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Abstract—Distributed Denial of Service (DDoS) attacks are one
of the most harmful threats in today’s Internet, disrupting the
availability of essential services. The challenge of DDoS detection
is the combination of attack approaches coupled with the volume
of live traffic to be analysed. In this paper, we present a practical,
lightweight deep learning DDoS detection system called LUCID,
which exploits the properties of Convolutional Neural Networks
(CNNs) to classify traffic flows as either malicious or benign.
We make four main contributions; (1) an innovative application
of a CNN to detect DDoS traffic with low processing overhead,
(2) a dataset-agnostic preprocessing mechanism to produce traffic
observations for online attack detection, (3) an activation analysis
to explain LUCID’s DDoS classification, and (4) an empirical
validation of the solution on a resource-constrained hardware
platform. Using the latest datasets, LUCID matches existing state-
of-the-art detection accuracy whilst presenting a 40x reduction
in processing time, as compared to the state-of-the-art. With
our evaluation results, we prove that the proposed approach
is suitable for effective DDoS detection in resource-constrained
operational environments.

Index Terms—Distributed Denial of Service, Deep Learning,
Convolutional Neural Networks, Edge Computing

I. INTRODUCTION

DDoS attacks are one of the most harmful threats in today’s

Internet, disrupting the availability of essential services in

production systems and everyday life. Although DDoS attacks

have been known to the network research community since the

early 1980s, our network defences against these attacks still

prove inadequate.

In late 2016, the attack on the Domain Name Server (DNS)

provider, Dyn, provided a worrying demonstration of the

potential disruption from targeted DDoS attacks [1]. This

particular attack leveraged a botnet (Mirai) of unsecured IoT

(Internet of Things) devices affecting more than 60 services.

At the time, this was the largest DDoS attack recorded, at

600 Gbps. This was exceeded in February 2018 with a major

DDoS attack towards Github [2]. At its peak, the victim saw

incoming traffic at a rate of 1.3 Tbps. The attackers leveraged

a vulnerability present in memcached, a popular database

caching tool. In this case, an amplification attack was executed

using a spoofed source IP address (the victim IP address).

If globally implemented, BCP38 “Network Ingress Filtering”

[3] could mitigate such an attack by blocking packets with

spoofed IP addresses from progressing through the network.

However, these two examples illustrate that scale rather than

sophistication enables the DDoS to succeed.

In recent years, DDoS attacks have become more difficult

to detect due to the many combinations of attack approaches.

For example, multi-vector attacks where an attacker uses a

combination of multiple protocols for the DDoS are common.

In order to combat the diversity of attack techniques, more

nuanced and more robust defence techniques are required.

Traditional signature-based intrusion detection systems cannot

react to new attacks. Existing statistical anomaly-based de-

tection systems are constrained by the requirement to define

thresholds for detection. Network Intrusion Detection Sys-

tems (NIDSs) using machine learning techniques are being

explored to address the limitations of existing solutions. In

this category, deep learning (DL) systems have been shown to

be very effective in discriminating DDoS traffic from benign

traffic by deriving high-level feature representations of the

traffic from low-level, granular features of packets [4], [5].

However, many existing DL-based approaches described in

the scientific literature are too resource-intensive from the

training perspective, and lack the pragmatism for real-world

deployment. Specifically, current solutions are not designed for

online attack detection within the constraints of a live network

where detection algorithms must process traffic flows that can

be split across multiple capture time windows.

Convolutional Neural Networks (CNNs), a specific DL

technique, have grown in popularity in recent times leading

to major innovations in computer vision [6]–[8] and Natural

Language Processing [9], as well as various niche areas such

as protein binding prediction [10], [11], machine vibration

analysis [12] and medical signal processing [13]. Whilst their

use is still under-researched in cybersecurity generally, the

application of CNNs has advanced the state-of-the-art in

certain specific scenarios such as malware detection [14]–[17],

code analysis [18], network traffic analysis [4], [19]–[21] and

intrusion detection in industrial control systems [22]. These

successes, combined with the benefits of CNN with respect

to reduced feature engineering and high detection accuracy,

motivate us to employ CNNs in our work.

While large CNN architectures have been proven to provide

state-of-the-art detection rates, less attention has been given to

minimise their size while maintaining competent performance

in limited resource environments. As observed with the Dyn

attack and the Mirai botnet, the opportunity for launching

DDoS attacks from unsecured IoT devices is increasing as

we deploy more IoT devices on our networks. This leads to

consideration of the placement of the defence mechanism.

Mitigation of attacks such as the Mirai and Memcached

examples include the use of high-powered appliances with the

capacity to absorb volumetric DDoS attacks. These appliances

are located locally at the enterprise or in the Cloud. With the

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

drive towards edge computing to improve service provision, it

becomes relevant to consider the ability to both protect against

attacks closer to the edge and on resource-constrained devices.

Indeed, even without resource restrictions, it is valuable to

minimize resource usage for maximum system output.

Combining the requirements for advanced DDoS detection

with the capability of deployment on resource-constrained

devices, this paper makes the following contributions:

• A DL-based DDoS detection architecture suitable for

online resource-constrained environments, which lever-

ages CNNs to learn the behaviour of DDoS and benign

traffic flows with both low processing overhead and attack

detection time. We call our model LUCID (Lightweight,

Usable CNN in DDoS Detection).

• A dataset-agnostic preprocessing mechanism that pro-

duces traffic observations consistent with those collected

in existing online systems, where the detection algorithms

must cope with segments of traffic flows collected over

pre-defined time windows.

• A kernel activation analysis to interpret and explain to

which features LUCID attaches importance when making

a DDoS classification.

• An empirical validation of LUCID on a resource-

constrained hardware platform to demonstrate the appli-

cability of the approach in edge computing scenarios,

where devices possess limited computing capabilities.

The remainder of this paper is structured as follows: Sec.

II reviews and discusses the related work. Sec. III details the

methodology with respect to the network traffic processing

and the LUCID CNN model architecture. Sec. IV describes the

experimental setup detailing the datasets and the development

of LUCID with the hyper-parameter tuning process. In Sec.

V, LUCID is evaluated and compared with the state-of-the-art

approaches. Sec. VI introduces our kernel activation analysis

for explainability of LUCID’s classification process. Sec. VII

presents the experiment and results for the DDoS detection at

the edge. Finally, the conclusions are provided in Sec. VIII.

II. RELATED WORK

DDoS detection and mitigation techniques have been ex-

plored by the network research community since the first

reported DDoS attack incident in 1999 [23]. In this section, we

review and discuss anomaly-based DDoS detection techniques

categorised by statistical approaches and machine learning

approaches, with a specific focus on deep learning techniques.

A. Statistical approaches to DDoS detection

Measuring statistical properties of network traffic attributes

is a common approach to DDoS detection, and generally

involves monitoring the entropy variations of specific packet

header fields. By definition, the entropy is a measure of the

diversity or the randomness in a data set. Entropy-based DDoS

detection approaches have been proposed in the scientific

literature since the early 2000s, based on the assumption that

during a volumetric DDoS attack, the randomness of traffic

features is subject to sudden variations. The rationale is that

volumetric DDoS attacks are typically characterised by a huge

number of attackers (in the order of hundreds of thousands

[24]), often utilising compromised devices that send a high

volume of traffic to one or more end hosts (the victims). As

a result, these attacks usually cause a drop in the distribution

of some of the traffic attributes, such as the destination IP

address, or an increase in the distribution of other attributes,

such as the source IP address. The identification of a DDoS

attack is usually determined by means of thresholds on these

distribution indicators.

In one of the first published works using this approach,

Feinstein et al. [25] proposed a DDoS detection technique

based on the computation of source IP address entropy and

Chi-square distribution. The authors observed that the variation

in source IP address entropy and chi-square statistics due to

fluctuations in legitimate traffic was small, compared to the

deviations caused by DDoS attacks. Similarly, [26] combined

entropy and volume traffic characteristics to detect volumetric

DDoS attacks, while the authors of [27] proposed an entropy-

based scoring system based on the destination IP address

entropy and dynamic combinations of IP and TCP layer

attributes to detect and mitigate DDoS attacks.

A common drawback to these entropy-based techniques is

the requirement to select an appropriate detection threshold.

Given the variation in traffic type and volume across different

networks, it is a challenge to identify the appropriate detection

threshold that minimizes false positive and false negative rates

in different attack scenarios. One solution is to dynamically

adjust the thresholds to auto-adapt to the normal fluctuations

of the network traffic, as proposed in [28], [29].

Importantly, monitoring the distribution of traffic attributes

does not provide sufficient information to distinguish between

benign and malicious traffic. To address this, some approaches

apply a rudimentary threshold on the packet rate [30] or

traceback techniques [31], [32].

An alternative statistical approach is adopted in [33], where

Ahmed et al. use packet attributes and traffic flow-level statis-

tics to distinguish between benign and DDoS traffic. However,

this solution may not be suitable for online systems, since

some of the flow-level statistics used for the detection e.g. total

bytes, number of packets from source to destination and from

destination to source, and flow duration, cannot be computed

when the traffic features are collected within observation time

windows. Approaches based on flow-level statistics have also

been proposed in [34]–[39], among many others. In particular,

[36]–[39] use flow-level statistics to feed CNNs and other DL

models, as discussed in Sec. II-C. To overcome the limitations

of statistical approaches to DDoS detection, machine learning

techniques have been explored.

B. Machine Learning for DDoS detection

As identified by Sommer and Paxson in [40], there has

been extensive research on the application of machine learning

to network anomaly detection. The 2016 Buczak and Guven

survey [41] cites the use of Support Vector Machine (SVM),

k-Nearest Neighbour (k-NN), Random Forest, Naı̈ve Bayes

etc. achieving success for cyber security intrusion detection.

However, due to the challenges particular to network intrusion
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detection, such as high cost of errors, variability in traffic

etc., adoption of these solutions in the “real-world” has been

limited. Over recent years, there has been a gradual increase

in availability of realistic network traffic data sets and an

increased engagement between data scientists and network

researchers to improve model explainability such that more

practical Machine Learning (ML) solutions for network attack

detection can be developed. Some of the first application

of machine learning techniques specific to DDoS detection

has been for traffic classification. Specifically, to distinguish

between benign and malicious traffic, techniques such as extra-

trees and multi-layer perceptrons have been applied [42], [43].

In consideration of the realistic operation of DDoS attacks

from virtual machines, He et al. [44] evaluate nine ML

algorithms to identify their capability to detect the DDoS from

the source side in the cloud. The results are promising with

high accuracy (99.7%) and low false positives (< 0.07%) for

the best performing algorithm; SVM linear kernel. Although

there is no information provided regarding the detection time

or the datasets used for the evaluation, the results illustrate

the variability in accuracy and performance across the range

of ML models. This is reflected across the literature e.g. [45],

[46] with the algorithm performance highly dependent on the

selected features (and datasets) evaluated. This has motivated

the consideration of deep learning for DDoS detection, which

reduces the emphasis on feature engineering.

C. Deep Learning for DDoS detection

There is a small body of work investigating the application

of DL to DDoS detection. For example, in [47], the authors

address the problem of threshold setting in entropy-based

techniques by combining entropy features with DL-based

classifiers. The evaluation demonstrates improved performance

over the threshold-based approach with higher precision and

recall. In [48], a Recurrent Neural Network (RNN)-Intrusion

Detection System (IDS) is compared with a series of pre-

viously presented ML techniques (e.g. J48, Artificial Neural

Network (ANN), Random Forest, and SVM) applied to the

NSL-KDD [49] dataset. The RNN technique demonstrates a

higher accuracy and detection rate.

Some CNN-based works [36]–[39], as identified in Sec.

II-A, use flow-level statistics (total bytes, flow duration, total

number of flags, etc.) as input to the proposed DL-based

architectures. In addition, [36] and [37] combine the statistical

features with packet payloads to train the proposed IDSs.

In [19], Kehe Wu et al. present an IDS based on CNN for

multi-class traffic classification. The proposed neural network

model has been validated with flow-level features from the

NSL-KDD dataset encoded into 11x11 arrays. Evaluation

results show that the proposed model performs well compared

to complex models with 20 times more trainable parameters.

A similar approach is taken by the authors of [20], where

the CNN-based IDS is validated over datasets NSL-KDD and

UNSW-NB-15 [50]. In [51], the authors study the application

of CNNs to IDS by comparing a series of architectures (shal-

low, moderate, and deep, to reflect the number of convolution

and pooling layers) across 3 traffic datasets; NSL-KDD, Kyoto

Honeypot [52], and MAWILab [53]. In the results presented,

the shallow CNN model with a single convolution layer and

single max. pooling layer performed best. However, there is

significant variance in the detection accuracy results across the

datasets, which indicates instability in the model.

More specific to our DDoS problem, Ghanbari et al. propose

a feature extraction algorithm based on the discrete wavelet

transform and on the variance fractal dimension trajectory

to maximize the sensitivity of the CNN in detecting DDoS

attacks [5]. The evaluation results show that the proposed ap-

proach recognises DDoS attacks with 87.35% accuracy on the

CAIDA DDoS attack dataset [54]. Although the authors state

that their method allows real-time detection of DDoS attacks

in a range of environments, no performance measurements are

reported to support this claim.

DeepDefense [4] combines CNNs and RNNs to translate

original traffic traces into arrays that contain packet features

collected within sliding time windows. The results presented

demonstrate high accuracy in DDoS attack detection within

the selected ISCX2012 dataset [55]. However, it is not clear if

these results were obtained on unseen test data, or are results

from the training phase. Furthermore, the number of trainable

parameters in the model is extremely large indicating a long

and resource-intensive training phase. This would significantly

challenge implementation in an online system with constrained

resources, as will be discussed in Sec. V and VII.

Although deep learning offers the potential for an effective

DDoS detection method, as described, existing approaches

are limited by their suitability for online implementation

in resource-constrained environments. In Sec. V, we com-

pare our proposed solution, LUCID, with the state-of-the-art,

specifically [4], [35], [36], [38], [47] and demonstrate the

contributions of LUCID.

III. METHODOLOGY

In this paper we present LUCID, a CNN-based solution

for DDoS detection that can be deployed in online resource-

constrained environments. Our CNN encapsulates the learning

of malicious activity from traffic to enable the identification

of DDoS patterns regardless of their temporal positioning.

This is a fundamental benefit of CNNs; to produce the same

output regardless of where a pattern appears in the input.

This encapsulation and learning of features whilst training

the model removes the need for excessive feature engineering,

ranking and selection. To support an online attack detection

system, we use a novel preprocessing method for the network

traffic that generates a spatial data representation used as input

to the CNN. In this section, we introduce the network traffic

preprocessing method, the CNN model architecture, and the

learning procedure.

A. Network Traffic preprocessing

Network traffic is comprised of data flows between end-

points. Due to the shared nature of the communication link,

packets from different data flows are multiplexed resulting in

packets from the same flow being separated for transmission.

This means that the processing for live presentation of traffic



4

TABLE I
GLOSSARY OF SYMBOLS.

α Learning rate n Number of packets per sample

f Number of features per packet s Batch size

h Height of convolutional filters t Time window duration

id 5-tuple flow identifier τ Time window start time

k Number of convolutional filters E Array of labelled samples

m Max pooling size L Set of labels

to a NIDS is quite different to the processing of a static dataset

comprising complete flows. For the same reason, the ability

to generate flow-level statistics, as relied upon by many of the

existing works described in Sec. II, is not feasible in an online

system.

In order to develop our online NIDS, we created a tool

that converts the traffic flows extracted from network traffic

traces of a dataset into array-like data structures and splits

them into sub-flows based on time windows. Shaping the input

as packet flows in this manner creates a spatial data repre-

sentation, which allows the CNN to learn the characteristics

of DDoS attacks and benign traffic through the convolutional

filters sliding over such input to identify salient patterns. This

form of input is compatible with traffic captured in online

deployments. The process is illustrated in Algorithm 1 and

described next. The symbols are defined in Table I.

Algorithm 1 Network traffic preprocessing algorithm

Input: Network traffic trace (NTT ), flow-level labels (L),
time window (t), max packets/sample (n)

Output: List of labelled samples (E)
1: procedure PREPROCESSING(NTT , L, t, n)

2: E ← ∅ ⊲ Initialise the set of samples

3: τ ← −1 ⊲ Initialise the time window start-time

4: for all pkt ∈ NTT do ⊲ Loop over the packets

5: id← pkt.tuple ⊲ 5-tuple flow identifier

6: if τ == −1 or pkt.time > τ + t then

7: τ ← pkt.time ⊲ Time window start time

8: end if

9: if
∣

∣E [τ, id]
∣

∣ < n then ⊲ Max n pkts/sample

10: E [τ, id].pkts.append(pkt.features)
11: end if

12: end for

13: E ← normalization padding(E)
14: for all e ∈ E do ⊲ Labelling

15: e.label← L[e.id] ⊲ Apply the label to the sample

16: end for

17: return E
18: end procedure

Feature extraction. Given a traffic trace file from the

dataset and a pre-defined time window of length t seconds,

the algorithm collects all the packets from the file with capture

time between t0, the capture time of the first packet, and time

t0 + t. From each packet, the algorithm extracts 11 attributes

(see Table II). We intuitively exclude those attributes that

would be detrimental to the generalization of the model, such

as IP addresses and TCP/UDP ports (specific to the end-hosts

and user applications), link layer encapsulation type (linked to

Fig. 1. Graphical representation of E .

the network interfaces) and application-layer attributes (e.g.,

IRC or HTTP protocol attributes).

Data processing algorithm. This procedure, described in

Algorithm 1 at lines 4-12, simulates the traffic capturing

process of online IDSs, where the traffic is collected for a

certain amount of time t before being sent to the anomaly

detection algorithms. Hence, such algorithms must base their

decisions on portions of traffic flows, without the knowledge

of their whole life. To simulate this process, the attributes of

the packets belonging to the same bi-directional traffic flow

are grouped in chronological order to form an example of

shape [n, f ] (as shown in Table II), where f is the number

of features (11) and n is the maximum number of packets the

parsing process collects for each flow within the time window.

t and n are hyper-parameters for our CNN. Flows longer than

n are truncated, while shorter flows are zero-padded at the end

during the next stage after normalization. The same operations

are repeated for the packets within time window [t0+t, t0+2t]
and so on, until the end of the file.

Logically, we hypothesize that short time windows enable

the online systems to detect DDoS attacks within a very short

time frame. Conversely, higher values of t and n offer more

information on flows to the detection algorithms, which we

expect to result in higher detection accuracy. The sensitivity

of our CNN to the values of t and n is evaluated in Sec. IV.

The output of this process can be seen as a bi-dimensional

array of samples (E [τ, id] in Algorithm 1). A row of the

array represents the samples whose packets have been captured

in the same time window, whilst a column represents the

samples whose packets belong to the same bi-directional flow.

A graphical representation of array E is provided in Fig. 1.

Normalization and padding. Each attribute value is nor-

malized to a [0, 1] scale and the samples are zero-padded so

that each sample is of fixed length n, since having samples of

fixed length is a requirement for a CNN to be able to learn

over a full sample set. In Fig. 1, each non-empty element of

the array E is a compact graphical representation of a sample.
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TABLE II
A TCP FLOW SAMPLE BEFORE NORMALIZATION.

Pkt #
Time

(sec)1

Packet

Len

Highest

Layer2

IP

Flags
Protocols3 TCP

Len

TCP

Ack

TCP

Flags

TCP

Window Size

UDP

Len

ICMP

Type

P
a

ck
et

s



















0 0 151 99602525 0x4000 0011010001000b 85 336 0x018 1444 0 0

1 0.092 135 99602525 0x4000 0011010001000b 69 453 0x018 510 0 0

...
...

...
...

...
...

...
...

...
...

...
...

j 0.513 66 78354535 0x4000 0010010001000b 0 405 0x010 1444 0 0

P
a

d
d

in
g











j + 1 0 0 0 0 0000000000000b 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

n 0 0 0 0 0000000000000b 0 0 0 0 0 0
1 Relative time from the first packet of the flow.
2 Numerical representation of the highest layer recognised in the packet.
3 Binary representation of the list of protocols recognised in the packet using the well-known Bag-of-Words (BoW) model. It includes protocols from Layer 2 (arp)

to common clear text application layer protocols such as http, telnet, ftp and dns.

In each E element, coloured rows are the packets in the form

of 11 normalized attributes (i.e., the upper part of Table II),

while the white rows represent the zero-padding (i.e., the lower

part of Table II). Please note that, empty elements in Fig. 1

are for visualization only and are not included in the dataset.

An empty E [τ, id] means that no packets of flow id have been

captured in time window [τ, τ + t] (e.g. E [t0, F4]).
Labelling. Each example E [τ, id] is labelled by matching

its flow identifier id with the labels provided with the original

dataset (lines 14-16 in Algorithm 1). This also means that the

value of the label is constant along each column of array E ,

as represented in Fig. 1.

B. LUCID Model Architecture

We take the output from Algorithm 1 as input to our CNN

model for the purposes of online attack detection. LUCID

classifies traffic flows into one of two classes, either malicious

(DDoS) or benign. Our objective is to minimise the com-

plexity and performance time of this CNN model for feasible

deployment on resource-constrained devices. To achieve this,

the proposed approach is a lightweight, supervised detection

system that incorporates a CNN, similar to that of [9] from the

field of Natural Language Processing. CNNs have shared and

reused parameters with regard to the weights of the kernels,

whereas in a traditional neural network every weight is used

only once. This reduces the storage and memory requirements

of our model. The complete architecture is depicted in Fig. 2

and described in the next sections, with the hyper-parameter

tuning and ablation studies being discussed in Sec. IV.

Input layer. Recall that each traffic flow has been reshaped

into a 2-D matrix of packet features as per Sec. III-A, creating

a novel spatial representation that enables the CNN to learn

the correlation between packets of the same flow. Thus, this

first layer takes as input a traffic flow represented by a matrix

F of size n× f . F contains n individual packet vectors, such

that F = {pkt1, ... , pktn} where pktn is the nth packet in a

flow, and each packet vector has length f = 11 features.

CNN layer. As per Fig. 2, each input matrix F is operated

on by a single convolutional layer with k filters of size h× f ,

with h being the length of each filter, and again f = 11. Each

filter, also known as a kernel or sliding window, convolves

over F with a step of 1 to extract and learn local features that

contain useful information for detection of DDoS and benign

flows. Each of the k filters generates an activation map a of

size (n − h + 1), such that ak = ReLU(Conv(F )Wk, bk),
where Wk and bk are the weight and bias parameters of

the kth filter that are learned during the training stage. To

introduce non-linearity among the learned filters, we use the

rectified linear activation function ReLU(x) = max{0, x},
as per convention for CNNs. All activation maps are stacked,

creating an activation matrix A of size (n− h+ 1)× k, such

that A = [a1|...|ak].

There are two main benefits of including a CNN in our

architecture. Firstly, it allows the model to benefit from

efficiency gains compared to standard neural networks, since

the weights in each filter are reused across the whole input.

Sharing weights, instead of the full end-to-end connectivity

with a standard neural net, makes the model more lightweight

and reduces its memory footprint as the number of learnable

parameters is greatly reduced. Secondly, during the training

phase, the CNN automatically learns the weights and biases

of each filter such that the learning of salient characteristics

and features is encapsulated inside the resulting model during

training. This reduces the time-consuming feature engineering

and ranking involved in statistical and traditional machine

learning methods, which relies on expert human knowledge.

As a result, this model is more adaptable to new subtleties of

DDoS attack, since the training stage can be simply repeated

anytime with fresh training data without having to craft and

rank new features.

Max pooling layer. For max pooling, we down-sample

along the first dimension of A, which represents the temporal

nature of the input. A pool size of m produces an output

matrix mo of size ((n − h + 1)/m) × k, which contains the

largest m activations of each learned filter, such that mo =
[max(a1)|...|max(ak)]. In this way, the model disregards

the less useful information that produced smaller activations,

instead paying attention to the larger activations. This also

means that we dispose of the positional information of the

activation, i.e. where it occurred in the original flow, giving a

more compressed feature encoding, and, in turn, reducing the

complexity of the network. mo is then flattened to produce
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Fig. 2. LUCID architecture.

the final one-dimensional feature vector v to be input to the

classification layer.

Classification layer. v is input to a fully-connected layer

of the same size, and the output layer has a sole node. This

output x is passed to the sigmoid activation function such that

σ(x) = 1/(1 + e−x). This constrains the activation to a value

of between 0 and 1, hence returning the probability p ∈ [0, 1]
of a given flow being a malicious DDoS attack. The flow is

classified as DDoS when p > 0.5, and benign otherwise.

C. The Learning Procedure

When training LUCID, the objective is to minimise its cost

function through iteratively updating all the weights and biases

contained within the model. These weights and biases are also

known as trainable, or learnable, parameters. The cost function

calculates the cost, also called the error or the loss, between the

model’s prediction, and the ground truth of the input. Hence by

minimising this cost function, we reduce the prediction error.

At each iteration in training, the input data is fed forward

through the network, the error calculated, and then this error

is back-propagated through the network. This continues until

convergence is reached, when further updates don’t reduce

the error any further, or the training process reaches the set

maximum number of epochs. With two classes in our problem

the binary cross-entropy cost function is used. Formally this

cost function c that calculates the error over a batch of s
samples can be written as:

c = −
1

s

s
∑

j=1

(yj log pj + (1− yj) log(1− pj)) (1)

where yj is the ground truth target label for each flow j in

the batch of s samples, and pj is the predicted probability flow

j is malicious DDoS. This is supervised learning because each

flow in our datasets is labelled with the ground truth, either

DDoS or benign. To reduce bias in our learning procedure, we

ensure that these datasets are balanced with equal numbers of

malicious and benign flows, which gives a greater degree of

confidence that the model is learning the correct feature repre-

sentations from the patterns in the traffic flows. As previously

highlighted, the learning is encapsulated inside the model by

all the weights and biases, meaning that our approach does

not require significant expert input to craft bespoke features

and statistically assess their importance during preprocessing,

unlike many existing methods, as outlined in Sec. II.

IV. EXPERIMENTAL SETUP

A. Datasets

Our CNN model is validated with recent datasets ISCX2012

[55], CIC2017 [56] and CSECIC2018 [57] provided by the

Canadian Institute for Cybersecurity of the University of

New Brunswick (UNB), Canada. They consist of several

days of network activity, normal and malicious, including

DDoS attacks. The three datasets are publicly available in

the form of traffic traces in pcap format including full packet

payloads, plus supplementary text files containing the labels

and statistical details for each traffic flow.

The UNB researchers have generated these datasets by

using profiles to accurately represent the abstract properties

of human and attack behaviours. One profile characterises the

normal network activities and provides distribution models for

applications and protocols (HTTP, SMTP, SSH, IMAP, POP3,

and FTP) produced with the analysis of real traffic traces.

Other profiles describe a variety of attack scenarios based on

recent security reports. They are used to mimic the behaviour

of the malicious attackers by means of custom botnets and

well-known DDoS attacking tools such as High Orbit Ion

Cannon (HOIC) [58] and its predecessor, the Low Orbit Ion

Cannon (LOIC) [59]. HOIC and LOIC have been widely

used by Anonymous and other hacker groups in some highly-

publicized attacks against PayPal, Mastercard, Visa, Amazon,

Megaupload, among others [60].

Table III shows the parts of the three datasets used in this

work. In the table, the column Traffic trace specifies the name

of the trace, according to [55], [56] and [57]. Specifically,

the ISCX2012-Tue15 trace contains a DDoS attack based

on an IRC botnet. The CIC2017-Fri7PM trace contains a

HTTP DDoS generated with LOIC, while the CSECIC2018-

Wed21 trace contains a HTTP DDoS generated with HOIC.

With respect to the original file, the trace CIC2017-Fri7PM

is reduced to timeslot 3.30PM-5.00PM to exclude malicious

packets related to other cyber attacks (port scans and back-

doors).

TABLE III
THE DATASETS FROM UNB [61].

Dataset Traffic trace #Flows #Benign #DDoS

ISCX2012 Tue15 571698 534320 37378

CIC2017 Fri7PM 225745 97718 128027

CSECIC2018 Wed21 1048575 360832 687743

In an initial design, the model was trained and validated

on the ISCX2012 dataset producing high accuracy results.

However, testing the model on the CIC2017 dataset confirmed

the generally held observation that a model trained on one

dataset will not necessarily perform well on a completely

new dataset. In particular, we obtained a false negative rate

of about 17%. This can be attributed to the different attacks
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represented in the two datasets, as previously described. What

we attempt in this work is to develop a model that when trained

and validated across a mixed dataset can reproduce the high

performance results on completely unseen test data. To achieve

this, a combined training dataset is generated as described in

Sec. IV-B.

B. Data preparation

We extract the 37378 DDoS flows from ISCX2012,

plus randomly select 37378 benign flows from the

same year to balance. We repeat this process with

97718/97718 benign/DDoS flows for CIC2017 and again with

360832/360832 benign/DDoS flows for CSECIC2018.

After the pre-preprocessing stage, where flows are translated

into array-like data structures (Sec. III-A), each of the three

datasets is split into training (90%) and test (10%) sets, with

10% of the training set used for validation. Please note that, the

split operation is performed on a per-flow basis to ensure that

samples obtained from the same traffic flow end up in the same

split, hence avoiding the “contamination” of the validation and

test splits with data used for the training. We finally combine

the training splits from each year by balancing them with

equal proportions from each year to produce a single training

set. We do the same with the validation and test splits, to

obtain a final dataset referred to as UNB201X in the rest of

the paper. UNB201X training and validation sets are only used

for training the model and tuning the hyper-parameters (Sec.

IV-D), while the test set is used for the evaluation presented

in Sec. V and VII, either as a whole combined test set, or as

individual per-year test sets for state-of-the-art comparison.

A summary of the final UNB201X splits is presented in

Table IV, which reports the number of samples as a function of

time window duration t. As illustrated in Table IV, low values

of this hyper-parameter yield larger numbers of samples.

Intuitively, using short time windows leads to splitting traffic

flows into many small fragments (ultimately converted into

samples), while long time windows produce the opposite

result. In contrast, the value of n has a negligible impact on

the final number of samples in the dataset.

TABLE IV
UNB201X DATASET SPLITS.

Time
Window

Total
Samples

Training Validation Test

t=1s 480519 389190 43272 48057
t=2s 353058 285963 31782 35313
t=3s 310590 251574 27957 31059
t=4s 289437 234438 26055 28944
t=5s 276024 223569 24852 27603
t=10s 265902 215379 23931 26592
t=20s 235593 190827 21204 23562
t=50s 227214 184041 20451 22722
t=100s 224154 181551 20187 22416

C. Evaluation methodology

As per convention in the literature, we report the metrics

Accuracy (ACC), False Positive Rate (FPR), Precision (or

Positive Predictive Value (PPV)), Recall (or True Positive Rate

(TPR)) and F1 Score (F1), with a focus on the latter. Accuracy

is the percentage of correctly classified samples (both benign

and DDoS). FPR represents the percentage of samples that

are falsely classified as DDoS. PPV is the ratio between the

correctly detected DDoS samples and all the detected DDoS

samples (true and false). TPR represents the percentage of

DDoS samples that are correctly classified as such. The F1

Score is an overall measure of a model’s performance; that is

the harmonic mean of the PPV and TPR. These metrics are

formally defined as follows:

ACC = TP+TN
TP+TN+FP+FN

FPR = FP
FP+TN

PPV = TP
TP+FP

TPR = TP
TP+FN

F1 = 2 · PPV ·TPR
PPV+TPR

where TP=True Positives, TN=True Negatives, FP=False Pos-

itives, FN=False Negatives.

The output of the training process is a combination of

trainable and hyper parameters that maximizes the F1 Score

on the validation set or, in other words, that minimizes the

total number of False Positives and False Negatives.

Model training and validation have been performed on a

server-class computer equipped with two 16-core Intel Xeon

Silver 4110 @2.1 GHz CPUs and 64 GB of RAM. The models

have been implemented in Python v3.6 using the Keras API

v2.2.4 [62] on top of Tensorflow 1.13.1 [63].

D. Hyper-parameter tuning

Tuning the hyper-parameters is an important step to opti-

mise the model’s accuracy, as their values influence the model

complexity and the learning process. Prior to our experiments,

we empirically chose the hyper-parameter values based on the

results of preliminary tuning and on the motivations described

per parameter. We then adopted a grid search strategy to

explore the set of hyper-parameters using F1 score as the

performance metric. At each point in the grid, the training

continues indefinitely and stops when the loss does not de-

crease for a consecutive 25 times. Then, the search process

saves the F1 score and moves to the next point.

As per Sec. IV-B, UNB201X is split into training, validation

and testing sets. For hyper-parameter tuning, we use only the

validation set. It is important to highlight that we do not tune to

the test set, as that may artificially improve performance. The

test set is kept completely unseen, solely for use in generating

our experimental results, which are reported in Sec. V.

Maximum number of packets/sample. n is important

for the characterization of the traffic and for capturing the

temporal patterns of traffic flows. The value of n indicates

the maximum number of packets of a flow recorded in

chronological order in a sample.

The resulting set of packets describes a portion of the life

of the flow in a given time window, including the (relative)

time information of packets. Repetition-based DDoS attacks

use a small set of messages at approximately constant rates,

therefore a small value of n is sufficient to spot the temporal

patterns among the packet features, hence requiring a limited

number of trainable parameters. On the other hand, more
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Fig. 3. Sensitivity of our model to hyper-parameter n.

complex attacks, such as the ones performed with the HOIC

tool, which uses multiple HTTP headers to make the requests

appear legitimate, might require a larger number of packets to

achieve the desired degree of accuracy. Given the variety of

DDoS tools used to simulate the attack traffic in the dataset

(IRC-based bot, LOIC and HOIC), we experimented with n
ranging between 1 and 100, and we compared the performance

in terms of F1 score. The results are provided in Fig. 3 for

different durations of time window t, but at fixed values of

the other hyper-parameters for the sake of visualisation.

The F1 score steadily increases with the value of n when

n < 5, and then stabilises when n ≥ 5. However, an increase

in F1 score is still observed up to n = 100. Although, a

low value of n can be used to speed up the detection time

(less convolutions) and to reduce the requirements in terms of

storage and RAM (smaller sample size), which links to our

objective of a lightweight implementation, we wish to balance

high accuracy with low resource consumption. This will be

demonstrated in Sec. VII.

Time Window. The time window t is used to simulate

the capturing process of online systems (see Sec. III-A). We

evaluated the F1 score for time windows ranging between 1

and 100 seconds (as in the related work e.g. [4]) at different

values of n. The results are shown in Fig. 4.
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Fig. 4. Sensitivity of our model to hyper-parameter t.

Although the number of samples in the training set de-

creases when t increases (see Table IV), the CNN is relatively

insensitive to this hyper-parameter for n > 1. With n = 1,

the traffic flows are represented by samples of shape [1, f ],
i.e. only one packet/sample, irrespective of the duration of the

time window. In such a corner case, since the CNN cannot

correlate the attributes of different packets within the same

sample, the F1 score is more influenced by the number of

samples in the training set (the more samples, the better).

Height of convolutional filters. h determines the height of

the filters (the width is fixed to 11, the number of features),

i.e. the number of packets to involve in each matrix operation.

Testing with h = 1, 2, 3, 4, 5, we observed a small, but

noticeable, difference in the F1 score between h = 1 (0.9934)

and h = 3 (0.9950), with no major improvement beyond

h = 3.

Number of convolutional filters. As per common practice,

we experimented by increasing the number of convolutional

filters k by powers of 2, from k = 1 to k = 64. We observed

a steady increase in the F1 score with the value of k, which

is a direct consequence of the increasing number of trainable

parameters in the model.

Resulting hyper-parameter set. After conducting a com-

prehensive grid search on 2835 combinations of hyper-

parameters, we have selected the CNN model configuration

that maximises the F1 score on the UNB201X validation set

(Table V). That is:

n = 100, t = 100, k = 64, h = 3, m = 98

The resulting model, trained with batch size s = 2048 and

using the Adam optimizer [64] with learning rate α = 0.01,

consists of 2241 trainable parameters, 2176 for the convolu-

tional layer (h · f units for each filter plus bias, multiplied by

the number of filters K) and 65 for the fully connected layer

(64 units plus bias).

As previously noted, other configurations may present lower

resource requirements at the cost of a minimal decrease in F1

score. For example, using k = 32 would reduce the number of

convolutions by half, while n = 10, 20, 50 would also require

fewer convolutions and a smaller memory footprint. However,

setting n = 100 not only maximises the F1 score, but also

enables a fair comparison with state-of-the-art approaches such

as DeepDefense [4] (Sec. V), where the authors trained their

neural networks using n = 100 (in [4], the hyper-parameter is

denoted as T ). Furthermore, the chosen configuration enables

a worst-case analysis for resource-constrained scenarios such

as that presented in Sec. VII.

These hyper-parameters are kept constant throughout our

experiments presented in Sec. V and VII.

TABLE V
SCORES OBTAINED ON THE UNB201X VALIDATION SET.

Validation set ACC FPR PPV TPR F1

UNB201X 0.9950 0.0083 0.9917 0.9983 0.9950

V. RESULTS

In this section, we present a detailed evaluation of the

proposed approach with the datasets presented in Sec. IV-A.

Evaluation metrics of Accuracy (ACC), False Positive Rate

(FPR), Precision (PPV), Recall (TPR) and F1 Score (F1) have

been used for performance measurement and for comparison

with state-of-the-art models.
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A. Detection accuracy

In order to validate our approach and the results obtained on

the validation dataset, we measure the performance of LUCID

in classifying unseen traffic flows as benign or malicious

(DDoS). Table VI summarizes the results obtained on the

various test sets produced through the procedure described

in Sec. IV-B. As illustrated, the very high performance is

maintained across the range of test datasets indicating the

robustness of the LUCID design. These results are further

discussed in Sec. V-B, where we compare our solution with

state-of-the-art works reported in the scientific literature.

TABLE VI
LUCID DETECTION PERFORMANCE ON THE TEST SETS.

Test set ACC FPR PPV TPR F1

ISCX2012 0.9888 0.0179 0.9827 0.9952 0.9889

CIC2017 0.9967 0.0059 0.9939 0.9994 0.9966

CSECIC2018 0.9987 0.0016 0.9984 0.9989 0.9987

UNB201X 0.9946 0.0087 0.9914 0.9979 0.9946

The results show that thanks to the properties of its CNN,

LUCID learns to distinguish between patterns of malicious

DDoS behaviour and benign flows. Given the properties of

convolutional methods, these patterns are recognised regard-

less of the position they occupy in a flow, demonstrating that

our spatial representation of a flow is robust. Irrespective of

whether the DDoS event appears at the start or the end of

the input, LUCID will produce the same representation in

its output. Although the temporal dynamics in DDoS attacks

might suggest that alternative DL architectures may seem more

suitable (e.g. Long Short-Term Memory (LSTM)), our novel

preprocessing method combined with the CNN removes the

requirement for the model to maintain temporal context of

each whole flow as the data is pushed through the network.

In comparison, LSTMs are known to be very difficult to train,

and their performance is inherently slower for long sequences

compared to CNNs.

B. State-Of-The-Art Comparison

For a fair comparison between LUCID and the state-of-the-

art, we focus our analysis on solutions that have validated the

UNB datasets for DDoS attack detection.

We have paid particular attention to DeepDefense [4] as,

similar to our approach, the model is trained with packet

attributes rather than flow-level statistics used in other works.

DeepDefense translates the pcap files of ISCX2012 into arrays

that contain packet attributes collected within sliding time

windows. The label assigned to a sample is the label of the last

packet in the time window, according to the labels provided

with the original dataset. The proposed data preprocessing

technique is similar to LUCID’s. However, in LUCID, a sample

corresponds to a single traffic flow, whereas in DeepDefense

a sample represents the traffic collected in a time window.

Of the four DL models presented in the DeepDefense

paper, the one called 3LSTM produces the highest scores in

the classification of DDoS traffic. Therefore, we have imple-

mented 3LSTM for comparison purposes. The architecture

of this model includes 6 LSTM layers of 64 neurons each,

2 fully connected layers of 128 neurons each, and 4 batch

normalization layers. To directly compare the DL models,

we have trained 3LSTM on the UNB201X training set with

n = 100 and t = 100 as done with LUCID. We have compared

our implementation of 3LSTM with LUCID on each of the four

test sets, and present the F1 score results in Table VII.

TABLE VII
LUCID-DEEPDEFENSE COMPARISON (F1 SCORE).

Model
Trainable

Parameters
ISCX
2012

CIC
2017

CSECIC
2018

UNB
201X

LUCID 2241 0.9889 0.9966 0.9987 0.9946

3LSTM 1004889 0.9880 0.9968 0.9987 0.9943

The results presented in Table VII show that LUCID and

3LSTM are comparable in terms of F1 score across the

range of test datasets. However, in terms of computation time,

LUCID outperforms 3LSTM in detection time. Specifically,

as measured on the Intel Xeon server in these experiments,

LUCID can classify more than 55000 samples/sec on average,

while 3LSTM barely reaches 1300 samples/sec on average

(i.e., more than 40 times slower). Indeed, LUCID’s limited

number of hidden units and trainable parameters contribute to

a much lower computational complexity compared to 3LSTM.

As previously noted, there are a number of solutions in the

literature that present performance results for the ISCX2012

and CIC2017 datasets. Notably, these works do not all specify

whether the results presented are based on a validation dataset

or a test dataset. For LUCID, we reiterate that the results

presented in this section are based on a test set of completely

unseen data.

TABLE VIII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES

USING THE ISCX2012 DATASET FOR DDOS DETECTION.

Model ACC FPR PPV TPR F1

LUCID 0.9888 0.0179 0.9827 0.9952 0.9889

DeepDefense
3LSTM [4]

0.9841 N/A 0.9834 0.9847 0.9840

TR-IDS [36] 0.9809 0.0040 N/A 0.9593 N/A

E3ML [47] N/A N/A N/A 0.9474 N/A

In Table VIII, we compare the performance of LUCID

against state-of-the-art works validated on ISCX2012. Table

VIII also includes the performance of 3LSTM as reported in

the DeepDefense paper [4]. With respect to our version of

3LSTM, the scores are slightly lower, which we propose is

due to the different pcap preprocessing mechanisms used in

the two implementations. This indicates a performance benefit

when using the LUCID preprocessing mechanism.

TR-IDS [36] is an IDS which adopts a text-CNN [9] to

extract features from the payload of the network traffic. These
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features, along with a combination of 25 packet and flow-

level attributes, are used for traffic classification by means of

a Random Forest algorithm. Accuracy and TPR of TR-IDS are

above 0.99 for all the attack profiles available in ISCX2012

except the DDoS attack, for which the performance results are

noticeably lower than LUCID.

E3ML [47] uses 20 entropy-based traffic features and three

ML classifiers (a RNN, a Multilayer Perceptron and an Al-

ternating Decision Tree) to classify the traffic as normal or

DDoS. Despite the complex architecture, the TPR measured

on ISCX2012 shows that E3ML is inclined to false negatives.

For the CIC2017 dataset, we present the performance com-

parison with state-of-the-art solutions in Table IX.

TABLE IX
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES

USING THE CIC2017 DATASET FOR DDOS DETECTION.

Model ACC FPR PPV TPR F1

LUCID 0.9967 0.0059 0.9939 0.9994 0.9966

DeepGFL [35] N/A N/A 0.7567 0.3024 0.4321

MLP [38] 0.8634 N/A 0.8847 0.8625 0.8735

1D-CNN [38] 0.9514 N/A 0.9814 0.9017 0.9399

LSTM [38] 0.9624 N/A 0.9844 0.8989 0.8959

1D-CNN +
LSTM [38]

0.9716 N/A 0.9741 0.9910 0.9825

DeepGFL [35] is a framework designed to extract high-

order traffic features from low-order features forming a hier-

archical graph representation. To validate the proposed frame-

work, the authors used the graph representation of the features

to train two traffic classifiers, namely Decision Tree and

Random Forest, and tested them on CIC2017. Although the

precision scores on the several attack types are reasonably

good (between 0.88 and 1 on any type of traffic profile except

DDoS), the results presented in the paper reveal that the

proposed approach is prone to false negatives, leading to very

low F1 scores.

The authors of [38] propose four different DL models for

DDoS attack detection in Internet of Things (IoT) networks.

The models are built with combinations of LSTM, CNN and

fully connected layers. The input layer of all the models

consists of 82 units, one for each flow-level feature available

in CIC2017, while the output layer returns the probability of

a given flow being part of a DDoS attack. The model 1D-

CNN+LSTM produces good classification scores, while the

others seem to suffer from high false negatives rates.

To the best of our knowledge, no DDoS attack detection

solutions validated on the CSECIC2018 dataset are available

yet in the scientific literature.

C. Discussion

From the results presented and analysed in the previous

sections, we can conclude that using packet-level attributes

of network traffic is more effective, and results in higher clas-

sification accuracy, than using flow-level features or statistic

information such as the entropy measure. This is not only

proved by the evaluation results obtained with LUCID and

our implementation of DeepDefense (both based on packet-

level attributes), but also by the high classification accuracy

of TR-IDS, which combines flow-level features with packet

attributes, including part of the payload.

In contrast, E3ML, DeepGFL and most of the solutions

proposed in [38], which all rely on flow-level features, seem

to be more prone to false negatives, and hence to classify

DDoS attacks as normal activity. The only exception is the

model 1D-CNN+LSTM of [38], which produces a high TPR

by combining CNN and RNN layers.

Furthermore, we highlight that LUCID has not been tuned

to the individual datasets but rather to the validation portion of

a combined dataset, and still outperforms the state-of-the-art

on totally unseen test data.

VI. ANALYSIS

We now present interpretation and explanation of the inter-

nal operations of LUCID by way of proving that the model

is learning the correct domain information. We do this by

analysing the features used in the dataset and their activations

in the model. To the best of our knowledge, this is the first

application of a specific activation analysis to a CNN-based

DDoS detection method.

A. Kernel activations

This approach is inspired by a similar study [65] to interpret

CNNs in the rather different domain of natural language

processing. However, the kernel activation analysis technique

is transferable to our work. As each kernel has the same width

as the input matrix, it is possible to remove the classifier,

push the DDoS flows through the convolutional layer and

capture the resulting activations per kernel. For each flow,

we calculate the total activations per feature, which in the

spatial input representation means per column, resulting in

11 values that map to the 11 features. This is then repeated

for all kernels, across all DDoS flows, with the final output

being the total column-wise activation of each feature. The

intuition is that the higher a feature’s activation when a

positive sample i.e. a DDoS flow is seen, the more importance

the CNN attaches to that particular feature. Conversely, the

lower the activation, the lower the importance of the feature,

and since our model uses the conventional rectified linear

activation function, ReLU(x) = max{0, x}, this means that

any negative activations become zero and hence have no

impact on the Sigmoid classifier for detecting a DDoS attack.

Summing these activations over all kernels is possible

since they are of the same size and operate over the same

spatial representations. We analyse DDoS flows from the same

UNB201X test set used in Sec. V-A.

Table X presents the ranking of the 11 features based on

the post-ReLU average column-wise feature activation sums,

and highlights two features that activate our CNN the most,

across all of its kernels.

Highest Layer. We assert that the CNN may be learning

from the highest layer at which each DDoS flow operates.
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TABLE X
RANKING OF THE TOTAL COLUMN-WISE FEATURE KERNEL ACTIVATIONS

FOR THE UNB201X DATASET

Feature
Total Kernel

Activation
Feature

Total Kernel
Activation

Highest Layer 0.69540 Time 0.11108

IP Flags 0.30337 TCP Win Size 0.09596

TCP Flags 0.19693 TCP Ack 0.00061

TCP Len 0.16874 UDP Len 0.00000

Protocols 0.14897 ICMP Type 0.00000

Pkt Len 0.14392

Recall that highest layer links to the type of DDoS attack e.g.

network, transport, or application layer attack. We propose that

this information could be used to extend LUCID to predict

the specific type of DDoS attack taking place, and there-

fore, to contribute to selection of the appropriate protection

mechanism. We would achieve the prediction by extending

the dataset labeling, which we consider for future work.

IP Flags. In our design, this attribute is a 16-bit integer

value which includes three bits representing the flags Reserved

Bit, Don’t Fragment and More Fragments, plus 13 bits for the

Fragment offset value, which is non-zero only if bit “Don’t

Fragment” is unset. Unlike the IP fragmented flood DDoS

attacks, in which the IP flags are manipulated to exploit

the datagram fragmentation mechanisms, 99.99% of DDoS

packets in the UNB datasets present an IP flags value of

0x4000, with only the “Don’t Fragment” bit set to 1. A

different distribution of IP flags is observed in the UNB

benign traffic, with the “Don’t Fragment” bit set to 1 in

about 92% of the packets. Thus, the pattern of IP flags is

slightly different between attack and benign traffic, and we

are confident that LUCID is indeed learning their significance

in DDoS classification, as evidenced by its 2nd place in our

ranking.

B. Future Directions

However, even given this activation analysis, there is no

definitive list of features that exist for detecting DDoS attacks

with which we can directly compare our results. Analysing

the related work, we identify a wide range of both stateless

and stateful features highlighted for their influence in a given

detection model, which is not unexpected as the features of

use vary depending on the attack traffic. This is highlighted by

the 2014 study [66], which concludes that different classes of

attack have different properties, leading to the wide variance

in features identified as salient for the attack detection. The

authors also observe that the learning of patterns specific to

the attack scenario would be more valuable than an effort to

produce an attack-agnostic finite list of features. We, therefore,

conclude from our analysis that LUCID appears to be learning

the importance of relevant features for DDoS detection, which

gives us confidence in the prediction performance.

Linked to this activation analysis, we highlight adversarial

robustness as a key consideration for the deployment of ML-

based IDSs. As detailed in [67], the two main attacks on IDSs

are during training via a poisoning attack (i.e. corruption of the

training data), or in testing, when an evasion attack attempts

to cause incorrect classification by making small perturbations

to observed features. Our activation analysis is a first step in

the investigation of the model behaviour in adversarial cases

with the feature ranking in Table X highlighting the features

for perturbation for evasion attacks. Of course, the adversary

model (goal, knowledge, and capability) dictates the potential

for a successful attack. For example, the attacker would require

full knowledge of the CNN and kernel activations, and have

the ability to forge traffic within the network. The construction

of defences robust to adversarial attacks is an open problem

[68] and an aspect which we will further explore for LUCID.

VII. USE-CASE: DDOS DETECTION AT THE EDGE

Edge computing is an emerging paradigm adopted in a

variety of contexts (e.g. fog computing [69], edge clouds

[70]), with the aim of improving the performance of applica-

tions with low-latency and high-bandwidth requirements. Edge

computing complements centralised data centres with a large

number of distributed nodes that provide computation services

close to the sources of the data.

The proliferation of attacks leveraging unsecured IoT de-

vices (e.g., the Mirai botnet [71] and its variants) demonstrate

the potential value in edge-based DDoS attack detection.

Indeed, with edge nodes close to the IoT infrastructure, they

can detect and block the DDoS traffic as soon as it leaves

the compromised devices. However, in contrast to cloud high-

performance servers, edge nodes cannot exploit sophisticated

solutions against DDoS attacks, due to their limited computing

and memory resources. Although recent research efforts have

demonstrated that the mitigation of DDoS attacks is feasible

even by means of commodity computers [72], [73], edge

computing-based DDoS detection is still at an early stage.

In this section, we demonstrate that our DDoS detection

solution can be deployed and effectively executed on resource-

constrained devices, such as edge nodes or IoT gateways, by

running LUCID on an NVIDIA Jetson TX2 development board

[74], equipped with a quad-core ARM Cortex-A57@2 GHz

CPU, 8 GB of RAM and a 256-core Pascal@1300 MHz Graph-

ics Processing Unit (GPU). For the experiments, we used

Tensorflow 1.9.0 with GPU support enabled by cuDNN, a

GPU-accelerated library for deep neural networks [75].

A. Detection

In the first experiment, we analyse the applicability of

our approach to online edge computing environments by

estimating the prediction performance in terms of samples

processed per second. As we are aware that edge nodes do not

necessarily mount a GPU device, we conduct the experiments

with and without the GPU support on the UNB201X test set

and discuss the results.

We note that in an online system, our preprocessing tool pre-

sented in Section III-A can be integrated into the server/edge

device. The tool would process the live traffic collected from

the NICs of the server/edge device, collecting the packet

attributes, organising them into flows and, after a predefined

time interval, T , pass the data structure to the CNN for
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inference. We acknowledge that the speed of this process will

influence the overall system performance. However, as we

have not focused on optimising our preprocessing tool, rather

on optimising detection, its evaluation is left as future work.

Instead, in these experiments, we load the UNB datasets from

the hard disk rather than processing live traffic.

With respect to this, one relevant parameter is the batch

size, which configures how many samples are processed by the

CNN in parallel at each iteration. Such a parameter influences

the speed of the detection, as it determines the number of

iterations and, as a consequence, the number of memory reads

required by the CNN to process all the samples in the test set

(or the samples collected in a time window, in the case of

online detection).
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Fig. 5. Inference performance on the NVIDIA Jetson TX2 board.

Fig. 5 shows the performance of LUCID on the development

board in terms of processed samples/second. As the shape

of each sample is [n, f ] = [100, 11], i.e. each sample can

contain the features of up to 100 packets, we can estimate

that the maximum number of packets per second (pps) that the

device can process without the GPU and using a batch size

of 1024 samples is approximately 1.9 Mpps. As an example,

the content of the UNB201X test set is 602,547 packets

distributed over 22,416 samples, which represents a processing

requirement of 500 Kpps without the GPU, and 600 Kpps when

the GPU is enabled. This illustrates the ability to deploy

LUCID on a resource-constrained platform.

The second measurement regarding resource-constrained

systems is the memory requirement to store all the samples

collected over a time window. The memory occupancy per

sample is 8,800 bytes, i.e. 100·11 = 1100 floating point values

of 8 bytes each. As per Fig. 5, the CNN can process around

23K samples/second with the help of the GPU and using a

batch size of 1024. To cope with such a processing speed,

the device would require approximately 20 GB RAM for a

t = 100 time window. However, this value greatly exceeds the

typical amount of memory available on edge nodes, in general

(e.g., 1 GB on Raspberry Pi 3 [76], 2 GB on the ODROID-

XU board [77]), and on our device, in particular. Indeed, the

memory resources of nodes can represent the real bottleneck

in an edge computing scenario.

Therefore, assuming that our edge node is equipped with

1 GB RAM, the maximum number of samples that can be

stored in RAM is approximately 100K (without taking into

account RAM used by the operating system and applications).

We have calculated that this memory size would be sufficient

for an attack such as the HTTP-based DDoS attack in the

CSECIC2018 dataset, for which we measured approximately

30K samples on average over a 100 s time window. For

more aggressive attacks, however, a strategy to overcome the

memory limitation would be to configure the CNN model with

lower values of t and n. For instance, setting the value of both

parameters to 10 can reduce the memory requirement by a

factor of 100, with a low cost in detection accuracy (F1 score

0.9928 on the UNB201X test set, compared to the highest

score obtained with t = n = 100, i.e. 0.9946). The dynamic

configuration of the model itself is out of scope of this work.

The measurements based on our test datasets demonstrate

that the LUCID CNN is usable on a resource-constrained

platform both with respect to processing and memory require-

ments. These results are promising for effective deployment

of LUCID in a variety of edge computing scenarios, including

those where the nodes execute latency-sensitive services. A

major challenge in this regard is balancing between resource

usage of LUCID (including traffic collection and preprocess-

ing) and detection accuracy, i.e. ensuring the required level of

protection against DDoS attacks without causing delays to the

services. A deep study of this trade-off is out of scope of this

paper and is reserved for future work.

B. Training time

In a real-world scenario, the CNN model will require re-

training with new samples of benign and malicious traffic

to update all the weights and biases. In edge computing

environments, the traditional approach is to send large amounts

of data from edge nodes to remote facilities such as private

or commercial datacentres. However, this can result in high

end-to-end latency and bandwidth usage. In addition, it may

raise security concerns, as it requires trust in a third-party

entity (in the case of commercial cloud services) regarding

the preservation of data confidentiality and integrity.

A solution to this issue is to execute the re-training task

locally on the edge nodes. In this case, the main challenge is

to control the total training time, as this time determines how

long the node remains exposed to new DDoS attacks before

the detection model can leverage the updated parameters.

To demonstrate the suitability of our model for this situation,

we have measured the convergence training time of LUCID

on the development board using the UNB201X training and

validation sets with and without the GPU support. We have

experimented by following the learning procedure described

in Sec. III-C, thus with a training termination criterion based

on the loss value measured on the validation set. The results

are presented in Table XI along with the performance obtained

on the server used for the study in Sec. IV-D.

As shown in Table XI, the CNN training time on the

development board without using the GPU is around 2 hours

(184 epochs). This is approximately 4 times slower than

training on the server, but clearly outperforms the training time

of our implementation of DeepDefense 3LSTM, which we

measured at more than 1000 sec/epoch with the GPU (i.e., 40

times slower than LUCID under the same testing conditions).
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TABLE XI
TRAINING CONVERGENCE TIME.

Setup
Time/epoch

(sec)
Convergence

time (sec)

LUCID Server 10.2 1880

LUCID Dev. board (GPU) 25.8 4500

LUCID Dev. board (CPU) 40.5 7450

3LSTM Dev. board (GPU) 1070 >90000

In application scenarios where a faster convergence is

required, the time can be further reduced by either terminating

the training process early after a pre-defined number of epochs,

or limiting the size of the training/validation sets. As adopting

one or both of such strategies can result in a lower detection

accuracy, the challenge in such scenarios is finding the trade-

off between convergence time and detection accuracy that

meets the application requirements.

VIII. CONCLUSIONS

The challenge of DDoS attacks continues to undermine the

availability of networks globally. In this work, we have pre-

sented a CNN-based DDoS detection architecture. Our design

has targeted a practical, lightweight implementation with low

processing overhead and attack detection time. The benefit

of the CNN model is to remove threshold configuration as

required by statistical detection approaches, and reduce feature

engineering and the reliance on human experts required by

alternative ML techniques. This enables practical deployment.

In contrast to existing solutions, our unique traffic pre-

processing mechanism acknowledges how traffic flows across

network devices and is designed to present network traffic

to the CNN model for online DDoS attack detection. Our

evaluation results demonstrate that LUCID matches the existing

state-of-the-art performance. However, distinct from existing

work, we demonstrate consistent detection results across a

range of datasets, demonstrating the stability of our solution.

Furthermore, our evaluation on a resource-constrained device

demonstrates the suitability of our model for deployment in

resource-constrained environments. Specifically, we demon-

strate a 40x improvement in processing time over similar

state-of-the-art solutions. Finally, we have also presented an

activation analysis to explain how LUCID learns to detect

DDoS traffic, which is lacking in existing works.
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