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ABSTRACT We report Lobachevsky University Database (LUDB) of ECG signals, an open tool for

validating ECG delineation algorithms, that is superior to the existing publicly available data bases in several

aspects. LUDB contains 200 recordings of 10-second 12-lead electrocardiograms (ECG) from different

subjects, representative of a variety of signal morfologies. The boundaries and peaks of QRS complexes and

P and T waves are manually annotated by cardiologists for all recordings and independently for each lead,

and all records received an expert classification by abnormalities. We present a case study for the recently

proposed wavelet-based algorithm and the broadly used ecg-kit tool, and demonstrate the advantage of

multi-lead ECG data analysis. LUDB contributes to the diversity of public databases employed in developing

and validating novel ECG analysis algorithms, including the most advanced based on deep learning neural

networks.

INDEX TERMS Database, Delineation algorithm, Electrocardiogram

INTRODUCTION

Recording the electrical activity of heart, or electrocardio-

graphy, is one of the basic medical diagnostic means for

assessing cardiac activity, in particular, determining the heart

rate and rhythm disturbances. The voltage graphs – elec-

trocardiograms (ECGs) manifest repeated activity with the

commonly identified structural elements of each heart beat

image: QRS complex, P and T waves (Fig. 1). Analysis of

their amplitudes, shapes (morphologies) and durations allows

for identifying cardiac rhythm disorders and cardiovascular

diseases, such as ischemia and myocardial infarction [1]. A

rich variety of signal morphology, accompanied by their non-

stationary nature, potential defects in recordings and noise,

makes an automated search for these waves and complexes,

also known as ECG delineation (also known as ECG segmen-

tation or ECG annotation), a challenging task.

This problem has been tackled for quite a while, resulting

in a number of algorithms that solve it at different level

of detail. The first ones were designed to detect the QRS

complex only, referring on the amplitude of the ECG signal
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FIGURE 1. ECG signal. Schematic representation of the QRS complex and P,

T, U waves. U wave may not always be observed due to its small size. Its exact

source remains unclear.
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and its first derivative [2]. Detecting boundaries and peaks of

P and T waves required more sophisticated methods based

on wavelet transform [3], [4], Hilbert transform [5], phasor

transform [6], hidden Markov models [7], gradient based

algorithms [8] and morphological transforms [9].

Validating delineation algorithms requires standardized

datasets with complexes and waves that are manually anno-

tated by specialists. Increasing their number and variety is

crucial itself, for both better training and testing robustness

of developed methods. Moreover, several collections that are

currently available in the public domain: MIT-BIH Arrhyth-

mia Database [10], European ST-T Database [11], and QT

Database [12], have certain limitations. That is, MIT-BIH

Arrhythmia Database and European ST-T Database have a

markup only for QRS complexes. In turn, the QT Database

contains annotations for P, QRS and T waves, but has only

2-lead Holter recordings, and is, therefore, not suitable for

validating multilead delineators, which are currently the most

common approach.

ECG database assembled at Lobachevsky University

(LUDB) is free from these issues. The reported database

consists of 200 recordings of standard 10-second 12-lead

recordings [13] from different subjects, representing a variety

of signal morphologies. The boundaries of P, QRS and T

complexes at each lead are manually annotated by cardiol-

ogists for all 200 records, and each subject is supplemented

with noticed abnormalities (same as in the other studies, we

skip U-wave due to its small amplitude and noise issues).

The overall number of annotated complexes in LUDB con-

siderably exceeds that in QTDB. Altogether, these features

make LUDB a valuable contribution to the current publicly

available sources.

As the case study, we made use of this dataset for val-

idating our recent algorithm [14], that implements wavelet

transform for multi-lead multi-morphology analysis with er-

ror correction, and make a comparison to the popular ecg-kit

tool [15], which employs one of its predecessors, a single-

lead delineator [4]. Expectedly, the results demonstrate a

comparable performance of both for QTDB and a notice-

able improvement of delinearing P and T waves for LUDB

achieved by the former algorithm.

We note that there are many recent studies related to

the ECG processing including disease detection, delineation,

sleep staging, biometric human identification, denoising, and

others (see recent overview [16]). In this article, we only

focus on the task of ECG delineation. The solution to this task

can be used to solve other problems, in particular, the disease

detection. On the other hand, using standard annotations and

expert features not always be the best choice. Automatically

generated features (such as deep learning features) can be

more informative than the expert features. In particular, there

have been noticeable successes in the problem of automatic

recognition of cardiac diseases using sparse representation of

ECG [17], using deep learning generated features [18], [19],

combination of artificial intelligence methods and linear and

non-linear decomposition [20], different feature extraction

TABLE 1. Comparative numbers of annotated waves in QTDB and LUDB

P wave QRS complex T wave Total

QTDB 3194 3623 3542 10359

LUDB 16797 21966 19666 58429

methods with machine learning algorithms [21], different

end-to-end ECG deep learning classifiers, e.g. [23], [24], etc.

The paper is organized as follows. In Section I, we describe

the LUDB database. Section II contains an outline of the

delineation algorithm [14]. A case study of its validation

with LUDB and QTDB is reported in Section III. Section IV

summarizes the results and perspectives.

I. LOBACHEVSKY UNIVERSITY DATABASE

A publicly available Lobachevsky University Database [25]

contains 200 records from 200 subjects in wfdf format [26].

The ECGs were collected from healthy participants and

patients of the Nizhny Novgorod City Hospital No.5 in

the period 2017–2018 with various cardiovascular diseases,

some of them had pacemakers. The records were made by

specialized medical staff (functional diagnostics nurses). All

participants provided informed written consent before partic-

ipating in the experiment. The age of subjects varied from

11 to 90 years, with the average 52 years, the distribution

by gender was 85 women and 115 men. Table 2 reports the

breakdown by the type of rhythm and Table 3 by the type

of heart electrical axis. These parameters are specified for all

records in the database.

ECG recordings were obtained by the Schiller Cardiovit

AT-101 cardiograph [27], with conventional 12 leads (I, II,

III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6), the duration

is 10 seconds, the signals are digitized at 500 Hz, complying

with the international standard [13].

The boundaries and peaks of QRS complexes, and P and

T waves were determined by two certified and practicing

cardiologists (A.V. N. and K.A.K.) by an eye inspection of

each ECG signal and independently for each of 12 leads.

The markup of all ECG forms was joint, relying on standard

criteria [28] and based on consensus opinion, as well as

classification of abnormalities. This approach was chosen as

to decrease subjective influence and provide the end user with

a definite annotation. The recordings and markup files in the

database come separately, and are open for download and

further independent exploration, in particular, with regard to

assessing variability in expert opinion. In total, the dataset

contains 58429 annotated waves, that is almost six times

greater than in the widely referred QT database (Table 1),

which is the only publicly available database with all the

waves annotated, to the best of our knowledge.

Tables 4, 5 summarize the content of the database by main

ECG abnormalities and their count. Note that some patients

would have several issues at the same time.

Examples of ECG with manual annotations are on Figures

2–6.
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FIGURE 2. Example of ECG from LUDB, id=1, age: 51, sex: F. Yellow color corresponds to P waves, red to QRS complexes, green to T waves. The symbol ⊲

means the onset of a wave, ◦ means the wave peak, ⊳ corresponds to the offset of a wave. Sinus rhythm. Sinus bradycardia. Electric axis of the heart: left axis

deviation. Left ventricular hypertrophy. Left ventricular overload. Non-specific repolarization abnormalities: posterior wall.

FIGURE 3. id = 7, age: 50, sex: M. Sinus rhythm. Electric axis of the heart: horizontal. Atrial extrasystole: SA-nodal extrasystole. Atrial extrasystole, type: single

PAC. Left atrial hypertrophy. Right atrial overload. Left ventricular hypertrophy. STEMI: anterior wall. STEMI: lateral wall. STEMI: septal. STEMI: apical.
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FIGURE 4. id = 8, age: 57, sex: F. Atrial fibrillation. Electric axis of the heart: left axis deviation. Undefined ischemia/scar/supp.NSTEMI: anterior wall. Undefined

ischemia/scar/supp.NSTEMI: lateral wall. Undefined ischemia/scar/supp.NSTEMI: septal. Undefined ischemia/scar/supp.NSTEMI: apical. Pacemaker presence,

undefined. UNIpolar ventricular pacing.

FIGURE 5. id = 103, age: 69, sex: M. Atrial flutter, typical. Electric axis of the heart: horizontal. Non-specific intravintricular conduction delay. Left ventricular

hypertrophy.
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FIGURE 6. id = 106, age: 64, sex: M. Sinus rhythm. Electric axis of the heart: left axis deviation. Ventricular extrasystole, localisation: RVOT, antero-septal part.

Ventricular extrasystole, type: single PVC. Left atrial hypertrophy. Left ventricular hypertrophy. Scar formation: posterior wall. Non-specific repolarization

abnormalities: lateral wall.

TABLE 2. Breakdown in heart rhythm types, represented in the database

Rhythm Number of subjects

Sinus rhythm 143

Sinus tachycardia 4

Sinus bradycardia 25

Sinus arrhythmia 8

Irregular sinus rhythm 2

Atrial fibrillation 15

Atrial flutter, typical 3

Total 200

TABLE 3. Breakdown in types of electrical axis, represented in the database

Electric axis of the heart Number of subjects

Normal 75

Left axis deviation 66

Vertical 26

Horizontal 20

Right axis deviation 3

Undetermined 10

Total 200

II. DELINEATION ALGORITHMS

Testbed delineation tools [14], [15] belong to the family of

methods based on discrete wavelet transform (DWT) [4],

[29]–[31], that stems from the pioneering work by Li [3].

Commonly, a single-lead ECG signal x[n] is decomposed

into different frequency components by means of standard

filters, Daubechies, Coiflet or biorthogonal wavelets, to name

a few, as follows:

[ ]

1[ ]1[ ]

2[ ]2[ ]

ℎ

ℎ

3[ ]3[ ]

ℎ

FIGURE 7. Filter bank for a discrete wavelet transform. General scheme for

DWT decomposition.

A [k] =
∑

n

x [n] · h [2k − n] , (1)

D [k] =
∑

n

x [n] · g [2k − n] , (2)

where h [n] is the low-pass filter, g [n] is the high-pass filter,

D [k] and A [k] are the resulting approximation coefficients,

respectively. A more detailed representation of the frequency

content of ECG signals is obtained by repeated DWT, ap-

plied to approximation coefficients, calculated at the previous

round, according the general scheme shown in the Fig. 7.

The popular ecg-kit tool [15] is based on a single-lead

delineation scheme [4]. In the following we discuss the so-

lutions of [14] that allow for improving delineation accuracy
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TABLE 4. Breakdown in cardiovascular disorders, represented in the

database (conduction abnormalities, extrasystole, hypertrophy, cardiac pacing)

Conduction abnormalities Number of subjects

Sinoatrial blockade, undetermined 1

I degree AV block 10

III degree AV-block 5

Incomplete right bundle branch block 29

Incomplete left bundle branch block 6

Left anterior hemiblock 16

Complete right bundle branch block 4

Complete left bundle branch block 4

Non-specific intravintricular conduction delay 4

Extrasystole Number of subjects

Atrial extrasystole: undetermined 2

Atrial extrasystole: low atrial 1

Atrial extrasystole: left atrial 2

Atrial extrasystole: SA-nodal extrasystole 3

Atrial extrasystole, type: single PAC 4

Atrial extrasystole, type: bigemini 1

Atrial extrasystole, type: quadrigemini 1

Atrial extrasystole, type: allorhythmic pattern 1

Ventricular extrasystole, morphology: polymorphic 2

Ventricular extrasystole, localisation: RVOT, anterior wall 3

Ventricular extrasystole, localisation: RVOT, antero-septal part 1

Ventricular extrasystole, localisation: IVS, middle part 1

Ventricular extrasystole, localisation: LVOT, LVS 2

Ventricular extrasystole, localisation: LV, undefined 1

Ventricular extrasystole, type: single PVC 6

Ventricular extrasystole, type: intercalary PVC 2

Ventricular extrasystole, type: couplet 2

Hypertrophy Number of subjects

Right atrial hypertrophy 1

Left atrial hypertrophy 102

Right atrial overload 17

Left atrial overload 11

Left ventricular hypertrophy 108

Right ventricular hypertrophy 3

Left ventricular overload 11

Cardiac pacing Number of subjects

UNIpolar atrial pacing 1

UNIpolar ventricular pacing 6

BIpolar ventricular pacing 2

Biventricular pacing 1

P-synchrony 2

of all waves and complexes, in particular, P and T waves.

A comprehensive analysis of multi-lead recordings and error

correction procedures stand central here.

The developed delineation method consists of several

stages. Delineation of each type of waves is first implemented

for all ECG leads independently, and in particular order.

Then, the results are refined by aggregating and comparative

processing of signals from all leads. The general scheme of

the algorithm is outlined in the Fig.8.

The algorithm receives a raw ECG signal as an input, that

is first preprocessed. Bandpass filtering removes the baseline

drift and the high-frequency noise that can be caused by the

muscle tone, interference from electrical appliances, poor

contact between electrodes and skin, etc. Next, a discrete

wavelet transform is applied to the filtered signal, yielding a

set of detailed coefficients at different frequency scales. The

following analysis relies on these sets obtained for ECG from

each lead.

Identifying waves and complexes of the ECG signal takes

place in a specific order: QRS complex, T-wave, and then P-

TABLE 5. Breakdown in cardiovascular disorders, represented in the

database (ischemia, repolarisation abnormalities)

Ischemia Number of subjects

STEMI: anterior wall 8

STEMI: lateral wall 7

STEMI: septal 8

STEMI: inferior wall 1

STEMI: apical 5

Ischemia: anterior wall 5

Ischemia: lateral wall 8

Ischemia: septal 4

Ischemia: inferior wall 10

Ischemia: posterior wall 2

Ischemia: apical 6

Scar formation: lateral wall 3

Scar formation: septal 9

Scar formation: inferior wall 3

Scar formation: posterior wall 6

Scar formation: apical 5

Undefined ischemia/scar/supp.NSTEMI: anterior wall 12

Undefined ischemia/scar/supp.NSTEMI: lateral wall 16

Undefined ischemia/scar/supp.NSTEMI: septal 5

Undefined ischemia/scar/supp.NSTEMI: inferior wall 3

Undefined ischemia/scar/supp.NSTEMI: posterior wall 4

Undefined ischemia/scar/supp.NSTEMI: apical 11

Non-specific repolarisation abnormalities Number of subjects

Anterior wall 18

Lateral wall 13

Septal 15

Inferior wall 19

Posterior wall 9

Apical 11

Other states Number of subjects

Early repolarization syndrome 9

ECG signal

Filtra!on

DWT

Preprocessing

Single lead stage

Mul! lead stage

QRS delinea!on

Single lead stage

Mul! lead stage

T delinea!on

Single lead stage

Mul! lead stage

P delinea!on

Waves candidates

Peaks

Boundaries

Morphologies

Single lead stage

Including missing waves

Excluding spurious waves

Correc!on

Mul! lead stage

FIGURE 8. General scheme of the ECG delineation algorithm. (left) Main

pipeline of the delineation algorithm consists of four stages, starting from the

raw ECG signal. (right) Description of delineation steps, used for QRS, T and

P waves.
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wave. QRS complex is detected first, since it typically has the

largest amplitude, which simplifies the task. Then, T-wave

is located, as its amplitude is usually greater than that of P-

wave. Delineation of P-wave is viewed as the most complex

task by both the cardiologists and mathematicians [4], [30].

The amplitude of this wave often compares to noise or flutter,

so that a quality detection procedure has to rely on restricting

the temporal interval of interest from both sides, by QRS

complex and T-wave.

Processing each type of wave has a similar pipeline. First,

the algorithm explores ECG signal from each lead separately.

It selects the best candidates for the corresponding wave,

then determines its peak and boundaries. The algorithm by

Kalyakulina et al. [14] implements yet another feature, clas-

sifying the morphology of the detected wave by determining

reference points (onsets, peaks, ends). Matching them to

model cases gives a much more advanced diagnostic infor-

mation than duration and amplitude values would offer. The

particular morphologies of the QRS complex, recognized by

the algorithm, are shown in the Fig. 9. Orientation of the

complex, its extremal points, the number of additional peaks

or, conversely, the lack of some, are key to the diagnostic

process, detecting cardiac arrhythmias or the presence of

cardiovascular diseases.

After all waves of a certain type are found for the out-

puts from all leads, the algorithm performs a comparative

analysis, aimed at correcting omissions or spurious waves,

appearing in recordings for certain leads. As a formal validity

threshold for a complex occurrence, we require its presence

in at least 8 out of 12 leads. That is, if for some heartbeat

the T-wave is detected for 10 leads out of 12, then it is

taken that this wave is also present for the other two leads.

Conversely, if the complex is found in at most one third of the

total number of leads, then it is retracted from delineation.

We don’t use the multilead correction if the complex was

detected on 5. . . 8 leads. Additionally, averaging the times

of the corresponding reference points for the matching com-

plexes across the leads reduces the effect of noise and other

disturbances. After this multi-lead correction, delineation

steps down to the subsequent wave, taking an advantage of

adjusted locations of preceding waves.

Instructively, some failures in the single-lead signal pro-

cessing are apparently due to alternating morphologies of

a complex in the ECG signal, which the adaptive detection

threshold does not follow efficiently enough [14]. However,

when the complexes are missed in less than one third of leads,

their delineation is also restored by the multi-lead analysis, as

exemplified in Fig. 10, and a corresponding morphological

anomaly is noted down.

III. ALGORITHM VALIDATION

We validate the described tools [14], [15] with two open

access datasets, the newly introduced LUDB and QTDB

[12], both manually annotated by cardiologists, but distinct

in the number of leads (12 and 2, respectively), number of

subjects (200 and 105) and duration of recordings (10 and
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FIGURE 9. Examples of QRS complex morphologies present in LUDB. There

are many different morphologies of the QRS complex, which can indicate the

presence of various cardiovascular diseases. Their classification constitutes a

challenge for automatic delineation.

15 seconds). The reference points of complexes found by

an automated delineation are checked against the manually

marked ones, the chosen tolerance window interval of 150

ms complies with ANSI/AAMI-EC57:1998 standard [32].

When an algorithm determines a point correctly (i.e.

within the 150 ms interval of a manual point), it is counted

as true positive (TP). Likewise, when a point suggested

by the algorithm is absent in the manual markup, the case

is counted as false positive (FP). If the algorithm fails to

identify the point, which is present in the database, the

case is false negative (FN). For TP cases one also calcu-

lates a time mismatch between the automated and manu-

ally assigned locations, and this quantity is referred to as

“error”. The quality of the algorithm is characterized by

the following four metrics, implemented in [4], [30], [31],

[33]: average error m, its standard deviation σ, sensitivity

Se(%) = TP/(TP + FN), and positive predictive value

(precision) PPV (%) = TP/(TP + FP ). For Kalyakulina

et al. method, all these quantities are computed based on the

set that is pooled from the point-to-point match analysis in

each single lead.

Table 6 summarizes the assessment of the two tools [14],

[15] against LUDB an QTDB, and gives validation data

for the other methods against QTDB, borrowed from the
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1 2 3 4 5 6 7 8 9

FIGURE 10. Multi-lead refinement of delineation. Gray frames show the complexes, which fall short of the single lead analysis, but are recovered by the multi-lead

refinement. For each missed complex the averaged value for the start and the averaged value for the end of the complex were found. The averaging is performed

over those leads, where the complex is found. The global extremum in this interval (from the average start to the average end) is considered as the peak of the

complex.

literature [4], [30], [31], [33], and against LUDB [34].

In result, for both LUDB and QTDB, the sensitivity values

for the onsets and peaks of the P, QRS and T waves are

above 97%, and the standard deviation σ is almost within

the limits set by the standard [35]: it must be at most 2σCSE.

The exceptions are the P wave onset for QTDB, where σ
is 3 ms larger, and QRS onset for both databases, where σ
is 1.2 ms larger for LUDB and 0.1 ms larger for QTDB.

The maximal error is observed for the T-wave offset, whose

delineation is a well-known hard problem, both from the

mathematical and for the cardiological perspectives [36]. For

the QRS complex, a relatively simple task, the performance

of all methods is next to perfect, with occasionally slightly

worse rate for the method by Kalyakulina at al. The more

challenging task of detecting P and T waves is performed

also almost equally well by all methods on QTDB, but the

method by Kalyakulina et al. substantially outperforms ecg-

kit for LUDB. This is an anticipated result, since the former

method takes the full advantage of LUDB 12-lead format,

that allows to reduce detection failures and appearance of

spurious complexes, and to improve an accuracy of timing

the key points by the multi-lead refinement of delineation.

QTDB can be used to validate different methods for ECG

delineation, as well as to train new deep learning algorithms

for delineation. We believe that architectures like U-net [37]

will allow achieving better results than known algorithms.

For some preliminary results from using QTDB to train U-

net-like network, see [38].

IV. CONCLUSION

Despite an urgent need in thoroughly annotated and open

datasets of human ECGs to serve testbeds for delineation

algorithms, the offer remains quite limited [10]–[12]. More-

over, each case comes short of having multi-lead recordings,

a standard output for modern hospital cardiographs, and a

manual expert markup of all kinds of waves (P, QRS, and

T). Ideally, the recordings would be supplied with diagnosis

or a note on abnormalities in ECG, that additionally enables

training and validating the algorithms for an automated iden-

tification of possible pathology.

The presented Lobachevsky University Database is a step

to fill the existing gap. Openly accessible at Lobachevsky

8 VOLUME ,
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TABLE 6. Quality of delineation algorithms validated on LUDB and QTDB. Best values of Se and PPV for each key point on QTDB are in bold.

P onset P peak P offset QRS onset QRS offset T peak T offset

Se(%) 98.46 98.46 98.46 99.61 99.61 99.03 98.03
Kalyakulina et al. [14]

PPV (%) 96.41 96.41 96.41 99.87 99.87 98.84 98.84
(LUDB)

m± σ(ms) −2.7± 10.02 −0.3± 6.2 −0.4± 11.4 −8.1± 7.7 3.8± 8.8 4.0± 7.4 5.7± 15.5
Se(%) 97.46 97.50 97.53 98.42 98.42 98.24 96.16

Kalyakulina et al. [14]
PPV (%) 97.86 97.89 97.93 98.24 98.24 98.24 94.87

(QTDB)
m± σ(ms) −3.5± 13.8 4.3± 10.0 3.4± 12.7 −5.1± 6.6 4.7± 9.5 7.2± 13.0 13.4± 18.5

Se(%) 98.43 98.43 98.43 99.89 99.89 99.27 99.21
Chen et al. [34] (LUDB) PPV (%) 96.44 96.44 96.44 99.86 99.86 98.85 98.85

m± σ(ms) 2.2± 7.4 −0.76± 5.5 −6.5± 10.7 15.4± 14.6 −3.8± 13.6 −0.5± 5.5 −1.2± 6.8
Se(%) 88.26 89.64 91.08 99.52 99.51 85.62 85.00

ecg-kit [15] (LUDB) PPV (%) 82.43 83.73 85.07 91.36 91.35 94.91 94.22
m± σ(ms) 16.2± 31.7 12.0± 31.1 7.9± 22.3 −3.33± 14.3 3.7± 15.9 11.9± 32.1 −3.4± 32.8

Se(%) 98.64 98.64 98.64 99.60 99.60 96.86 96.86
ecg-kit [15] (QTDB) PPV (%) 70.75 70.75 70.75 91.33 91.33 91.52 91.52

m± σ(ms) −0.5± 12.0 9.4± 1.1 −2.7± 7.9 −5.7± 3.9 −0.5± 9.8 2.2± 6.3 −0.6± 8.2
Se(%) 98.12 99.15 99.87 99.50 99.50 99.41 96.98

Bote et al. [31]
PPV (%) 94.26 95.11 96.03 99.78 99.78 98.96 95.98

(QTDB)
m± σ(ms) 23.9± 19.5 13.8± 8.8 −1.9± 10.4 6.4± 5.5 −5.2± 10.8 9.0± 15.4 −12.9± 18.6

Se(%) 98.15 98.15 98.15 100.00 100.00 99.72 99.77
DiMarco et al. [30]

PPV (%) 91.00 91.00 91.00 – – 97.76 97.76
(QTDB)

m± σ(ms) −4.5± 13.4 −4.7± 9.7 −2.5± 13.0 5.1± 7.2 0.9± 8.7 −0.3± 12.8 1.3± 18.6
Se(%) 98.87 99.87 98.75 99.97 99.97 99.97 99.77

Martinez et al. [4]
PPV (%) 91.03 91.03 91.03 – – 97.79 97.79

(QTDB)
m± σ(ms) 2.0± 14.8 3.6± 13.2 1.9± 12.8 4.6± 7.7 0.8± 8.7 0.2± 13.9 −1.6± 18.1

Se(%) 99.87 99.87 99.91 99.97 99.97 99.97 99.97
Rincon et al. [33]

PPV (%) 91.98 92.46 91.70 98.61 98.72 98.91 98.50
(QTDB)

m± σ(ms) 8.6± 11.2 10.1± 8.9 0.9± 10.1 3.4± 7.0 3.5± 8.3 3.7± 13.0 −2.4± 16.9
2σCSE (ms) 10.2 – 12.7 6.5 11.6 – 30.6

University website and available on PhysioNet [25], it con-

tains 12-lead ECG recordings for 200 subjects (hospital

patients and participants without a history of complaints) in

wfdb (PhysioNet) format, manually annotated (except for U-

waves) and supplied with noticed abnormalities. Moreover,

it offers a variety of complex morphologies to challenge

delineation algorithms. A case study that employed ecg-kit

[15] and our recently developed delineation algorithm [14]

demonstrates how one can take a full advantage of multi-lead

recordings to implement error corrections in signals from

separate leads, and improve recognition of complex wave

morphologies, as well as precision of timing for delineation

points, as compared to the performance on the 2-lead dataset.

The further extension of LUDB, that would not simply enrich

the base, but will make it suitable for exploring machine

learning and neural network algorithms for an automated

diagnosis, is to follow. It would be also important to receive

independent manual delineations by the other experts.

Our results confirm that some delineation tools can have a

considerably different performance on different datasets. Dif-

ferent instrumental origin of ECG is only one, and probably a

minor reason for that. The inevitable variability in individual

expert opinion on delineation and diagnosis could give a

much greater impact, both at the validation stage and for the

end use. However, one still lacks enough data to evaluate

and accommodate this issue. Admittedly, the future quality

assurance of delineation algorithms will emphasize the robust

albeit next to perfect performance over a wealth of datasets,

rather than maximizing it against a given example.
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