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Abstract

Convolutional networks reach top quality in pixel-level video object segmentation but require a large amount of training data

(1k–100k) to deliver such results. We propose a new training strategy which achieves state-of-the-art results across three

evaluation datasets while using 20 ×–1000 × less annotated data than competing methods. Our approach is suitable for both

single and multiple object segmentation. Instead of using large training sets hoping to generalize across domains, we generate

in-domain training data using the provided annotation on the first frame of each video to synthesize—“lucid dream” (in a lucid

dream the sleeper is aware that he or she is dreaming and is sometimes able to control the course of the dream)—plausible

future video frames. In-domain per-video training data allows us to train high quality appearance- and motion-based models,

as well as tune the post-processing stage. This approach allows to reach competitive results even when training from only a

single annotated frame, without ImageNet pre-training. Our results indicate that using a larger training set is not automatically

better, and that for the video object segmentation task a smaller training set that is closer to the target domain is more effective.

This changes the mindset regarding how many training samples and general “objectness” knowledge are required for the video

object segmentation task.

Keywords Video object segmentation · Synthetic data · Data augmentation · Convolutional neural networks

1 Introduction

In the last years the field of localizing objects in videos has

transitioned from bounding box tracking (Kristan et al. 2015,

2014, 2016) to pixel-level segmentation (Li et al. 2013; Prest

et al. 2012; Perazzi et al. 2016; Vojir and Matas 2017). Given

a first frame labelled with the foreground object masks, one
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aims to find the corresponding object pixels in future frames.

Segmenting objects at the pixel level enables a finer under-

standing of videos and is helpful for tasks such as video

editing, rotoscoping, and summarisation.

Top performing results are currently obtained using con-

volutional networks (convnets) (Jampani et al. 2016; Caelles

et al. 2017; Khoreva et al. 2016; Bertinetto et al. 2016;

Held et al. 2016; Nam et al. 2016b). Like most deep

learning techniques, convnets for video object segmenta-

tion benefit from large amounts of training data. Current

state-of-the-art methods rely, for instance, on pixel accurate

foreground/background annotations of ∼ 2k video frames

(Jampani et al. 2016; Caelles et al. 2017), ∼ 10k images

(Khoreva et al. 2016), or even more than 100k annotated sam-

ples for training (Voigtlaender and Leibe 2017b). Labelling

images and videos at the pixel level is a laborious task (com-

pared e.g. to drawing bounding boxes for detection), and

creating a large training set requires significant annotation

effort.

In this work we aim to reduce the necessity for such large

volumes of training data. It is traditionally assumed that con-

vnets require large training sets to perform best. We show

that for video object segmentation having a larger training

set is not automatically better and that improved results can
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Fig. 1 Starting from scarce annotations we synthesize in-domain data

to train a specialized pixel-level video object segmenter for each dataset

or even each video sequence

be obtained by using 20 ×–1000 × less training data than pre-

vious approaches (Caelles et al. 2017; Khoreva et al. 2016;

Voigtlaender and Leibe 2017b). The main insight of our

work is that for video object segmentation using few training

frames (1–100) in the target domain is more useful than using

large training volumes across domains (1k–100k).

To ensure a sufficient amount of training data close to

the target domain, we develop a new technique for synthe-

sizing training data particularly tailored for the pixel-level

video object segmentation scenario. We call this data gener-

ation strategy “lucid dreaming”, where the first frame and its

annotation mask are used to generate plausible future frames

of the videos (see Fig. 1). The goal is to produce a large

training set of reasonably realistic images which capture the

expected appearance variations in future video frames, and

thus is, by design, close to the target domain.

Our approach is suitable for both single and multiple

object segmentation in videos. Enabled by the proposed data

generation strategy and the efficient use of optical flow, we

are able to achieve high quality results while using only

∼ 100 individual annotated training frames. Moreover, in

the extreme case with only a single annotated frame and

zero pre-training (i.e. without ImageNet pre-training), we

still obtain competitive video object segmentation results.

In summary, our contributions are the following:

1. We propose “lucid data dreaming”, an automated

approach to synthesize training data for the convnet-

based pixel-level video object segmentation that leads

to top results for both single and multiple object segmen-

tation.1

2. We conduct an extensive analysis to explore the factors

contributing to our good results.

1 Lucid data dreaming synthesis implementation is available at https://

www.mpi-inf.mpg.de/lucid-data-dreaming.

3. We show that training a convnet for video object seg-

mentation can be done with only few annotated frames.

We hope these results will affect the trend towards even

larger training sets, and popularize the design of video

segmentation convnets with lighter training needs.

With the results for multiple object segmentation we took

the second place in the 2017 DAVIS Challenge on Video

Object Segmentation (Pont-Tuset et al. 2017b). A summary

of the proposed approach was provided online (Khoreva et al.

2017). This paper significantly extends (Khoreva et al. 2017)

with in-depth discussions on the method, more details of the

formulation, its implementation, and its variants for single

and multiple object segmentation in videos. It also offers

a detailed ablation study and an error analysis as well as

explores the impact of varying number of annotated training

samples on the video segmentation quality.

2 RelatedWork

Box Tracking Classic work on video object tracking focused

on bounding box tracking. Many of the insights from these

works have been re-used for video object segmentation. Tra-

ditional box tracking smoothly updates across time a linear

model over hand-crafted features (Henriques et al. 2012;

Breitenstein et al. 2009; Kristan et al. 2014). Since then,

convnets have been used as improved features (Danelljan

et al. 2015; Ma et al. 2015; Wang et al. 2015), and eventu-

ally to drive the tracking itself (Held et al. 2016; Bertinetto

et al. 2016; Tao et al. 2016; Nam et al. 2016a, b). Contrary to

traditional box trackers (e.g. Henriques et al. 2012), convnet-

based approaches need additional data for pre-training and

learning the task.

Video Object Segmentation In this paper we focus on gen-

erating a foreground versus background pixel-wise object

labelling for each video frame starting from a first manually

annotated frame. Multiple strategies have been proposed to

solve this task.

Box-to-Segment First a box-level track is built, and a

space-time grabcut-like approach is used to generate per

frame segments (Xiao and Lee 2016).

Video Saliency This group of methods extracts the main

foreground object pixel-level space-time tube. Both hand-

crafted models (Faktor and Irani 2014; Papazoglou and

Ferrari 2013) or trained convnets (Tokmakov et al. 2017; Jain

et al. 2017; Song et al. 2018) have been considered. Because

these methods ignore the first frame annotation, they fail in

videos where multiple salient objects move (e.g. flock of pen-

guins).

Space-Time Proposals These methods partition the space-

time volume, and then the tube overlapping most with the
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first frame mask annotation is selected as tracking output

(Grundmann et al. 2010; Perazzi et al. 2015; Chang et al.

2013).

Mask Propagation Appearance similarity and motion

smoothness across time is used to propagate the first frame

annotation across the video (Maerki et al. 2016; Wang and

Shen 2017; Tsai et al. 2016). These methods usually leverage

optical flow and long term trajectories.

Convnets Following the trend in box tracking, recently

convnets have been proposed for video object segmentation.

Caelles et al. (2017) trains a generic object saliency network,

and fine-tunes it per-video (using the first frame annotation)

to make the output sensitive to the specific object of interest.

Khoreva et al. (2016) uses a similar strategy, but also feeds

the mask from the previous frame as guidance for the saliency

network. Voigtlaender and Leibe (2017b) incorporates online

adaptation of the network using the predictions from previ-

ous frames. Chandra et al. (2018) extends the Gaussian-CRF

approach to videos by exploiting spatio-temporal connec-

tions for pairwise terms and relying on unary terms from

(Voigtlaender and Leibe 2017b). Finally Jampani et al. (2016)

mixes convnets with ideas of bilateral filtering. Our approach

also builds upon convnets.

What makes convnets particularly suitable for the task, is that

they can learn what are the common statistics of appearance

and motion patterns of objects, as well as what makes them

distinctive from the background, and exploit this knowledge

when segmenting a particular object. This aspect gives con-

vnets an edge over traditional techniques based on low-level

hand-crafted features.

Our network architecture is similar to Caelles et al. (2017)

and Khoreva et al. (2016). Other than implementation details,

there are three differentiating factors. One, we use a differ-

ent strategy for training: (Caelles et al. 2017; Jampani et al.

2016; Chandra et al. 2018; Voigtlaender and Leibe 2017b)

rely on consecutive video training frames and (Khoreva et al.

2016) uses an external saliency dataset, while our approach

focuses on using the first frame annotations provided with

each targeted video benchmark without relying on external

annotations. Two, our approach exploits optical flow better

than these previous methods. Three, we describe an extension

to seamlessly handle segmentation of multiple objects.

Interactive Video Segmentation Interactive segmentation

(Nagaraja et al. 2015; Jain and Grauman 2016; Spina and

Falcão 2016; Wang et al. 2014) considers more diverse

user inputs (e.g. strokes), and requires interactive process-

ing speed rather than providing maximal quality. Albeit our

technique can be adapted for varied inputs, we focus on maxi-

mizing quality for the non-interactive case with no-additional

hints along the video.

Semantic Labelling Like other convnets in this space (Jam-

pani et al. 2016; Caelles et al. 2017; Khoreva et al. 2016),

our architecture builds upon the insights from the semantic

labelling networks (Zhao et al. 2017; Lin et al. 2016; Wu

et al. 2016; Bansal et al. 2017). Because of this, the flurry

of recent developments should directly translate into better

video object segmentation results. For the sake of compari-

son with previous work, we build upon the well established

VGG DeepLab architecture (Chen et al. 2016).

Synthetic Data Like our approach, previous works have

also explored synthesizing training data. Synthetic render-

ings (Mayer et al. 2016), video game environment (Richter

et al. 2016), mix-synthetic and real images (Varol et al.

2017; Chen et al. 2016; Dosovitskiy et al. 2015) have shown

promise, but require task-appropriate 3d models. Composit-

ing real world images provides more realistic results, and has

shown promise for object detection (Georgakis et al. 2017;

Tang et al. 2013), text localization (Gupta et al. 2016) and

pose estimation (Pishchulin et al. 2012).

The closest work to ours is Park and Ramanan (2015),

which also generates video-specific training data using the

first frame annotations. They use human skeleton annotations

to improve pose estimation, while we employ pixel-level

mask annotations to improve video object segmentation.

3 LucidTracker

Section 3.1 describes the network architecture used, and

how RGB and optical flow information are fused to pre-

dict the next frame segmentation mask. Section 3.2 discusses

different training modalities employed with the proposed

video object segmentation system. In Sect. 4 we discuss the

training data generation, and Sects. 5/6 report results for sin-

gle/multiple object segmentation in videos.

3.1 Architecture

Approach We model video object segmentation as a mask

refinement task (mask: binary foreground/ background

labelling of the image) based on appearance and motion cues.

From frame t − 1 to frame t the estimated mask Mt−1 is

propagated to frame t , and the new mask Mt is computed as

a function of the previous mask, the new image It , and the

optical flow Ft , i.e. Mt = f (It , Ft , Mt−1). Since objects

have a tendency to move smoothly through space in time,

there are little changes from frame to frame and mask Mt−1

can be seen as a rough estimate of Mt . Thus we require our

trained convnet to learn to refine rough masks into accurate

masks. Fusing the complementary image It and motion flow

Ft enables to exploits the information inherent to video and

enables the model to segment well both static and moving

objects.
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Fig. 2 Data flow examples. It , ‖Ft‖ , Mt−1 are the inputs, Mt is the resulting output. Green boundaries outline the ground truth segments. Red

overlay indicates Mt−1, Mt

Note that this approach is incremental, does a single for-

ward pass over the video, and keeps no explicit model of

the object appearance at frame t . In some experiments we

adapt the model f per video, using the annotated first frame

I0, M0. However, in contrast to traditional techniques (Hen-

riques et al. 2012), this model is not updated while we process

the video frames, thus the only state evolving along the video

is the mask Mt−1 itself.

First Frame In the video object segmentation task of our

interest the mask for the first frame M0 is given. This is the

standard protocol of the benchmarks considered in Sects. 5

and 6. If only a bounding box is available on the first frame,

then the mask could be estimated using grabcut-like tech-

niques (Rother et al. 2004; Tang et al. 2016).

RGB Image I Typically a semantic labeller generates pixel-

wise labels based on the input image (e.g. M = g (I)). We

use an augmented semantic labeller with an input layer mod-

ified to accept 4 channels (RGB + previous mask) so as to

generate outputs based on the previous mask estimate, e.g.

Mt = fI (It , Mt−1). Our approach is general and can lever-

age any existing semantic labelling architecture. We select

the DeepLabv2 architecture with VGG base network (Chen

et al. 2016), which is comparable to (Jampani et al. 2016;

Caelles et al. 2017; Khoreva et al. 2016); FusionSeg (Jain

et al. 2017) uses ResNet.

Optical Flow F We use flow in two complementary ways.

First, to obtain a better initial estimate of Mt we warp

Mt−1 using the flow Ft : Mt = fI (It , w(Mt−1, F t ));

we call this “mask warping”. Second, we use flow as a

direct source of information about the mask Mt . As can

be seen in Fig. 2, when the object is moving relative to

background, the flow magnitude ‖Ft‖ provides a very rea-
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(a)

(b)

Fig. 3 Overview of the proposed one and two streams architectures.

See Sect. 3.1

sonable estimate of the mask Mt . We thus consider using

a convnet specifically for mask estimation from flow: Mt =

fF (‖Ft‖ , w(Mt−1, F t )), and merge it with the image-only

version by naive averaging

Mt = 0.5 · fI (It , . . .) + 0.5 · fF (‖Ft‖ , . . .) . (1)

We use the state-of-the-art optical flow estimation method

FlowNet2.0 (Ilg et al. 2017), which itself is a convnet that

computes Ft = h (It−1, It ) and is trained on synthetic ren-

derings of flying objects (Mayer et al. 2016). For the optical

flow magnitude computation we subtract the median motion

for each frame, average the magnitude of the forward and

backward flow and scale the values per-frame to [0; 255],

bringing it to the same range as RGB channels.

The loss function is the sum of cross-entropy terms over

each pixel in the output map (all pixels are equally weighted).

In our experiments fI and fF are trained independently, via

some of the modalities listed in Sect. 3.2. Our two streams

architecture is illustrated in Fig. 3a.

We also explored expanding our network to accept 5 input

channels (RGB + previous mask + flow magnitude) in one

stream: Mt = fI+F (It , ‖Ft‖ , w(Mt−1, F t )), but did not

observe much difference in the performance compared to

naive averaging, see experiments in Sect. 5.4.3. Our one

stream architecture is illustrated in Fig. 3b. One stream net-

work is more affordable to train and allows to easily add extra

input channels, e.g. providing additionally semantic informa-

tion about objects.

Fig. 4 Extension of LucidTracker to multiple objects. The previous

frame mask for each object is provided in a separate channel. We addi-

tionally explore using optical flow F and semantic segmentation S as

additional inputs. See Sect. 3.1

Multiple Objects The proposed framework can easily be

extended to segmenting multiple objects simultaneously.

Instead of having one additional input channel for the pre-

vious frame mask we provide the mask for each object

instance in a separate channel, expanding the network to

accept 3 + N input channels (RGB + N object masks):

Mt = fI
(
It , w(M1

t−1, F t ), . . ., w(M N
t−1, F t )

)
, where N

is the number of objects annotated on the first frame.

For multiple object segmentation we employ a one-

stream architecture for the experiments, using optical flow

F and semantic segmentation S as additional input chan-

nels: Mt = fI+F+S(It , ‖Ft‖ , St , w(M1
t−1, F t ), . . . , w

(M N
t−1, F t )). This allows to leverage the appearance model

with semantic priors and motion information. See Fig. 4 for

an illustration.

The one-stream network is trained with multi-class cross

entropy loss and is able to segment multiple objects simul-

taneously, sharing the feature computation for different

instances. This allows to avoid a linear increase of the cost

with the number of objects. In our preliminary results using a

single architecture also provides better results than segment-

ing multiple objects separately, one at a time; and avoids

the need to design a merging strategy amongst overlapping

tracks.

Semantic Labels S To compute the pixel-level semantic

labelling St = h (It ) we use the state-of-the-art convnet

PSPNet (Zhao et al. 2017), trained on Pascal VOC12 (Ever-

ingham et al. 2015). Pascal VOC12 annotates 20 categories,

yet we want to track any type of objects. St can also provide

information about unknown category instances by describ-

ing them as a spatial mixture of known ones (e.g. a sea lion

might looks like a dog torso, and the head of cat). As long as

the predictions are consistent through time, St will provide a

useful cue for segmentation. Note that we only use St for the

multi-object segmentation challenge, discussed in Sect. 6. In

the same way as for the optical flow we scale St to bring all

the channels to the same range.
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We additionally experiment with ensembles of different

variants, that allows to make the system more robust to the

challenges inherent in videos. For our main results on the

multiple object segmentation task we consider an ensemble

of four models: Mt = 0.25 · ( fI+F+S + fI+F + fI+S

+ fI), where we merge the outputs of the models by naive

averaging. See Sect. 6 for more details.

Temporal Coherency To improve the temporal coherency

of the proposed video object segmentation framework we

introduce an additional step into the system. Before provid-

ing as input the previous frame mask warped with the optical

flow w(Mt−1, F t ), we look at frame t − 2 to remove incon-

sistencies between the predicted masks Mt−1 and Mt−2. In

particular, we split the mask Mt−1 into connected compo-

nents and remove all components from Mt−1 which do not

overlap with Mt−2. This way we remove possibly spuri-

ous blobs generated by our model in Mt−1. Afterwards we

warp the “pruned” mask M̃t−1 with the optical flow and use

w(M̃t−1, F t ) as an input to the network. This step is applied

only during inference, it mitigates error propagation issues,

as well as help generating more temporally coherent results.

Post-processing As a final stage of our pipeline, we

refine per-frame t the generated mask Mt using DenseCRF

(Krähenbühl and Koltun 2011). This adjusts small image

details that the network might not be able to handle. It is

known by practitioners that DenseCRF is quite sensitive to

its parameters and can easily worsen results. We will use our

lucid dreams to handle per-dataset CRF-tuning too, see Sect.

3.2.

We refer to our full fI+F system as LucidTracker,

and as LucidTracker− when no temporal coherency or

post-processing steps are used. The usage of St or model

ensemble will be explicitly stated.

3.2 TrainingModalities

Multiple modalities are available to train a tracker. Training-

free approaches (e.g. BVS (Maerki et al. 2016), SVT (Wang

and Shen 2017)) are fully hand-crafted systems with hand-

tuned parameters, and thus do not require training data. They

can be used as-is over different datasets. Supervised meth-

ods can also be trained to generate a dataset-agnostic model

that can be applied over different datasets. Instead of using a

fixed model for all cases, it is also possible to obtain special-

ized per-dataset models, either via self-supervision (Wang

and Gupta 2015; Pathak et al. 2016; Yu et al. 2016; Zhu et al.

2017) or by using the first frame annotation of each video in

the dataset as training/tuning set. Finally, inspired by tradi-

tional box tracking techniques, we also consider adapting the

model weights to the specific video at hand, thus obtaining

per-video models. Section 5 reports new results over these

four training modalities (training-free, dataset-agnostic, per-

dataset, and per-video).

Our LucidTracker obtains best results when first pre-

trained on ImageNet, then trained per-dataset using all data

from first frame annotations together, and finally fine-tuned

per-video for each evaluated sequence. The post-processing

DenseCRF stage is automatically tuned per-dataset. The

experimental Sect. 5 details the effect of these training stages.

Surprisingly, we can obtain reasonable performance even

when training from only a single annotated frame (with-

out ImageNet pre-training, i.e. zero pre-training); this results

goes against the intuition that convnets require large training

data to provide good results.

Unless otherwise stated, we fine-tune per-video models

relying solely on the first frame I0 and its annotation M0.

This is in contrast to traditional techniques (Henriques et al.

2012; Breitenstein et al. 2009; Kristan et al. 2014) which

would update the appearance model at each frame It .

4 Lucid Data Dreaming

To train the function f one would think of using ground truth

data for Mt−1 and Mt (like (Bertinetto et al. 2016; Caelles

et al. 2017; Held et al. 2016)), however such data is expensive

to annotate and rare. (Caelles et al. 2017) thus trains on a set

of 30 videos (∼ 2k frames) and requires the model to transfer

across multiple tests sets. Khoreva et al. (2016) side-steps the

need for consecutive frames by generating synthetic masks

Mt−1 from a saliency dataset of ∼ 10k images with their

corresponding mask Mt . We propose a new data generation

strategy to reach better results using only ∼ 100 individual

training frames.

Ideally training data should be as similar as possible to

the test data, even subtle differences may affect quality (e.g.

training on static images for testing on videos under-performs

(Tang et al. 2012)). To ensure our training data is in-domain,

we propose to generate it by synthesizing samples from the

provided annotated frame (first frame) in each target video.

This is akin to “lucid dreaming” as we intentionally “dream”

the desired data by creating sample images that are plausible

hypothetical future frames of the video. The outcome of this

process is a large set of frame pairs in the target domain

(2.5k pairs per annotation) with known optical flow and mask

annotations, see Fig. 5.

Synthesis Process The target domain for a tracker is the set of

future frames of the given video. Traditional data augmen-

tation via small image perturbation is insufficient to cover

the expect variations across time, thus a task specific strat-

egy is needed. Across the video the tracked object might

change in illumination, deform, translate, be occluded, show

different point of views, and evolve on top of a dynamic
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Fig. 5 Lucid data dreaming examples. From one annotated frame we generate pairs of images (Iτ−1, Iτ ) that are plausible future video frames,

with known optical flow (Fτ ) and masks (green boundaries). Note the inpainted background and foreground/background deformations
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background. All of these aspects should be captured when

synthesizing future frames. We achieve this by cutting-out the

foreground object, in-painting the background, perturbing

both foreground and background, and finally recomposing

the scene. This process is applied twice with randomly sam-

pled transformation parameters, resulting in a pair of frames

(Iτ−1, Iτ ) with known pixel-level ground-truth mask anno-

tations (Mτ−1, Mτ ), optical flow Fτ , and occlusion regions.

The object position in Iτ is uniformly sampled, but the

changes between Iτ−1, Iτ are kept small to mimic the usual

evolution between consecutive frames.

In more details, starting from an annotated image:

1. Illumination Changes we globally modify the image by

randomly altering saturation S and value V (from HSV colour

space) via x ′ = a · xb + c, where a ∈ 1 ± 0.05, b ∈ 1 ± 0.3,

and c ∈ ±0.07.

2. Fg/Bg Split the foreground object is removed from the

image I0 and a background image is created by inpainting

the cut-out area (Criminisi et al. 2004).

3. Object Motion we simulate motion and shape deforma-

tions by applying global translation as well as affine and

non-rigid deformations to the foreground object. For Iτ−1

the object is placed at any location within the image with a

uniform distribution, and in Iτ with a translation of ± 10%

of the object size relative to τ − 1. In both frames we apply

random rotation ± 30◦, scaling ± 15% and thin-plate splines

deformations (Bookstein 1989) of ± 10% of the object size.

4. Camera Motion We additionally transform the background

using affine deformations to simulate camera view changes.

We apply here random translation, rotation, and scaling

within the same ranges as for the foreground object.

5. Fg/Bg Merge Finally (Iτ−1, Iτ ) are composed by blend-

ing the perturbed foreground with the perturbed background

using Poisson matting (Sun et al. 2004). Using the known

transformation parameters we also synthesize ground-truth

pixel-level mask annotations (Mτ−1, Mτ ) and optical flow

Fτ .

Figure 5 shows example results. Albeit our approach does not

capture appearance changes due to point of view, occlusions,

nor shadows, we see that already this rough modelling is

effective to train our segmentation models.

The number of synthesized images can be arbitrarily large.

We generate 2.5k pairs per annotated video frame. This train-

ing data is, by design, in-domain with regard of the target

video. The experimental Sect. 5 shows that this strategy is

more effective than using thousands of manually annotated

images from close-by domains.

The same strategy for data synthesis can be employed for

multiple object segmentation task. Instead of manipulating a

single object we handle multiple ones at the same time, apply-

ing independent transformations to each of them. We model

occlusion between objects by adding a random depth order-

ing obtaining both partial and full occlusions in the training

(a)

(b)

(c)

Fig. 6 Lucid data dreaming examples with multiple objects. From one

annotated frame we generate a plausible future video frame (Iτ ), with

known optical flow (Fτ ) and mask (Mτ )

set. Including occlusions in the lucid dreams allows to better

handle plausible interactions of objects in the future frames.

See Fig. 6 for examples of the generated data.

5 Single Object Segmentation Results

We present here a detailed empirical evaluation on three dif-

ferent datasets for the single object segmentation task: given a

first frame labelled with the foreground object mask, the goal

is to find the corresponding object pixels in future frames.

(Section 6 will discuss the multiple objects case.)

5.1 Experimental Setup

Datasets We evaluate our method on three video object seg-

mentation datasets: DAVIS16 (Perazzi et al. 2016),

YouTubeObjects (Prest et al. 2012; Jain and Grauman 2014),

and SegTrackv2 (Li et al. 2013). The goal is to track an object

through all video frames given an object mask in the first

frame. These three datasets provide diverse challenges with

a mix of high and low resolution web videos, single or mul-

tiple salient objects per video, videos with flocks of similar

looking instances, longer (∼ 400 frames) and shorter (∼ 10

frames) sequences, as well as the usual video segmentation

challenges such as occlusion, fast motion, illumination, view

point changes, elastic deformation, etc.
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The DAVIS16 (Perazzi et al. 2016) video segmentation

benchmark consists of 50 full-HD videos of diverse object

categories with all frames annotated with pixel-level accu-

racy, where one single or two connected moving objects are

separated from the background. The number of frames in

each video varies from 25 to 104.

YouTubeObjects (Prest et al. 2012; Jain and Grauman

2014) includes web videos from 10 object categories. We

use the subset of 126 video sequences with mask annotations

provided by Jain and Grauman (2014) for evaluation, where

one single object or a group of objects of the same category

are separated from the background. In contrast to DAVIS16

these videos have a mix of static and moving objects. The

number of frames in each video ranges from 2 to 401.

SegTrackv2 Li et al. (2013) consists of 14 videos with

multiple object annotations for each frame. For videos with

multiple objects each object is treated as a separate problem,

resulting in 24 sequences. The length of each video varies

from 21 to 279 frames. The images in this dataset have low

resolution and some compression artefacts, making it hard to

track the object based on its appearance.

The main experimental work is done on DAVIS16, since

it is the largest densely annotated dataset out of the three,

and provides high quality/high resolution data. The videos

for this dataset were chosen to represent diverse challenges,

making it a good experimental playground.

We additionally report on the two other datasets as com-

plementary test set results.

Evaluation Metric To measure the accuracy of video object

segmentation we use the mean intersection-over-union over-

lap (mIoU) between the per-frame ground truth object mask

and the predicted segmentation, averaged across all video

sequences. We have noticed disparate evaluation procedures

used in previous work, and we report here a unified evalua-

tion across datasets. When possible, we re-evaluated certain

methods using results provided by their authors. For all three

datasets we follow the DAVIS16 evaluation protocol, exclud-

ing the first frame from evaluation and using all other frames

from the video sequences, independent of object presence in

the frame.

Training Details For training all the models we use SGD

with mini-batches of 10 images and a fixed learning policy

with initial learning rate of 10−3. The momentum and weight

decay are set to 0.9 and 5 × 10−4 , respectively.

Models using pre-training are initialized with weights

trained for image classification on ImageNet (Simonyan and

Zisserman 2015). We then train per-dataset for 40k iterations

with the RGB+Mask branch fI and for 20k iterations for the

Flow+Mask fF branch. When using a single stream archi-

tecture (Sect. 5.4.3), we use 40k iterations.

Models without ImageNet pre-training are initialized

using the Xavier (also known as Glorot) random weight ini-

tialization strategy (Glorot and Bengio 2010). (The weights

are initialized as random draws from a truncated normal dis-

tribution with zero mean and standard deviation calculated

based on the number of input and output units in the weight

tensor, see Glorot and Bengio (2010) for details). The per-

dataset training needs to be longer, using 100k iterations for

the fI branch and 40k iterations for the fF branch.

For per-video fine-tuning 2k iterations are used for fI . To

keep computing cost lower, the fF branch is kept fix across

videos.

All training parameters are chosen based on DAVIS16

results. We use identical parameters on YouTubeObjects and

SegTrackv2, showing the generalization of our approach.

It takes ~ 3.5 h to obtain each per-video model, including

data generation, per-dataset training, per-video fine-tuning

and per-dataset grid search of CRF parameters (averaged over

DAVIS16, amortising the per-dataset training time over all

videos). At test time our LucidTracker runs at ~ 5 s per frame,

including the optical flow estimation with FlowNet2.0 (Ilg

et al. 2017) (~ 0.5 s) and CRF post-processing (Krähenbühl

and Koltun 2011) (~ 2 s).

5.2 Key Results

Table 1 presents our main result and compares it to previ-

ous work. Our full system, LucidTracker, provides the

best video segmentation quality across three datasets while

being trained on each dataset using only one frame per video

(50 frames for DAVIS16, 126 for YouTubeObjects, 24 for

SegTrackv2), which is 20 ×–1000 × less than the top com-

peting methods. Ours is the first method to reach > 75 mIoU

on all three datasets.

Oracles and Baselines Grabcut oracle computes grabcut

(Rother et al. 2004) using the ground truth bounding boxes

(box oracle). This oracle indicates that on the considered

datasets separating foreground from background is not easy,

even if a perfect box-level tracker was available.

We provide three additional baselines. “Saliency” corre-

sponds to using the generic (training-free) saliency method

EQCut (Aytekin et al. 2015) over the RGB image It . “Flow

saliency” does the same, but over the optical flow magni-

tude ‖Ft‖. Results indicate that the objects being tracked are

not particularly salient in the image. On DAVIS16 motion

saliency is a strong signal but not on the other two datasets.

Saliency methods ignore the first frame annotation provided

for the task. We also consider the “Mask warping” baseline

which uses optical flow to propagate the mask estimate from

t to t + 1 via simple warping Mt = w(Mt−1, F t ). The bad

results of this baseline indicate that the high quality flow (Ilg

et al. 2017) that we use is by itself insufficient to solve the

video object segmentation task, and that indeed our proposed

convnet does the heavy lifting.
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Table 1 Comparison of video

object segmentation results

across three datasets. Our

LucidTracker consistently

improves over previous results,

see Sect. 5.2

Method # Training images Flow Dataset, mIoU

F DAVIS16 YoutbObjs SegTrckv2

Box oracle (Khoreva et al. 2016) 0 � 45.1 55.3 56.1

Grabcut oracle (Khoreva et al. 2016) 0 � 67.3 67.6 74.2

Ignores 1st frame annotation

Saliency 0 � 32.7 40.7 22.2

NLC (Faktor and Irani 2014) 0 � 64.1 –

TRS (Xiao and Lee 2016) 0 � – – 69.1

MP-Net (Tokmakov et al. 2016) ~ 22.5k � 69.7 – –

Flow saliency 0 � 70.7 36.3 35.9

FusionSeg (Jain et al. 2017) ~ 95k � 71.5 67.9 –

LVO (Tokmakov et al. 2017) ~ 35k � 75.9 – 57.3

PDB (Song et al. 2018) ~ 18k � 77.2 – –

Uses 1st frame annotation

Mask warping 0 � 32.1 43.2 42.0

FCP (Perazzi et al. 2015) 0 � 63.1 – –

BVS (Maerki et al. 2016) 0 � 66.5 59.7 58.4

N15 (Nagaraja et al. 2015) 0 � – – 69.6

ObjFlow (Tsai et al. 2016) 0 � 71.1 70.1 67.5

STV (Wang and Shen 2017) 0 � 73.6 – –

VPN (Jampani et al. 2016) ~ 2.3k � 75.0 – –

OSVOS (Caelles et al. 2017) ~ 2.3k � 79.8 72.5 65.4

MaskTrack (Khoreva et al. 2016) ~ 11k � 80.3 72.6 70.3

PReMVOS (Luiten and Voigtlaender 2018) ~ 145k � 84.9 – –

OnAVOS (Voigtlaender and Leibe 2017b) ~ 120k � 86.1 – –

VideoGCRF (Chandra et al. 2018) ~ 120k � 86.5 – –

LucidTracker 24–126 � 86.6 77.3 78.0

Numbers in italic are reported on subsets of DAVIS16 and in bold are the best numbers overall

The large fluctuation of the relative baseline results across

the three datasets empirically confirms that each of them

presents unique challenges.

Comparison Compared to flow propagation methods such

as BVS, N15, ObjFlow, and STV, we obtain better results

because we build per-video a stronger appearance model of

the tracked object (embodied in the fine-tuned model). Com-

pared to convnet learning methods such as VPN, OSVOS,

MaskTrack, OnAVOS, we require significantly less training

data, yet obtain better results.

Figure 7 provides qualitative results of LucidTracker

across three different datasets. Our system is robust to var-

ious challenges present in videos. It handles well camera

view changes, fast motion, object shape deformation, out-

of-view scenarios, multiple similar looking objects and even

low quality video. We provide a detailed error analysis in

Sect. 5.5.

Conclusion We show that top results can be obtained while

using less training data. This shows that our lucid dreams

leverage the available training data better. We report top

results for this task while using only 24–126 training frames.

5.3 Ablation Studies

In this section we explore in more details how the different

ingredients contribute to our results.

5.3.1 Effect of Training Modalities

Table 2 compares the effect of different ingredients in the

LucidTracker
− training. Results are obtained using RGB

and flow, with warping, no CRF, and no temporal coherency;

Mt = f (It , w(Mt−1, Ft )).
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Fig. 7 LucidTracker single object segmentation qualitative results. Frames sampled along the video duration (e.g. 50%: video middle point). Our

model is robust to various challenges, such as view changes, fast motion, shape deformations, and out-of-view scenarios
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Table 2 Ablation study of

training modalities. ImageNet

pre-training and per-video

tuning provide additional

improvement over per-dataset

training. Even with one frame

annotation for only per-video

tuning we obtain good

performance. See Sect. 5.3.1

Variant ImgNet

pre-train.

Per-dataset

training

Per-video

fine-tun.

Dataset, mIoU

DAVIS16 YoutbObjs SegTrckv2

LucidTracker− � � � 83.7 76.2 76.8

(no ImgNet) � � � 82.0 74.3 71.2

No per-video tuning � � � 82.7 72.3 71.9

� � � 78.4 69.7 68.2

Only per-video tuning � � � 79.4 – 70.4

� � � 80.5 – 66.8

Numbers in italic are reported on subsets of DAVIS16 and in bold are the best numbers overall

Table 3 Ablation study of flow

ingredients. Flow complements

image only results, with large

fluctuations across datasets. See

Sect. 5.3.2

Variant I F warp. Dataset, mIoU

w DAVIS16 YoutbObjs SegTrckv2

LucidTracker � � � 86.6 77.3 78.0

LucidTracker− � � � 83.7 76.2 76.8

No warping � � � 82.0 74.6 70.5

No OF � � � 78.0 74.7 61.8

OF only � � � 74.5 43.1 55.8

Bold are the best numbers overall

Training from a Single Frame In the bottom row (“only

per-video tuning”), the model is trained per-video without

ImageNet pre-training nor per-dataset training, i.e. using a

single annotated training frame. Our network is based on

VGG16 (Chen et al. 2016) and contains ∼ 20M parameters,

all effectively learnt from a single annotated image that is

augmented to become 2.5k training samples (see Sect. 4).

Even with such minimal amount of training data, we still

obtain a surprisingly good performance (compare 80.5 on

DAVIS16 to others in Table 1). This shows how effective

is, by itself, the proposed training strategy based on lucid

dreaming of the data.

Pre-training & Fine-Tuning We see that ImageNet pre-

training does provide 2–5% point improvement (depending

on the dataset of interest; e.g. 82.0 → 83.7 mIoU on

DAVIS16). Per-video fine-tuning (after doing per-dataset

training) provides an additional 1–2% point gain (e.g.

82.7 → 83.7 mIoU on DAVIS16). Both ingredients clearly

contribute to the segmentation results.

Note that training a model using only per-video tuning

takes about one full GPU day per video sequence; making

these results insightful but not decidedly practical.

Preliminary experiments evaluating on DAVIS16 the

impact of the different ingredients of our lucid dreaming

data generation showed, depending on the exact setup, 3–

10% mIoU points fluctuations between a basic version (e.g.

without non-rigid deformations nor scene re-composition)

and the full synthesis process described in Sect. 4. Having

a sophisticated data generation process directly impacts the

segmentation quality.

Conclusion Surprisingly, we discovered that per-video train-

ing from a single annotated frame provides already much of

the information needed for the video object segmentation

task. Additionally using ImageNet pre-training, and per-

dataset training, provide complementary gains.

5.3.2 Effect of Optical Flow

Table 3 shows the effect of optical flow on LucidTracker

results. Comparing our full system to the “No OF” row, we

see that the effect of optical flow varies across datasets, from

minor improvement in YouTubeObjects, to major difference

in SegTrackv2. In this last dataset, using mask warping is

particularly useful too. We additionally explored tuning the

optical flow stream per-video, which resulted in a minor

improvement (83.7 → 83.9 mIoU on DAVIS16).

Our “No OF” results can be compared to OSVOS (Caelles

et al. 2017) which does not use optical flow. However OSVOS

uses a per-frame mask post-processing based on a boundary

detector (trained on further external data), which provides

∼ 2% point gain. Accounting for this, our “No OF” (and

no CRF, no temporal coherency) result matches theirs on

DAVIS16 and YouTubeObjects despite using significantly
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Table 4 Effect of optical flow

estimation
Variant Optical flow Dataset, mIoU

DAVIS16 YoutbObjs SegTrckv2

LucidTracker− FlowNet2.0 83.7 76.2 76.8

EpicFlow 80.2 71.3 67.0

No flow 78.0 74.7 61.8

No ImageNet pre-training FlowNet2.0 82.0 74.3 71.2

EpicFlow 80.0 72.3 68.8

No flow 76.7 71.4 63.0

Bold are the best numbers overall

Table 5 Effect of CRF tuning

(LucidTracker without

temporal coherency). Without

the automated per-dataset tuning

DenseCRF will under-perform

Method CRF parameters Dataset, mIoU

DAVIS16 YoutbObjs SegTrckv2

LucidTracker− – 83.7 76.2 76.8

LucidTracker Default 84.2 75.5 72.2

LucidTracker Tuned per-dataset 84.8 76.2 77.6

Bold are the best numbers overall

less training data (see Table 1, e.g. 79.8−2 ≈ 78.0 on

DAVIS16).

Table 4 shows the effect of using different optical flow esti-

mation methods. For LucidTracker results, FlowNet2.0

(Ilg et al. 2017) was employed. We also explored using

EpicFlow (Revaud et al. 2015), as in Khoreva et al. (2016).

Table 4 indicates that employing a robust optical flow estima-

tion across datasets is crucial to the performance (FlowNet2.0

provides ∼ 1.5−15 points gain on each dataset). We found

EpicFlow to be brittle when going across different datasets,

providing improvement for DAVIS16 and SegTrackv2 (∼

2−5 points gain), but underperforming for YouTubeObjects

(74.7 → 71.3 mIoU).

Conclusion The results show that flow provides a comple-

mentary signal to RGB image only and having a robust

optical flow estimation across datasets is crucial. Despite its

simplicity our fusion strategy ( fI + fF ) provides gains on

all datasets, and leads to competitive results.

5.3.3 Effect of CRF Tuning

As a final stage of our pipeline, we refine the generated mask

using DenseCRF (Krähenbühl and Koltun 2011) per frame.

This captures small image details that the network might have

missed. It is known by practitioners that DenseCRF is quite

sensitive to its parameters and can easily worsen results. We

use our lucid dreams to enable automatic per-dataset CRF-

tuning.

Following Chen et al. (2016) we employ grid search

scheme for tuning CRF parameters. Once the per-dataset

model is trained, we apply it over a subset of its training set (5

random images from the lucid dreams per video sequence),

apply DenseCRF with the given parameters over this output,

and then compare to the lucid dream ground truth.

The impact of the tuned parameter of DenseCRF post-

processing is shown in Table 5 and Fig. 8. Table 5 indi-

cates that without per-dataset tuning DenseCRF is under-

performing. Our automated tuning procedure allows to obtain

consistent gains without the need for case-by-case manual

tuning.

Conclusion Using default DenseCRF parameters would

degrade performance. Our lucid dreams enable automatic

per-dataset CRF-tuning which allows to further improve the

results.

5.4 Additional Experiments

Other than adding or removing ingredients, as in Sect. 5.3,

we also want to understand how the training data itself affects

the obtained results.

5.4.1 Generalization Across Videos

Table 6 explores the effect of segmentation quality as a func-

tion of the number of training samples. To see more directly

the training data effects we use a base model with RGB

image It only (no flow F , no CRF, no temporal coherency),

and per-dataset training (no ImageNet pre-training, no per-

video fine-tuning). We evaluate on two disjoint subsets of 15

DAVIS16 videos each, where the first frames for per-dataset

training are taken from only one subset. The reported num-

bers are thus comparable within Table 6, but not across to the

other tables in the paper. Table 6 reports results with vary-

ing number of training videos and with/without including the
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Fig. 8 Effect of CRF tuning. The shown DAVIS16 videos have the highest margin between with and without CRF post-processing (based on mIoU

over the video)

Table 6 Varying the number of

training videos. A smaller

training set closer to the target

domain is better than a larger

one. See Sect. 5.4.1

Training set # Training # Frames mIoU

videos per video

Includes 1st frames from test set 1 1 78.3

2 1 75.4

15 1 68.7

30 1 65.4

30 2 74.3

Excludes 1st frames from test set 2 1 11.6

15 1 36.4

30 1 41.7

30 2 48.4

first frames of each test video for per-dataset training. When

excluding the test set first frames, the image frames used for

training are separate from the test videos; and we are thus

operating across (related) domains. When including the test

set first frames, we operate in the usual LucidTracker mode,

where the first frame from each test video is used to build the

per-dataset training set.

Comparing the top and bottom parts of the table, we

see that when the annotated images from the test set video

sequences are not included, segmentation quality drops dras-

tically (e.g. 68.7 → 36.4 mIoU). Conversely, on subset of

videos for which the first frame annotation is used for train-

ing, the quality is much higher and improves as the training

samples become more and more specific (in-domain) to the

target video (65.4 → 78.3 mIoU). Adding extra videos

for training does not improve the performance. It is better

(68.7 → 78.3 mIoU) to have 15 models each trained and

evaluated on a single video (row top-1-1) than having one

model trained over 15 test videos (row top-15-1).

Training with an additional frame from each video (we

added the last frame of each train video) significantly boosts

the resulting within-video quality (e.g. row top-30-2 65.4 →

74.3 mIoU), because the training samples cover better the test

domain.

Conclusion These results show that, when using RGB infor-

mation (It ), increasing the number of training videos does

not improve the resulting quality of our system. Even within

a dataset, properly using the training sample(s) from within

each video matters more than collecting more videos to build

a larger training set.

5.4.2 Generalization Across Datasets

Section 5.4.1 has explored the effect of changing the vol-

ume of training data within one dataset, Table 7 compares

results when using different datasets for training. Results are

obtained using a base model with RGB and flow (Mt =

f (It , Mt−1), no warping, no CRF, no temporal coherency),
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Table 7 Generalization across datasets. We observe a significant qual-

ity gap between training from the target videos, versus training from

other datasets; see Sect. 5.4.2

Training set Dataset, mIoU Mean

DAVIS16 YoutbObjs SegTrckv2

DAVIS16 80.9 50.9 46.9 59.6

YoutbObjs 67.0 71.5 52.0 63.5

SegTrackv2 56.0 52.2 66.4 58.2

Best 80.9 71.5 66.4 72.9

Second best 67.0 52.2 52.0 57.1

All-in-one 71.9 70.7 60.8 67.8

Results with underline are the best per dataset, in bold are the best

numbers overall, and in italic are the second best per dataset (ignoring

all-in-one setup)

ImageNet pre-training, per-dataset training, and no per-video

tuning to accentuate the effect of the training dataset.

The best performance is obtained when training on the

first frames of the target set. There is a noticeable ∼ 10%

points drop when moving to the second best choice (e.g.

80.9 → 67.0 for DAVIS16). Interestingly, when putting all

the datasets together for training (“all-in-one” row, a dataset-

agnostic model) the results degrade, reinforcing the idea that

“just adding more data” does not automatically make the

performance better.

Conclusion Best results are obtained when using training

data that focuses on the test video sequences, using similar

datasets or combining multiple datasets degrades the perfor-

mance for our system.

5.4.3 Experimenting with the Convnet Architecture

Section 3.1 and Fig. 3 described two possible architectures

to handle It and Ft . Previous experiments are all based on

the two streams architecture.

Table 8 compares two streams versus one stream, where

the network to accepts 5 input channels (RGB + previous

mask + flow magnitude) in one stream: Mt = fI+F (It ,

Ft , w(Mt−1, F t )). Results are obtained using a base model

with RGB and optical flow (no warping, no CRF, no temporal

coherency), ImageNet pre-training, per-dataset training, and

no per-video tuning.

We observe that both one stream and two stream architec-

ture with naive averaging perform on par. Using a one stream

network makes the training more affordable and allows more

easily to expand the architecture with additional input chan-

nels.

Conclusion The lighter one stream network performs as well

as a network with two streams. We will thus use the one

stream architecture in Sect. 6.

5.5 Error Analysis

Table 9 presents an expanded evaluation on DAVIS16 using

evaluation metrics proposed in Perazzi et al. (2016). Three

measures are used: region similarity in terms of intersection

over union (J), contour accuracy (F, higher is better), and

temporal instability of the masks (T, lower is better). We

outperform the competitive methods (Khoreva et al. 2016;

Caelles et al. 2017) on all three measures.

Table 10 reports the per-attribute based evaluation as

defined in DAVIS16.LucidTracker is best on all 15 video

attribute categories. This shows that our LucidTracker

can handle the various video challenges present in DAVIS16.

We present the per-sequence and per-frame results of

LucidTracker over DAVIS16 in Fig. 9. On the whole

we observe that the proposed approach is quite robust, most

video sequences reach an average performance above 80

mIoU.

However, by looking at per-frame results for each video

(blue dots in Fig. 9) one can see several frames where our

approach has failed (IoU less than 50) to correctly track the

object. Investigating closely those cases we notice condi-

tions whereLucidTracker is more likely to fail. The same

behaviour was observed across all three datasets. A few rep-

resentatives of failure cases are visualized in Fig. 10.

Since we are using only the mask annotation of the first

frame for training the tracker, a clear failure case is caused

by dramatic view point changes of the object from its first

frame appearance, as in row 5 of Fig. 10. Performing online

adaptation every certain time step while exploiting the pre-

vious frame segments for data synthesis and marking unsure

regions as ignore for training, similarly to Voigtlaender and

Leibe (2017b), might resolve the potential problems caused

by relying only on the first frame mask. The proposed

approach also under-performs when recovering from occlu-

Table 8 Experimenting with the

convnet architecture. See Sect.

5.4.3

Architecture ImgNet pre-train. Per-dataset training Per-video fine-tun. DAVIS16

mIoU

Two streams � � � 80.9

One stream � � � 80.3

Bold is the best number overall
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Table 9 Comparison of video object segmentation results on DAVIS16 benchmark. Our LucidTracker improves over previous results

Method # Training

images

Flow F DAVIS16

Region, J Boundary, F Temporal stability, T

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓ Mean ↓

Box oracle (Khoreva et al. 2016) 0 � 45.1 39.7 −0.7 21.4 6.7 1.8 1.0

Grabcut oracle (Khoreva et al. 2016) 0 � 67.3 76.9 1.5 65.8 77.2 2.9 34.0

Ignores 1st frame annotation

Saliency 0 � 32.7 22.6 −0.2 26.9 10.3 0.9 32.8

NLC (Faktor and Irani 2014) 0 � 64.1 73.1 8.6 59.3 65.8 8.6 35.8

MP-Net (Tokmakov et al. 2016) ~ 22.5k � 69.7 82.9 5.6 66.3 78.3 6.7 68.6

Flow saliency 0 � 70.7 83.2 6.7 69.7 82.9 7.9 48.2

FusionSeg (Jain et al. 2017) ~ 95k � 71.5 – – – – – –

LVO (Tokmakov et al. 2017) ~ 35k � 75.9 89.1 0.0 72.1 83.4 1.3 26.5

PDB (Song et al. 2018) ~ 18k � 77.2 90.1 0.9 74.5 84.4 −0.2 29.1

Uses 1st frame annotation

Mask warping 0 � 32.1 25.5 31.7 36.3 23.0 32.8 8.4

FCP (Perazzi et al. 2015) 0 � 63.1 77.8 3.1 54.6 60.4 3.9 28.5

BVS (Maerki et al. 2016) 0 � 66.5 76.4 26.0 65.6 77.4 23.6 31.6

ObjFlow (Tsai et al. 2016) 0 � 71.1 80.0 22.7 67.9 78.0 24.0 22.1

STV (Wang and Shen 2017) 0 � 73.6 – – 72.0 – – –

VPN (Jampani et al. 2016) ~ 2.3k � 75.0 – – 72.4 – – 29.5

OSVOS (Caelles et al. 2017) ~ 2.3k � 79.8 93.6 14.9 80.6 92.6 15.0 37.6

MaskTrack (Khoreva et al. 2016) ~ 11k � 80.3 93.5 8.9 75.8 88.2 9.5 18.3

PReMVOS (Luiten and Voigtlaender 2018) ~ 145k � 84.9 96.1 8.8 88.6 94.7 9.8 19.7

OnAVOS (Voigtlaender and Leibe 2017b) ~ 120k � 86.1 96.1 5.2 84.9 89.7 5.8 19.0

VideoGCRF (Chandra et al. 2018) ~ 120k � 86.5 – – – – – –

LucidTracker 50 � 86.6 97.3 5.3 84.8 93.1 7.5 15.9

Numbers in italic are reported on subsets of DAVIS16, and in bold are the best numbers overall, and in bolditalic are reported on subsets of DAVIS16

and the best numbers overall

sions: it might takes several frames for the full object mask

to re-appear (rows 1–3 in Fig. 10). This is mainly due to

the convnet having learnt to follow-up the previous frame

mask. Augmenting the lucid dreams with plausible occlu-

sions might help mitigate this case. Another failure case

occurs when two similar looking objects cross each other,

as in row 6 in Fig. 10. Here both cues: the previous frame

guidance and learnt via per-video tuning appearance, are no

longer discriminative to correctly continue propagating the

mask.

We also observe that the LucidTracker struggles to

track the fine structures or details of the object, e.g. wheels

of the bicycle or motorcycle in rows 1–2 in Fig. 10. This is

the issue of the underlying choice of the convnet architecture,

due to the several pooling layers the spatial resolution is lost

and hence the fine details of the object are missing. This

issue can be mitigated by switching to more recent semantic

labelling architectures (e.g. Pohlen et al. 2017; Chen et al.

2017).

Conclusion LucidTracker shows robust performance

across different videos. However, a few failure cases were

observed due to the underlying convnet architecture, its train-

ing, or limited visibility of the object in the first frame.

6 Multiple Object Segmentation Results

We present here an empirical evaluation of LucidTracker for

multiple object segmentation task: given a first frame labelled

with the masks of several object instances, one aims to find

the corresponding masks of objects in future frames.
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Table 10 DAVIS16 per-attribute evaluation. LucidTracker improves across all video object segmentation challenges

Attribute Method

BVS (Maerki

et al. 2016)

ObjFlow (Tsai

et al. 2016)

OSVOS (Caelles

et al. 2017)

MaskTrack (Khoreva

et al. 2016)

LucidTracker

Appearance change 0.46 0.54 0.81 0.76 0.84

Background clutter 0.63 0.68 0.83 0.79 0.86

Camera-shake 0.62 0.72 0.78 0.78 0.88

Deformation 0.7 0.77 0.79 0.78 0.87

Dynamic background 0.6 0.67 0.74 0.76 0.82

Edge ambiguity 0.58 0.65 0.77 0.74 0.82

Fast-motion 0.53 0.55 0.76 0.75 0.85

Heterogeneous object 0.63 0.66 0.75 0.79 0.85

Interacting objects 0.63 0.68 0.75 0.77 0.85

Low resolution 0.59 0.58 0.77 0.77 0.84

Motion blur 0.58 0.6 0.74 0.74 0.83

Occlusion 0.68 0.66 0.77 0.77 0.84

Out-of-view 0.43 0.53 0.72 0.71 0.84

Scale variation 0.49 0.56 0.74 0.73 0.81

Shape complexity 0.67 0.69 0.71 0.75 0.82

Numbers in italic are reported on subsets of DAVIS16 and in bold are the best numbers overall

Fig. 9 Per-sequence results on DAVIS16

6.1 Experimental Setup

Dataset For the multiple object segmentation task we use

the 2017 DAVIS Challenge on Video Object Segmenta-

tion2 (Pont-Tuset et al. 2017b) (DAVIS17). Compared to

DAVIS16 this is a larger, more challenging dataset, where

the video sequences have multiple objects in the scene.

Videos that have more than one visible object in DAVIS16

have been re-annotated (the objects were divided by seman-

tics) and the train and val sets were extended with more

sequences. In addition, two other test sets (test-dev and test-

challenge) were introduced. The complexity of the videos

has increased with more distractors, occlusions, fast motion,

smaller objects, and fine structures. Overall, DAVIS17 con-

sists of 150 sequences, totalling 10 474 annotated frames and

384 objects.

2 http://davischallenge.org/challenge2017.

We evaluate our method on two test sets, the test-dev

and test-challenge sets, each consists of 30 video sequences,

on average ∼ 3 objects per sequence, the length of the

sequences is ∼ 70 frames. For both test sets only the masks

on the first frames are made public, the evaluation is done

via an evaluation server. Our experiments and ablation stud-

ies are done on the test-dev set.

Evaluation Metric The accuracy of multiple object segmen-

tation is evaluated using the region (J) and boundary (F)

measures proposed by the organisers of the challenge. The

average of J and F measures is used as overall performance

score (denoted as global mean in the tables). Please refer to

Pont-Tuset et al. (2017b) for more details about the evalua-

tion protocol.

Training Details All experiments in this section are done

using the single stream architecture discussed in Sects. 3.1

and 5.4.3. For training the models we use SGD with mini-

batches of 10 images and a fixed learning policy with initial
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Fig. 10 Failure cases. Frames sampled along the video duration (e.g. 50%: video middle point). For each dataset we show 2 out of 5 worst results

(based on mIoU over the video)

learning rate of 10−3. The momentum and weight decay are

set to 0.9 and 5×10−4, respectively. All models are initialized

with weights trained for image classification on ImageNet

(Simonyan and Zisserman 2015). We then train per-video

for 40k iterations.

6.2 Key Results

Tables 11 and 12 presents the results of the 2017 DAVIS Chal-

lenge on test-dev and test-challenge sets (Pont-Tuset et al.

2017a).

Our main results for the multi-object segmentation chal-

lenge are obtained via an ensemble of four different models

( fI , fI+F , fI+S , fI+F+S ), see Sect. 3.1.

The proposed system, LucidTracker, provides the

best segmentation quality on the test-dev set and shows

competitive performance on the test-challenge set, hold-

ing the second place in the competition. The full system is

trained using the standard ImageNet pre-training initializa-

tion, Pascal VOC12 semantic annotations for the St input

(∼ 10k annotated images), and one annotated frame per test

video, 30 frames total on each test set. As discussed in Sect.

6.3, even without St LucidTracker obtains competitive

results (< 1% point difference, see Table 13 for details).

The top entry lixx (Li et al. 2017) uses a deeper

convnet model (ImageNet pre-trained ResNet), a similar

segmentation architecture, trains it over external segmenta-

tion data (using ∼ 120k pixel-level annotated images from

MS-COCO and Pascal VOC for pre-training, and akin to

Caelles et al. (2017) fine-tuning on the DAVIS17 train and

val sets, ∼ 10k annotated frames), and extends it with a

box-level object detector (trained over MS-COCO and Pascal

VOC, ∼ 500k bounding boxes) and a box-level object re-

identification model trained over ∼ 60k box annotations (on

both images and videos). We argue that our system reaches

comparable results with a significantly lower amount of train-

ing data.

Figure 11 provides qualitative results ofLucidTracker

on the test-dev set. The video results include successful

handling of multiple objects, full and partial occlusions, dis-

tractors, small objects, and out-of-view scenarios.

Conclusion We show that top results for multiple object seg-

mentation can be achieved via our approach that focuses on

exploiting as much as possible the available annotation on the

first video frame, rather than relying heavily on large external

training data.
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Table 11 Comparison of video object segmentation results on DAVIS17, test-dev set. Our LucidTracker shows top performance

Method DAVIS17, test-dev set

Rank Global mean ↑ Region, J Boundary, F

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

sidc 10 45.8 43.9 51.5 34.3 47.8 53.6 36.9

YXLKJ 9 49.6 46.1 49.1 22.7 53.0 56.5 22.3

haamooon (Shaban et al. 2017) 8 51.3 48.8 56.9 12.2 53.8 61.3 11.8

Fromandtozh (Zhao 2017) 7 55.2 52.4 58.4 18.1 57.9 66.1 20.0

ilanv (Sharir et al. 2017) 6 55.8 51.9 55.7 17.6 59.8 65.8 18.9

voigtlaender (Voigtlaender and Leibe 2017a) 5 56.5 53.4 57.8 19.9 59.6 65.4 19.0

lalalafine123 4 57.4 54.5 61.3 24.4 60.2 68.8 24.6

wangzhe 3 57.7 55.6 63.2 31.7 59.8 66.7 37.1

lixx (Li et al. 2017) 2 66.1 64.4 73.5 24.5 67.8 75.6 27.1

LucidTracker 1 66.6 63.4 73.9 19.5 69.9 80.1 19.4

Bold are the best numbers overall

Table 12 Comparison of video object segmentation results on DAVIS17, test-challenge set. Our LucidTracker shows competitive performance,

holding the second place in the competition

Method DAVIS17, test-challenge set

Rank Global mean ↑ Region,J Boundary, F

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

zwrq0 10 53.6 50.5 54.9 28.0 56.7 63.5 30.4

Fromandtozh (Zhao 2017) 9 53.9 50.7 54.9 32.5 57.1 63.2 33.7

wasidennis 8 54.8 51.6 56.3 26.8 57.9 64.8 28.8

YXLKJ 7 55.8 53.8 60.1 37.7 57.8 62.1 42.9

cjc (Cheng et al. 2017) 6 56.9 53.6 59.5 25.3 60.2 67.9 27.6

lalalafine123 6 56.9 54.8 60.7 34.4 59.1 66.7 36.1

voigtlaender (Voigtlaender and Leibe 2017a) 5 57.7 54.8 60.8 31.0 60.5 67.2 34.7

haamooon (Shaban et al. 2017) 4 61.5 59.8 71.0 21.9 63.2 74.6 23.7

vantam299 (Le et al. 2017) 3 63.8 61.5 68.6 17.1 66.2 79.0 17.6

LucidTracker 2 67.8 65.1 72.5 27.7 70.6 79.8 30.2

lixx (Li et al. 2017) 1 69.9 67.9 74.6 22.5 71.9 79.1 24.1

Bold are the best numbers overall

6.3 Ablation Study

Table 13 explores in more details how the different ingredi-

ents contribute to our results.

We see that adding extra information (channels) to the sys-

tem, either optical flow magnitude or semantic segmentation,

or both, does provide 1–2% point improvement. The results

show that leveraging semantic priors and motion informa-

tion provides a complementary signal to RGB image and

both ingredients contribute to the segmentation results.

Combining in ensemble four different models ( fI+F+S +

fI+F + fI+S + fI ) allows to enhance the results even

further, bringing 2.7% point gain (62.0 vs. 64.7 global

mean). Excluding the models which use semantic informa-

tion ( fI+F+S and fI+S ) from the ensemble results only in

a minor drop in the performance (64.2 vs. 64.7 global mean).

This shows that the competitive results can be achieved even

with the system trained only with one pixel-level mask anno-

tation per video, without employing extra annotations from

Pascal VOC12.

Our lucid dreams enable automatic CRF-tuning (see

Sect. 5.3.3) which allows to further improve the results

(64.7 → 65.2 global mean). Employing the proposed

temporal coherency step (see Sect. 3.1) during inference

brings an additional performance gain (65.2 → 66.6 global

mean).

Conclusion The results show that both flow and semantic

priors provide a complementary signal to RGB image only.

Despite its simplicity our ensemble strategy provides addi-

123



1194 International Journal of Computer Vision (2019) 127:1175–1197

Fig. 11 LucidTracker qualitative results on DAVIS17, test-dev set. Frames sampled along the video duration (e.g. 50%: video middle point). The

videos are chosen with the highest mIoU measure

Table 13 Ablation study of different ingredients. DAVIS17, test-dev and test challenge sets

Variant I F S Ensemble CRF tuning Temp. coherency DAVIS17

Test-dev Test-challenge

Global mean mIoU mF Global mean mIoU mF

LucidTracker (ensemble) � � � � � � 66.6 63.4 69.9 67.8 65.1 70.6

� � � � � � 65.2 61.5 69.0 67.0 64.3 69.7

� � � � � � 64.7 60.5 68.9 66.5 63.2 69.8

� � � � � � 64.9 61.3 68.4 – – –

� � � � � � 64.2 60.1 68.3 – – –

LucidTracker � � � � � � 62.9 59.1 66.6 – – –

I + F + S � � � � � � 62.0 57.7 62.2 64.0 60.7 67.3

I + F � � � � � � 61.3 56.8 65.8 – – –

I + S � � � � � � 61.1 56.9 65.3 – – –

I � � � � � � 59.8 63.1 63.9 – – –

Bold are the best numbers overall

tional gain and leads to competitive results. Notice that even

without the semantic segmentation signal St our ensemble

result is competitive.

6.4 Error Analysis

We present the per-sequence results of LucidTracker on

DAVIS17 in Figure 12 (per frame results not available from

evaluation server). We observe that this dataset is signifi-

cantly more challenging than DAVIS16 (compare to Figure

9), with only 1/3 of the test videos above 80 mIoU. This shows

that multiple object segmentation is a much more challenging

task than segmenting a single object.

The failure cases discussed in Sect. 5.5 still apply to the

multiple objects case. Additionally, on DAVIS17 we observe

a clear failure case when segmenting similar looking object

instances, where the object appearance is not discriminative

to correctly track the object, resulting in label switches or

bleeding of the label to other look-alike objects. Figure 13

illustrates this case. This issue could be mitigated by using
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Fig. 12 Per-sequence results on DAVIS17, test-dev set

Fig. 13 LucidTracker failure cases on DAVIS17, test-dev set. Frames sampled along the video duration (e.g. 50%: video middle point). We show

2 results mIoU over the video below 50

object level instance identification modules, like (Li et al.

2017), or by changing the training loss of the model to more

severely penalize identity switches.

Conclusion In the multiple object case theLucidTracker

results remain robust across different videos. The overall

results being lower than for the single object segmentation

case, there is more room for future improvement in the mul-

tiple object pixel-level segmentation task.

7 Conclusion

We have described a new convnet-based approach for pixel-

level object segmentation in videos. In contrast to previous

work, we show that top results for single and multiple object

segmentation can be achieved without requiring external

training datasets (neither annotated images nor videos). Even

more, our experiments indicate that it is not always beneficial

to use additional training data, synthesizing training samples

close to the test domain is more effective than adding more

training samples from related domains.

Our extensive analysis decomposed the ingredients that

contribute to our improved results, indicating that our new

training strategy and the way we leverage additional cues

such as semantic and motion priors are key.

Showing that training a convnet for video object segmen-

tation can be done with only few (∼ 100) training samples

changes the mindset regarding how much general knowledge

about objects is required to approach this problem (Khoreva

et al. 2016; Jain et al. 2017), and more broadly how much

training data is required to train large convnets depending on

the task at hand.

We hope these new results will fuel the ongoing evolution

of convnet techniques for single and multiple object segmen-

tation in videos.
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