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ABSTRACT
In this work we show how the Lucky 13 attack can be res-
urrected in the cloud by gaining access to a virtual machine
co-located with the target. Our version of the attack exploits
distinguishable cache access times enabled by VM dedupli-
cation to detect dummy function calls that only happen in
case of an incorrectly CBC-padded TLS packet. Thereby, we
gain back a new covert channel not considered in the original
paper that enables the Lucky 13 attack. In fact, the new side
channel is significantly more accurate, thus yielding a much
more effective attack. We briefly survey prominent crypto-
graphic libraries for this vulnerability. The attack currently
succeeds to compromise PolarSSL, GnuTLS and CyaSSL on
deduplication enabled platforms while the Lucky 13 patches
in OpenSSL, Mozilla NSS and MatrixSSL are immune to
this vulnerability. We conclude that, any program that fol-
lows secret data dependent execution flow is exploitable by
side-channel attacks as shown in (but not limited to) our
version of the Lucky 13 attack.
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1. MOTIVATION
The Transport Layer Security (TLS) family of protocols

ensures the security of the entire communications infras-
tructure by providing confidentiality and integrity services
across untrusted networks. Numerous web applications rely
on TLS to secure client-server data traffic. Similarly dis-
tributed applications use TLS to establish a secure chan-
nel for transporting application-layer data with centralized
cloud servers. At the higher level TLS uses X.509 certifi-
cates along with public key cryptography to authenticate
the exchanged symmetric encryption keys and to authenti-
cate the server. This session key is then used to ensure the
integrity and confidentiality of the data exchanged over a
secure session between the TLS client and server.
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Starting as Secure Sockets Layer (SSL), after adoption
by the IETF TLS has undergone many changes (SSL 1.0,
2.0, 3.0, TLS 1.0, 1.1, 1.2). Many releases were motivated
by attacks targeting both the protocols and the underlying
cryptographic schemes [38, 8, 7, 17, 29, 5, 16, 41]. In this
work we focus on attacks targeting the padding procedure
in TLS’s MAC-Encode-Encrypt (MEE) primitive.
Implementation Attacks on TLS. Handling CBC IVs,
and paddings in cryptographic algorithms has a long history
of attacks and countermeasures, and is notoriously hard to
get right in implementations. As early as in 1998 Bleichen-
bacher pointed to vulnerabilities in SSL 3.0 stemming from
leaked error messages due to incorrectly padded plaintexts.
Later Vaudenay [38] presented an attack in the symmet-
ric key setting on SSL/TLS induced by CBC mode padding.
The BEAST chosen plaintext attack (Browser Exploit Against
SSL/TLS) [15] exploited a long-known cipher block chaining
(CBC) mode IV vulnerability in TLS 1.0 [25] to achieve full
plaintext recovery. The exploit is based on the earlier work
in [32, 8, 7]. The padding oracle attack is most commonly
applied to CBC encryption mode, where the server leaks
whether the padding of an encrypted message was correctly
formed or not. Depending on the specifics of the encryption
scheme and the encapsulating protocol, this side-channel
leakage may be escalated to a full message recovery attack.
These are collectively referred to as padding oracle attacks.
A more recent striking application of the aforementioned
padding attacks was given by Bardou et al. [9] where many
cryptographic hardware tokens were determined to be vul-
nerable. Specifically, Bardou et al. apply Vaudenay’s CBC
attack and improve Bleichenbacher’s attack to significantly
reduce the number of decryption oracle accesses, thereby
making attacks feasible on slow tokens.

Even though in the last years the padding oracle attacks
were considered a fixed vulnerability in the community, in
2013 a new kind of padding oracle attack was presented by
AlFardan et al. [16]. The Lucky 13 attack was proposed
to recover TLS/DTLS encrypted messages by exploiting a
vulnerability in the implementation of HMAC. The attack
works by carefully modifying network packets during trans-
mission, and using network timing information to recover
the plaintext byte-by-byte from TLS encrypted packets. The
attack received significant attention from the media and in-
dustry. A great deal of work went into fixing the TLS vul-
nerability. A widely applied and immediate fix—using RC4
encryption instead of a block cipher in CBC mode—turned
out to be ill-advised: The attack described in [5] exploits
statistical biases in the RC4 key stream to recover parts of



the plaintext using a large number of TLS encryptions. To
fix the popular MEE mode that uses a block cipher in CBC
mode, cryptographic library providers applied various tech-
niques aimed to equalize packet processing times, e.g. by
calling a dummy HMAC function. Since then modifications
are being studied to solve attacks against MEE schemes and
the Lucky 13 issue has been considered closed by the security
community and the industry.

In this work, we revive the Lucky 13 attack on a number of
prominent cryptographic libraries which have been patched
to eliminate the network timing side-channel. We instead
run our attacks in the cross-VM setting using cache access
information to realize the Lucky 13 attack.
Cross-VM Attacks. Cross-VM attacks assume a co-located
process running on the same physical hardware as a target
process (e.g. same machine on different cores) can extract
information from the target in spite of the VM sandboxing.
Many side-channel attacks have been proposed that manage
to recover sensitive data when a spy process is executed in
the same OS as the victim. For instance, the early proposal
by Bernstein [11] (and later in [12, 36, 18]) targets the time
variation due to memory accesses to recover a AES encryp-
tion key. These techniques are now being moved to cloud
servers to break sandboxing across virtual machines.

Cross-VM attacks assume the attacker to be able to co-
locate with the victim. Co-location was considered a major
obstacle until 2009 when Ristenpart et al. [31] demonstrated
that it is possible to co-locate with a potential victim and
extract sensitive data across VMs.This initial result fueled
many other research targeting a co-located victim in a cloud
system.

In 2011, Suzaki et al. [33, 34] exploited a memory saving
OS-optimization called Kernel Samepage Merging (KSM) to
recover data from another user and to identify a co-located
user running in KVM hypervisors. Shortly later, Zhang et
al. [42] used an access driven cache timing attack, namely
Prime and Probe to recover an El Gamal decryption key
from a victim process running in Xen VMs. In order to
cope with multiple sources of microarchitectural noise, the
authors used a hidden Markov model. In contrast to the
work of Ristenpart et al. [31], the authors of [42] were able
to extract fine grain information from a cryptographic im-
plementation across VMs.

Recently the powerful Flush+Reload attack was used by
Yarom et.al in cloud-like environments such as VMware ESXI
and KVM to extract RSA [41, 10] and ECDSA keys, while
Irazoqui et al. used the same detection method to recover
AES keys from co-located VMware VMs [21].

1.1 Our Contribution
In this work we demonstrate that by mounting cache at-

tacks it is possible to revive a modified Lucky 13 attack on
many of the patched TLS libraries. Specifically, we show
that it is possible to recover plaintexts from TLS encrypted
sessions across VM boundaries by applying a flush+reload
cache attack in VMware ESXi VMs. The vulnerability per-
sists even if the VMs are running on different cores in the
same machine. The attack works because some TLS libraries
prevent the Lucky 13 attack by using dummy functions to
ensure constant time executions. By monitoring the instruc-
tion cache, we detect accesses to these dummy functions and
hence distinguish valid CBC-paddings, as done in the Lucky
13 attack. While requiring co-location, the cache side chan-

nel is less noisy than the network timing side channel orig-
inally exploited in [16], resulting in a more efficient attack.
The effectiveness of the new attack is demonstrated on a
number prominent cryptographic libraries: PolarSSL [30],
GnuTLS [24], and CyaSSL [1]. Fortunately, our results also
indicate that some libraries such as OpenSSL [35], Mozilla’s
NSS [26], and MatrixSSL [3] have been patched well and the
new attack does not apply to them. These libraries feature
carefully crafted constant run time execution while OpenSSL
and Mozilla’s NSS also ensure branch-free handling of MAC
checking.

2. BACKGROUND
In this work we substitute the network timing channel

with the cache timing channel as experienced in a Cross-VM
setting. There is a very rich literature of cache attacks and
here we only very briefly review cache timing attacks and
focus on a more recent and effective cache attack variant,
e.g the Flush+Reload cache attack.

Cache Architecture. The cache architecture is a set of
components that reside between the CPU and the RAM.
The principal function of the cache is to reduce the aver-
age access time to the main memory by exploiting spatial
and temporal locality principles. When the CPU requests a
memory line, the cache will be searched first to see if it is
located there. If so, it is said that a cache hit has occurred
and therefore, the access delay is much smaller. However
when the data is not found in the cache, the CPU will try
to find the memory line in the subsequent levels of cache or
in the memory, which translates to greater delays. In this
case it is said that a cache miss has occurred. When a cache
miss occurs, the data is retrieved from the memory and a
copy is stored in all levels of the cache hierarchy following
both the spatial and temporal locality principles: recently
accessed data and data in nearby locations are likely to be
accessed soon.

Cache Side channel attacks. Cache based side channel
attacks have been widely studied over the last two decades.
It was in 1992 when the cache was first considered as a valid
covert channel to extract sensitive information [20], and this
approach was further studied theoretically later in [23, 28,
37]. In the last decade many implementations of cache based
side channel attacks have been investigated. Bernstein in
2005 [11] recovered an AES keys due to microarchitectural
time differences between different memory lines, whereas
Osvik et al. studied the performance of different spy pro-
cesses monitoring the data cache like Prime and Probe and
Evict+Time on AES [27]. Only one year later, Bonneau
et al. implemented a cache attack based on table look up
collisions on AES [13].

Shortly later Acıiçmez showed that the instruction cache
also leaks information by mounting an attack targeting RSA
encryptions [4]. In a follow up work, Chen et al. improved
the attack proposed in [4] and applied it in a more realistic
scenario [14]. One year later, cache attacks were moved to
the cloud by Zhang et al. where they managed to recover
an El Gamal encryption key across XEN VMs [42].

Recently Gullasch et al. [19] demonstrated that deduplica-
tion features implemented in modern OSs can open a covert
channel to recover sensitive information like AES keys with
the Flush+Reload attack, but assuming to have control over
the CFS. This approach was later followed by Yarom et al.



and Irazoqui et al. to recover RSA and AES keys respec-
tively, even in cloud environments [41, 21]. Finally Benger
et al. also showed that the security of ECDSA encryptions
is compromised when the adversary is able to monitor cache
accesses [10].

2.1 The Flush+Reload Technique
The Flush+Reload attack is a powerful cache-based side

channel attack technique that checks if specific cache lines
have been accessed or not by the code under attack. Gul-
lasch et al. [18] first used this spy process on AES, although
the authors did not brand their attack as Flush+Reload at
the time. Later Yarom et al. [41, 10] used it to target spe-
cific functions instead of data. In their studies, they used
the Flush+Reload technique to recover keys from RSA and
ECDSA decryption processes. Here we briefly explain how
Flush+Reload attack works. The attack is carried out in 3
stages:

• Flush step: In this stage, the attacker uses the clflush
instruction to flush the desired memory lines from the
cache and make sure that they go to the main memory.
We have to remark here that the clflush command
does not only flush the memory line from the cache
hierarchy of the corresponding working core, but it
flushes from all the caches of all the cores in the CPU.
This is an important point: if it only flushed from the
corresponding core’s cache hierarchy, the attack would
only work if the attacker and victim’s processes were
running on the same CPU core. This would have re-
quired a much stronger assumption than just being on
the same physical machine.

• Victim accessing step: In this stage the attacker
waits until the victim runs a fragment of the targeted
code, which uses the memory lines that have been
flushed in the first stage.

• Reload step: In this stage the attacker reloads the
previously flushed memory lines and measures the time
it takes to reload them. Depending on the reloading
time, the attacker decides whether the victim accessed
the memory line (in which case the memory line would
be present in the cache) or if the victim did not ac-
cess the corresponding memory line (in which case the
memory line will not be present in the cache.) The
timing difference between a cache hit and a cache miss
makes this difference detectable by the attacker.

The fact that the attacker and the victim processes do not
run on the same core is not a problem here. Even though
there may be isolation at various levels of the cache, in most
systems there is some level of cache that is shared between
all the cores. Therefore, through this shared level of cache
(typically the L3 cache), one can still distinguish between
accesses to the main memory and accesses to the cache.

2.2 Memory Deduplication
Memory deduplication is an optimization technique that

was originally introduced in Linux as KSM to improve the
memory utilization by merging duplicate memory pages.
KSM first appeared in Linux kernel version 2.6.32 [22, 2].
In this implementation, KSM kernel daemon ksmd, scans
the user memory for potential pages to be shared among
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Figure 1: Memory Deduplication Scheme

users [6], creating signatures for these pages. The signa-
tures are kept in the deduplication table for matching and
merging. When two or more pages with the same signature
are found, they are cross-checked completely to determine
if they are identical in which case they are merged with the
copy-on-write tag set.

Deduplication later became a standard technique for im-
proving the memory utilization in VMMs. It is especially ef-
fective in virtual machine environments where multiple guest
OSs co-reside on the same physical machine and share the
physical memory. At the more abstract level, deduplica-
tion works by recognizing processes (or VMs) that place the
same data in memory. This frequently happens when two
processes use the same shared libraries. The deduplication
scheme eliminates multiple copies from memory and allows
the data to be shared between users and processes. Conse-
quently, variations of memory deduplication techniques are
now implemented in VMware ESXI [39, 40] and others such
as KVM [2, 22] VMMs. Since KVM converts the Linux ker-
nel into a hypervisor, it directly uses KSM as page sharing
technique, whereas VMware uses Transparent Page Sharing
(TPS).

Even though deduplication saves memory and thus allows
more virtual machines to run on the host system, it also
opens a door to side channel attacks. While the data in
the cache cannot be modified or corrupted by an adversary,
parallel access rights can be exploited to reveal secret infor-
mation about processes executing in the target VM.

3. THE LUCKY 13 ATTACK
The Lucky 13 attack targets a vulnerability in the TLS

(and DTLS) protocol design. The vulnerability is due to
MAC-then-encrypt mode, in combination with the padding
of the CBC encryption, also referred to as MEE-TLS-CBC.
In the following, our description focuses on this popular
mode. Vaudenay [38] showed how the CBC padding can
be exploited for a message recovery attack. AlFardan et
al. [16] showed—more than 10 years later—that the sub-
sequent MAC verification introduces timing behavior that
makes the message recovery attack feasible in practical set-
tings. In fact, their work includes a comprehensive study of
the vulnerability of several TLS libraries. In this section we
give a brief description of the attack. For a more detailed
description, please refer to the original paper [16].
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Figure 2: Encryption and authentication in the TLS
record protocol when using HMAC and a block ci-
pher in CBC mode.

3.1 The TLS Record Protocol
The TLS record protocol provides encryption and message

authentication for bulk data transmitted in TLS. The basic
operation of the protocol is depicted in Figure 2. When a
payload is sent, a sequence number and a header are at-
tached to it and a MAC tag is generated by any of the avail-
able HMAC choices. Once the MAC tag is generated, it is
appended to the payload together with a padding. The pay-
load, tag, and pad are then encrypted using a block cipher
in CBC mode. The final message is formed by the encrypted
ciphertext plus the header.

Upon receiving an encrypted packet, the receiver decrypts
the ciphertext with the session key that was negotiated in
the handshake process. Next, the padding and the MAC
tag need to be removed. For this, first the receiver checks
whether the size of the ciphertext is a multiple of the block
size and makes sure that the ciphertext can accommodate
minimally a zero-length record, a MAC tag, and at least
one byte of padding. After decryption, the receiver checks if
the recovered padding matches one of the allowed patterns.
A standard way to implement this decoding step is to check
the last byte of the plaintext, and to use it to determine how
many of the trailing bytes belong to the padding. Once the
padding is removed, and the plain payload is recovered, the
receiver attaches the header and the sequence number and
performs the HMAC operation. Finally, the computed tag is
compared to the received tag. If they are equal, the contents
of the message are concluded to be securely transmitted.

3.2 HMAC
The TLS record protocol uses the HMAC algorithm to

compute the tag. The HMAC algorithm is based on a hash
function H that performs the following operations:

HMAC(K,m) = H((K ⊕ opad)||H((K ⊕ ipad)||M)

Common choices in TLS 1.2 for H are SHA-1, SHA-256 and
the now defunct MD5. The message M is padded with a
single 1 bit followed by zeros and an 8 byte length field.
The pad aligns the data to a multiple of 64 bytes. K⊕ opad
already forms a 64 byte field, as well as K ⊕ ipad. There-
fore, the minimum number of compression function calls for
a HMAC operation is 4. This means that depending on the
number of bytes of the message, the HMAC operation is go-
ing to take more or less compression functions. To illustrate

this, we are repeating the example given in [16] as follows.
Assume that the plaintext size is 55 bytes. In this case an
8 byte length field is appended together with a padding of
size 1, so that the total size is 64 bytes. Here in total the
HMAC operation is going to take four compression function
calls. However if the plaintext size is 58, an 8 byte length
field is attached and 62 bytes of padding are appended to
make the total size equal to 128 bytes. In this case, the total
compression function calls are going to be equal to five. Dis-
tinguishing the number of performed compression function
calls is the basic idea that enables the Lucky 13 attack.

3.3 CBC Encryption & Padding
Until the support of the Galois Counter Mode in TLS

1.2, block ciphers were always used in cipher block chaining
(CBC) mode in TLS. Decryption of each block of a cipher-
text Ci is performed as follows:

Pi = Dk(Ci)⊕ Ci−1

Here, Pi is the plaintext block and Dk(·) is the decryption
under key k. For the prevalent AES, the block size is 16
bytes. The size of the message to be encrypted in CBC mode
has to be indeed a multiple of the cipher block size. The
TLS protocol specifies a padding as follows: the last padding
byte indicates the length of the padding; the value of the re-
maining padding bytes is equal to the number of padding
bytes needed. This means that if 3 bytes of padding is
needed, the correct padding has to be 0x02|0x02|0x02. Pos-
sible TLS paddings are: 0x00, 0x01|0x01, 0x02|0x02|0x02,
up to 0xff|0xff| . . . |0xff. Note that there are several valid
paddings for each message length.

3.4 An Attack On CBC Encryption
We now discuss the basics of the Lucky 13 attack. For the

purposes of this study the target cipher is going to be AES in
CBC mode, as described above. Again, we are going to use
the same example that AlFardan et al. gave in [16]. Assume
that the sender is sending 4 non-IV blocks of 16 bytes each,
one IV block, and the header number. Let’s further assume
that we are using SHA-1 to compute the MAC tag, in which
case the digest size is 20 bytes. The header has a fixed length
of 5 bytes and the sequence number would have a total size
of 8 bytes. The payload would look like this:

HDR|CIV |C1|C2|C3|C4

Now assume that the attacker masks ∆ in C3. The decryp-
tion of C4 is going to be as follows:

P ∗
4 = Dk(C4)⊕ C3 ⊕∆ = P4 ⊕∆

Focusing on the last two bytes P ∗
4(14)|P ∗

4(15) three possible
scenarios emerge:

Invalid padding This is the most probable case, where the
plaintext ends with an invalid padding. Therefore, according
to TLS protocol, this is treated as 0 padding. 20 bytes of
MAC (SHA-1) are removed and the corresponding HMAC
operation in the client side is performed on 44 bytes +13
bytes of header, in total 57 bytes. Therefore the HMAC
evaluates 5 compression function calls.

Valid 0x00 padding If P ∗
4(15) is 0x00, this is considered

as valid padding, and a single byte of padding is removed.
Then the 20 bytes of digest are removed, and the HMAC
operation in client side is done in 43+13 bytes, 56 in total,
which takes 5 compression function calls.



Any other valid padding For instance, if we consider
a valid padding of two bytes, the valid padding would be
0x01|0x01 and 2 bytes of padding are removed. Then 20
bytes of digest are removed, and the HMAC operation is
performed over 42 + 13 = 55 bytes, which means four com-
pression function calls.

The Lucky 13 attack is based on detecting this difference
between 4 and 5 compression function calls. Recall that if an
attacker knows that a valid 0x01|0x01 padding was achieved,
she can directly recover the last two bytes of P4, since

0x01|0x01 = P4(14)|P4(15) ⊕∆(14)|∆(15)

Furthermore, she can keep on trying to recover the remain-
ing bytes once she knows the first 2 bytes. The attacker
needs to perform at most 216 trials for detecting the last
two bytes, and then up to 28 messages for each of the bytes
that she wants to recover.

4. ANALYSIS OF LUCKY 13 PATCHES
The Lucky 13 attack triggered a series of patches for all

major implementations of TLS [16]. In essence, all libraries
were fixed to remove the timing side channel exploited by
Lucky 13, i.e. implementations were updated to handle dif-
ferent CBC-paddings in constant time. However, different
libraries used different approaches to achieve this:

• Some libraries implement dummy functions or pro-
cesses,

• Others use dummy data to process the maximum al-
lowed padding length in each MAC checking.

In the following, we discuss these different approaches for
some of the most popular TLS libraries.

4.1 Patches Immune to Flush+Reload
In this section we will analyze those libraries that are se-

cure against the flush and reload technique.

• OpenSSL: The Lucky 13 vulnerability was fixed in
OpenSSL versions 1.0.1, 1.0.0k, and 0.9.8y by Febru-
ary 2013 without the use of a time consuming dummy
function and by using dummy data. Basically, when
a packet is received, the padding variation is consid-
ered and the maximum number of HMAC compres-
sion function evaluations needed to equalize the time
is calculated. Then each compression function is com-
puted directly, without calling any external function.
For every message, the maximum number of compres-
sion functions are executed, so that no information is
leaked through the time channel in case of the incor-
rect padding. Furthermore, the OpenSSL patch re-
moved any data dependent branches ensuring a fixed
data independent execution flow. This is a generic so-
lution for microarchitectural leakage related attacks,
i.e. cache timing or even branch prediction attacks.

• Mozilla NSS: This library is patched against the
Lucky 13 attack in version 3.14.3 by using a constant
time HMAC processing implementation. This imple-
mentation follows the approach of OpenSSL, calcu-
lating the number of maximum compression functions
needed for a specific message and then computing the

compression functions directly. This provides not only
a countermeasure for both timing and cache access at-
tacks, but also for branch prediction attacks.

• MatrixSSL: MatrixSSL is fixed against the Lucky 13
with the release of version 3.4.1 by adding timing coun-
termeasures that reduce the effectiveness of the attack.
In the fix, the library authors implemented a decoding
scheme that does a sanity check on the largest possible
block size. In this scheme, when the received message’s
padding length is incorrect, Matrix SSL runs a loop as
if there was a full 256 bytes of padding. When there
are no padding errors, the same operations are exe-
cuted as in the case of an incorrect padding to sus-
tain a constant time. Since there are no functions
that are specifically called in the successful or unsuc-
cessful padding cases, this library is not vulnerable to
our Flush+Reload attack. In addition, Matrix SSL
keeps track of all errors in the padding decoding and
does the MAC checking regardless of valid or invalid
padding rather than interrupting and finalizing the de-
coding process at the first error. However, since an if
statement is used when the extra compression function
is called, the library might be a suitable target for a
branch prediction attack.

4.2 Patches Vulnerable to Flush+Reload
There are some patches that ensure constant time exe-

cution and therefore are immune to the original Lucky 13
attack [16] which are vulnerable to Flush+Reload. This im-
plies a dummy function call or a different function call tree
for valid and invalid paddings. Furthermore, if these calls
are preceded by branch predictions, these patches might also
be exploitable by branch prediction attacks. Some examples
including code snippets are given below.

• GnuTLS: uses a dummy_wait function that performs
an extra compression function whenever the padding is
incorrect. This function makes the response time con-
stant to fix the original Lucky 13 vulnerability. Since
this function is only called in the case of incorrect
padding, it can be detected by a co-located VM run-
ning a Flush+Reload attack.

i f (memcmp ( tag , &c iphe r t ex t−>data [ l ength ] ,
t a g s i z e ) != 0 | | p a d f a i l e d != 0)
//HMAC was not the same .

{dummy wait(params, compressed , pad failed ,
pad, length+preamble size );}

• PolarSSL: uses a dummy function called md_process

to sustain constant time to fix the original Lucky 13
vulnerability. Basically the number of extra runs for a
specific message is computed and added by md_process.
Whenever this dummy function is called, a co-located
adversary can learn that the last padding was incor-
rect and use this information to realize the Lucky 13
attack.

f o r ( j = 0 ; j < ext ra run ; j++ )
\\We need an extra run

md process( &ssl−>transform in−>
md ctx dec , ssl−>in msg ) ; ]∗



• CyaSSL: was fixed against the Lucky 13 with the re-
lease of 2.5.0 on the same day the Lucky 13 vulnera-
bility became public. In the fix, CyaSSL implements a
timing resistant pad/verify check function called Tim-

ingPadVerify which uses the Padcheck function with
dummy data for all padding length cases whether or
not the padding length is correct. CyaSSL also does
all the calculations such as the HMAC calculation for
the incorrect padding cases which not only fixes the
original Lucky 13 vulnerability but also prevents the
detection of incorrect padding cases. This is due to the
fact that the Padcheck function is called for both cor-
rectly and incorrectly padded messages which makes
it impossible to detect with our Flush+Reload attack.

However, for the correctly padded messages, CyaSSL
calls the CompressRounds function which is detectable
with Flush+Reload .Therefore, we monitor the correct
padding instead of the incorrect padding cases.

Correct padding case:

PadCheck (dummy, ( byte ) padLen ,
MAX PAD SIZE − padLen − 1 ) ;
r e t = s s l−>hmac( s s l , v e r i f y , input ,
pLen − padLen − 1 − t , content , 1 ) ;
CompressRounds( ssl , GetRounds(pLen,
padLen, t ) , dummy) ;
ConstantCompare ( v e r i f y , input +
( pLen − padLen − 1 − t ) , t ) != 0)

Incorrect padding case:

CYASSL MSG( ”PadCheck f a i l e d ”) ;
PadCheck (dummy, ( byte ) padLen ,
MAX PAD SIZE − padLen − 1 ) ;
s s l−>hmac( s s l , v e r i f y , input ,
pLen − t , content , 1 ) ;

// s t i l l compare
ConstantCompare ( v e r i f y , input +
pLen − t , t ) ;

5. REVIVING LUCKY 13 ON THE CLOUD
As the cross-network timing side channel has been closed

(c.f. Section 4), the Lucky 13 attack as originally proposed
no longer works on the recent releases of most cryptographic
libraries. In this work we revive the Lucky 13 attack to tar-
get these (fixed) releases by gaining information through co-
located VMs (a leakage channel not considered in the origi-
nal paper) rather than the network timing exploited in the
original attack.

5.1 Regaining the Timing Channel
Most cryptographic libraries and implementations have

been largely fixed to yield an almost constant time when
the MAC processing time is measured over the network. As
discussed in Section 4, although there are some similarities
in these patches, there are also subtle differences which—as
we shall see—have significant implications on security. Some
of the libraries not only closed the timing channel but also
various cache access channels. In contrast, other libraries left
an open door to implement access driven cache attacks on
the protocol. In this section we analyze how an attacker can
gain information about the number of compression functions

Figure 3: Histogram of network time measured for
sent packages with valid (4 compression functions)
and invalid (5 compression functions) paddings.

performed during the HMAC operation by making use of
leakages due to shared memory hierarchy in VMs located
on the same machine. This is sufficient to re-implement the
Lucky 13 attack.

More precisely, during MAC processing depending on whether
the actual MAC check terminates early or not, some li-
braries call a dummy function to equalize the processing
time. Knowing if this dummy function is called or not re-
veals whether the received packet was processed as to either
having a invalid padding, zero length padding or any other
valid padding. In general, any difference in the execution
flow between handling a well padded message, a zero padded
message or an invalid padded message enables the Lucky 13
attack. This information is gained by the Flush+Reload
technique if the cloud system enables deduplication features.

To validate this idea, we ran two experiments:

• In the first experiment we generated encrypted packets
using PolarSSL client with valid and invalid paddings
and measured the network time as shown in Figure 3.
Note that, the network time in the two distributions
obtained for valid and invalid paddings are essentially
indistinguishable as intended by the patches.

• In the second experiment we see a completely different
picture. Using PolarSSL we generated encrypted pack-
ets with valid and invalid paddings which were then
sent to a PolarSSL server. Here instead, we measured
the time it takes to load a specifically chosen PolarSSL
library function running inside a co-located VM. Fig-
ure 4 shows the probability distributions for a function
reloaded from L3 cache vs. a function reloaded from
the main memory. The two distributions are clearly
distinguishable and the misidentification rate (the area
under the overlapping tails in the middle of the two
distributions) is very small. Note that, this substitute
timing channel provides much more precise timing that
the network time. To see this more clearly, we refer
the reader to Figure 2 in [16] where the network time



Figure 4: Histogram of access time measured for
function calls from the L3 cache vs. a function called
from the main memory.

is measured to obtain two overlapping Gaussians by
measurements with OpenSSL encrypted traffic. This
is not a surprise, since the network channel is signifi-
cantly more noisy.

In conclusion, we regain a much more precise timing channel,
by exploiting the discrepancy between L3 cache and mem-
ory accesses as measured by a co-located attacker. In what
follows, we more concretely define the attack scenario, and
then precisely define the steps of the new attack.

5.2 New Attack Scenario
In our attack scenario, the side channel information will

be gained by monitoring the cache in a co-located VM. In
the same way as in [16] we assume that the adversary cap-
tures, modifies, and replaces any message sent to the victim.
However, TLS sessions work in such a way that when the
protocol fails to decrypt a message, the session is closed.
This is the reason why we focus in multi-session attacks
where the same plaintext in the same place is being sent
to the victim e.g. an encrypted password sent during user
authentication.

The fact that we are working with a different method in
a different scenario gives us some advantages and disadvan-
tages over the previous Lucky 13 work:

Advantages:.

• Recent patches in cryptographic libraries mitigate the
old Lucky 13 attack, but are still vulnerable in the new
scenario.

• In the new scenario, no response from the server is
needed. The old Lucky 13 attack needed a response to
measure the time, which yielded a noisier environment
in TLS than DTLS.

• The new attack does not suffer from the network chan-
nel noise. This source of noise was painful for the mea-
surements as we can see in the original paper, where

in case of TLS as many as 214 trials were necessary to
guess a single byte value.

Disadvantages:.

• Assumption of co-location: To target a specific vic-
tim, the attacker has to be co-located with that tar-
get. However the attacker could just reside in a phys-
ical machine and just wait for some potential random
victim running a TLS operation.

• Other sources of noise: The attacker no longer has to
deal with network channel noise, but still has to deal
with other microarchitectural sources of noise, such
as instruction prefetching. This new source of noise
is translated in more traces needed, but as we will
see, much less than in the original Lucky 13 attack. In
Section 6 we explain how to deal with this new noise.

5.3 Attack Description
In this section we describe how an attacker uses Flush+Reload

technique to gain access to information about the plaintext
that is being sent to the victim.

• Step 1 Function identification: Identify different
function calls in the TLS record decryption process
to gain knowledge about suitable target functions for
the spy process. The attacker can either calculate the
offset of the function she is trying to monitor in the
library, and then add the corresponding offset when the
Address Space Layout Randomization (ASLR ) moves
her user address space. Another option is to disable
the ASLR in the attackers VM, and use directly the
virtual address corresponding to the function she is
monitoring.

• Step 2 Capture packet, mask and replace: The
attacker captures the packet that is being sent and
masks it in those positions that are useful for the at-
tack. Then she sends the modified packet to the vic-
tim.

• Step 3 Flush targeted function from cache: The
flush and reload process starts after the attacker re-
places the original version of the packet and sends it.
The co-located VM flushes the function to ensure that
no one but the victim ran the targeted function. Any
subsequent execution of the targeted function will bear
a faster reload time during the reload process.

• Step 4 Reload target function & measure: Reload
the corresponding function memory line again and mea-
sure the reload time. According to a threshold that
we set based on experimental measurements, we de-
cide whether the dummy function was loaded from
the cache (implying that the victim has executed the
dummy function earlier) or was loaded from the main
memory (implying the opposite).

Since the attacker has to deal with instruction prefetching,
she will be constantly running Flush+Reload for a specified
period of time. The attacker therefore distinguishes between
functions preloaded and functions preloaded and executed,
since the latter will stay for a longer period of time in the
cache.



6. EXPERIMENT SETUP AND RESULTS
In this section we present our test environment together

with our detection method in order to deal with different
cache prefetch techniques that affect our measurements. Fi-
nally we present the results of our experiments for the Po-
larSSL, GnuTLS and CyaSSL libraries.

6.1 Experiment Setup
The experiments were run on an Intel i5-650 dual core at

3.2 GHz. Our physical server includes 256 KB per core L2
cache, and a 4 MB L3 cache shared between both cores. We
used VMware ESXI 5.5.0 build number 162338 for virtual-
ization. TPS is enabled with 4 KB pages. In this setting, our
Flush+Reload technique can distinguish between L3 cache
and main memory accesses.

For the TLS connection, we use an echo server which reads
and re-sends the message that it receives, and a client com-
municating with it. Client and echo server are running in
different virtual machines that use Ubuntu 12.04 guest OS.
We modify the echo server functionality so that it adds a
jitter in the encrypted reply message, modeling the Man
in the Middle Attack. Once the message is sent, the echo
server uses Flush+Reload to detect different function calls
and concludes if the padding was correct or not. For the
TLS connection, we use an echo server which reads and re-
sends the message that it receives, and a client communi-
cating with it. Client and echo server are running in differ-
ent virtual machines that use Ubuntu 12.04 guest OS. We
modify the echo server functionality so that it adds a jitter
in the encrypted reply message, modeling the Man in the
Middle Attack. Once the message is sent, the echo server
uses Flush+Reload to detect different function calls and con-
cludes if the padding was correct or not.

6.2 Dealing with Cache Prefetching
Modern CPUs implement cache prefetching in a number

of ways. These techniques affect our experiments, since the
monitored function can be prefetched to cache, even if it
was not executed by the victim process. To avoid false pos-
itives, it is not sufficient to detect if the monitored func-
tions were loaded to cache, but also for how long they have
resided in the cache. This is achieved by counting the num-
ber of subsequent detections for the given function in one
execution. Therefore, the attack process effectively distin-
guishes between prefetched functions and prefetched and ex-
ecuted functions.

We use experiments to determine a threshold (which dif-
fers across the libraries) to distinguish a prefetch and execute
from a mere prefetch. For PolarSSL this threshold is based
on observing three Flush+Reload accesses in a row. Assume
that n is the number of subsequent accesses required to con-
clude that the function was executed. In the following we
present the required hits for different libraries, i.e. the num-
ber of n-accesses required to decide whether the targeted
function was executed or not.

6.3 Attack on PolarSSL1.3.6
Our first attack targets PolarSSL 1.3.6, with TLS 1.1. In

the first scenario the attacker modifies the last two bytes
of the encrypted message until she finds the ∆ that leads
to a 0x01|0x01 padding. Recall that 216 different variations
can be performed in the message. The first plot shows the
success probability of guessing the right ∆ versus L, where

Figure 5: (PolarSSL 1.3.6) Success probability of
recovering P14 and P15 vs. L, for different number of
hits required. L refers to the number of 216 traces
needed, so the total number of messages is 216 ∗ L.

L refers to the number of 216 traces needed. For example
L = 4 means that 216 ∗ 4 messages are needed to detect the
right ∆. Based on experimental results, we set the access
threshold such that we consider a hit whenever the targeted
function gets two accesses in a row.

The measurements were performed for different number
of required hits. Figure 5 shows that requiring a single hit
might not suffice since the attacker gets false positives, or
for small number of messages she may miss the access at
all. However when we require two hits, and if the attacker
has a sufficient number of messages (in this case L = 23),
the probability of guessing the right ∆ is comfortably close
to one. If the attacker increases the limit further to ensure
an even lower number of false positives, she will need more
messages to see the required number of hits. In the case of
3 hits, L = 24 is required to have a success probability close
to one.

Figure 6 shows the success probability of correctly recov-
ering P13, once the attacker has recovered the last two bytes.
Now the attacker is looking for the padding 0x02|0x02|0x02.
We observed a similar behavior with respect to the previous
case where with L = 8 and with a two hits requirement we
will recover the correct byte with high probability. Again if
the attacker increases the requirement to 3 hits, she will need
more measurements; about L = 16 is sufficient in practice.

6.4 CyaSSL 3.0.0
Recall that the attack is much more effective if the at-

tacker knows any of the preceding bytes of the plaintext,
for example the last byte P15 of the plaintext. This would
be the case in a javascript/web setting where adjusting the
length of an initial HTTP request an attacker can ensure
that there is only one unknown byte in the HTTP plain-
text. In this case, the attacker would not need to try 216

possible variations but only 28 variations for each byte that
she wants to recover. This is the scenario that we analyzed
in CyaSSL TLS 1.2, where we assumed that the attacker



Figure 6: (PolarSSL 1.3.6) Success probability of re-
covering P13 assuming P14, P15 known vs L, for differ-
ent number of hits required. L refers to the number
of 28 traces needed, so the total number of messages
is 28 ∗ L.

knows P15 and she wants to recover P14. Now the attacker
is again trying to obtain a 0x01|0x01 padding, but unlike in
the previous case, she knows the ∆ to make the last byte
equal to 0x01. The implementation of CyaSSL behaves very
similarly to the one of PolarSSL, where due to the access
threshold, a one hit might lead to false positives. However,
requiring two hits with a sufficient number of measurements
is enough to obtain a success probability very close to one.
The threshold is set as in the previous cases, where a hit is
considered whenever we observe two Flush+Reload accesses
in a row.

6.5 GnuTLS 3.2.0
Finally we present the results confirming that GnuTLS3.2.0

TLS 1.2 is also vulnerable to this kind of attack. Again, the
measurements were taken assuming that the attacker knows
the last byte P15 and she wants to recover P14, i.e., she wants
to observe the case where she injects a 0x01|0x01 padding.
However GnuTLS’s behavior shows some differences with
respect to the previous cases. For the case of GnuTLS we
find that if we set an access threshold of three accesses in
a row (which would yield our desired hit), the probability
of getting false positives is very low. Based on experimen-
tal measurements we observed that only when the dummy
function is executed we observe such a behavior. However
the attacker needs more messages to be able to detect one of
these hits. Observing one hit indicates with high probability
that the function was called, but we also consider the two hit
case in case the attacker wants the probability of having false
positives to be even lower. Based on the measurements we
conclude that the attacker recovers the plaintext with very
high probability, so we did not find it necessary to consider
the three hit case.

Figure 7: (CyaSSL3.0.0) Success Probability of re-
covering P14 assuming P15 known vs L, for different
number of hits required. L refers to the number of
28 traces needed, so the total number of messages
would be 28 ∗ L.

Figure 8: (GnuTLS3.2.0) Success Probability of re-
covering P14 assuming P15 known vs. L, for different
number of hits required. L refers to the number of
28 traces needed, so the total number of messages
would be 28 ∗ L.

7. COUNTERMEASURES
In this section we present various countermeasures that

would prevent an attacker from implementing our modified
Lucky 13 attack in a cloud environment. We first discuss
software countermeasures, i.e, changes that can be made in
the vulnerable cryptographic libraries to avoid the Lucky 13
attack. Then, we discuss more generic countermeasures to
avoid the usage of Flush+Reload as a side channel technique
to recover information. Note that library patches are less
costly to implement than hardware based countermeasures.



On the downside, the software patches result in sub-optimal
utilization of the memory hierarchy, thus, affecting the exe-
cution time performance.

Countermeasures in the cryptographic library: As
our earlier survey of the library patches has revealed, there
are two primary principles one needs to employ to securely
patch cryptographic libraries against the cross-VM Lucky 13
attack:

• Same function for valid/invalid padded cases:
The first pitfall that should be avoided takes place
when a separate function call, e.g. a dummy function,
is made to achieve a constant time implementation.
This was part of the leakage exploited in this work
where we monitor the dummy function calls made by
another victim. In order to prevent it, a single func-
tion should be used during the entirety of the MAC
operation of the message, as well as the additionally
needed compression stages.

• Same execution flow for valid/invalid padded
cases: This means that cryptographic library design-
ers should avoid using message or key dependent branches
that can leak information to an adversary monitor-
ing the execution flow. Instead, logical operations like
AND or XOR operations should be used to make the
execution independent of vulnerable inputs. For in-
stance, this solution has been adopted by OpenSSL,
which calculates and always executes the maximum
number of possible compression function calls.

An example algorithm that embodies these principles is
presented in Algorithm 1. In the algorithm we are assum-
ing that the maximum length of the processed message is 64
bytes, and that hash operations take 16 bytes of plaintext
and that l is the length of the message once the padding is
removed (for both correctly and incorrectly padded cases).
The md_process function is used to perform the hash opera-
tions over all message blocks. This function puts the output
in the hash variable. However, we use l to decide whether the
output of the hash operation should be appended to the di-
gest or not, depending on whether we are processing dummy
data or the message. Note that the algorithm only uses a
single function for both the valid message and the dummy
data, thereby preventing execution flow distinguishing at-
tacks. The code unifies the two separate execution flows.

Preventing Flush+Reload : Since our version of the Lucky 13
attack uses the Flush+Reload technique to extract timing in-
formation, any Flush+Reload countermeasure will also dis-
able our attack. Here we note a few common Flush+Reload
countermeasures.

• Disabling deduplication features: Our detection
method is based on shared memory features that are
offered by VMMs. Although these features have the
advantage of significantly saving memory, they can also
be used as a side channel to snoop sensitive information
from a co-located user. Therefore, disabling dedupli-
cation closes the covert channel necessary to perform
the attack presented in this work.

• Cache Partitioning: This countermeasure should be
performed at the hardware level, and consists in split-
ting the cache into pieces so that each user uses only

Algorithm 1: Data independent execution flow for
md process

//M=Message,l=length Message without padding

Input : M,l

//Digest of M

Output: digest(M)

//Assume hash operates on a 16 byte message,

and we have a maximum length of 64

for i = 0 to 4 do
valid=(16*i/l);
md process(M[16*i]*valid + dummy data*valid,
hash);
Append(digest[i],hash*valid);

end
return digest;

a private portion of the cache. In this scenario even
when memory deduplication is enabled, an attacker
could not interfere with the victim’s data in the cache,
and would no longer be able to distinguish whether the
monitored function was used or not.

• Masking the cache loads: This is a hardware-based
countermeasure as well, where each user has a private
masking value that is used when the data is loaded
into cache and when the data being read from the
cache. Since different users have different masking val-
ues, even when memory deduplication is enabled, at-
tacker and victim would access the same data in mem-
ory through different cache addresses, preventing the
attack in this work.

8. CONCLUSION
In this work we demonstrated that the Lucky 13 attack is

still a threat in the cross-VM setting for a number of promi-
nent cryptographic libraries already patched for the Lucky 13
attack. We discussed the different approaches taken by the
major TLS libraries and showed that one class of timing
side channel countermeasure, i.e, using dummy functions
to achieve constant time execution, is vulnerable to cross-
VM Flush+Reload attacks. With practical experiments we
demonstrated that the side channel enabling Lucky 13 is still
existent in PolarSSL, GnuTLS and CyaSSL if run in a dedu-
plication enabled virtual machine. In fact, the new cache
side channel is actually stronger, since it no longer suffers
from network noise, making the attack succeed with signifi-
cantly fewer observations than the original Lucky 13 attack
in [16]. We also discussed how various crypto libraries fixed
the Lucky 13 vulnerability in detail to better explain what
makes a crypto library vulnerable to Flush+Reload based
attacks.

In our test setting, we used the VMware ESXi with TPS
enabled. This deduplication feature enabled us to detect
dummy function calls that are implemented by the vulner-
able libraries to equalize HMAC execution time in the case
of incorrectly CBC-padded packets in TLS. Unlike in the
case of vulnerable libraries, OpenSSL, Mozilla NSS, and
MatrixSSL applied patches with a constant and padding-
independent program flow to fix the Lucky 13 vulnerability.
Libraries fixed this way are secure against the described at-
tack.



With this study we showed that crypto library designers
and authors should be careful about not implementing any
data dependent execution paths and ensure true constant
execution time. We conclude that, any function or process
in a crypto library whose execution depends on the input
data is exploitable by cache side-channel attacks and that
libraries should be implemented accordingly.
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