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Abstract

The Transport Layer Security (TLS) protocol aims to pro-

vide confidentiality and integrity of data in transit across un-

trusted networks. TLS has become the de facto secure proto-

col of choice for Internet and mobile applications. DTLS is

a variant of TLS that is growing in importance. In this paper,

we present distinguishing and plaintext recovery attacks against

TLS and DTLS. The attacks are based on a delicate timing anal-

ysis of decryption processing in the two protocols. We include

experimental results demonstrating the feasibility of the attacks

in realistic network environments for several different imple-

mentations of TLS and DTLS, including the leading OpenSSL

implementations. We provide countermeasures for the attacks.

Finally, we discuss the wider implications of our attacks for the

cryptographic design used by TLS and DTLS.

Keywords TLS, DTLS, CBC-mode encryption, timing attack,

plaintext recovery

1 Introduction

TLS is arguably the most widely-used secure communica-

tions protocol on the Internet today. Starting life as SSL, the

protocol was adopted by the IETF and specified as TLS 1.0 [10].

It has since evolved through TLS 1.1 [11] to the current ver-

sion TLS 1.2 [12]. Various other RFCs define additional TLS

cryptographic algorithms and extensions. TLS is now used for

securing a wide variety of application-level traffic and has be-

come a serious rival to IPsec for general VPN usage. It is widely

supported in client and server software and in cryptographic li-

braries for embedded systems, mobile devices, and web appli-

cation frameworks. Open-source implementations of TLS and

DTLS include OpenSSL, GnuTLS, PolarSSL and CyaSSL.

The DTLS protocol is a close relative of TLS, developed

from TLS by making minimal changes so as to allow it to oper-

ate over UDP instead of TCP [25]. This makes DTLS suitable

for use where the costs of TCP connection establishment and

TCP retransmissions are not warranted, for example, in voice

and gaming applications. DTLS exists in two versions, DTLS
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1.0 [31], which roughly matches TLS 1.1 and DTLS 1.2 [32],

which aligns with TLS 1.2.

Both TLS and DTLS are actually protocol suites, rather than

single protocols. The main component of (D)TLS that con-

cerns us here is the Record Protocol, which uses symmetric

key cryptography (block ciphers, stream ciphers and MAC al-

gorithms) in combination with sequence numbers to build a se-

cure channel for transporting application-layer data. Other ma-

jor components are the (D)TLS Handshake Protocol, which is

responsible for authentication, session key establishment and

ciphersuite negotiation, and the TLS Alert Protocol, which car-

ries error messages and management traffic. Setting aside ded-

icated authenticated encryption algorithms (which are yet to

see widespread support in TLS or DTLS implementations), the

(D)TLS Record Protocol uses a MAC-Encode-Encrypt (MEE)

construction. Here, the plaintext data to be transported is first

passed through a MAC algorithm (along with certain header

bytes) to create a MAC tag. The supported MAC algorithms

are all HMAC-based, with MD5, SHA-1 and SHA-256 being

the allowed hash algorithms in TLS 1.2 [12]. Then an encod-

ing step takes place. For the RC4 stream cipher, this just in-

volves concatenation of the plaintext and the MAC tag, while

for CBC-mode encryption (the other possible option), the plain-

text, MAC tag, and some encryption padding of a specified for-

mat are concatenated. In the encryption step, the encoded plain-

text is encrypted with the selected cipher. In the case where

CBC-mode is selected, the block cipher is DES, 3DES or AES

(with DES being deprecated in TLS 1.2). Following [28], we

refer to this MEE construction as MEE-TLS-CBC. We provide

greater detail on its operation in the (D)TLS Record Protocol in

Section 2.

The widespread use of TLS (and the increasing use of

DTLS) makes the continued study of the security of these pro-

tocols of great importance. Indeed, the evolution of the TLS

Record Protocol has largely been driven by cryptographic at-

tacks that have been discovered against it, including those in

[37, 6, 26, 2, 3, 13, 28, 1].

Of particular interest lately have been attacks based on the

use of chained initialisation vectors (IVs) for CBC-mode in SSL

and TLS 1.0, in particular, the so-called BEAST attack [13]

which has its roots in [35, 26, 2, 3]. This attack achieved full

plaintext recovery against TLS, but only in scenarios where an

attacker can gain access to a chosen plaintext capability, per-
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haps by inducing the user to first download malicious javascript

code into his browser. Despite this strong requirement, the

BEAST attack attracted significant industry and media attention

in 2011. Amongst the possible countermeasures are upgrading

to TLS 1.1 or 1.2, the inclusion of a dummy zero-length mes-

sage prior to each real TLS message, or the abandonment of

CBC-mode encryption in favour of RC4 or an authenticated en-

cryption algorithm.

The other major line of attacks against the TLS Record Pro-

tocol comprises [37, 6, 26, 28, 1] and relates to how the padding

that is required in MEE-TLS-CBC is handled during decryp-

tion. The problems here all stem from the fact that the padding

is added after the MAC has been computed and so forms unau-

thenticated data in the encoded plaintext. Taken altogether, the

attacks in [37, 6, 26, 28, 1] show that handling padding arising

during decryption processing is a delicate and complex issue for

MEE-TLS-CBC.

It is the case that all these attacks on CBC-mode in TLS

could be avoided by adopting RC4 or a dedicated authenticated

encryption mode, or perhaps by redesigning (D)TLS to use only

an Encrypt-then-MAC construction. However, RC4 is not an

option for DTLS, and not NIST-recommended for TLS [7];

meanwhile authenticated encryption modes are only available

in TLS 1.2, which is not yet widely supported.1 Redesigning

(D)TLS would require even more radical changes than adopt-

ing TLS 1.2. So it would be fanciful to “wish away” MEE-

TLS-CBC, and all the complexity that this entails: this is an

option that is firmly embedded in the TLS and DTLS RFCs, in

widespread use, and will remain so for the foreseeable future.

On the other hand, we might hope that after more than a decade

of intensive study, we would have arrived at a point where we

understand how to implement MEE-TLS-CBC securely. In this

paper, we show that this is not the case.

1.1 Our Results

We present a family of attacks that apply to CBC-mode in all

TLS and DTLS implementations that are compliant with TLS

1.1 or 1.2, or with DTLS 1.0 or 1.2. They also apply to im-

plementations of SSL 3.0 and TLS 1.0 that incorporate padding

oracle attack countermeasures (implementations that do not are

of course already vulnerable to known attacks).

The attacks come in various distinguishing, partial plaintext

recovery, and full plaintext recovery flavours. For the plaintext

recovery attacks, no chosen-plaintext capability is needed, in

contrast to the BEAST attacks: the attacks can be mounted by a

standard man-in-the-middle (MITM) attacker who sees only ci-

phertext and can inject ciphertexts of his own composition into

the network. The details of which specific attacks are possible

depends on the exact size of MAC tags output by the MAC al-

gorithm negotiated by the Handshake Protocol, and also on the

fact that the exactly 13 bytes of header data are incorporated in

the MAC calculation (hence our title).

The applicability of the attacks is also implementation-

dependent, because of the manner in which different imple-

1SSL Pulse (https://www.trustworthyinternet.org/

ssl-pulse/) reported that only 11.4% of 200,000 websites surveyed

support TLS 1.2 in January 2013; most major browsers currently do not

support TLS 1.2.

mentations interpret the RFCs. We have investigated several

different open-source implementations of TLS and DTLS, and

found all of them to be vulnerable to our new attacks or variants

of them (or even old attacks in one case). We also found ba-

sic coding errors in the security-critical decryption function of

one popular implementation, GnuTLS. In view of the amount

of variation we have seen in open-source code and our suc-

cess in devising variant attacks, we expect all implementations

– whether open or closed – to be vulnerable to our attacks to

some extent.

We have implemented a selection of the attacks in an exper-

imental setting. As with earlier attacks, completely breaking

TLS is challenging because the attacks create “broken” TLS

records and so consume many TLS sessions. Nevertheless, our

basic attack can extract full plaintext for the current OpenSSL

implementation of TLS assuming the attacker is located, say,

in the same LAN segment as the targeted TLS client or server,

using roughly 223 TLS sessions to reliably recover a block of

plaintext in a multi-session attack scenario like that considered

in [6]. Such a scenario is applicable when, for example, an

application protocol performs automatic TLS reconnection and

password retransmission. Given its complexity, this basic at-

tack would seem to present only a theoretical threat. However,

variants of it are much more effective:

• The distinguishing attacks against TLS are quite practical

for OpenSSL, requiring just a handful of sessions in order

to reliably tell apart the encryptions of chosen messages.

• Breaking DTLS implementations is fully practical even for

a remote attacker, since we can exploit the fact that DTLS

errors are non-fatal to mount the attacks in a single session,

and reuse the amplification techniques from [1] to boost

the delicate timing signals on which our attacks depend.

• We also have more efficient partial plaintext recovery at-

tacks on TLS and DTLS. For example, against OpenSSL

TLS, an attacker who knows one byte of a block in either

of the last two byte positions can reliably recover each of

the remaining bytes in that block using 216 sessions.

• The complexity of all our attacks can be reduced using lan-

guage models and sequential statistical techniques as in

[6, 13]. As a simple example, if the plaintext is base64

encoded, as is the case for HTTP basic access authentica-

tion and cookies, then the number of TLS sessions needed

to recover a block reduces from roughly 223 to 219.

• In the web setting, our techniques can be combined with

those used in the BEAST attack [13]: client-side malware

running in the browser can be used to initiate all the needed

TLS sessions, with an HTTP cookie being automatically

injected by the browser in a predictable location in the

plaintext stream in each session. The malware can also

control the location of the cookie such that there is only

one unknown byte in the target block at each stage of the

attack. The attacker then combines the “one known byte”

variant of our attack and the base64 optimisation above

(assuming the sensitive part of the cookie is base64 en-

coded). Putting all of these improvements together, we

estimate that HTTP cookies can be recovered using 213
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sessions per byte of cookie (with all the sessions being au-

tomatically generated). Note that the malware does not

need the ability to inject chosen plaintext into an existing

TLS session for this attack.

How the attacks work: Our new attacks exploit the fact that,

when badly formatted padding is encountered during decryp-

tion, a MAC check must still be performed on some data to pre-

vent the known timing attacks. But what data should be used

for that calculation? The TLS 1.1 and 1.2 RFCs recommend

checking the MAC as if there was a zero-length pad. As noted

in those RFCs:

This leaves a small timing channel, since MAC per-

formance depends to some extent on the size of the

data fragment, but it is not believed to be large

enough to be exploitable, due to the large block size of

existing MACs and the small size of the timing signal.

We confirm that there are indeed small timing differences,

but, contrary to what is written in the RFCs, they can be ex-

ploited. In short, provided there is a fortuitous alignment of

various factors such as the size of MAC tags, the block cipher’s

block size, and the number of header bytes, then there will be a

time difference in the time that it takes to process TLS records

having good and bad padding, and this difference will show

up in the time at which error messages appear on the network.

This timing side-channel can then be “wrangled” into reveal-

ing plaintext data via careful statistical analysis of multiple tim-

ing samples. As we shall show, other natural methods for han-

dling MAC checking in the event of bad padding also lead to

exploitable timing differences.

It is not clear to us whether the attacks we present here were

already known to the TLS community. We suspect not, in view

of the attacks’ complexity and the state-of-the-art in attacks at

the time of writing of the TLS 1.1 RFC. However, this ques-

tion seems moot in view of the fact that attacks exist for RFC-

compliant implementations and present a threat to the security

of TLS and DTLS.

Our new attacks demonstrate that properly implementing

MEE-TLS-CBC so as to avoid all exploitable timing differences

is in fact quite difficult, and is not achieved by any of the im-

plementations we examined. A complicating factor, in addition

to dealing with padding, is the need for careful sanity checking

of various fields during decryption. We provide a detailed pre-

scription for dealing with these issues. We also discuss other,

more easily-implemented countermeasures.

1.2 Disclosure (as at 27/02/2013)

Given the large number of affected implementations, we first

notified the IETF TLS Working Group chairs, the IETF Secu-

rity Area directors and the IRTF Crypto Forum Research Group

(CFRG) chairs of our attacks in November 2012. We then be-

gan the process of contacting individual vendors:

OpenSSL addressed the attacks in versions 1.0.1d, 1.0.0k and

0.9.8y, released 05/02/2013. See http://www.openssl.

org/news/secadv_20130205.txt for further details.

NSS addressed the attacks in version 3.14.3, released

15/02/2013. See https://developer.mozilla.org/

en-US/docs/NSS/NSS_3.14.3_release_notes for

further details.

Microsoft performed an investigation and determined that the

issue had been adequately addressed in previous modifications

to their TLS and DTLS implementations

Apple were notified of our attacks in December 2012. The sta-

tus of patch development by Apple is currently unknown.

GnuTLS corrected the programming errors in decryption that

we identified in version 3.1.6 (released 02/01/2013) and ad-

dressed the attacks in versions 2.12.23, 3.0.28 and 3.1.7, re-

leased 04/02/13.

PolarSSL addressed the attacks in version 1.2.5, released

03/02/13.

CyaSSL addressed the attacks in CyaSSL version 2.5.0, re-

leased 04/02/2013.

MatrixSSL addressed the attacks in version 3.4.1, released

06/02/13.

Opera addressed the attacks in Opera version 12.13, re-

leased 30/01/2013. For further details, see www.opera.com/

docs/changelogs/unified/1213/.

F5 were notified of the attacks in December 2012. They

have informed us that their TLS dataplane traffic is not vul-

nerable due to cryptographic offload, but that local manage-

ment ports and virtual editions may be vulnerable. For fur-

ther details, see http://support.f5.com/kb/en-us/

solutions/public/14000/100/sol14190.html.

BouncyCastle addressed the attacks in version 1.48 of the Java

library, released 10/02/2013. The C# version of BouncyCas-

tle was fixed in CVS at a similar time, and will be included in

release 1.8 at a later date.

Oracle (Java) addressed the attacks as part of a special critical

patch update of JavaSE, released 19/02/2012.

In addition, a number of other companies and organisations

were given advance notice of the attacks prior to them being

made public.

We will continue to update this section as the disclosure pro-

cess progresses.

1.3 Further Details on Related Work

TLS, and in particular the TLS Handshake Protocol, has

been the subject of much analysis using a variety of security

paradigms, see for example [29, 18, 27, 5]. In general, these

analyses are at too high a level of abstraction to capture our

attacks.

Padding oracle attacks began with Vaudenay [37], who

showed that the presence of a padding oracle, that is, an ora-

cle telling an attacker whether the padding was correctly for-

matted or not, could be leveraged to build a decryption capa-

bility. Canvel et al. [6] showed that such an oracle could be

obtained for the then-current version of OpenSSL by exploiting

a timing difference in TLS decryption processing. In essence,

in OpenSSL, if the padding was incorrectly formatted, then no

MAC check was performed, while if the padding was correct,

then the MAC check was done. In turn, this meant faster pro-

duction of an error message in the “invalid padding” case than

in the “valid padding” case. Thus the padding oracle was re-

vealed through a timing side-channel. A complication for full
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plaintext recovery is that in TLS, the corresponding error mes-

sages are fatal, leading to the termination of the TLS session.

To overcome this, Canvel et al. considered the multi-session

setting, wherein it is assumed that the same plaintext is trans-

mitted in the same position in the ciphertext in many sessions.

In this setting, they were able to mount full plaintext recovery

attacks, recovering, for example, TLS-protected Microsoft Out-

look passwords in a LAN. Moeller [26] subsequently pointed

out that not doing padding format checks is not an option, since

this enables even simpler attacks. The correct solution, as ad-

vocated in TLS 1.1 and TLS 1.2, is to check the padding format

carefully, report a single error message for padding and MAC

failures, and to make the record processing time essentially the

same whether or not the padding is correct. However, even this

is not enough: Paterson et al. recently showed that distinguish-

ing attacks would still be possible against TLS if the short MAC

extension advocated in [15] were to be implemented in combi-

nation with the variable length padding specified in TLS 1.0

and up. Their attack, whilst not a padding oracle attack, does

exploit the padding format. Most recently, in [1], we showed

that the OpenSSL implementation of DTLS did not adopt the

known attack countermeasures. We also introduced novel tim-

ing amplification techniques to build full plaintext recovery at-

tacks against this implementation of DTLS, even though DTLS

has no explicit error messages to time.

Theoretical support for the MEE construction used in

(D)TLS can be found in [20, 22, 28]. In particular, Paterson et

al. [28] gave the first positive security results for a fully accurate

model MEE-TLS-CBC that includes all the details of the CBC-

mode encoding step (which incorporates padding), proving

that MEE-TLS-CBC provides Length Hiding Authenticated-

Encryption security, provided that its MAC and CBC-mode

block cipher components satisfy natural security properties, that

the MAC tags are long enough, and that it is implemented so

that decryption does not reveal the cause of any failures. The

latter is modelled by having indistinguishable error messages in

the security model. Our attacks exploit the fact that implemen-

tations of (D)TLS fail to meet this last assumption, and so the

attacks do not contradict the result of [28], but instead relativize

its applicability to practice.

Other recent work on the security of TLS implementations

includes [16, 17, 30]. In particular, in independent work, Pironti

et al. [30] identify effectively the same timing channel in TLS

that we exploit. However they dismiss it as being “too small

to be measured over the network” and instead focus on using

it to recover information about message lengths. The recent

CRIME attack exploits the optional use of compression in TLS

in combination with a chosen plaintext capability to mount a

plaintext recovery attack.

Other work showing that implementing MAC-then-encrypt

securely can be difficult is given in [9] in the context of IPsec.

That this is so, and that encrypt-then-MAC is the preferable

construction, has been known in a theoretical sense since at

least [4, 20]. Interesting padding oracle (and related) attacks

abound in the literature, see for example [8, 34, 14, 19].

MAC 

HDR Payload 

Padding 

Encrypt 

Ciphertext 

MAC tag Payload 

SQN 

Figure 1: D(TLS) encryption process

1.4 Paper Organisation

Section 2 provides further background on the (D)TLS

Record Protocol and the MEE-TLS-CBC construction. Sec-

tion 3 presents the basic distinguishing attack against RFC-

compliant implementations of TLS and DTLS, while Section

4 describes our plaintext recovery attacks in the context of

TLS and explains how to modify them to apply to DTLS. In

Section 5 we report on the experimental validation of our at-

tacks for the OpenSSL implementation, and in Section 6 we

describe the modifications needed to make our attacks applica-

ble to other implementations, including GnuTLS, CyaSSL and

PolarSSL. Section 7 discusses countermeasures to our attacks,

giving guidance on how to implement MEE-TLS-CBC so as to

avoid the attacks. Finally, Section 8 concludes with a recap of

the main issues raised by our work.

2 The (D)TLS Record Protocol

We focus on the cryptographic operation of the TLS and

DTLS Record Protocols in the case of CBC-mode encryption.

The core encryption process is illustrated in Figure 1 and ex-

plained in more detail below.

Data to be protected by TLS or DTLS is received from the

application and may be fragmented and compressed before fur-

ther processing. An individual record R (viewed as a byte se-

quence of length at least zero) is then processed as follows. The

sender maintains an 8-byte sequence number SQN which is in-

cremented for each record sent2, and forms a 5-byte field HDR

consisting of a 2-byte version field, a 1-byte type field, and a

2-byte length field. It then calculates a MAC over the bytes

SQN||HDR||R; let T denote the resulting MAC tag. Note that

exactly 13 bytes of data are prepended to the record R here

before the MAC is computed. The size of the MAC tag is 16

bytes (HMAC-MD5), 20 bytes (HMAC-SHA-1), or 32 bytes

(HMAC-SHA-256). We let t denote this size in bytes.

The record is then encoded to create the plaintext P by set-

ting P = R||T ||pad. Here pad is a sequence of padding

bytes chosen such that the length of P in bytes is a multiple

of b, where b is the block-size of the selected block cipher

(so b = 8 for 3DES and b = 16 for AES). In all versions

of TLS and DTLS, the padding must consist of p + 1 copies

of some byte value p, where 0 ≤ p ≤ 255. In particular, at

2In fact, in DTLS, this 8-byte field is composed from a 16-bit epoch number

and a 48-bit sequence number. We will abuse terminology and refer throughout

to the 8-byte field as being the sequence number for both TLS and DTLS.
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least one byte of padding must always be added. So exam-

ples of valid byte sequences for pad are: “0x00”, “0x01||0x01”

and “0x02||0x02||0x02”. The padding may extend over mul-

tiple blocks, and receivers must support the removal of such

extended padding.

In the encryption step, the encoded record P is encrypted

using CBC-mode of the selected block cipher. TLS 1.1 and

1.2 and both versions of DTLS mandate an explicit IV, which

should be randomly generated. TLS 1.0 and SSL use a chained

IV; our attacks work for either option. Thus, the ciphertext

blocks are computed as:

Cj = EKe
(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key

for the block cipher E. For TLS (and SSL), the data transmitted

over the wire then has the form:

HDR||C

where C is the concatenation of the ciphertext blocks Ci (in-

cluding or excluding the IV depending on the particular SSL or

TLS version). Note that the sequence number is not transmitted

as part of the message. In DTLS, the data transmitted over the

wire is the same as in TLS, except that SQN is included as part

of the record header and the CBC-mode IV is always explicit.

Simplistically, the decryption process reverses this sequence

of steps: first the ciphertext is decrypted block by block to re-

cover the plaintext blocks:

Pj = DKe
(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher.

Then the padding is removed, and finally, the MAC is checked,

using the header information (and, in TLS, a version of the se-

quence number that is maintained at the receiver). Finally, in

DTLS, the sequence number is optionally checked for replays.

In reality, much more sophisticated processing than this is

needed. The receiver should check that the ciphertext size is

a multiple of the block size and is large enough to contain at

least a zero-length record, a MAC tag of the required size, and

at least one byte of padding. After decryption, the receiver

should check that the format of the padding is one of the pos-

sible patterns when removing it, otherwise attacks are possi-

ble [26] (SSL allows a loose padding format, while no specific

padding checks are enforced during decryption in TLS 1.0, so

both are potentially vulnerable to the attacks in [26]). Typically

this is done by examining the last byte of the plaintext, treating

it as a padding length byte padlen, and using this to dictate

how many additional bytes of padding should be removed. But

care is needed here, since blindly removing bytes could result

in an underflow condition: there needs to be sufficient bytes in

the plaintext to remove a total of padlen+1 bytes and leave

enough bytes for at least zero-length record and a MAC tag.

If all this succeeds, then the MAC can be recomputed and

compared to the MAC tag in the plaintext. If the padding fails to

be correctly formatted, then implementations should continue

to perform a MAC check anyway, to avoid providing a timing

side-channel of the type exploited in [6]. But since the padding

format is incorrect in this case, it’s not immediately clear where

the padding ends and the MAC tag is located: in effect, the

plaintext is now unparseable. The solution recommended in

TLS 1.1 and 1.2 (and by extension, also in DTLS 1.0 and 1.2) is

to assume zero-length padding, interpret the last t bytes of the

plaintext as a MAC tag, interpret the remainder as the record

R and run MAC verification on SQN||HDR||R. This has been

adopted in OpenSSL and elsewhere; GnuTLS on the other hand

removes padlen+1 bytes from the end of the plaintext, takes

the next t bytes as the MAC, interprets what is left as R and

then runs MAC verification on SQN||HDR||R.

For TLS, any error arising during decryption should be

treated as fatal, meaning an encrypted error message is sent to

the sender and the session terminated with all keys and other

cryptographic material being disposed of. For DTLS, such er-

rors may be rated non-fatal and the session would proceed to

process the next ciphertext.

It should now be apparent that implementing the basic de-

cryption processing of TLS and DTLS requires some care in

implementation, with there being significant room for coding

errors and inadequate parsing. Moreover, this should all be im-

plemented in such a way that the processing time does not leak

anything about the plaintext (including the padding bytes). As

we shall see, this has proved to be a challenge for implementers:

no implementation we examined gets it completely correct, and

the advice from TLS 1.1 and 1.2 that one should extract and

check the MAC tag as if the padding were of zero-length leaves

an exploitable timing side-channel.

2.1 Details of HMAC

As mentioned above, TLS and DTLS exclusively use the

HMAC algorithm [21], with HMAC-MD5, HMAC-SHA-1, and

HMAC-SHA-256 being supported in TLS 1.2.3 To compute the

MAC tag T for a message M with key Ka, HMAC applies the

specified hash algorithm H twice, in an iterated fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key

Ka is zero-padded to bring it up to 64 bytes before the XOR

operations are performed. For all the hash functions H used in

TLS, the application of H itself uses an encoding step called

Merkle-Damgård strengthening. Here, an 8-byte length field

followed by padding of a specified byte format are appended

to the message M to be hashed. The padding is at least 1 byte

in length and aligns the data on a 64-byte boundary. The rele-

vant hash functions also have an iterated structure, processing

messages in chunks of 64 bytes (512 bits) using a compres-

sion function, with the output of each compression step being

chained into the next step. The compression function in turn

involves a complex round structure, with many basic arithmetic

operations on data being involved in each round.

In combination, these features mean that HMAC implemen-

tations for MD5, SHA-1 and SHA-256 have a distinctive timing

profile. Messages M of length up to 55 bytes can be encoded

into a single 64-byte block, meaning that the first, inner hash

3TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289

(ECC cipher suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys

SHA384/AES) but we do not consider this algorithm further here.
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operation in HMAC is done in 2 compression function evalua-

tions, with 2 more being required for the outer hash operation,

for a total of 4 compression function evaluations. Messages M
containing from 56 up to 64 + 55 = 119 bytes can be encoded

in two 64-byte blocks, meaning that the inner hash is done in 3

compression function evaluations, with 2 more being required

for the outer operation, for a total of 5. In general, an extra

compression function evaluation is needed for each additional

64 bytes of message data, with the exact number needed being

given by the formula ⌈ ℓ−55

64
⌉+4, where ℓ is the message length

in bytes. A single compression function evaluation takes typ-

ically around 500 to 1000 hardware cycles (depending on the

hash function and details of the implementation), giving a time

in the sub-µs range for modern processors.

Recall that in TLS the MAC is computed on plaintext af-

ter removing padding. Hence, one might expect the total run-

ning time for decryption processing to reveal some information

about the size of the depadded plaintext, perhaps up to a reso-

lution of 64 bytes in view of the above discussion. Our distin-

guishing attack exploits this, but we will show that much more

is possible.

3 A Distinguishing Attack

In this section we describe a simple distinguishing attack

against the MEE-TLS-CBC construction as used in TLS. This

is a warm-up to our plaintext recovery attacks, but we note that

even a distinguishing attack against such an important protocol

would usually be regarded as a significant weakness.

Recall that in a distinguishing attack, the attacker gets to

choose pairs of messages (M0,M1). One of these is encrypted,

Md, say, and the resulting ciphertext is given to the attacker.

The attacker’s task is to decide the value of the bit d. To prevent

the attacker from winning trivially, we require that M0 and M1

have the same length.

We focus on the case where b = 16, i.e. the block cipher

is AES. A variant of the attack works for b = 8. Suppose the

MAC algorithm is HMAC-H where H is either MD5, SHA-1 or

SHA-256. Let M0 consist of 32 arbitrary bytes followed by 256

copies of 0xFF. Let M1 consist of 287 arbitrary bytes followed

by 0x00. Note that both messages have 288 bytes, and hence

fit exactly into 18 plaintext blocks. Our attacker submits the

pair (M0,M1) for encryption and receives a MEE-TLS-CBC

ciphertext HDR||C. Now C consists of a CBC-mode encryption

of an encoded version of Md, where the encoding step adds a

MAC tag T and some padding pad. Because the end of Md

aligns with a block boundary, the additional bytes T ||pad are

encrypted in separate blocks from Md. The attacker now forms

a new ciphertext HDR||C ′ in which C ′ keeps the same 16-byte

IV as C (if explicit IVs are being used), but truncates the non-

IV part of C to 288 bytes. This has the effect of removing those

blocks of C that contain T ||pad.

Now the attacker submits HDR||C ′ for decryption. If the

record underlying C was M0, then the plaintext P ′ correspond-

ing to C ′ appears to end with the valid 256-byte padding pattern

0xFF . . . 0xFF. In this case, all of these bytes are removed, and

the remaining 32 bytes of plaintext are interpreted as a short

message and a MAC tag. For example, if H is SHA-1, then

we have a 12-byte message and a 20-byte MAC tag. The MAC

verification fails (with overwhelming probability), and an error

message is returned to the attacker. If the underlying record

was M1, then P ′ appears to end with the valid 1-byte padding

pattern 0x00. In this case, a single byte is removed, and the re-

maining 287 bytes of plaintext are interpreted as a long message

and a MAC tag. Again, the MAC verification fails and an error

message is returned to the attacker.

Notice that when d = 0, so C encrypts M0, a short message

consisting of 13 bytes of header plus at most 16 bytes of mes-

sage (when the hash algorithm is MD5) is passed through the

MAC algorithm. To calculate the MAC requires 4 evaluations

of H’s compression function. On the other hand, when d = 1,

C encrypts M1, and a long message consisting of 13 bytes of

header plus at least 255 bytes of message is passed through the

MAC algorithm. Then to calculate the MAC requires at least 8

evaluations of H’s compression function, at least 4 more than

for the d = 0 case. Hence, we expect the time it takes to pro-

duce the error message on decryption failure to be somewhat

larger if d = 1 than when d = 0, on the order of a couple of µs

for a modern processor. This timing difference then allows, in

theory, a distinguishing attack on the MEE-TLS-CBC construc-

tion used in TLS.

3.1 Practical Considerations

In describing the attack, we have ignored the time taken to

remove padding. This is different for the two messages be-

ing processed, and the difference is opposite to that for MAC

checking in that padding removal for M0 takes longer than for

M1. Similarly, we have ignored any other timing differences

that might arise during other processing steps. In practice, as

we will see in Section 5, these differences turn out to be smaller

than the MAC timing difference.

The attack exploits the requirement from the (D)TLS RFCs

that implementations be able to properly decrypt records having

variable length padding, but does not require implementations

to actually send records containing such padding. A variant

attack is possible in case only minimum-length padding is sup-

ported, but involves a smaller timing signal.

In TLS, the error messages are sent over the network, and so

can easily be detected by the attacker. However, these messages

are subject to network jitter, and this may be large enough to

swamp the timing difference arising from the 4 extra compres-

sion function evaluations. On the other hand, the timing signal

may be quite large when the cryptographic processing is per-

formed in a constrained environment, e.g. on an 8-bit or 16-bit

processor, or even on a smartphone. Furthermore, the jitter may

be significantly reduced when the adversary runs as a separate

process on the machine performing TLS decryption. This may

be possible in virtualised environments, e.g. in a cloud scenario

as explored in [33]. The attack also destroys the TLS session,

since in TLS such errors are fatal. The attack can be iterated

across L sessions, with Md being encrypted in each session,

and statistical processing used to extract the timing signal.

In DTLS, there are no error messages, but the techniques of

[1] can be applied to solve this problem. There, the authors

send a packet containing a ciphertext C closely followed by

a DTLS message, with the latter always provoking a response
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message. Any timing difference arising from the decryption of

C then shows up as a difference in the arrival time of the re-

sponse messages. The signal amplification techniques from [1]

can also be used to boost the timing difference – here, the idea

is to send multiple packets all containing C in quick succession,

to create a cumulative timing difference (since each time C is

processed, it will be processed in the same way).

In the attack as described, we have used 288 byte messages.

This ensured that there were sufficient bytes left after the re-

moval of padding to leave room for a message (possibly of zero

length) and a MAC tag. This ensures that C ′ passes any san-

ity checks that might be applied during decryption. However,

these sanity checks might be exploitable in variants of our ba-

sic attack. For example, an implementation that finds it does

not have enough bytes left to contain a MAC after depadding

may choose to skip MAC verification altogether, leading to an

increased timing difference.

Note that the attack would still work as described if the trun-

cated MACs specifed for TLS in [15] were used, since the full

HMAC-H computation is still performed but only certain bytes

of the computed tag are compared to bytes of the plaintext.

We report on the successful implementation of this attack in

Section 5.

4 Plaintext Recovery Attacks

4.1 General Approach

As we have seen in the previous section, the processing time

for a (D)TLS record (and therefore the appearance time of er-

ror messages) will depend on the amount of padding that the

receiver interprets the encoded plaintext as containing. How-

ever, by placing a target ciphertext block at the end of the en-

crypted record, an attacker can arrange that the plaintext block

corresponding to this block is interpreted as padding, and hence

make the processing time depend on plaintext bytes. But, it

seems that large amounts of valid padding are needed to create

a significant timing difference, and this is difficult to arrange in

a plaintext recovery attack. We show that this barrier to plain-

text recovery can be overcome under certain circumstances.

Let C∗ be any ciphertext block whose corresponding plain-

text P ∗ the attacker wishes to recover. Let C ′ denote the ci-

phertext block preceding C∗. Note that C ′ may be the IV or the

last block of the preceding ciphertext if C∗ is the first block of

a ciphertext. We have:

P ∗ = DKe
(C∗)⊕ C ′.

For any block B of plaintext or ciphertext, we write B =
[B0B1 . . . Bb−1], where Bi denote the bytes of B. In partic-

ular, we have P ∗ = [P ∗

0
P ∗

1
. . . P ∗

b−1
].

As usual, we assume that the attacker is capable of eaves-

dropping on the (D)TLS-protected communications and of in-

jecting messages of his choice into the network. For TLS, or

DTLS with sequence number checking disabled, we do not need

the ability to prevent messages from reaching their destination.

Nor do we require a chosen-plaintext capability.

4.2 Full Plaintext Recovery

For simplicity of presentation, in what follows, we assume

the CBC-mode IVs are explicit (as in TLS 1.1, 1.2 and DTLS

1.0, 1.2). We also assume that b = 16 (so our block cipher is

AES). It is easy to construct variants of our attacks for implicit

IVs and for b = 8. We begin by considering only TLS, with

details for DTLS to follow. We also assume that the TLS im-

plementation follows the advice in the TLS 1.1 and 1.2 RFCs

about checking the MAC as if there was a zero-length pad when

the padding is incorrectly formatted. We will examine the se-

curity of other implementation options in Section 6. Most im-

portantly, and for reasons that will become clear, we assume for

the moment that t = 20 (so that the MAC algorithm is HMAC-

SHA-1). We consider t = 16 and t = 32 (HMAC-MD5 and

HMAC-SHA-256) shortly.

Let ∆ be a block of 16 bytes and consider the decryption of

a ciphertext Catt(∆) of the form

Catt(∆) = HDR||C0||C1||C2||C
′ ⊕∆||C∗

in which there are 4 non-IV ciphertext blocks, the penulti-

mate block C ′ ⊕ ∆ is an XOR-masked version of C ′ and

the last block is C∗. The corresponding 64-byte plaintext is

P = P1||P2||P3||P4 in which

P4 = DKe
(C∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Notice that P4 is closely related to the unknown, target plaintext

block P ∗. We consider 3 distinct cases, which between them

cover all possibilities for what can happen during decryption of

Catt(∆):

1. P4 ends with a 0x00 byte: in this case, a single byte of

padding is removed, the next 20 bytes are interpreted as

a MAC tag T , and the remaining 64 − 21 = 43 bytes

of plaintext are taken as the record R. MAC verifica-

tion is then performed on a 13 + 43 = 56-byte message

SQN||HDR||R.

2. P4 ends with a valid padding pattern of length at least 2

bytes: in this case, at least 2 bytes of padding are removed,

and the next 20 bytes are interpreted as a MAC tag T . This

leaves a record R of length at most 42 bytes, meaning that

MAC verification is then performed on a message of length

at most 55 bytes.

3. P4 ends with any other byte pattern: in this case, the byte

pattern does not correspond to valid padding. Following

the prescription in the TLS 1.1 and 1.2 RFCs, the plaintext

is treated as if it contains no bytes of padding, so the last

20 bytes are interpreted as a MAC tag T , and the remain-

ing 44 bytes of plaintext are taken as the record R. MAC

verification is then performed on a 57-byte message.

In all cases, the MAC verification will fail (with overwhelm-

ing probability) and an error message produced. Notice that,

in accordance with the discussion in Section 2.1, in Cases 1

and 3, the MAC verification will involve 5 evaluations of the

compression function for SHA-1, while Case 2 only requires 4
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evaluations. Therefore, we can hope to distinguish Case 2 from

Cases 1 and 3 by timing the appearance of the error message

on the network. Here the timing difference is that needed for a

single SHA-1 compression function evaluation (compared to 4

such evaluations in our distinguishing attack). Notice that the

size of the header, 13 bytes, in conjunction with the MAC tag

size, 20 bytes, are critical in generating this distinctive timing

behaviour.

In Case 2, assuming that the plaintext has no special struc-

ture, the most likely padding pattern to arise is the one of length

2, namely 0x01||0x01, with all longer padding patterns being

roughly 256 times less likely. Thus, if the attacker selects a

mask ∆ in such a way that he detects Case 2 after submitting

Catt(∆) for decryption, then he can infer that P4 ends with

0x01||0x01, and, using the equation P4 = P ∗ ⊕ ∆, can now

recover the last 2 bytes of P ∗. (In fact, by repeating the attack

with a mask ∆′ that is modified from ∆ in the third-to-last byte,

the attacker can easily separate the case of a length 2 padding

pattern from all longer patterns.)

The question remains: how does the attacker trigger Case

2, so that he can extract the last 2 bytes of P ∗? Recall that the

attacker has the freedom to select ∆. By injecting a sequence of

ciphertexts Catt(∆) with values of ∆ that vary over all possible

values in the last 2 bytes ∆14,∆15, then (in the worst case) after

216 trials, the attacker will surely select a value for ∆ such that

Catt(∆) triggers Case 2.

Once the last 2 bytes of P ∗ have been extracted, the attacker

can more efficiently recover the remaining bytes of P ∗, working

from right to left. This phase is essentially identical to Vaude-

nay’s original padding oracle attack [37]. For example, to ex-

tract the third-to-last byte, the attacker can use his new knowl-

edge of the last two bytes of P ∗ to now set ∆14,∆15 so that P4

ends with 0x02||0x02. Then he generates candidates Catt(∆)
as before, but modifying ∆13 only. After at most 28 trials, he

will produce a ciphertext which falls into case 2 again, which

reveals he has managed to set a value 0x02 in the third-to-last

byte of P4 = P ∗⊕∆. From this, he can recover P ∗

13
. Recovery

of each subsequent byte in P ∗ requires at most 28 trials, giving

a total of 14 · 28 trials to complete the extraction of P ∗.

Practical considerations: In practice, for TLS, there are two

severe complications. Firstly, the TLS session is destroyed as

soon as the attacker submits his very first attack ciphertext. Sec-

ondly, the timing difference between the cases is very small,

and so likely to be hidden by network jitter and other sources of

timing difference.

The first problem can be overcome for TLS by mounting a

multi-session attack, wherein we suppose that the same plain-

text is repeated in the same position over many sessions (as in

[6], for example). We have used masks ∆ in such a way that

no further modification to the attack is needed to cater for this

setting – of course blocks C ′ and C∗ change for each session.

The second problem can be overcome in the same multi-

session setting by iterating the attack many times for each ∆
value and then performing statistical processing of the recorded

times to estimate which value of ∆ is most likely to correspond

to Case 2. In practice, we have found that a basic percentile

test (and even averaging) works well – see Section 5 for further

details. Assuming that L trials are used for each ∆ value, the

attack as described consumes roughly L ·216 sessions, with one

ciphertext Catt(∆) being tried in each session.

More efficient variants: The attack complexity can be sig-

nificantly reduced by assuming that the language from which

plaintexts are drawn can be modelled using a finite-length

Markov chain. This is a fair assumption for natural languages,

as well as application-layer protocol messages such as HTML,

XML etc. This model can be used to drive the selection of

candidate plaintext bytes in order of decreasing likelihood, and

from this, determine the bytes of ∆ needed to test whether a

guess for the plaintext bytes leads to valid padding or not. Sim-

ilar techniques were used in [6, 13] in combination with sequen-

tial statistical techniques to reduce the complexity of recovering

low-entropy plaintexts. Note that this approach does not work

well if TLS’s optional compression is used. Another possibil-

ity is that the plaintext bytes are drawn from a reduced space

of possibilities. For example, in HTTP basic access authentica-

tion, the username and password are Base64 encoded, meaning

that each byte of plaintext has only 64 possible values. Similar

restrictions often apply to the sensitive parts of HTTP cookies.

In a related attack scenario, if the attacker already knows one

of the last two bytes of P ∗, he can recover the other byte with

much lower complexity than our analysis so far would suggest.

This is then a plaintext recovery attack with partially-known-

plaintext. For example, suppose the attacker knows the value

of the byte P ∗

14
. Then he sets the starting value of ∆ such that

∆14 = P ∗

14
⊕ 0x01, so that when Catt(∆) is decrypted, the

second-to-last byte of P4 already equals 0x01. Then he iterates

over the 28 possible values for ∆15, eventually finding one such

that P4 has its last two bytes equal to 0x01||0x01, triggering

Case 2. He can then proceed to recover the rest of P ∗ with the

same complexity as before. Overall, this attack, which recovers

15 bytes of plaintext with 1-out-of-2 of the last bytes of the

target block known, consumes only 15L·28 sessions, where L is

the number of trials used for each ∆ value in each byte position.

This can be further reduced by combining the two variants. For

example, for base64 encoded plaintext, only 15L · 26 sessions

are needed to decrypt a block.

Combining Lucky 13 with the BEAST: A significant limi-

tation of our attacks as described so far is their consumption of

many TLS sessions. This limitation can be overcome by com-

bining our attacks with techniques from the BEAST attack [13]

to target TLS-protected HTTP cookies.

Specifically, in the context of a web browser communicating

with a web server over TLS, the user can be induced into down-

loading malware into his browser from a rogue website. This

malware, perhaps implemented in Javascript, can then initiate

all the TLS sessions need for our attack, with the browser auto-

matically appending the targetted HTTP cookie to the browser’s

initial HTTP request. Furthermore, by adjusting the length of

that initial HTTP request, the malware can ensure that there is

only one unknown byte of HTTP cookie plaintext in each tar-

get ciphertext block. This allows our remote attacker to carry

out the variant attack described immediately above. Assuming

the targeted part of the cookie is base64 encoded, the attack

consumes L · 26 sessions per byte of HTTP cookie. As we
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will discuss in more detail in Section 5, we found that setting

L = 27 yields reliable plaintext recovery in our experimental

set-up, giving us an attack that recovers HTTP cookies using

roughly 213 sessions per unknown byte of cookie.

4.3 Plaintext Recovery for Other MAC Algorithms

A critical feature of our attack above is the relationship be-

tween the size of the header included in the MAC calculation

(fixed at h = 13 bytes), the MAC tag size t, and the block size b.
For example, if TLS happened to be designed such that h = 12,

then, with t = 20 and b = 16, a similar case analysis as before

shows that our ciphertext Catt(∆) would have the property of

having faster MAC verification if P4 also ends with the single

byte 0x00 (the valid padding pattern of length 1). This would

allow an improved 28 attack against TLS with CBC-mode and

HMAC-SHA-1. In some sense, 13 is lucky, but 12 would have

been luckier!

Similarly, we have (less efficient) variants of our attacks for

HMAC-MD5 and HMAC-SHA-256, where the tag sizes t are

16 and 32 bytes, respectively. In fact, because here t is a mul-

tiple of b, the analysis is largely the same in both cases, and

we consider only HMAC-MD5 in detail. This time Catt(∆)
is such that we fall into Case 2 (valid padding with a message

of size at most 55 bytes, giving fast MAC verification) only if

P4 = P ∗ ⊕ ∆ ends with a valid padding of length 6 or more.

With no additional information on P ∗ the attacker would need

(worst case) 248 attempts to construct the correct ∆ so as to trig-

ger this case; detecting that he had done so would be more diffi-

cult in view of the large number of candidate ∆ values. This is

not an attractive attack, especially in view of the practical con-

siderations for TLS mentioned above. On the other hand, we

do have attractive partially-known-plaintext attacks for HMAC-

MD5 and HMAC-SHA-256. For example, if any 5 out of the

last 6 bytes of P ∗ are known, we can recover the remaining 11

bytes using 11L ·28 sessions. The attack can also be made more

efficient if the plaintext has low entropy, by trying candidates

for the last 6 bytes of P ∗ in order of decreasing probability and

then recovering the remaining bytes of P ∗ once the right 6-byte

candidate is found. This would be an good option for password

recovery, for example.

A similar analysis can be carried out for truncated MAC

algorithms, as per [15]. For example, for an 80-bit (10-byte)

MAC tag, if any 11 out of the last 12 bytes of P ∗ are known,

we can recover the remaining 5 bytes using 5L · 28 sessions.

Finally, we note that the “Lucky 13 + BEAST” attacks work

equally well, no matter what the MAC tag size is.

4.4 Applying the Attacks to DTLS

So far we have focussed on TLS. The changes needed to han-

dle DTLS are the same as for our distinguishing attack in Sec-

tion 3: we can use the techniques of [1] to amplify the timing

differences and to emulate TLS’s error messages. The ampli-

fication capability reduces the attack complexity dramatically:

essentially, we can accurately test each ∆ value using just a few

packet trains instead of requiring L trials.

There is one further critical difference that we wish to em-

phasise: as already noted, DTLS does not treat errors arising

during decryption as being fatal. This means that the entire at-

tack against DTLS can be carried out in a single session, that is,

without requiring the same plaintext to be repeated in the same

position in the plaintext across multiple sessions, and without

waiting for the Handshake Protocol to rerun for each session.

These differences brings our attack well within the bounds

of practicality for DTLS. This is particularly so if DTLS’s op-

tional checking of sequence numbers is disabled. Even if this

is not the case, the attacks are quite feasible in practice, pro-

vided enough DTLS messages are available, or if the upper

layer protocol being protected by DTLS produces replies to sent

messages in a consistent manner. These issues are discussed at

greater length in [1] and the next section, where we report on

the successful implementation of our attacks for the OpenSSL

implementation of TLS and DTLS.

5 Experimental Results for OpenSSL

5.1 Experimental Setup

We ran version 1.0.1 of OpenSSL on the client and the

server. In our laboratory set-up, a client, the attacker and the tar-

geted server are all connected to the same VLAN on a 100Mbps

Ethernet switch. The targeted server was running on a single

core processor machine operating at 1.87 GHz with 1 GByte of

RAM, while the attacker was running on a dual core processor

machine operating at 3.4 GHz, with 2 GByte of RAM.

To simulate the (D)TLS client, we made use of s client, a

generic tool that is available as part of the OpenSSL distribution

package. We modified s client’s source code to satisfy our

testing requirements. We also developed a basic Python script

that calls s client when needed. Our attack code is written

in C and is capable of capturing, manipulating and injecting

packets of choice into the network.

In the case of TLS, the attacker captures the “targeted”

packet, manipulates it and then sends the crafted version to

the targeted server causing the TLS session to terminate. This

crafted packet forces the client and the targeted server to lose

TCP synchronization, causing delay in the TCP connection

shutdown. To speed up the TCP connection tear down, the at-

tacker sends spoofed RST packets to the client and the targeted

system upon detecting the TLS encrypted alert message, forc-

ing both systems to independently destroy the underlying TCP

structure associated with the terminated TLS session.

All the timing values presented in the paper are based on

hardware cycles, which are specific to processor speed. For

example, 187 hardware cycles on our targeted server operating

at speed of 1.87 GHz translate to an absolute timing of 100 ns.

To count the hardware cycles, we made use of an existing C

library licensed under GNU GPL v34.

5.2 Statistical Analysis

The network timings we collect in each experiment are from

skewed distribution(s) with long tails and many outliers. How-

ever, we found that using basic statistical techniques (medians

4code.google.com/p/fau-timer
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Figure 2: Distribution of timing values (outliers removed) for distin-

guishing attack on OpenSSL TLS, showing faster processing time in

the case of M0 (in red) compared to M1 (in blue).

L Success Probability

1 0.756

2 0.769

4 0.858

8 0.914

16 0.951

32 0.983

64 0.992

128 1

Table 1: OpenSSL TLS distinguishing attack success probabilities.

and, more generally, percentiles) was sufficient to analyse our

data.

5.3 Distinguishing Attack for OpenSSL TLS

Figure 2 shows the experimental distribution of timing val-

ues for the TLS distinguishing attack described in Section 3.

The figure indicates that, with enough samples, it should be

possible to distinguish encryptions of message M0 (consisting

of 32 arbitrary bytes followed by 256 copies of 0xFF) from en-

cryptions of message M1 (consisting of 287 arbitrary bytes fol-

lowed by 0x00).

We used a simple threshold test to build a concrete attack:

we calculate a threshold value T based on profiling, gather L
timing samples, filter outliers, calculate the median of the re-

maining timing samples, and then output 1 if the median value

is greater than T and 0 if it is less. Table 1 shows the success

probabilities for this concrete distinguishing attack; it is evident

that the attack is reliable even if only a moderate number of

samples are available. The attack already has a significant ad-

vantage over guessing when L = 1, i.e. when only one sample

is available.

5.4 Plaintext Recovery Attacks for OpenSSL TLS

Partial plaintext recovery: Section 4 describes an attack

where byte P ∗

15
can be recovered when P ∗

14
is known. This

involves setting ∆14 to force P ∗

14
⊕ ∆14 to equal 0x01, and

then trying all possible values of ∆15, identifying which one

forces P ∗

15
⊕∆15 to also equal 0x01. Figure 3 shows the median

server-side decryption time as a function of ∆15 for the particu-

lar values of P ∗

14
= 0x01 (so ∆14 = 0x00) and P ∗

15
= 0xFF. A

H
a
r
d
w
a
r
e

C
y
c
l
e
s

�
C
a
l
c
u
l
a
t
e
d
o
n
S
e
r
v
e
r
�

�
15
� 0xFE

0 50 100 150 200 250
12600

12800

13000

13200

13400

13600

13800

14000

�15

Figure 3: OpenSSL TLS median server timings (in hardware cycles)

when P
∗

14 = 0x01 and P
∗

15 = 0xFF. As expected, ∆15 = 0xFE leads

to faster processing time.
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Figure 4: OpenSSL TLS median network timings in terms of hardware

cycles when P
∗

14 = 0x01 and P
∗

15 = 0xFF. As expected ∆15 = 0xFE

leads to faster processing time.

clear reduction in processing time can be seen for the expected

value of ∆15, namely ∆15 = 0xFE. Also notable is the stability

in the processing time for other byte values. These server-side

times indicate that an attack based on timing error message on

the network has some prospect of success. Figure 4 shows the

corresponding distribution of median network timings in our

experimental setup. Clearly, the data is noisier, but the “dip” at

∆15 = 0xFE is clearly distinguishable.

Figure 5 shows success probabilities for the attack. Each

data-point in the figure is based on at least 64 experiments. Each

curve in the figure represents a different number of total ses-

sions consumed in the attack (corresponding to different values

for L, the number of trials for each ∆ value). The x-axis repre-

sents the percentile used in our statistical test: if the percentile

value is p, then we take as the correct value for ∆15 the one for

which the p-th percentile value of the timing distribution (mea-

sured over L samples) is minimised. It is evident that a range of

percentiles work well, including the median. As expected, the

success probability of the attack increases as L increases. We

already reach a success probability of 1 when L = 28, where

the total number of sessions needed is 216. Similarly, we have

a success probability of 0.93 when L = 27, where the total

number of sessions is 215.

Given these results, we anticipate that the attack would ex-

tend easily to recovering 15 unknown bytes from a block, given

one of the last two bytes. We have not implemented this variant.

10
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Figure 5: OpenSSL TLS partial plaintext recovery: percentile-based

success probabilities for recovering P
∗

15 assuming P
∗

14 known.

Full plaintext recovery: The next step would be to perform

the full plaintext recovery attack from Section 4. In this case,

the attacker would need a total of L ·216 trials to discover which

mask value triggers Case 2. In the case of TLS, this takes a

considerable amount of time due to the underlying TCP and

TLS connection set-up and tear-down times. For example, with

L = 27 we estimate that the 223 sessions would take around

64 hours in our setup. However, once the last two bytes of

a block have been successfully recovered, then the remaining

bytes in that block can be recovered in a much shorter time.

We have not implemented the full plaintext recovery attack for

TLS. Our results below for DTLS strongly indicate that the full

attack would work for TLS with L = 27, albeit slowly.

5.5 Plaintext Recovery Attacks for OpenSSL DTLS

As explained in Section 4.4, we can use the timing and am-

plification techniques from [1] in combination with the previ-

ously described attacks to attack DTLS. Now the attacker sends

a number (n) of crafted packets, followed by a DTLS Heartbeat

request and waits for the corresponding Heartbeat reply. This

process is repeated L times for each mask value. The attacker

selects n and L in order to trade-off the attack success proba-

bility and the total number of packets injected. We have found

experimentally that n = 10 is a good choice for achieving sta-

ble timing values. On the other hand, n = 1 is indicative of

what might be expected to happen with TLS but without endur-

ing the overhead of TCP and TLS connection setups (note that

the noise levels for DTLS are generally somewhat higher since

we depend on an application-layer error message rather than a

native TLS error message). Higher values of n could be used if

the attacker is remote from the server.

Figure 6 shows the percentile-based success probabilities for

recovering P ∗

15
assuming that P ∗

14
is known, for n = 10. It can

be seen that the attack is very effective, reliably recovering the

unknown plaintext byte with only 211 trials (L = 23). Even for

28 trials (L = 1), the success probability is 0.266.

We also conducted a 2-byte recovery attack against

OpenSSL DTLS; this attack is effectively the first step of the

full plaintext recovery attack described in Section 4. Figure

7 shows the success probabilities for recovering P ∗

14
and P ∗

15

when n = 10. Again, the attack is very effective, recovering

both bytes with success probability 0.93 for 219 trials (L = 23).

The quality of these results is evidence that the attack should

extend easily to a full plaintext recovery attack. Figure 8 shows
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Figure 6: OpenSSL DTLS partial plaintext recovery: percentile-based

success probabilities for recovering P
∗

15 with P
∗

14 known, n = 10.
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Figure 7: OpenSSL DTLS 2-byte recovery: percentile-based success

probabilities for recovering P
∗

14 and P
∗

15, n = 10.

our results for n = 1, which we recall serves as an experimen-

tal model for TLS. We see that 2-byte recovery is reliable given

223 trials (L = 27); we already reach more than 80% success

rate using 222 trials.

5.6 More Challenging Network Environments

We have not conducted experiments where the attacker is

not situated in the same LAN as the server. Given the small

timing differences involved, we would expect the attacks to fail

when the attacker is remote, i.e. more than a couple of hops

away from the server, or that very large numbers of sessions

would be needed to get reliable results. Nevertheless, there are

realistic scenarios where the proximity requirement can be met,

for example when a hostile network service provider attacks its

customers, or in cloud computing environments. For DTLS,

the timing signals can be amplified, effectively by an arbitrary

amount, and so we would expect to be able to mount the attacks

remotely.
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6 Other Implementations of TLS

6.1 GnuTLS

The GnuTLS5 implementation of MEE-TLS-CBC deals

with bad padding in a different way to that recommended in

the RFCs: instead of assuming zero-length padding, it uses the

last byte of plaintext to determine how many plaintext bytes

to remove (whether or not those bytes are correctly formatted

padding). More precisely, GnuTLS sets a variable pad as:

pad = ciphertext->data[ciphertext->size - 1] + 1

and then, after doing some basic sanity checking on the value

of pad, subtracts pad bytes from the length field:

length = ciphertext->size - tag_size - pad

The GnuTLS code then proceeds to check the padding bytes,

but the value of length stays the same for the remainder of

the processing whether the padding check succeeds or fails.

This variable dictates the number of record bytes involved in

the MAC verification.

Since this approach is a natural alternative to the RFCs’ ad-

vice for handling bad padding, we analyse it in detail, first for

HMAC-SHA-1 as the MAC algorithm, and then in brief for

other MAC algorithms. As before, we assume that our block

cipher is AES and that IVs are explicit, with obvious modifica-

tions for other cases. We focus on TLS, but our attacks apply

equally to DTLS. We then report experimental results.

GnuTLS + HMAC-SHA-1: Firstly, we point out that

GnuTLS-style processing is just as vulnerable to distinguishing

attacks as RFC-compliant processing. Indeed, the attack de-

scribed in Section 3 will work just as before6. We next present

an attack that recovers the rightmost byte of plaintext in any

target block for GnuTLS-style padding processing.

Let C∗ denoting the target ciphertext block, C ′ denote the

previous ciphertext block and ∆ denote a mask block of 16
bytes. We consider the decryption of a ciphertext Catt(∆) of

the form:

Catt(∆) = HDR||C0||C1||C2|| . . . ||C18||C
′ ⊕∆||C∗

in which there are 20 non-IV ciphertext blocks, the penultimate

block is an XOR-masked version of C ′ and the last block is

C∗, the target ciphertext block. The corresponding 320-byte

plaintext is P = P1||P2|| . . . ||P19||P20 in which

P20 = DKe
(C∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Now we need consider only two distinct cases, which be-

tween them cover all possibilities:

1. P20 ends with a 0x00 byte: in this case, a single byte of

padding is removed, the next 20 bytes are interpreted as

a MAC tag T , and the remaining 320 − 21 = 299 bytes

5www.gnu.org/software/gnutls/
6In fact, since the attack only involves plaintexts which are correctly padded,

it will work for any correct decryption algorithm.

of plaintext are taken as the record R. MAC verification

is then performed on a 13 + 299 = 312-byte message

SQN||HDR||R.

2. P20 ends with any other byte value: in this case, at least

two bytes of “padding” are removed, the next 20 bytes are

interpreted as a MAC tag T , and the remaining bytes of

plaintext are taken as the record R. Because the starting

message length, at 320 bytes, is long enough to allow for

the removal of 256 bytes of padding and a 20-byte MAC

whilst still leaving a non-null record, no length sanity tests

will fail. MAC verification is then performed on a message

SQN||HDR||R that contains at most 311 bytes.

In both cases, the MAC verification will fail (with over-

whelming probability) and an error message produced. Notice

that, in accordance with the discussion in Section 2.1, in Case 1,

the MAC verification will involve 9 evaluations of the compres-

sion function for SHA-1, while Case 2 requires at most 8 eval-

uations. Therefore, we can hope to distinguish the two cases by

careful timing, as previously.

Now the single-byte plaintext recovery attack is straightfor-

ward: the attacker injects a sequence of ciphertexts Catt(∆)
with values of ∆ that vary over all possible values in the last

byte ∆15, then (in the worst case) after 28 trials, the attacker

will surely select a value for ∆ such that Catt(∆) triggers Case

1. When this is detected, he knows that P20 ends with a 0x00

byte and can infer the value of the last byte of P ∗ via the block-

wise equation P20 = P ∗ ⊕∆.

This basic attack can be further improved. The 2 most sig-

nificant bits of the last byte of P ∗ can be extracted using 4 trials

by simply examining the time taken to produce an error mes-

sage when ciphertexts Catt(∆) are injected for values ∆ which

vary in the 2 most significant bits of ∆15: the maximum run-

ning time is produced when the last byte of P20 is set to have

bits 00 in the most significant positions. The remaining 6 bits

can then be extracted using a further 64 trials to find the value

of ∆15 which triggers Case 1. Thus an enhanced version of the

attack only needs 68 trials to recover the last byte of the target

block.

For TLS, the usual problems of fatal errors and noisy tim-

ing information can be overcome in a multi-session attack. For

DTLS, we can use the techniques of [1] to amplify the timing

differences and overcome the lack of error messages.

GnuTLS + HMAC-MD5/HMAC-SHA-256: For HMAC-

MD5 and HMAC-SHA-256, a similar analysis as before shows

that the ciphertext Catt(∆) triggers “slow” MAC evaluation (9

compression function evaluations) if P20 has last byte that is

any of the 5 possibilities 0x00, 0x01, 0x02, 0x03, 0x04, while all

other values for the last byte of P20 result in “fast” MAC eval-

uation (at most 8 evaluations). These 5 byte values correspond

to bit patterns 000, 001, 010, 011, 100 in the 3 least significant

bits. Exploiting this, we can build an attack using even fewer

trials than previously. In the worst case, the attacker needs 24L
trials to recover all the bits of the last byte of P ∗. For TLS, we

will need a multi-session attack, but note that the parameter L
can be quite small since we only need to distinguish between a

few possibilities (at most 16) in each phase of the attack. We

omit the details.
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Interestingly, the attacks for HMAC-MD5 and HMAC-SHA-

256 are much more efficient for GnuTLS-style processing than

they are for RFC-compliant processing. This is opposite to the

situation for HMAC-SHA-1. We note that we have not found

attacks for GnuTLS-style processing that can extract more than

the last byte of the target block. This is not surprising in view of

the fact that the decryption time for GnuTLS-style processing

depends only on the last byte of plaintext.

Attack implementation for GnuTLS: We worked with ver-

sion 3.0.21 of GnuTLS to implement the above attacks. In do-

ing so, we found some subtle coding errors.

Firstly, the variable pad is defined as being of type uint8.

In the code:

pad = ciphertext->data[ciphertext->size - 1] + 1

this has the unintended action of setting pad to zero when the

last byte of plaintext equals 0xFF instead of the desired value

of 256, meaning that no bytes of padding are removed in this

case instead of 256 bytes. As a consequence, GnuTLS does

not properly support variable length padding during decryption,

and the TLS session would be terminated if the encrypting party

ever uses 0xFF padding.

This coding error is easily patched, but means that our at-

tacks do not quite work as described, since now 2 byte values

(0x00 and 0xFF) in the last byte of P20 lead to slow MAC verifi-

cation (in the HMAC-SHA-1 case). In fact, this does not present

a serious barrier to our attack, and there is a variant using at

most 66 trials to recover the last byte of P ∗. We omit the de-

tails.

The second coding error we found relates to the implemen-

tation of the padding check. This uses the following for loop:

for (i = 2; i < pad; i++)

{

if (ciphertext->data[ciphertext->size - i] !=

ciphertext->data[ciphertext->size - 1])

pad_failed = GNUTLS_E_DECRYPTION_FAILED;

}

It is not hard to see that this loop should also cover the edge

case i=pad in order to carry out a full padding check. This

means that one byte of what should be padding actually has

a free format. This would enable, for example, a variant of

the short MAC attack of [28] even if variable length padding

was not supported. This coding error does not affect our attack.

Notice also that the number of iterations in the loop depends on

pad, which is plaintext-dependent.

Experimental Results for GnuTLS: By default, GnuTLS

adds random length padding to every TLS record it sends (in-

cluding alerts), subject to constraints imposed by the TLS spec-

ification. The time required to encrypt that random padding

disrupts the timing signal that our attacks attempt to detect. For

the purposes of experimental validation, we disabled GnuTLS’s

random padding. Note, however, that the attacks would still

be effective even if the the random padding were to be reac-

tivated, since the error messages can be grouped according to

their lengths, and the time difference attributable to adding ex-

tra padding can be profiled and subtracted for each group.
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Figure 9: GnuTLS TLS median server timings (in hardware cycles)

for varying values of ∆15 and P
∗

15 = 0x00.

We began by measuring the time (in hardware cycles) taken

by the GnuTLS server to perform the padding check, MAC ver-

ification and other associated operations as a function of the

value of ∆15, for ciphertexts containing 20 non-IV blocks and

with the last byte of P ∗ equal to 0x00. Figure 9 shows the re-

sults. The expected behaviour is observed: byte values 0x00

and 0xFF have similar, long processing times. Moreover, there

are four “blocks” of timings, corresponding to the reducing

number of compression function evaluations needed as the byte

value ∆15 ⊕ P ∗

15
increases. (Here, P ∗

15
denotes the last byte of

the target plaintext block P ∗.) Within these blocks, the trend

is upwards, and this is attributable to the increasing amount

of time needed for the padding check as the value of pad in-

creases.

Our next step was to gather timing of error messages from

the network. Figure 10 shows median network timings for the

same ciphertext structure. It is evident that there are anoma-

lies at byte values 0x01, 0x11, ..., 0xF1 (with 16 byte incre-

ments). In further testing, we discovered that their positions

did not depend on the plaintext byte P ∗

15
. This phenomenon

was subsequently explained to us [23] as arising from the way

in which GnuTLS’s random number generator updates its state

(when generating CBC-mode IVs for TLS’s encrypted error

messages). We handled this in our attack by setting the tim-

ing values for these mask values to the average value of the

neighbouring bytes.

The data is clearly very noisy, and the distinct pattern exhib-

ited in the server timings in Figure 9 is not immediately evident

in Figure 10. However, a zoomed view (see Figure 11) shows

that an overall descending pattern is evident. Further analy-

sis using linear regression showed that the ascending pattern

within each of the 4 blocks is weakly preserved in the network

timings. We could not reliably distinguish the values 0x00 and

0xFF needed for the attack mentioned above; however, we are

able to reliably extract the 4 most significant bits (MSBs) of

P ∗

15
, as we explain briefly next.

Extracting 4 bits of P ∗

15
: To extract the 2 MSBs of P ∗

15
, the

attacker focusses on the overall downward trend in the process-

ing time (as a function of ∆15 ⊕ P ∗

15
) exhibited in Figure 11.

Let δ7δ6 . . . δ0 denote the bits of ∆15. By setting δ7 = 0 and

then δ7 = 1, the attacker has 2 sets each containing 128 masks;

he gathers timings for each of these two sets; if larger timings

13



H
a
r
d
w
a
r
e
C
y
c
l
e
s

H
C
a
l
c
u
l
a
t
e
d
b
y
A
d
v
e
r
s
a
r
y
L

50 100 150 200 250

1.365´ 10
6

1.370´ 10
6

1.375´ 10
6

1.380´ 10
6

1.385´ 10
6

1.390´ 10
6

D15

Figure 10: GnuTLS TLS median network timings (in hardware cycles)

for varying values of ∆15 and P
∗

15 = 0x00.
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Figure 11: Zoomed view of GnuTLS TLS network timings.

are obtained on average when δ7 = 0, then the attacker deduces

that the MSB of P ∗

15
is a 0; otherwise he guesses that the MSB

is 1. The attacker can also use a reduced set of masks, and col-

lect multiple timing samples for each mask that he tries. Thus

we have two parameters: the total number of masks S that he

uses across the two sets, and the number of timing samples L
for each mask. The second MSB of P ∗

15
is extracted in the same

way: now we consider masks for δ6 = 0 and then δ6 = 1. In

principle, we have S as large as 256 again, by varying δ7 as well

as the other 6 bits of ∆15. In practice, we just set δ7 = 0 when

extracting the second MSB. The third and fourth MSBs are ex-

tracted in roughly the same way, but now we reverse the test,

setting the targeted bit to 1 if larger timings are obtained on av-

erage when δ5 = 0 or δ4 = 0, respectively. This change reflects

the ascending trend within the 4 blocks observed in Figure 9.

Success probabilities for this attack are shown in Table 2.

We tried to recover the remaining bits, but did not obtain signif-

icant success probabilities. Whilst extracting less plaintext than

our OpenSSL attack, far fewer TLS sessions are required in this

attack on GnuTLS. This indicates that ignoring the recommen-

dations of the RFCs can have severe security consequences.

6.2 Further Implementations

NSS: Network Security Services (NSS)7 is an open-source

set of libraries implementing, amongst other things, TLS. It is

widely used, including in Mozilla client products and Google

Chrome.

In the decryption code8 the variable plaintext->len

is reduced by the assumed amount of padding

7http://www.mozilla.org/projects/security/pki/nss
8We worked with version 3.13.6 available at https://ftp.mozilla.

❍
❍
❍
❍❍

S

L
4 8 16 32 64 128

4 0.575 0.662 0.746 0.828 0.875 0.937

8 0.516 0.615 0.781 0.836 0.844 1

16 0.531 0.609 0.766 0.852 0.969 1

32 0.536 0.596 0.750 0.898 0.984 1

64 0.544 0.596 0.781 0.937 0.984 1

128 0.555 0.627 0.812 0.977 1 1

256 0.593 0.635 0.859 1 1 1

MSB

❍
❍
❍
❍❍

S

L
4 8 16 32 64 128

4 0.511 0.580 0.629 0.687 0.656 0.812

8 0.513 0.576 0.695 0.789 0.812 0.812

16 0.515 0.564 0.637 0.742 0.734 0.844

32 0.509 0.549 0.617 0.734 0.766 0.844

64 0.519 0.570 0.656 0.859 0.953 0.969

128 0.544 0.557 0.557 0.914 1 1

Second MSB

❍
❍
❍
❍❍

S

L
4 8 16 32 64 128

4 0.486 0.451 0.418 0.391 0.422 0.375

8 0.522 0.508 0.523 0.500 0.531 0.625

16 0.537 0.555 0.598 0.625 0.625 0.781

32 0.543 0.572 0.609 0.609 0.609 0.609

64 0.528 0.541 0.602 0.758 0.758 1

Third MSB

❍
❍
❍
❍❍

S

L
4 8 16 32 64 128

4 0.456 0.434 0.363 0.336 0.312 0.25

8 0.487 0.484 0.445 0.477 0.484 0.375

16 0.495 0.531 0.539 0.570 0.594 0.687

32 0.506 0.520 0.566 0.695 0.828 0.812

Fourth MSB

Table 2: GnuTLS success probabilities for recovering the four MSBs

of P ∗

15.

(padding_length + 1) before the padding is checked for

correctness. This is the same approach as taken in GnuTLS,

potentially rendering the code vulnerable to an attack recov-

ering a single byte of plaintext per block. The sanity check

performed at the beginning of the decryption code is also

problematic, since it leaves plaintext->len unmodified if

the check fails, meaning that MAC verification may take longer

than when the check passes.

PolarSSL: We also examined the PolarSSL9 implementation

of TLS. The code10 behaves in much the same way as OpenSSL,

setting a variable padlen to 0 if the padding check fails, and

then verifying the MAC on a record stripped of padlen bytes.

This would render it vulnerable to the attacks described in Sec-

tion 4.

org/pub/mozilla.org/security/nss/releases/NSS_3_13_

6_RTM/src/.
9polarssl.org/

10We worked with version 1.1.4 available at polarssl.org/trac/

browser/trunk/library/ssl_tls.c.
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In fact, this implementation has other problems too. The

code does not sanity check padlen before running the padding

check, meaning that out-of-bounds comparisons may be made

if the value of padlen exceeds the plaintext length. It does

sanity check padlen after the padding check, checking that

the plaintext is big enough to contain both the expected amount

of padding and the MAC tag. However, it does not perform

any MAC check if this sanity check fails, but instead exits im-

mediately. This would render the implementation vulnerable

to a simple timing-based distinguishing attack as follows: M0

consists of 256 copies of 0xFF, while M1 consists of 255 ar-

bitrary bytes followed by 0x00; as in the attack of Section 3,

the encrypted version C of one of these is received; the attacker

truncates C so that the underlying plaintext has 256 bytes; if

the message was M0, then the padding is good, but the post-

padding sanity check fails and no MAC computation is per-

formed; if the message was M1, then the padding is also good,

but now the post-padding sanity check passes and a MAC com-

putation is performed. This attack produces a larger timing dif-

ference than our previous distinguishing attack and illustrates

the role that careful sanity checking plays in preventing attacks.

However, none of these attacks would work in practice, since

in its default configuration, PolarSSL does not send any TLS

alert messages when decryption errors are encountered. This

means that PolarSSL is not RFC-compliant in this aspect, since

such alerts are a required part of TLS implementations.

yaSSL: The yaSSL11 embedded SSL library, CyaSSL, is tar-

getted at embedded and real-time operating system environ-

ments. It appears to have rather few known vulnerabilities, with

only 5 being reported in the CVE database12 since 2005. The

CyaSSL code13 does not perform proper padding checks, but

instead just examines the last byte of plaintext and uses this to

determine how many bytes to remove. This can be seen in the

following CyaSSL code extract:

if (ssl->specs.cipher_type == block) {

if (ssl->options.tls1_1)

ivExtra = ssl->specs.block_size;

pad = *(input + idx + msgSz - ivExtra - 1);

padByte = 1;

}

dataSz = msgSz - ivExtra - digestSz - pad - padByte;

if (dataSz < 0) {

CYASSL_MSG("App data buffer error, malicious input?");

return BUFFER_ERROR;

}

This approach renders the code vulnerable to the old attack

from [26] which recovers one byte of plaintext per block. This

was the only implementation that we found that still contains

this basic flaw. Note also that the sanity checking represented

by the last 3 lines of code above would render the code vulnera-

ble to other plaintext recovery attacks even if the padding check

was done properly, since it exits the code without performing a

MAC check if the tested condition (which depends on the byte

pad extracted from the plaintext) is violated.

11yassl.com/yaSSL/Home.html
12www.cvedetails.com/vulnerability-list/vendor_

id-3485/Yassl.html
13We worked with version 2.3.0 available at yassl.com/yaSSL/

Source/output/src/internal.c.html.

Java: We have examined the BouncyCastle14 and OpenJDK15

Java implementations of TLS.

The BouncyCastle code does careful sanity checking of

the padding length (as indicated by the last byte of plain-

text) but treats the padding as having length 1 if the padding

format, when checked, is found to be incorrect (a variable

paddingsize is set to 0, but then the plaintext size is

reduced by an amount paddingsize+minLength where

minLength is set to be 1 larger than the MAC tag size). This

deviates slightly from the recommendation of the RFCs to treat

the padding as having length zero, but still allows our attacks in

Sections 3 and 4 to be applied (for Case 3 of the main plaintext

recovery attack in Section 4, MAC verification ends up being

performed on a 56-byte message, but this will still involve 5

evaluations of the compression function for SHA-1).

The OpenJDK code appears follow the recommendation of

the RFCs in treating the padding as having zero length if the

padding format, when checked, is found to be incorrect. This

is because this case is trapped by exception handling, during

which the variable defining the plaintext length is not changed.

This potentially renders it vulnerable to our attacks in Sections

3 and 4.

Other implementations: There are further open-source and

many closed-source implementations of (D)TLS. We have not

conducted any further testing to see if these are vulnerable to

any of our attacks. However, we expect that any RFC-compliant

implementation will be vulnerable. We also expect that all im-

plementations will be vulnerable to simple variants of our at-

tacks, unless the implementers have taken great care to ensure

that the decryption processing time is uniform, or nearly so.

Our experiences in investigating open-source implementations

suggests this is unlikely.

7 Countermeasures

Add Random Time Delays: A natural reaction to timing-

based attacks is to add random time delays to the decryption

process to frustrate statistical analysis. In fact, this countermea-

sure is surprisingly ineffective, as we explain next.

Consider our distinguishing attack: this attack involves dis-

tinguishing two distributions X , Y , where X has mean µ and

Y has mean µ+4, where we measure time in units of compres-

sion function evaluations. Suppose X , Y both have variance

σ2. Now suppose we add a random delay that is uniformly cho-

sen from the interval [0, T ] to the decryption process. Then we

obtain distributions X ′, Y ′ with means µ+T/2 and µ+4+T/2
and variance σ2 + T 2/12. Now consider the random variables

VL =
∑L

i=1
X ′

i/L and WL =
∑L

i=1
Y ′

i /L obtained from aver-

aging L samples of X ′, Y ′, respectively. Treating these samples

as being independent, the Central Limit Theorem guarantees

14www.bouncycastle.org/viewcvs/viewcvs.cgi/

java/crypto/src/org/bouncycastle/crypto/tls/

TlsBlockCipher.java?view=markup
15hg.openjdk.java.net/jdk7/l10n/jdk/file/

3598d6eb087c/src/share/classes/sun/security/ssl/

SSLSocketImpl.java and hg.openjdk.java.net/jdk7/

2d/jdk/file/85fe3cd9d6f9/src/share/classes/sun/

security/ssl/CipherBox.java
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that VL, WL are approximately Normal with means µ + T/2,

µ+4+T/2 and equal variance τ2 = (σ2+T 2/12)/L. Note that

the difference between the means of VL, WL is 4; now, using

standard results about the Normal distribution, it is easy to see

that if 4τ ≤ 4, then the distributions of VL, WL are sufficiently

“tight” about their means that a simple statistical test based on

taking means of L samples will be 90% accurate. Solving for

L, we see that we need

L ≥ σ2 + T 2/12

and it is apparent that the effect of adding the random time de-

lay is to increase the number of samples needed from σ2 to

σ2 + T 2/12. From our experiments for OpenSSL, we estimate

that σ ≈ 10; then taking T = 50 only increases the number of

samples needed for a 90% success rate from 100 to about 300,

at the cost of increasing the average decryption time by 25 com-

pression function evaluations. This does not seem like a good

trade-off between security and performance.

Use RC4: The simplest countermeasure for TLS is to switch

to using the RC4 stream cipher in place of CBC-mode encryp-

tion. However, this is not an option for DTLS. When a stream

cipher is used in TLS, no padding is required. Consequently

none of the attacks in this paper will work. RC4 is widely sup-

ported in implementations of TLS, the same countermeasure

is effective against the BEAST attack, and was fairly widely

adopted in response to BEAST (e.g. by Google and Facebook).

The use of a stream cipher in a MEE construction is well-

supported by theory [20]. There are two potential drawbacks of

making this switch. Firstly, the use of variable length padding

in CBC-mode allows for a modicum of plaintext length hiding,

and this is no longer possible when using a stream cipher. Sec-

ondly, and more importantly, the first bytes of keystream output

by the RC4 generator have certain small biases, and TLS does

not seem to discard these before starting encryption.

Use Authenticated Encryption: Another possibility is to

switch from MEE-TLS-CBC to using a dedicated authenticated

encryption algorithm, such as AES-GCM or AES-CCM which

were standardised for use in TLS in RFCs 5288 [36] and 6655

[24], respectively. In theory, this should obviate all attacks

based on weaknesses in the MEE construction. However, we

cannot rule out implementation errors, and we are not aware

of any detailed analysis of implementations of these algorithms

in (D)TLS for potential side-channels. A further issue is that

authenticated encryption was only added in TLS 1.2, and this

version of TLS is not yet widely supported in implementations.

Finally, the current authenticated encryption algorithms do not

offer any length-hiding facility.

Careful implementation of MEE-TLS-CBC decryption:

Our final option is to encourage more careful implementation

of MEE-TLS-CBC decryption. However, we believe that im-

plementers will find it difficult to do this in a way that eliminates

all significant timing channels (especially for DTLS).

The key requirement is to ensure uniform processing time for

all MEE-TLS-CBC ciphertexts of a given size. That is, the total

processing time should depend only on the ciphertext size, and

not on any characteristics of the underlying plaintext (including

padding). The basic principle to be followed in achieving this

is quite simple: since the major timing differences arise from

MAC processing, implementations should make sure the same

amount of MAC processing is carried out no matter what the

underlying plaintext indicates the message length to be.

However, this simple principle is complicated by the need to

also perform careful sanity checking on the underlying plain-

text whilst avoiding the introduction of yet more timing side-

channels, and to make sure appropriate amounts of MAC pro-

cessing are performed even when these checks fail.

A further complication arises because the number of bytes to

be examined in the padding check depends on the last byte of

the last plaintext block, and so, even if the MAC processing is

made uniform, the running time of the padding check may still

leak a small amount of information about the plaintext. This can

be seen for GnuTLS in Figure 9: notice that the maximum dif-

ference in the running time for the padding check is more than

1000 hardware cycles for this implementation. For example,

then, distinguishing attacks would require a timing resolution

of around 1000 hardware cycles, while a timing resolution of

250 cycles would be sufficient to allow an attack recovering 2

bits of plaintext per block for this implementation.

With these remarks in mind, we now proceed to give a de-

tailed prescription of how to achieve constant-time processing

of MEE-TLS-CBC ciphertexts, incorporating suitable sanity

checking. In what follows, we let plen denote the length (in

bytes) of the plaintext P obtained immediately after CBC-mode

decryption of the ciphertext, padlen denote the last byte of

that plaintext interpreted as an integer between 0 and 255, and

t denote the length of the MAC tags (in bytes). Also, let HDR,

SQN denote the (D)TLS record header and the expected value

of the sequence number for this record. Our recommended pro-

cedure is then as follows:

1. First sanity check the ciphertext: check that its length

in bytes is a multiple of the block-size b and is at least

max{b, t+1} (for chained IVs) or b+max{b, t+1} (for

explicit IVs). If these conditions are not met, then return

fatal error.

2. Decrypt the ciphertext to obtain plaintext P ; now plen

will be a multiple of b and at least max{b, t+ 1}.

3. If t+ padlen+1 > plen, then the plaintext is not long

enough to contain the padding (as indicated by the last byte

of plaintext) plus a MAC tag. In this case, run a loop as

if there were 256 bytes of padding, with a dummy check

in each iteration. Then let P ′ denote the first plen − t
bytes of P , compute a MAC on SQN||HDR||P ′ and do a

constant-time comparison of the computed MAC with the

last t bytes of P . Return fatal error.

4. Otherwise (when t + padlen + 1 ≤ plen), check the

last padlen + 1 bytes of P to ensure they are all equal

(to the last byte of P ), ensuring that the loop does check

all the bytes (and does not stop as soon as the first mis-

match is detected). If this fails, then run a loop as if there

were 256− padlen− 1 bytes of padding, with a dummy

check in each iteration, and then do a MAC check as in the

previous step. Return fatal error.
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Figure 12: Distribution of timing values (outliers removed) for distin-

guishing attack on OpenSSL TLS, using our decryption procedure.

5. Otherwise (the padding is now correctly formatted) run a

loop as if there were 256−padlen− 1 bytes of padding,

doing a dummy check in each iteration. Then let P ′ denote

the first plen − padlen − 1 − t bytes of P , and let T
denote the next t bytes of P (the remainder of P is valid

padding). Run the MAC computation on SQN||HDR||P ′ to

obtain a MAC tag T ′. Then set L1 = 13 + plen − t,
L2 = 13 + plen − padlen − 1 − t, and perform an

additional ⌈L1−55

64
⌉−⌈L2−55

64
⌉ MAC compression function

evaluations (on dummy data). Finally, do a constant-time

comparison of T and T ′. If these are equal, then return P ′.

Otherwise, return fatal error.

When implementing the above procedure, it would be tempt-

ing to omit seemingly unnecessary computations that are per-

formed, for example when t + padlen + 1 > plen. How-

ever, these are needed to prevent other timing side-channels like

those reported in [1] for the GnuTLS implementation of DTLS.

Notice also that the dummy computations performed in the last

step are compression function evaluations and not full MAC

computations. These give a MAC computation time that is the

same irrespective of how much padding is removed (and equal

to that carried out in earlier steps). Finally, note that some ad-

justments to this procedure would be needed when SHA-384 is

used as the hash function in HMAC: SHA-384 operates on 128-

byte blocks and uses a 16-byte encoding for message length.

We have implemented the above procedure by modify-

ing OpenSSL version 1.0.1, the same version used for our

attacks. We modified the code in files ssl/s3_pkt.c

and ssl/t1_enc.c to perform the required sanity checks,

dummy padding checks, and dummy MAC compression func-

tion evaluations. In ssl/s3_pkt.c, we make a single call

to OpenSSL’s SHA1_Update function using a message size

that will invoke the required number of dummy MAC compres-

sion function evaluations. Our call to SHA1_Update happens

before OpenSSL’s actual MAC calculation and comparison op-

erations.

We then ran our distinguishing attack from Section 3 against

the modified OpenSSL code. Each packet in the attack passes

the padding check, but fails MAC verification, causing the

server to close the TLS session and send an encrypted alert

message. Figure 12 shows the distribution of timing values (in

hardware cycles) after implementing our procedure. This fig-

ure should be compared with Figure 2: visual inspection alone

shows that the timing difference is substantially reduced. In

fact, the separation between the medians of the two distribu-

tions is reduced from about 8500 to about 1100 hardware cycles

(from around 2.5µs to 0.32µs). In turn, this small separation

means that 128 sessions are needed to achieve a distinguish-

ing success probability of 0.68, whereas, prior to our modifica-

tions, just 1 session was enough to give a success probability

of 0.756. For the plaintext recovery attack, the adversary will

have access to timing differences roughly one quarter of this,

i.e. roughly 80ns on our hardware. Notice also that the two

distributions are reversed compared to Figure 2, i.e. processing

0xFF packets now takes longer, on average, than for 0x00 pack-

ets. We believe that this is caused by overhead introduced by

the SHA1_Update function call that occurs for 0xFF packets

but not 0x00 packets.

To achieve further reductions in timing difference would re-

quire a more sophisticated “constant time” programming ap-

proach. The OpenSSL patch addressing the attacks in this pa-

per provides an exemplar of how to do this. The complex-

ity of the OpenSSL patch is notable, with around 500 lines of

new ‘C’ code being required. For further discussion and expla-

nation, see www.imperialviolet.org/2013/02/04/

luckythirteen.html.

8 Discussion

We have demonstrated a variety of attacks against implemen-

tations of (D)TLS. We reiterate that the attacks are ciphertext-

only, and so can be carried out by the standard MITM attacker,

without a chosen-plaintext capability. The attacks that are pos-

sible depend crucially on low-level implementation details, as

well as factors such as the relationship between the MAC tag

size t and the block size b. All implementations we examined

were vulnerable to one or more attacks.

For TLS, we need a multi-session attack, with, in some

cases, many sessions. This limits the practicality of the attacks,

but note that they be further improved using standard techniques

such as language models and sequential estimation. They can

also be enhanced in a BEAST-style attack to enable efficient

recovery of HTTP cookies. The timing differences we must de-

tect are close to or below the levels of jitter one typically finds in

real networks. In particular, our attacker needs to be positioned

relatively close (in terms of network hops) to the machine be-

ing attacked. Still, the attacks should be considered as a realistic

threat to TLS, and we have described a range of suitable coun-

termeasures. The attacks are much more serious for DTLS, be-

cause of this protocol’s tolerance of errors and because of the

availability of timing amplification techniques from [1]. Very

careful implementation of the MEE-TLS-CBC decryption al-

gorithm is needed to thwart these amplification techniques. In

view of this, we highly recommend the use of a suitable au-

thenticated encryption algorithm in preference to CBC-mode

for DTLS. The contrast between the security of TLS and DTLS

reaffirms one of the main messages from [1].

More generally, our attacks illustrate the difficulty of imple-

menting MEE securely. Similar issues were identified for MEE

configurations of IPsec in [8]. We encourage protocol design-

ers in general, and the IETF TLS working group in particular,

to move away from using MEE. None of the attacks on TLS
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presented here would have been possible with an Encrypt-then-

MAC approach, for example. A more realistic solution for TLS

is to move as quickly as possible to TLS 1.2 and adopt its au-

thenticated encryption algorithms.
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