1,j+2i+3,n)
can be considered both as a recipe for computing the integer square root of
n and also as assertions about the partial functions root and s. From the
program, considered as a set of assertions, we can formally derive the

assertion

root(n)2 sn & nc< (root(n)+1)2.

The problem is that most programmers find the purely recursive
approach too restrictive and are therefore likely to use iteration to express

the same square root algorithm, in an "imperative" language such as FORTRAN:

READ,N
I =90
J =1
10 IF(J.GT.N) GO TO 20
J=Jd+ 2% + 3
I =1+1
GO TO 10
20 UWRITE,I

Although statements 1ike I = 0 are suggestive of mathematics, the program as
a whole cannot be considered as a set of assertions because of statements
such as I = I+1 and GO TO 10, which are nonsense or meaningless as mathematics.

The two main nonmathematical features in programming languages are
transfer and assignment, but the difficulty in eliminating them is the fact
that 1£eration seems to make essential use of these features, and programmers
find them 'natural', So if we are to keep iteration we must find a way of
making assignment and control flow mathematically respectable.

Lucid does this by explicitly distinguishing between the initial
value of a variable in a Toop (first I), the value of the variable during the
current iteration (simply I) and the value on the next iteration (pext I).
from a loop. In Lucid the square root program is

(1) N = first input

(2) first I =0

(3) firstd =1

(4) next J = J + 2xI + 3

(5)

(6) output = I as _soon as J>N

I +1

=
16}
<

et

P
il

1

The meaning of the program, considered as a collection of commands, is fairly
clear: statement (1) inputs W, statements (2) and (3) initialize the loop

variables I and J, statements (4) and (5), when executed repeatedly, generate
successive values of the Toop variables, and statement (6) terminates the loop

and outputs the result. The loop is implicit in the usc of first and next.

But we can also consider the statements as true mathematical
assertions about the histories of the variables. For example, statement
(4) merely asserts that at each stage in the history of I the value of I
at the next stage is the current value of I plus one. More pfecise]y, we
define a history (or even better, a "world-line") to be an infinite sequehce,
i.e. a function with domain N(={0,1,...}). The variables and expressions in

Lucid formally denote not single data objects, but rather infinite sequences of

data objects. The i-th value of the sequence which, say, "X" denotes can be
thought of as the value which X would have‘on the i-th iteration of the loop for
X, if the program in which X occurs were executed as a set of commands.

If the variables and expressions are to formally dencte sequences,
then symbols like "+" and "next" must be interpreted as denoting operations on
sequences. The ordinary data operations and relations and logical connectives work
‘pointwise': if "X" denotes <x0,x],x2,...> and "Y" denotes <y0,y],y2,...> then
"X+Y" must denote <x0+y0,x]+y],x2+y2,...>, because the value of X+Y on the
i-th iteration will be the value of X on the i-th iteration plus the value of
Y on the i-th iteration. Note that "3", for example, must denote the infinite
sequence each component of which is three, Note also that the 'truth value'
of an assertion such as "XzY" is also an infinite sequence and so may be
neither "T" (each component true) nor "F" (each component false).

The meaning of the special Lucid functions (first, next, etc.)

can now be made clear. The value of next X on the i-th iteration is the

value of X on the i+lst iteration; thus if "X" denotes <x0,x],x2,...>,

"next X" denotes the sequence <x1,x2,x3,...>; similarly "first X" denotes the

sequence <x0,x0,x0,...>. Furthermore, if "P" denotes <p0,p1,p2,...> then

"X as _soon as P" denotes <xj,xj,xj,...>, where j is the unique natural number

such that Ps is true and p; is false for all i less than j (X as_soon as P

is undefined if no such j exists, i.e. it is an infinite sequence of undefined
denotes <true,py,Pg & pqsPg & P A p2,...>.)

We will say that an expression E is constant or denotes a constant
if £ = first E. HNote that first A and A as soon as B, will be constant for
any expressions A and B. Also all literals such as 3 and T denote constants.

Applying these definitions to the statements of the Lucid square
root program, we see that statements (2)-(5) can be true only if I is <0,1,2,...
and J is <1,4,9,16,...>. Furthermore, if input is, say, 12,8,14,...> then N
must be <12,12,12,...>, J > N must be (false,false,false,true,...> and so
output, which is equal to I as soon as J > N, must be <3,3,3,...>. This
result agrees with our intuitive understanding of the effect of 'executing'

the program in the conventional sense.

We can now say what we mean by a (simple) Lucid program. In
general, a Lucid program is a set of equations defining a set of variables.

A variable V may be defined directly, by an equation of the form
V= E,

or inductively,by a pair of equations of the form

first V = kg
next V.=t
In either case E can be an arbitrary expression not containing "=" or "»", but

the expression EO must be syntactically constant, i.e. built up from data

constants, terms of the form first X or X as_soon as P, and other variables
defined equal to syntactically constant expressions, by applying data
operations, relations and Togical connectives. Every variable appearing in the
program except "input" must be defined, and no variable may be defined twice.
This definition is very general, but nevertheless it can be shown
by stahdard fixed point methods that every program has a unique meaning in
the following sense: no matter what value is given to the variable "jnput"
there exists a minimal (least defined) solution to the program, considered
as a set of equations. The value this solution gives to the variable "gutput"
can therefore be defined as the output of the program. Note that the values
of input and output are histories, which can be thought of as streams.

Using this semantics we can derive general axioms and rules such as

first(X+Y) = first X + first ¥

[LN e

which allow us to reason about programs without referring explicitly to sequences,

In fact, proofs can be made knowing very 1ittle of the formal semantics. MWe

therefore proceed directly to a correctness proof of the sampie program.

2. A Sample Proof

Our goal is to derive the assertion output2 < first input < (output+1)2

from the text of the Lucid program (considered as a set of assertions) together
with the assumption integer first input & first input > 0,

The first step is to establish J = (I+])2 using the basic Lucid
induction rule, which states that for any assertion P,

first P, P > next P |-

(where for any assertion A and set I' of assertions, I' |=- A means that if

everything in I' is true, then A is true).

Taking P to be "™J = (I+])2“ we have
first P = first(d = (I+1)%)

fi

(first 9 = (fixst 1+1)°)
(1= (0+1)%)

which, of course, is true. iow we assume that J = (I+])2 is true at some,

stage in the iteration. Then we have

next 3 =J + 2xI + 3
= (I+])2 + 2xI + 3 (by the assumption)
= ((141) + 1)°

(next 1+1)°

it

1

next((I+1)%)

and so we have next(J = (I+1)2). Thus

(3 = (1+1)%) %)

+ next(J = (I+1)
is always true, since we were reasoning only about a single stage in the
iteration. (This comment will be explained in the next section.)
We can now apply the induction rule and conclude that J = (I+1)2 is
always true,

(Reasoning using the induction rule is the Lucid analog of the induc-
tive assertion method of program proving. Note that we use properties of

integers in the proof in a very cavalier manner, without worrying that we are

actually talking about infinite sequences of integers.)

In Lucid, "=" denotes true equality so since we have proved that

2 (i.e. J and (I+1)2 have the same histories) every occurrence

of J in the program may be replaced by (I+1)2. This produces the following

J = (I+1)

equivalent "cleaned up" program:

N = first input

next I = I+]

2 > N.

output = I as soon as (I=1)

The value of output is the value I has when (I+1)2 >N is true

for the first time; therefore, to prove that
2 , 2
output® < N & N < (output +1)

we prove that the analogous assertion is true of I when (I+1)2 > N is true

for the first time, i.e. we prove

2

(12 <N & N< (I+1)%) as soon as (I+1)° > N.

To do this we use Lucid's as soon as induction rule:

eventually(Q), first(P), P&™Q » next(P) £ P & Q as_soon as Q

2

with P = 12 <N and Q = (I+1)°

> N (eventually(Q) is defined to be T
as _soon as Q). This rule states that if Q is eventually true, and if P
stays true at least until that time,then P and Q are both true when Q is
true for the first time. This rule is the Lucid analog of the Hoare while

rule (see [51])

PaAQ {B}YP
P{while 70 do B} P A Q

except that it also deals with termination,

-9 -

Simple calculations verify
. 2
first (I < N)

and

2

(18 <Ny a ((141)2

> N) > next(I% < N)

so that to invoke the rule we need only establish

eventually ((I+1)2 > N).

This is the Lucid analog of proving termination for this program, and we use

the basic Lucid 'termination rule’

integer K, K > next K # eventually (k < 0)

with K = N- (1+1)°,

We can now apply the as soon as induction rule, giving

2<N) AN < (1+1)2 as_soon as (1+1)2 5 N

(1
as desired. Finally we use rules such as
(X+Y) as_soon as Q = (X as_soon as Q) + (Y as._soon as Q)

to 'push' the as soon as past all the pointwise operations on the left;

and then the rule
eventually(Q) & ((first X) as soon as Q) = first X

and the fact that 1 and N are constants give us

2

2, N2 25 N)e)2 .

(I as soon as (I+1)° > N)* <N & N < ((I as_soon as (I+1)

Then substituting "output" for "I as soon as (I+1)2 > N" and "first input"
for "N" we have

output2 <N & N < (output +1)2

and this completes the proof.

- 10 -

3. Proofs

The example has illustrated most of the axioms and rules for
simple Lucid proofs. We will summarise these here. The formal system is
given in detail in [1]. In some way it can be considered to be a tense‘
logic, a sort of modal Togic for expressing reasoning about time,

The appropriateness of such logics for reasoning about progfams has been
recognized by Burstall [3]. |

Lucid proofs proceed mainly by straightforward mathematical
reasoning, using properties of the data domain, and properties of logic.
In addition, we use properties of the Lucid functions.

Properties of the Data Domain:

Any axioms or rules of inference that are valid for the basic
data domain D are also valid in the context of Lucid proofs. For example,
in the proof above we used axioms like

0+1 =1 and

Vx[(x+2)2 = X% & 4xx + 4].

However, there is one thing to be careful of. The data domain D
must include an 'undefined' element L, and the axioms and rules must be
valid in the presence of this undefined element. For example, ¥x =(x = x+1)

is not valid since 1 = 147,

Logical Properties:

In the same way we can use most of the axioms and rules in inference
of ordinary logic (e.g. from A and B infer A & B). The few we cannot use
fail either because we must allow an 'undefined' truth value, or because we
are talking about sequences., The law of the excluded middle fails because
of the undefined truth value, and the deduction theorem fails because of

sequences,

- 11 -

The first law, the law of the excluded middle, asserts that
either A or -A is true, and it fails because A may be undefined (the
'result' of a computation that does not terminate).

Since the law of the excluded middle fails so does reasoning by
contradiction. Also certain propositional calculus tautologies become in-
valid, such as (A -~ B) ~ =A v B,

There are weaker versions of the law of the excluded middle,
and reasoning by contradiction, that do work, namely, (A = T) v ~(A = T)
is true, and from A > F we can conclude (A = T).

With practice it is easy to avoid the few pitfalls caused by
the undefined truth value.

The second rule, the deduction theorem, allows us to infer
A+ B ("A implies B") from a proof of B which has A as an assumption
(this "discharges" the assumption). It fails because of the way in which
the truth of Lucid assertions depends on time. For example, from I = 0
("I is always zero") we can derive next I = 0, but I = 0> pext I = 0 is not
valid because ~ and = work pointwise. This type of inference is correct,
however, if in the proof of B we did not substitute equals for equals within
the scope of a Lucid function, and did not use any special rule of
inference, 1ike the induction rule, which depends on Lucid functions
(Lucid axioms are admissible). This restricted sort of reasoning corresponds
to considering one particular stage in an iteration,

Lucid Properties:

Axioms The most useful property is that first and next commute

with data operations and relations so that, e.g.

- 12 -

a) first(X+Y) = first(X) + first(Y)
next(X+Y) = next(X) + next(Y)

(X+Y) as_soon as Q = (X as _soon as Q) + (Y as soon as Q)

b) first first X = first X

NI

next first X = first X

Rules of Inference

a) first P, P>next P& P
b) eventually Q. first P, P & 7Q + next P £ P & Q as soon as @
c) eventually Q & ((first X) as_soon as Q) = first X

d) integer K, K > next K + eventually (K < 0)

4, Programming

This paper is not intended to be a guide to programming in Lucid,
but to indicate the new approach to program proving that the ideas behind
Lucid provide. But programming in Lucid is in some ways quite different from
conventional imperative programming, and the formal semantics outlined in
section 1 is not the best guide. We therefore present here a more informal,
operational approach to the semantics of Lucid programs. This section is
thus an explanation of, but not an addition to, the formal definitions of

programs and their semantics given in section 1.

- 13 -

The basic idea of the informal approach is to regard a Lucid
program as built up from simple loops. The simplest loop consists of a
single variable defined inductively in terms of itself and some constants;

for example,

flrst v =1
next V.= 2xV,

We can interpret a loop like this as having the effect of first initializing
the variable V, and then repeatedly reassigning to it, so that it takes on
(in this case) the values 1,2,4,... . We call a variable which, like V,
is inductively defined, a loop variable. .Now in general we may have two or
more loop variables defined in terms of each other, so that they form
essentially a single loop. For example, if

first U =1

first V=1

next U =V
next Vo= UtV

then U and V must be computed together, because the computation of the
values of either U or V for the next iteration requires the current values
of both U and V. It is important to realize that the formal semantics

implies that U and V are updated simultaneously. This point can be made

clearer by introducing tupling into the language, so that the loop above can

be rewritten as

first(u,v) = (1,1)
next(U,v) = (V,u+v),

- 14 -

We can therefore interpret this loop as having the effect of first initial-
izing the entire vector (U,V) of loop variables and then repeatedly re-
assigning to it, so that it takes on the values (1,1), (1,2), (2,3), ..

A loop may have, besides the loop variables, other variables

defined directly in terms of the loop variables. In the following loop

first V =1
W = 100/V
next Vo= (Vi) /2

the variable W is of this type. These variables, which might be called
"auxiliary variables", are essentially recomputed from the loop variables
on each iteration, and so their values need not be carried over from one
iteration to the next. In a sense the Lucid loop variables correspond

to the index variablesof an Algol for-loop, and the auxiliary variables
correspond to variables local to a block within the Algol loop.

Values can be extracted from a loop using as_soon as, as in the
square root program, and the second argument of the gs soon _as can be thougiit
of as the termination condition. A Toop can use a constant defined else-
where; we can therefore link loops by extracting a value from one and

using it in another. This implies that the first loop has to be computed

first, and the loops are concatenated. For example, if

first(I,F) = (1,1)

next(I,F) = (I+1,(I+1)xF)

—
=
"

F as soon as I eq 10

=]
o]
>
—
-~
n
Pas
~
no

- 15 -

then the result of the (I,F) loop is used to initialize the K loop, so
that the Tatter cannot start until the constant M has been computed.
Besides concatenating loops, we can also nest them, as will be
shown in the next section. We therefore have all the basic control structures
of structured programming, except for the conditional statement. Lucid has
no conditional statement, but it has the conditional expression (semantica11y,

the ternary function if...then...else is just another function which, like

addition, works pointwise on histories). Thus we can write the Euclicean

algorithm for finding the gcd of two positive integer constants N and M

as follows:
first(X,Y) = (N,M)
next(X,Y) = if X <Y then (X,Y-X) else (X-Y,Y)
output = X as_soon as X eq Y

We see therefore that programming in Lucid is not completely
different from programming in a conventional imperative language with assign-
ment, conditionals and while loops., It is important to realize, however,
that Lucid manages to treat assignment statements as equations, and to make
Toops implicit, only by imposing restrictions on the use of assignment,

These restrictions all follow from the fact that a variable in a program
can have only one definition, whether direct or inductive.

For a directly defined variable, the restriction is that the variable
can be assigned to at only one place in the program. For example, the two
equations

X = Y+1

it

X = AxB

cannot both appear in the same program,

- 16 -

For an inductively defined variable, the restriction is that the
variable can be assigned to only twice in the program, once for initializa-
tion and once for updating. For one thing, this means that a Toop variable

cannot be updated twice; thus the equations

1

next V.= 3xV

next V = V+]
cannot both appear in the same program. If an intermediate value is needed
a separate variable must be used, e.g.

Vi = 3xVy

next V.= Vi+].

The restriction on inductive definition also means that every loop variable
must be upaated, whether the value is changed or not. The following
statement cannot appear in a program

if X <Y then next Y = Y-X
because it is not even an equation. Instead, we must write

next Y = if X <Y then Y-X vlse Y.

In a sense, Lucid allows only 'controlled' or 'manageable' use
of assignment in much the same way as a conventional structured programming

Tanguage allows only controlled or manageable use of transfer.

5. iested Loops

A completely general approach to iteration must allow nesting of
Toops. For example, a program to test a positive integer N for primeness
mignt,in a main loop, generate successive values 2,3,4,... of potential

divisors of il using a variable I, and in an inner loop generate for each

- 17 -

value of I successive multiples of I using a variable J. It is sufficient
to consider multiples of I starting with 12; therefore, for each value i
of T the variable J should take on the values 12, (i+1)1, (i+2)1,...

Clearly, the history of the variable J is not simply a sequence
of data items but rather a sequence of sequences. In the same way, the
history of a variable defined at the third level of nesting‘is a sequence
of sequences of sequences, that of a variable defined at the fourth 1evei
is a four dimensional sequence, and so on.

We can make precise this more general concept of history by
allowing variables and expressions to denote functions of more than one
integer time parameter. Thus in the program discussed above, the value of I
would depend on only one parameter tO, whereas that of J would depend on two
parameters tO and t]. To avoid messy type distinctions we define every
generalized history to be a function of an infinite sequence tot]tZ“'
of distinct time parameters, i.e. a function from the set W of infinite
sequences of natural numbers into the set of data objects. We can assume,
however, that any individual value of one of these histories is determined
by only a finite number of these parameters., In particular, the value of a
variable defined at nesting level n depends on only tOt];..tn so that
in a sense the remaining'time parameters are 'dummy variables' added for
convenience,

Ordinary data operations are defined pointwise as before, and
the special Lucid functions are defined as pointwise extensions to the 2nd,

3rd etc. time parameters. Thus the value of X+Y at ‘time' i(= totits.)

-18 -

is the value of X at time t plus the value of Y at time E; the value

of next(X) at time T is the value of X at time (ty+1)t t,...; and the value
of X as soon as P at time t is the value of X at time stit,... where P is
true at time st]tz... and false at time rt]tz... for all r < s (if such an s
exists). It is easily verified that the axioms and rules gjven in section 3
remain valid under this new interpretation,

In addition to the standard Lucid functions we have a special
function latest which gives us access to the extra time parameters. The
value of latest X at time tyt,t,... is the value of X at time titots. ..

Its effect is to increase the number of time parameters upon which a history
depends, so that for example if X is a function of ty and t, only, latest X
depends on tO’ t], and tZ' The definition of program given in section

is modified to allow latest to be used in expressions, and to allow
variables to be defined by equations of the form

latest V = A
provided the expression A is syntactically constant.

It 1s the function latest which permits nesting. For example,
the program to test for primeness given below has a subloop which is
'invoked' for each value of I, and which on each invocation returns a value
Idivil which is true iff some value of J is equal to . This is done by
referring in the subloop to the latest value of I {and N), and by defining

the latest value of Idivil to be the result of the as soon as. Here is the

complete program,

- 19 -

= first input

) =
—
=
n
i
—
I

1

I
ot
-$
w

i+
o

1l
el
fol)
o+
D
%)
o+
—
X

z_..:
[o?)
(el
]
72}

it
—t

[N

latest Idivil = J eq latest N as soon as J = latest N

rn T,

= 1+]

=
(D
>
pos
—

output = ~Tdivil a5 _soon as IdivN v IxI = N,

Lines (3)-(5) constitute the nested loop. In general, using the latest
value of a variable in a loop has the effect of making that variable
'global' or 'external' to a loop, and defining the latest value of a
variable in a Toop has the effect of 'passing' it out of the loop.

The obvious problem with latest is that it clutters up programs
and might be expected to clutter up proofs even more. Fortunately, there
is a convenient and suggestive 'abbreviation' which allows us to avoid
using latest. We introduce two special symbols, "begin" and "end",
and allow assertions (statements) in a program to be placed between begin-end
pairs nested to any depth. We interpret the enclosing of text by these
begin-end brackets as having the effect of applying latest to every global
variable in the text (a variable is global if it occurs outside the text).
In other words, a begin-end pair can be removed if every occurrence of each

global variable V in the enclosed text is replaced by "latest V".

- 20 -

Here is the above program written in begin-end form.

N = first input

first I =2
begin
first J = IxI
next J = J+l

(SN

next 1 = I+

(o]
<
pars
o
el
Py
i

~Idivil as _soon as Idivit v IxI = N.

The begin-end notation permits a simple operational interpretation: inside
a nested loop, the global variables are 'frozen' (constant). Nesting using
begin-end is therefore similar to nesting in an imperative language, but

1)

with two important restrictions: globais defined by equations outside a

[8g]
o

loop cannot be altered inside the loop, and globais defined inside the loop
(1ike the variable 1divN) cannot be referred to two or more levels out.
These restrictions are necessary to ensure that the result of removing the
begin's and end's is a legal program.

Using our semantics we can derive rules which allow us to use
begin-end and avoid latest in proofs as well as in programs. The first rule
allows us to add to the statements in a loop anything derived from the Toop
statements plus the assumption that V = first V for ecvery variable V global
to the loop. The second rule allows us to move in and out of a loop any
assertions about global variables which do not have e¢ny occurrences of

the Lucid functions., For example, in verifying the prime program we would

- 21 -

first prove integer I and I > 0 outside the inner loop. Using the second
rule, we move these assertions (plus certain assumptions about N) into the
inner loop. Then inside the Toop these assertions plus the assumptions
I=first I and il = first N give us Idivil = 3k 2<k & k<N & Ixk = N.

Since this contains no Lucid functions or local variables it may be brought
back outside the Toop and from it we eventually obtain |

output = 3m 3k 2<k & k<N & kxm = N, (For a more complete proof of this
program, see [2].) This method of 'nested proofs' permits reasoning about

programs with nested loops to be reduced to reasoning about simple loops.

6. Implementation

Since Lucid has no prescribed operational semantics, a
variety of methods of implementation are possible, depending on the data
objects and operations used, and on the subset of the language to be
implemented. One approach is to use analysis of the program in terms of
lToops (as described in section 4) to translate the program into an imperative
language, e.g. assembly code. Such a compiler has been written (in the
language B) by Chris Hoffmann at the University of Waterloo, and it runs
under TSS on the Honeywell 6050. The compiled code runs in time comparable
to that of equivalent Algol programs.

Another interesting possibility is to reﬁresent programs 1in
terms of data flow networks roughly of the type described in Kahn [4]
The advantage of this method is that independent computations can be carried
out in paraflel. Lucid is particularly well suited for this sort of
implementation since there are no side effects, and the semantics imposes

no 'sequencing' of computations other than that required by the data dependencies.

- 22 -

There are, however, two problems associated with either of these
methods. The first is that not every legal program can be broken down
into simple loops or translated into data flow nets., Some of the worst
examples arise when a variable is defined in terms of its own future.

Thus the equations

first N =7
next N = il-1
output = if N < 1 then 1

else N x next output
are a legal program, the program has a minimal solution, and the solution
gives as the value of output the stream §f values <5040, 720, 120, 24, 6,
2, 1, 1, 1,...>. It computes the factorial by 'recursing' into the future.
Bizarre programs like the above can of course be disallowed by simple
syntactic restrictions.

The second more serjous problem is that even with fairly
conventional programs the compiled code or data net may perform more
computation than necessary and the program may not terminate even though
the formal semantics implies that output is defined. The function
as soon as is responsible for most of these problems. For example, assume
X" is <false,false,false,true,...,> then

"Y as soon as X" should give Ygs¥3s-ee?
where Y3 is the value of Y at "time" 3 (the fourth element of "Y"). But "Y"
may be <7,'undefined',2,5,...>, where each value of Y is the result of some
inner loop say. Clearly, to compute Y as_soon as X we must not try to

compute Y until we have to, i.e. at "time" 3, or we will get stuck in the

- 23 -

non-terminating second invocation of the inner loop. But to evaluate Y3
we may have to use the values of other variables at "previous" times. At
any given time we cannot decide what values of the variables will
definitely be needed in the future, and it is unsafe to evaluate an
expression unless its value is definitely needed because we may get stuck
in a non-terminating computation,

These implementations are nevertheless partly correct, in that
. any defined value of output computed will be the value specified by the
formal semantics. Furthermore, it is possible to formulate conditions under
which these implementations are completely correct, although these condi-
tions are not syntactic.

There is also a third, rather simple method, which is completely
correct. The idea is to follow the formal semantics closely, making no
attempt to interpret the time parameters as actual time. The implementation
is instead demand driven, a demand being a request for some variable at
some particular "time". The first demand is for the value of output at
time 0, and this generates further reéuests for other variables at other
times. This algorithm as it stands is very inefficient,but can be enormous ly
improved by the simple strategie of storing some of the computed values for
future use. Two interpreters have been written that follow this scheme,
one at the University of Waterloo (Tom Cargill) and one at the University
of Warwick (David May). An interesting feature of this method is that it
can make use of extra store (for value of variables) as it becomes available,

even in the middle of a computation.

- 24 -

7. Extensions

There are, besides iteration, several other features so far not
discussed which a programmer would expect to find in a high level program-
ming language. These incliude arrays, structured data and user defined, bossib]y
recursive, functions. Naturally any such extensions must be compatible with
the denotational approach; the addition of imperative features would make the
rules of inference invalid. Function definitions offer no real difficuity,
because, as was noted in section 1, recursion equations are simply assertions.
The addition of arrays is not quite so straightforward, but is possible if
we allow the value of a variable to depend on space as well as time
parameters (David May's interpreter deals with arrays in this way). Details
will be given in a subsequent paper.

It is interesting to consider extensions that are suggested by
Lucid itself, and which do not necessarily correspond to features in
conventional imperative programming languages. A simple example is the

binary function followed by:

first(A followed by B) = first A
and next(A followed by B) = B.

Thus the equations

it

first I = 1,

next I [+1
can be replaced by

I =1 followed by I+1.

- 25 -

A less trivial extension is the binary function whenever:

X whenever P = if first P then(first X followed by

[N) AV

=S
—

ex

A~

X whenever next P) else

next X whenever next P.

The value of X whenever P is therefore the sequence consisting of those

values of X for which P is true, so that in the notation of section 1, if

P begins <false,true,false,false,true,...> then X whenever P begins

<x1,x4,...>. Hote that X as soon as P is simply first(X whenever P).
Here is a simple program using whenever:

output = input whenever(input ne ' ' v next input ne ' ').

If input is a stream of characters, output is the result of
'compressing blanks' in input, i.e. the result of replacing consecutive
blanks by single blanks. Note that this cannot be done with only the
other Lucid functions, because input and output can get arbitrarily out

of step.
The following program (due to Gilles Kahn) uses whenever and
followed by in the definition of a recursive nonpointwise function (defined

functions do not have to work pointwise, another interesting feature of Lucid):

output = sieve (N)
where N = 2 followed by N+l

and for any I
sieve(I) = first I followed by
sieve(I whenever(l mod first I)ne 0),
The value of output is the stream of prime numbers in increasing

order,

- 26 -

8. References

(1] Ashcroft, E.A. and Wadge, W.W., “Lucid: a Formal System for Writing
and Proving Programs", to appear in the SIAM Journal of Computing.

(2] Ashcroft, E.A. and Wadge, W.W., "Program Proving Without Tears",
Proc. Int, Symposium on Proving and Improving Programs,
Arc et Senans (1975).

(3] Burstall, R., "Program Proving as Hand Simulation with a Little
Induction", Proceedings IFIP Congress, 1974, Stockholm.

(4] Kahn, G., "A Preliminary Theory for Parallel Programs", Research
Report No. 6, IRIA, France (Jan., 1973).

(6] Hoare, C.A.R., "An axiomatic basis for computer programming",
Communications of the ACM 12, No. 10, 576-580.

