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Fig. 1. Current foveated rendering techniques (le�) use a fixed quality decay for peripheral vision. While this can be a conservative solution, it does not

provide a full computational benefit. Our technique (right) performs content-adaptive foveation and relaxes the quality requirements for content for which the

sensitivity of the human visual system at large eccentricities degrades faster. Image by pixel2013 / Pixabay.

Current rendering techniques struggle to ful�ll quality and power e�ciency

requirements imposed by new display devices such as virtual reality head-

sets. A promising solution to overcome these problems is foveated rendering,

which exploits gaze information to reduce rendering quality for the periph-

eral vision where the requirements of the human visual system are signi�-

cantly lower. Most of the current solutions model the sensitivity as a function

of eccentricity, neglecting the fact that it also is strongly in�uenced by the

displayed content. In this work, we propose a new luminance-contrast-aware

foveated rendering technique which demonstrates that the computational

savings of foveated rendering can be signi�cantly improved if local lumi-

nance contrast of the image is analyzed. To this end, we �rst study the

resolution requirements at di�erent eccentricities as a function of luminance

patterns. We later use this information to derive a low-cost predictor of the

foveated rendering parameters. Its main feature is the ability to predict the

parameters using only a low-resolution version of the current frame, even

though the prediction holds for high-resolution rendering. This property
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is essential for the estimation of required quality before the full-resolution

image is rendered. We demonstrate that our predictor can e�ciently drive

the foveated rendering technique and analyze its bene�ts in a series of user

experiments.
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1 INTRODUCTION

New display designs, such as virtual and augmented reality glasses,

may revolutionize the way we interact with the virtual and the real

worlds. While virtual reality (VR) enables us to experience new,

unknown environments which we would not be able to explore

otherwise, augmented reality (AR) allows us to enrich reality with

digital information. For these technologies to succeed, the visual

quality delivered by the new devices has to �rst meet the capabilities

and the requirements of the human visual system (HVS). In par-

ticular, the new displays have to deliver high spatial and temporal

resolution using low-power computational units to maintain the

small form factor of the setup. Despite signi�cant improvements in

display devices, rendering software, and hardware, computational
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Fig. 2. The same foveation exhibits di�erent visibility depending on the

underlying texture. In this image, the foveation was optimized such that it

is invisible for the photograph (le� part). At the same time, however, it can

be easily detected on the text texture (right part).

e�ciency and bandwidth are still signi�cant factors limiting visual

quality achieved by novel display technologies [Vieri et al. 2018].

Therefore, it remains a signi�cant challenge to develop e�cient

rendering techniques which match the quality required by the HVS

at minimal computational cost.

Great promise for improving rendering quality and power e�-

ciency lies in exploiting human perception [Masia et al. 2013]. The

quality perceived by a human subject is not uniform across the

visual �eld, but decreases towards the periphery [Noorlander et al.

1983; Prince and Rogers 1998; Strasburger et al. 2011]. This observa-

tion provided a foundation for foveated rendering – gaze-contingent

rendering methods that provide the highest quality only for foveal

vision and degrade it towards the periphery without visible artifacts

[Duchowski and McCormick 1995; Weier et al. 2017]. Due to the

rapid development of low-cost eye trackers, foveated rendering will

play a key role for new VR devices [Durbin 2017]. Although the

bene�ts of such an approach have been successfully demonstrated

for many quality attributes, e.g., spatial resolution [Guenter et al.

2012; Patney et al. 2016; Stengel et al. 2016a], color [Duchowski

et al. 2009], and depth [Kellnhofer et al. 2016], we show that these

techniques do not fully exploit their potential. In particular, most of

the existing techniques propose to degrade the rendering quality as

a function of eccentricity, but neglect the fact that the sensitivity

of the HVS to image distortions also depends on the underlying

content - the e�ect known as visual masking. A relevant obser-

vation for our work is that the visibility of foveation depends on

the underlying luminance contrast, i.e., while a given reduction of

spatial resolution becomes objectionable in high-contrast regions, it

remains unnoticed for low-contrast regions (Figure 2). As we later

show in this paper (Section 5), this observation is con�rmed by

our measurements for di�erent visual eccentricities, which show a

signi�cant di�erence in the tolerable amount of quality degradation

depending on the underlying visual content (Figure 7).

In this paper, we exploit the above observation and propose a

luminance-contrast-aware foveated rendering strategy. In contrast

to previous techniques, our method adjusts the spatial resolution

not only according to the eccentricity but also to the underlying

luminance information, taking into account the strength of local

visual masking. To this end, we propose a new, low-cost predictor

that takes a current frame as an input and provides a spatially-

varying map of required spatial resolution. The predictor is based

on existing models of visual masking, but it is trained for foveated

rendering on a new dataset acquired in a psychophysical experiment.

We demonstrate that such prediction can be accurate even if the

input is a low-resolution frame. This property is critical, as it allows

us to predict the required parameters of foveated rendering based

on a crude approximation of the new frame. To apply the prediction

in foveated rendering, we �rst render a low-resolution version of a

frame to which we apply our predictor. Next, we render the frame

according to the predicted quality. We demonstrate that this strategy

leads to substantial computational savings without reducing visual

quality. The results are validated in a series of user experiments

including full foveated rendering systems. The main contributions

of this work include:

• an e�cient data collection procedure for testing visibility of

foveation for a wide �eld-of-view,

• perceptual experiments investigating the visibility of spatial

resolution reduction as a function of eccentricity and under-

lying luminance signal for complex image patches,

• an e�cient prediction of required spatial resolution based on

a low-resolution input frame,

• application of the predictor to foveated rendering in desktop-

and HMD-based end-to-end systems with eye tracking.

2 RELATED WORK

In this section, we brie�y discuss visual models of contrast percep-

tion, and their extensions that can handle retinal eccentricities. Since

our key application is the reduction of spatial resolution in foveated

rendering, we focus on blur perception modeling (Section 2.1). We

also discuss previous techniques for gaze-contingent rendering, and

emphasize those solutions that account for local image content

(Section 2.2).

2.1 Perceptual Background

Contrast perception. Image contrast is one of the most impor-

tant features for visual perception [Peli 1990]. Contrast detection

depends on the spatial frequency of a contrast pattern, and it is

characterized by the contrast sensitivity function (CSF) [Barten 1999].

The perceived contrast is a non-linear function of contrast mag-

nitude, and the incremental amount of detectable contrast change

increases with the contrast magnitude. This e�ect is often called

self-contrast masking, and it is modeled using compressive contrast

transducer functions [Lubin 1995; Zeng et al. 2001]. The contrast

detection threshold also increases with the neighboring contrast of

similar spatial frequency [Legge and Foley 1980]. To analyze this

spatial masking e�ect, often band-pass �lter banks are used �rst

to decompose an image into di�erent frequency channels [Lubin

1995; Mantiuk et al. 2011b; Zeng et al. 2001], and then quantify the

amount of masking within each channel separately. Majority of

perceptual models that are used in various applications, such as

image quality evaluation [Lubin 1995; Mantiuk et al. 2011b], com-

pression [Zeng et al. 2001], and rendering [Bolin and Meyer 1998;

Ramasubramanian et al. 1999], consider all the HVS characteristics
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mentioned above. In this work, we take a similar approach, but we

account for the loss of contrast sensitivity in the peripheral vision

and aim for a computationally e�cient solution that can be used in

foveated rendering.

Peripheral vision. Perceptual characteristics of the HVS and, in

particular, contrast perception, are not homogeneous over the visual

�eld. This non-homogeneity is often related to the non-uniform

distribution of retinal sensory cells. To explain the perceptual di�er-

ence between foveal and peripheral vision, Curcio and Allen [1990]

provide anatomical measurements of ganglion cell densities as a

function of retinal eccentricity. In more recent work, Watson [2014]

parameterizes this relation with a formula for four di�erent visual

quadrants and compares the estimations of cell densities with actual

measurements from previous studies. Such a parameterization al-

lows computation of the Nyquist frequency for an arbitrary position

in the visual �eld based on the sampling rate of retinal ganglion

cells. However, such anatomical models do not fully explain periph-

eral sensitivity to visual features, such as contrast. Peli et al. [1991]

address this gap and extend the foveal CSF to the peripheral visual

�eld. Although their extension �ts well to the previous peripheral

contrast sensitivity measurements, it is not a complete model for

foveated rendering. In our work, we extend this approach by provid-

ing an end-to-end system for the estimation of the required quality

of contrast reproduction in complex images across wide �eld-of-

view and using it in the image synthesis task.

Blur sensitivity. The decreased sensitivity to image distortions

in peripheral vision motivates foveated rendering techniques (Sec-

tion 2.2) to save computation time by rendering low-resolution con-

tent at larger eccentricities. From the perception point of view, the

closest e�ect extensively studied in the literature is blur perception.

For foveal vision, many studies measure detection and discrimina-

tion threshold for simple stimuli such as a luminance edge blurred

with di�erent Gaussian �lters [Watson and Ahumada 2011]. Similar

experiments can be used to measure the sensitivity to blur at various

eccentricities [Kim et al. 2017; Ronchi and Molesini 1975; Wang and

Ciu�reda 2005]. The existing studies reveal a monotonic increase

in the threshold values as a function of eccentricity. Unfortunately,

simple stimuli used in the above experiments cannot represent the

rich statistical variety of complex images. In particular, such thresh-

old values strongly depend on the image content [Sebastian et al.

2015]. In this work, we generalize these �ndings regarding the blur

perception beyond the fovea and investigate the content-dependent

blur sensitivity at various retinal eccentricities.

Image metrics. Perceptual experiments studying the sensitivity

of the HVS to contrast changes can be used for developing image

metrics which are then used to evaluate or drive image synthesis

techniques. In this context, Watson and Ahumada [2011] argue that

when the reference and blurred images are given as inputs, general

models of contrast discrimination can account for blur perception

for simple stimuli in the fovea. Their model works by summing the

energy over a restricted local extent and uses the CSF as well as

the spatial contrast masking e�ects. Sebastian et al. [2015] employ

a similar generic model to predict their data for complex images,

while Bradley et al. [2014] additionally consider local luminance

adaptation to account for near eccentricity (up to 10◦). The closest

to our e�orts is the work by Swa�ord et al. [2016] which extends

the advanced visible di�erence predictor HDR-VDP2 [Mantiuk et al.

2011b] to handle arbitrary eccentricities by employing a cortex mag-

ni�cation factor to suppress the original CSF. The authors attempt

to train their metric based on data obtained for three applications of

foveated rendering, but they cannot �nd a single set of parameters

that would �t the metric prediction to the data. In this work, we

draw from these �ndings but aim for a computationally e�cient

solution which accounts for complex images and can be used to

drive foveated rendering techniques.

2.2 Foveated Rendering

Traditional techniques. Gaze-contingent rendering has many po-

tential applications focused on the improvement of viewing experi-

ence and reduction of the computation costs (refer to [Weier et al.

2017] for a recent survey). Gaze-driven solutions contribute to the

improvement of tone mapping [Jacobs et al. 2015], depth perception

[Kellnhofer et al. 2016] and viewing comfort in stereoscopic dis-

plays [Duchowski et al. 2014]. Computational depth-of-�eld e�ects

partially compensate for the lack of proper eye accommodation

in standard displays [Mantiuk et al. 2011a; Mauderer et al. 2014],

while for displays with accommodative cues, proper alignment of

multi-focal images can be achieved [Mercier et al. 2017] or laser

beams can be guided by pupil tracking [Jang et al. 2017]. The compu-

tation performance may be improved by reducing the level of detail

[Duchowski et al. 2009; Reddy 2001], or spatial image resolution

[Guenter et al. 2012; Patney et al. 2016; Stengel et al. 2016b; Sun

et al. 2017; Swa�ord et al. 2016; Vaidyanathan et al. 2014] towards

the periphery, which is particularly relevant for this work.

Content-dependent techniques. Image content analysis to improve

quality and e�ciency in foveated rendering has been considered to

a relatively limited extent. Patney et al. [2016] use contrast enhance-

ment to help recover peripheral details that are resolvable by the

eye but degraded by �ltering that is used for image reconstruction

from sparse samples. Stengel et al. [2016b] make use of information

available from the geometry pass, such as depth, normal, and tex-

ture properties, to derive local information on silhouettes, object

saliency, and specular highlights. The combined features along with

visual acuity fall-o� with the eccentricity and luminance adaptation

state (based on the previous frame) allow for sparse sampling of

costly shading. As luminance information is not available before

shading for the current frame, contrast sensitivity and masking

cannot be easily considered. Sun et al. [2017] propose a foveated 4D

light �eld rendering with importance sampling that accounts for

focus di�erences between scene objects, which are determined by

the object depth and the eye accommodation status at the �xation

point. This leads to the reduction of computation costs for optically

blurred scene regions, which requires displays that can trigger the

eye accommodation. Our content-dependent processing does not

account for depth di�erences but rather refers to contrast and blur

perception on standard displays. We are inspired by previous work

that refers to contrast perception to improve the rendering perfor-

mance for foveal vision [Bolin and Meyer 1998; Ramasubramanian

et al. 1999], but we consider a foveated rendering setup that imposes
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additional constraints on the e�ciency of our visual model.

3 OVERVIEW AND MOTIVATION

Our approach relies on a new computational model for luminance

contrast (Section 4), which estimates the maximum spatial resolu-

tion loss that can be introduced to an image without visible artifacts.

It is based on underlying content and eccentricity which are im-

portant in the context of foveated rendering. The model relies on

characteristics of the HVS such as the peripheral contrast sensitivity

and a transducer model for contrast perception. We calibrate the

model prediction using our new experimental data (Section 5). Our

technique relies on two critical observations described below.

Ho�man et al. [2018] and Albert et al. [2017] demonstrate that

temporarily-stable low-resolution rendering is perceptually equiva-

lent to a Gaussian-blurred high-resolution rendering. This motivates

our technique to model the resolution reduction using a Gaussian

low-pass �lter. Consequently, our model uses a standard deviation

(σs ) of the Gaussian �lter to express the maximum acceptable res-

olution reduction. The σs value can be later translated into the

rendering resolution for given content and used to drive rendering

resolution adaptively during real-time rendering (Figure 3). Thanks

to the above assumption, we derive our model as a closed-form

expression, which enables an e�cient implementation.

The decision about the optimal rendering resolution would be

made best based on full information about the content, i.e., complete

contrast information across di�erent spatial frequencies. However,

this would require a full-resolution rendering in the �rst place, and

therefore, it is not a feasible solution in foveated rendering. Due

to this paradoxical nature of the problem, we �rst design and test

our predictor using high-resolution inputs. Later, we show that it is

possible to re-train the model such that it provides the prediction

based on a low-resolution rendering. In the latter case, undersampled

high-frequency features are still present in a form of aliasing which

conveys to our metric information on local contrast localization.

4 COMPUTATIONAL MODEL

In this section, we derive a computational model that estimates

the maximum resolution reduction that remains undetectable by an

observer. The derivation operates on local patches of high-resolution

image and computes a standard deviation of a Gaussian low-pass

�lter which models the resolution degradation. We derive the model

in two steps. First, we express the luminance contrast of the patch

in perceptual units (Section 4.1). Based on this measure, we derive a

formula for computing the standard deviation σs (Section 4.2).

4.1 Perceptual Contrast Measure

We express the perceived contrast of a single image patch as a

function of spatial frequency and eccentricity. The function accounts

for contrast sensitivity of the human visual system as well as visual

masking (Figure 4). The model, as described here, contains several

free parameters which we optimize based on experimental data

(Section 5).

Luminance contrast. The process starts with the conversion of the

intensity of every pixel p to an absolute luminance value L(p). Next,

we compute band-limited contrast similarly to [Lubin 1995; Rama-
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Fig. 3. Overview of our method. Our predictor takes patches, retinal ec-

centricity, observer distance and display parameters such as the resolution,

gamma, peak luminance, physical width and height as inputs and predicts

the required spatial rendering bandwidth expressed as the standard devia-

tion of a low-pass Gaussian filter. The map is generated using our method

and the output is enhanced for visibility. Image by Pxhere.

subramanian et al. 1999]. To this end, we �rst perform a Laplacian

pyramid decomposition [Burt and Adelson 1983] which provides

band-limited luminance di�erence ∆L(f ,p). Then, following [Peli

1990], we use the decomposition to compute the luminance contrast

pyramid as:

C(f ,p) =
∆L(f ,p)

La (f ,p) + ϵ
, (1)

where f is the spatial frequency in cpd units (cycles-per-visual-

degree) and ϵ is a small number to prevent mathematical singular-

ities in the regions with low luminance. The average luminance

La (f ,p) in the denominator is provided by the corresponding point

in the Gaussian pyramid two levels down in resolution, which is

upsampled by a factor of four using a linear interpolation.

Contrast sensitivity and retinal eccentricity. To obtain information

about the magnitude of perceived contrast, we normalize the values

in the pyramid using eccentricity-dependent contrast sensitivity

function (CSF). This gives us luminance contrast Cn expressed as a

multiple of detection threshold:

Cn (f ,p) = C(f ,p) SCSF

(
f ,θ (p),La (f ,p)

)
, (2)

where θ (p) is the retinal eccentricity of pixelp expressed in visual de-

grees, and La (f ,p) models the adaptation luminance. Here, we base

the contrast sensitivity function SCSF on [Peli et al. 1991] where the

standard contrast sensitivity function S ′CSF for the fovea is attenuated

according to the eccentricity:

SCSF(f ,θ ,La ) =
1

exp
(
caθ f

) a(La )S ′CSF(f ). (3)
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Fig. 4. This figure shows a flowchart of our model for computing the perceptual contrast measure. The input parameters which are optimized during the

calibration are shown in bold.

In the above equation, ca is the fundamental eccentricity parameter

that models the rate of HVS acuity loss in the peripheral visual �eld,

f is the spatial frequency, and a(La ) = (1 + 0.7/La )
−0.2 represents

the e�ect of adaptation luminance La on the peak sensitivity [Barten

1989]. After initial attempts of using existing CSF de�nitions such

as [Barten 1989; Mannos and Sakrison 1974] for S ′CSF, we opted

for a custom solution. We de�ne the CSF at four frequency bands

centered at 4, 8, 16 and 32 cpds with values denoted by s4, s8, s16 and

s32 (parameters of our model). The sensitivities for the intermediate

frequencies are obtained using cubic Hermite spline interpolation

in the log-sensitivity and log-frequency domain. We found that this

solution provides a more accurate prediction of our model than

using standard CSF functions. We attribute this behavior to a broad-

band characteristic of a Laplacian pyramid1, which is better handled

by a custom de�nition which accounts for broad-band stimuli in

contrast to standard CSF which is derived for a single luminance

frequency stimuli.

Visual masking. In the �nal step of measuring the perceived lumi-

nance contrast, we incorporate the e�ect of the visual masking. To

this end, we use the transducer model of Zeng et al. [2000] on the

normalized contrast Cn , and expressed the �nal value of perceived

luminance contrast as:

Ct (f ,p) =
sign

(
Cn (f ,p)

)
·
��Cn (f ,p)��α

1 +
1

|N |

∑
q∈N (p)

��Cn (f ,q)��β , (4)

Here, the numerator models the self-masking e�ects, while the

denominator models the spatial-masking e�ects from the 5 × 5

neighborhood N (p) in the same band. α , β ∈ [0, 1] are parameters

of our model, which control the masking modeling.

4.2 Estimation of Resolution Reduction

Our goal is to estimate per-patch maximal resolution reduction

that would remain unnoticeable by an observer. Since we model the

resolution reduction using a Gaussian low-pass �lter, we are seeking

a maximum standard deviation for the Gaussian �lter such that the

di�erence between the original patch and its �ltered version will

be imperceptible. Using our perceived contrast de�nition from the

1Each band of a Laplacian pyramid contains a broad frequency spectrum, and in partic-
ular, the highest frequency band contains a signi�cant portion of medium frequencies.

previous section (Equation 4), we can formalize this problem as:

maximize σs ,

subject to ∀p∈Π,f Ct (p, f ) −C ′
t (p, f ) ≤ 1,

(5)

where Ct (p, f ) is the contrast of the original patch Π. In this and

the following equations, we use C ′ notation for all the contrast

measures related to the patch Π convolved with Gσs , a Gaussian

function with standard deviation equal to σs . Consequently,C
′
t (p, f )

is the perceived contrast measure of the original patch which is pre-

�ltered usingGσs . The constraint in this formulation guarantees that

the di�erence between the two patches will be below the visibility

threshold. Due to the complex nature of the contrast de�nition and

the spatial dependencies between contrast values for neighboring

regions, the above optimization does not have a direct solution and

requires an iterative optimization for the entire image. This would

be prohibitively expensive in the context of foveated rendering.

Therefore, in this section, we demonstrate how this formulation can

be simpli�ed leading to a closed-form solution for σs .

Let us �rst consider estimatingσs for one pixelp and single spatial

frequency f . If the patch Π is convolved withGσs , the values in the

Laplacian frequency decomposition will be attenuated according to

the frequency response of the �lter. More precisely, the frequency

response of Gσs for frequency f will be given by:

Ĝσs (f ) =
C ′(f ,p)

C(f ,p)
. (6)

On the other hand, we know that the frequency response of a Gauss-

ian �lter Gσs is also a Gaussian:

Ĝσs (f ) = exp
(
−f 2

/ (
2σ 2

f

))
, (7)

where σf is the standard deviation in the frequency domain, and it

is de�ned as σf = (2πσs )
−1. By combining Equations 6 and 7, one

can show that σf can be expressed as:

σf =
f√

−2 ln
(
C ′(f ,p)
C(f ,p)

) = f√
−2 ln

(
C ′
n (f ,p)

Cn (f ,p)

) , (8)

where the last transition is a direct consequence of the Equation 2.

In the above equation, Cn (f ,p) can directly be computed from the

input patch. So the only unknown, besides σf which we need to

compute, is C ′
n (f ,p). To obtain its value, we will use the contrast

loss constraint from Equation 5.
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We can assume that when σs increases, and so does the di�er-

ence between C ′
t (f ,p) and Ct (f ,p). Thus, when σs is a solution to

our problem, the following equality holds: C ′
t (f ,p) −Ct (f ,p) = 1.

We can directly express perceived contrast in this equality using

Equation 4, and obtain:

sign
(
Cn (f ,p)

)
·
��Cn (f ,p)��α

1 +
1

|N |

∑
q∈N (p)

��Cn (f ,q)��β −
sign

(
C ′
n (f ,p)

)
·
��C ′
n (f ,p)

��α
1 +

1

|N |

∑
q∈N (p)

��C ′
n (f ,q)

��β = 1.

(9)

It becomes clear, thatC ′
n (f ,p) cannot be computed directly from this

equation due to the visual spatial masking term in the denominator

of the �rst component. Therefore, we make one more assumption.

We assume that the spatial masking for the path convolved with

Gσs can be approximated by the spatial masking in the original

patch. Assuming additionally that the sign of the contrast does not

change during the �ltering, the above equation can be simpli�ed to:

sign
(
Cn (f ,p)

)
·
(��Cn (f ,p)��α −

��C ′
n (f ,p)

��α )
1 +

1

|N |

∑
q∈N (p)

��Cn (f ,q)��β = 1. (10)

From the above equation, C ′
n (f ,p) can directly be derived as:

C ′
n (f ,p) =

������
��Cn (f ,p)��α −

©«
1 +

1

|N |

∑
q∈N (p)

��Cn (f ,q)��β ª®¬
������
1/α

. (11)

Please note that we omit the sign of the contrast since we are inter-

ested only in its magnitude. The above de�nition of C ′
n (f ,p) and

Equation 8 provide a closed-form expression for computing optimal

σf for a particular pixel p and spatial frequency f .

Now, we could simply use the relation σf = (2πσs )
−1 to convert

σf to the primary domain. Before doing this, we �rst compute

σf for entire patch, which is critical for our calibration procedure

(Section 5). To this end, we �rst combine σf estimation for pixel

patch by taking the maximum value across all frequency levels. This

allows us to make our method conservative and not overestimate the

acceptable resolution reduction. Note that, larger σf corresponds to

smaller blur, and therefore, smaller acceptable resolution reduction.

Next, we combine the obtained values across the entire patch using

a smooth maximum function:

σ̂f =
©«
∑
p∈Π

σf (p) · exp
(
ω · σf (p)

)ª®¬
/ ©«

∑
p∈Π

exp
(
ω · σf (p)

)ª®¬
, (12)

where ω ∈ [0,∞) is a parameter which controls the behavior of the

function ranging from computing average as ω → 0 and maximum

as ω → ∞. When experimenting with optimizing parameters of our

model, we found that the smooth maximum performs better than

simply taking maximum value. Finally, σs for the entire patch is

computed as:

σ̂s =
1

2πσ̂f
. (13)

5 CALIBRATION

Our model is de�ned using several free parameters: self-masking

parameter (α ), spatial-masking parameter (β), CSF parameters (s4,

s8, s16, s32), fundamental eccentricity (ca ), and smooth max param-

eter (ω). In this section, we present a calibration procedure and

perceptual experiments that are used to collect necessary user data.

Training our model requires a set of patch pairs consisting of a

high-resolution patch as well as its low-resolution version for which

the quality degradation is not detectable. One way of collecting such

data is measuring maximum and undetectable resolution reduction

for individual patches and eccentricities. However, such procedure

limits each trial to a single eccentricity and patch. As a result, it

requires long sessions to collect data. Instead, we propose to gather

the data in a more e�cient way. We tile one patch into an image

covering the entire screen and estimate the optimal, unnoticeable

foveation. This allows us to derive necessary information for a whole

range of eccentricities.

We de�ne foveated rendering using two parameters. The �rst

one is the radius r of the foveal region where the visual content

is rendered in the highest resolution. The second parameter is the

rate k at which the resolution is reduced towards the periphery.

Consequently, the resolution reduction modeled by using a standard

deviation of a Gaussian �lter can be expressed as:

σs (θ ) =

{
0, if θ < r ,

k · (θ − r ), if θ ≥ r ,
(14)

where θ is the retinal eccentricity of a particular point on the screen.

Di�erent combinations of r and k a�ect the tradeo� between quality

reduction and rendering e�ciency. The goal of our experiment

is to measure the visibility of foveation for di�erent parameters

and image patches to determine the strongest one which remains

unnoticeable.

The experimental setup. Our system consists of a Tobii TX300

Eye Tracker, a chin-rest to keep the observation point relatively

stable during the experiments, and two displays. The �rst one is a

27" ASUS PG278Q display with 2560 × 1440 resolution spanning a

visual �eld of 48.3° × 28.3° from a viewing distance of 66.5 cm. The

second display is a 32" Dell UP3216Q with 3840 × 2160 resolution

spanning a visual �eld of 52.3° × 30.9° from a viewing distance

of 71 cm. The peak luminances of the displays are measured as

214.6 cd/m2 and 199.2 cd/m2 whereas the peak resolutions produced

at the center are 24.9 cpd and 34.1 cpd for the �rst and the second

displays, respectively.

The stimuli. Our dataset consists of 36 patches selected from natu-

ral and synthetic images with di�erent characteristics (see Figure 5).

We picked the �rst 18 patches randomly from a large set of nat-

ural images [Cimpoi et al. 2014]. To improve the diversity of our

dataset, the remaining 18 patches are picked from a large set of

5640 images by maximizing the dissimilarity between patches (Ap-

pendix A). For the �nal stimuli, we �ll the display frame by tiling

an input patch. We avoid introducing high-frequency components

on the transitions between tiles by mirroring them about the ver-

tical axis, when tiling in the horizontal direction, and about the

horizontal axis, when tiling in the vertical direction (see Figure 6).

The foveated version of the stimuli are prepared by �ltering using

a Gaussian kernel with standard deviation given by Equation 14.

We used 9 di�erent combinations of r and k (r ∈ {4, 7, 11} and
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k ∈ {0.0017, 0.0035, 0.0052}).

The procedure. We use a 2AFC procedure, where the alternatives

are foveated and non-foveated versions of the same stimuli. Par-

ticipants were asked to choose the image which did not contain

foveation. In order to get the participants familiar with the exper-

iment interface and controls, we included a training stage at the

beginning of the experiment, where the concept of foveation was

explained using an exaggerated example. The stimuli were prepared

with the assumption that the gaze position is located at the center

of the display. The stimulus was hidden when the gaze position

deviated from the center. Di�erent alternatives were indicated by

randomly assigned letters (A and B) at the center of the screen. The

observers were able to switch between two alternatives freely, and

they were shown a uniform gray screen in-between. A total of 8

participants with normal or corrected-to-normal vision participated

in our experiment, and they made a total of 324 comparisons in six

sessions for 36 patches. Each comparison was repeated 10 times by

each participant and the average time required for a participant to

complete a single session was 40 minutes.

Results. From the results of the above experiment, we want for

each patch to compute an optimal σs as a function of eccentricity.

To this end, we �rst compute for each patch i the probability of

detecting foveation given by triplet (r ,k,θ ) as:

P(det |r ,k,θ ) =

1

N

N∑
n=1

an (r ,k,θ ), (15)

an (r ,k,θ ) =

{
1, if non-foveated stimulus is chosen,

0, otherwise.
(16)

where N is the number of comparisons by each participant. If

P(det |r ,k,θ ) < 0.75, we labeled this combination of (r ,k,θ ) as un-

detectable. We then for each eccentricity take the maximum value of

σs across all (r ,k,θ ) marked as undetected. This de�nes per-patch

and per-observer optimal σs (θ ). As the last step, we average σs (θ )

values across the participants to obtain the ground truth σ
(i)
s (θ )

for patch i . The same procedure is repeated for all patches. The

resulting σ
(i)
s functions are shown in Figure 7. The range marked by

the whiskers indicates to what extent the acceptable blur depends

on the underlying patch for a particular eccentricity. The signi�cant

di�erences between sigma values for di�erent patches (see insets)

are the central insight we use in our work. Please refer to the plots

in the supplemental materials, which show more in-depth analysis

of measured σ
(i)
s values.

In our implementation, we choose detection threshold, 0.75, as

the middle value between the success rate associated with random

guessing (P(det |r ,k,θ ) = 0.50 with two alternatives) and the proba-

bility of a guaranteed detection (P(det |r ,k,θ ) = 1.00). This value is

commonly used in previous perceptual studies to estimate “barely”

visible di�erences [Lubin 1995]. The threshold can be adjusted based

on the application requirements, and the ground truth associated

with a di�erent threshold probability can be easily computed from

existing data without repeating the perceptual experiment.

Optimization. Finally, to �nd the parameters of our model, we use

a hybrid optimization approach. In the �rst stage, we use Adaptive

Simulated Annealing (ASA) [Aguiar e Oliveira Junior et al. 2012]

to optimize for predictor parameters. In the second stage, we run a

gradient-based minimization to �ne-tune the result of ASA. This

hybrid optimization scheme helps avoiding local optima. The fol-

lowing weighted Mean Absolute Error (MAE) is minimized during

the optimization:

E = min
S

1

36

36∑
i=1

30°∑
θ=4°

w1(θ )
���w2

(
σ̂
(i)
s (θ ) − σ

(i)
s (θ )

) ��� , (17)

where S = {α , β, ca , s4, s8, s16, s32,ω} is the set of model parameters,

σ
(i)
s (θ ) is the ground truth for patch i from our experiment and

σ̂
(i)
s (θ ) is the result of our predictor for the eccentricity θ . w1 and

w2 are weighting functions de�ned as:

w1(θ ) =

{
2, if θ < 10,

1, otherwise
(18)

w2(x) =

{
8x , if x > 0,

x , otherwise.
(19)

The �rst function,w1 puts more emphasis on the error measured in

the parafoveal region where HVS has a higher sensitivity. On the

other hand, the second function,w2, penalizes underestimation of

spatial bandwidth with a larger weight, because underestimation is

less desirable than overestimation due to potential visual artifacts.

We check the generalized performance by performing 6-fold cross-

validation. Optimal parameters and errors measured at each fold

are depicted in the supplementary materials. We observe that the

test errors are close to training errors and optimal parameter val-

ues are stable among di�erent cross validation folds. As expected,

higher training and testing errors are observed when the predictor

is calibrated on the inputs with reduced resolution due to the loss of

information on high-frequency bands. But we can still assume a rea-

sonable approximation by the predictor due to the small di�erence

in MAE (0.503 compared to 0.554). The optimal parameter values

that we are using in our validation are obtained by calibrating our

predictor using the whole dataset. These values are given in Table 1.

As explained in Section 3, a method for predicting the acceptable

resolution degradation operating on a full-resolution image is not

very useful in the context of foveated rendering. Therefore, we take

advantage of our parametric design of the model and train it on low-

resolution images, which can be provided by foveated rendering

as a cheap initial approximation of the frame. Consequently, we

calibrate and run our model on inputs which are downsampled

by a factor of 1/4 (corresponding to 1/16 of the target area). The

downsampling routine employed during the calibration is nearest-

neighbor downsampling and it does not involve low-pass �ltering or

interpolation. This is equivalent to actual low-resolution rendering,

including spatial aliasing e�ects that may arise during rendering.

This way, our model is able to utilize cues which appear in the form

of aliasing in the presence of higher-frequency content. When actual

rendering takes place, we render true low resolution. This gives the

optimal performance for the actual rendering applications.
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Fig. 5. Our dataset for the calibration of our predictor. We include patches with di�erent luminance and texture pa�erns from a dataset of natural and

synthetic images [Cimpoi et al. 2014]. Note that patches 1-12 contain reduced-contrast versions of the same content to cover a wider range of contrasts during

the calibration phase.

Gaze position

Fig. 6. A sample stimulus used for data collection and calibration. The

zoomed region shows how the input patch is tiled prior to Gaussian filtering.

For di�erent values of foveal region radius r and rate of quality drop-o�

k , the participants are asked to compare foveated (shown here) and non-

foveated (without Gaussian blur) versions in a 2AFC experiment.

Table 1. Best parameter values obtained a�er calibration. The input patches

are downscaled by a factor of 1/4. Loss is the training error computed using

Equation 17. In addition to the loss function, which is a weighted mean

absolute error, we also provide the standard unweighted mean absolute

error (MAE) for evaluation.

α β ca log10(s4) log10(s8)
0.555 0.135 0.040 5.290 6.226

log10(s16) log10(s32) ω Loss MAE
3.404 4.011 1.919 0.706 0.554

6 IMPLEMENTATION

We implemented our predictor on desktop and HMD platforms

using di�erent rendering API and game engines. The model is

implemented in OpenGL Shading Language (GLSL) [2013] and

Unity3D [2018] shading languages. The rendering frameworks for

our perceptual validation experiments use Unity3D game engine

and NVIDIA Variable Rate Shading (VRS) API [2018] on OpenGL.

6.1 Predictor

For our validation experiments, we implemented our method in

C++ using the OpenGL Shading Language (GLSL). We adapted our

implementation of the model described in Section 4 to fully bene�t

from the optimizations in GLSL. For example, we implement local
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Fig. 7. Box plot of ground truth σ
(i )
s obtained from our experiment. This

plot shows how content influences the tolerable amount of foveation with

respect to eccentricity. Red lines represent the median while boxes show

the range between 25th and 75th percentile of the data. Whiskers extend to

the whole range. The patches which have the minimum, the median and

the maximum σ
(i )
s are shown on the plot for 30° eccentricity.

operations de�ned on patches and pixels (such as those given in

Equations 1-13) in a way that allows the graphics card to process

the whole frame in parallel. Similarly, the decomposition into dif-

ferent frequency bands is achieved using mipmaps to maximize the

parallelism, where higher levels represent lower frequencies. σf
estimation from di�erent frequencies are combined by performing

a level-of-detail texture lookup in the pyramid for e�ciency. On the

other hand, the smooth max function is executed by computing the

mipmap of the optimal standard deviation and taking the level in

the pyramid which corresponds to the maximum achievable level

for a single patch. In all operations, we preserve the patch-pixel

correspondence to maintain locality information. We used di�erent

patch sizes for two displays during calibration; namely, 128 × 128
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Fig. 8. We used a Campbell-Robson chart (top le�) as a test input for our

predictor. The predictions of σs from our model are given for di�erent visual

eccentricities. The eccentricities are indicated at the top-right corner of

each map. Our model successfully predicts a higher σs (corresponding to a

lower rendering resolution) for the spatial frequencies that are imperceptible

by the HVS as the visual eccentricity increases and the contrast declines.

(Please note that the Campbell-Robson chart is prone to aliasing when

viewed or printed in low resolution. Please refer to the electronic copy of

this document for a correct illustration.)

for the Asus display (2560 × 1440) and 192 × 192 for the Dell dis-

play (3840 × 2160). For rendering, 128 × 128 was used (corresponds

to 32 × 32 e�ective patch size for 1/4 downsampled inputs). The

choice of patch size is mainly dependent on the number of bands

required in Band Decomposition step. Using smaller patches bring a

limitation on the pyramid decomposition while using larger patches

make the predictions less sensitive to local changes in content. A

patch size of 128 × 128 provides a good balance between these two.

Performance. Table 2 shows the performance benchmark of the

predictor implementation on anNVIDIAGeForce GTX 2080Ti graph-

ics card. Since our setup consists of two di�erent displays we provide

the measurements for their respective resolutions. For comparison,

we also include the time measurements using full resolution inputs.

Table 2. Running times of our implementation. Our predictor is calibrated

and validated using 1/4× downsampled inputs (1/16× of the area) in a

series of subjective experiments. Here, we show the computational savings

obtained by our approachwith respect to the predictions from full-resolution

inputs. Please note that these values do not include rendering costs.

Input Size 2560 × 1440 3840 × 2160

Downsampled (1/4×) 0.7ms 1.2ms

Full resolution 3.0ms 5.9ms

6.2 Complex Shading

Unity3D and Variable Rate Shading implementations perform two

rendering passes. The �rst pass is the low-resolution o�-screen

rendering of the scene (1/16 of the full frame area). In the second

pass, the actual rendering takes place where the foveation is ei-

SPONZA WATER FOG

Fig. 9. Preview of the scenes used for evaluating the performance of di�erent

foveated rendering systems.

Sponza model by McGuire CGA [2017], Water and Fog shaders by P_Malin / Shadertoy and SebH /

Shadertoy, respectively.

ther simulated by the application of a low-pass Gaussian �lter to

full-resolution frame (Unity3D) or real foveation is implemented by

adjusting the sampling rate of local shading blocks (Variable Rate

Shading). Both approaches employ an implementation of our predic-

tor in the underlying shader language, which guides the selection

of spatially varying rendering bandwidth.

The use of Gaussian �lter for simulated foveation in the Unity3D

implementation provides a good temporal stability, and it was demon-

strated to be visually similar to an anti-aliasing which avoids spu-

rious artifacts resulting from undersampling [Albert et al. 2017;

Ho�man et al. 2018]. By using this strategy, we make sure that the

decisions of participants are primarily based on the visual evaluation

of foveation quality throughout our experiments and isolated from

other external factors such as the quality of a particular temporal

antialiasing routine that might be employed in the pipeline.

The Variable Rate Shading (VRS) implementation shares the

same routines with the GLSL implementation of our predictor. The

foveation is performed via VRS API calls to locally customize shad-

ing rates for 16 × 16 blocks within the frame. The spatial rendering

bandwith, originally computed asσs by our predictor, is converted to

sampling rate by de�ning a cuto� frequency for the Gaussian �lter.

For our applications, we chose the cuto� frequency corresponding

to 2σ̂s , which is approximately 13.5% of the Gaussian �lter’s maxi-

mum. With this cuto� point choice, the sampling rate required in

one dimension for rendering a patch is de�ned by Nyquist rate as:

SR =
1

4σ̂s
. (20)

Current VRS API does not o�er a selection of arbitrary shading rates

for 16 × 16 block units, and only the following rates are available:

1/1, 1/2, 1/4, 1/8 or 1/16. Therefore, in our implementation, we

round the prediction to the closest available rate for each of 16 × 16

pixel block. We further exclude 1/2 and 1/8 rates since they provide

a non-uniform resolution degradation in the horizontal and vertical

direction, which is not supported by our method. Even though our

predictor is able to predict shading rates coarser than 1/16, we do

not take advantage of this in our tests.

Performance. We used the NVIDIA VRS to compare the perfor-

mance of di�erent foveation strategies on three di�erent scenes

(Figure 9) with shaders of di�erent complexity. They include a sim-

ple Phong shading (Sponza) [McGuire 2017] and more complex

ones simulating re�ections (Water) and volumetric e�ects (Fog).

The renderings were inspired by shaders posted on Shadertoy.com
23, but they were adapted to be appropriate for real-time rendering

2https://www.shadertoy.com/view/Xl2XRW
3https://www.shadertoy.com/view/XlBSRz
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system. Table 3 presents the timings for rendering one frame us-

ing di�erent strategies in 2560 × 1440 resolution. As expected, our

technique o�ers better performance than standard foveation when

shader complexity increases. For the very simple Phong shader,

when the geometry complexity dictates the rendering performance,

our technique cannot provide favorable results.

Table 3. The table presents the comparison between the performance of full-

resolution rendering, standard foveation, and our method. The times include

all the computations required for rendering one frame. In the parenthesis,

we provide a speed-up with respect to the full-resolution rendering.

Scene Full-resolution Standard foveation Our foveation

Sponza 2.6ms 2.3ms (1.1 x) 3.0ms (0.9 x)

Water 9.5ms 5.3ms (1.8 x) 4.3ms (2.2 x)

Fog 22.9ms 13.9ms (1.6 x) 5.5ms (4.2 x)

7 VALIDATION

In this section, we �rst show the results from rendering bandwidth

predictions from our method for di�erent inputs. Then we present

our results from two subjective experiments. In the �rst experiment,

the participants compare our method with non-foveated rendering.

In the second one, they compare our locally adaptive content-aware

foveation method with a globally adaptive foveation strategy.

7.1 Visual Evaluation

In Figure 10, outputs of our predictor for 15 di�erent inputs are

shown. The sample inputs and corresponding outputs are grouped

according to the platform and framework. Overall, we observe that

the model successfully adapts the rendering bandwidth to the con-

tent, while taking the peripheral sensitivity loss of the HVS into

account. In inputs G1 and G2, we mostly see the e�ect of defocus.

For these inputs, our method suggests a higher rendering resolution

(represented by a lower σ̂s prediction) on the objects which are in

focus. In inputs G3, G5, U3 and U4, we observe that the majority

of rendering budget is allocated to the buildings, which contain a

large amount of detail, and a much lower amount of the bandwidth

is allocated to the mostly uniform regions in the sky. It is possible

to see how the heatmap adapts to the silhouette of the street lamp

in input G3, which contains large amount of details on a uniform

background. In inputs V1 and V2, we observe that a lower rendering

budget is assigned to the regions with low luminance levels, where

HVS sensitivity to contrast is reduced. Figure 10 also provides a

comparison to a standard foveated rendering in terms of fraction

of shaded pixels by our technique when compared to the standard

foveated rendering (number in parenthesis). Here, both techniques

provide foveation which remains unnoticed. For the standard tech-

nique the parameters are �xed across all stimuli.

7.2 Foveated vs. Non-Foveated Rendering

The ground truth that we use for calibration corresponds to a per-

ceived contrast loss with a detection probability of 0.75 (1 JND).

If the calibration is successful, the contrast loss in the outputs of

our method should be detected approximately with this probability.

In order to validate this behavior, we perform a 2AFC subjective

experiment, where the participants are asked to compare the results

of foveated rendering based on our method and non-foveated ren-

dering. The participants performed comparisons by freely toggling

between the two results shown on the display and selecting the

result which contains the least amount of blur. We conducted this

perceptual experiment using the images given in Figure 10 as the

experiment stimuli with GLSL, Unity3D and VRS implementations.

Unity3D implementation is tested on both desktop display (ASUS

with a Tobii eye tracker) and Head-Mounted Display (HTC Vive

with an SMI eye tracker) platforms. During the experiments, we

consider di�erent multipliers (0.5 − 5.0) to rescale the predicted

maps. The main motivation behind testing di�erent scaling factors

was to validate whether our model precisely predicts the foveation

that is close to the just-detectable one.

In order to avoid bias, the stimuli are shown in randomized order

and the participants are unaware of the multiplier value of each

stimuli during the experiment. To minimize the training e�ects and

to get the participants familiar with the experiment interface, we

included a warmup phase at the beginning of the experiment on a

di�erent scene. To test the in�uence of di�erent hardware on the

performance of the model we evaluate it using di�erent platforms.

The experiments performed on GLSL and VRS implementations are

rendered assuming the gaze position at the center of the display.

The actual gaze position is monitored with the eye tracker, and in

the presence of signi�cant deviations from the center, the stimuli

are hidden by displaying a gray screen. On VRS implementation,

the participants were still able to rotate the camera using the mouse.

On the other hand, HMD and desktop experiments using Unity3D

did not impose such constraints and the scene was rendered using

the actual gaze position during the experiment.

In total, 12, 14 and 5 participants took the experiment on GLSL

(Desktop), Unity3D (HMD and Desktop) and NVIDIA VRS (Desktop)

platforms, respectively. The results of this experiment are shown in

Figure 11. Our observation con�rms the expected trend of increasing

detection rates with the increasing multiplier. On the other hand,

the detection rate for the predictions σ̂s (multiplier = 1), is lower

than 0.75 (1 JND), for which our predictor is calibrated. We identify

several explanations for this. One possible reason is our custom loss

function (Section 5) which penalizes overestimations with a larger

weight in order to stay conservative. Another reason is the fact

that the scene used in this experiment are much more complex, and

the viewers are allowed to freely explore the scenes. Last, but not

least, the tested setups include factors for which our model does not

account. For example, in the HMD scenario, there is a signi�cant

additional quality degradation due to the lens distortions; in the

VRS case, the rendering includes some non-negligible amount of

temporal aliasing. Despite the above factors, it can seen that our

model provides a rather consistent prediction of 75 % detection rate

when a multiplier approx. 1-2 is used. This is a very satisfactory

result, and we demonstrated in our further experiments that this

prediction accuracy is su�cient for our applications.

7.3 Local vs. Global Adaptation

A suboptimal alternative to our method would be to adjust the foveal

region radius in visual degrees, r , and the rate of resolution drop-o�
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Fig. 10. Sample inputs and predictions from the implementation of our model on di�erent platforms. The gaze position is assumed to be at the center of the

screen for comparison. The color maps show the predicted standard deviations (σ̂s ) in the second row for each platform. σ̂s = 0 represents a requirement

for rendering in the native display resolution whereas larger values represent rendering in a lower resolution. Average value of each σ̂s map is shown in

the top-le� corner and the numbers in parentheses are the estimates of the resolution reduction with respect to the standard foveated rendering. They are

computed as the ratio of average sigma values from a standard foveated rendering implementation and our method. The standard foveation parameters are

selected from the ground truth of text patch in our training set (Image 9 in Figure 5), which represents a visual content with high spatial frequencies. The third

row in Variable Rate Shading shows the optimization of rendering resolution using our model, which is color coded according to di�erent sampling rates

supported by VRS API. The number in the top le� corner represents the fraction of pixels which are actually shaded for each one of these frames.

Images G1-5 byManu Jarvinen, Fxxu / Pixabay, the authors, analogicus / Pixabay and dawnfu / Pixabay, respectively, 3Dmodels in U1 and U2 by Amazon, U3 and U4 by Unity, U5 and V2 byMcGuire CGA [2017],

V3 and V5 by The Hallwyl Museum / Sketchfab and V4 by ruslans3d / Sketchfab.

in the periphery, k , depending on the content of the whole frame

(see Section 5 for de�nitions of r and k). This approach does not

take into account local changes in the contrast; therefore, it is a

globally adaptive foveated rendering. In a 2AFC experiment, we

analyze the visual quality provided by our method (local adaptation)

and the globally adaptive foveated rendering. At the beginning of

the experiment, we run our method on input images which are

provided in Figure 10 and compute the average standard deviation

of foveation kernel σ̄s . Then we ask the participants to choose the

optimal foveal region radius, r ∈ {4, 7, 11}, that provides the best

visual quality in terms of overall sharpness for each image. At the

end of this procedure, we compute the rate of resolution drop-o�,

k , as the value which gives the same average σ̄s to have an equal

amount of rendering cost in both methods.

Next, we asked the participants to compare local and global adap-

tation and choose the stimuli which o�ers the best overall sharpness.
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Fig. 11. Detection rates of the participants for our method and non-foveated

rendering. x -axis represents di�erent multipliers that we use for changing

the average σs prediction to test the e�ect of di�erent rendering budgets

on the preferences of participants. The actual prediction of our method

corresponds to the multiplier value of 1 and increasing values on the x -axis

represent more limited rendering budgets. The trend in the detection rate

shows that the participants actually detect the foveation and the detection

rate for the actual rendering is smaller than 0.75 for all platforms when the

predictions are not scaled. The error bars represent standard error.

This experiment was run on both HMD and desktop displays using

our Unity3D implementation with gaze positions provided by the

eye tracker. 14 participants took the experiment and a total of 70

comparisons were made on 5 scenes given in Figure 10 for each

platform. As a result of this experiment, our method is preferred

in 53 of 70 comparisons (p < 0.01, Binom. test) on desktop display

and in 37 of 70 comparisons (p = 0.28, Binom. test) on HMD. Our

analysis shows that the preference towards our method is statisti-

cally signi�cant for desktop display while the preference for both

methods are much closer on HMD.

The preferences of the participants for each scene are given in

Figure 12. For all scenes tested on the desktop display, our method is

preferred more often than global adaptation. On the other hand, the

di�erence between twomethods is signi�cant for only one scene (U4,

p < 0.03, Binom. test) on HMD. We think that the limited resolution

of HMD and additional factors, especially those which a�ect the

visual quality in the peripheral vision such as lens astigmatism,

decrease the visibility of di�erences between two methods.

8 PROOF-OF-CONCEPT FOVEATED RAYTRACING

As a proof of concept, we implemented a custom foveated raytracer

using OpenCL with RadeonRays routines, which was guided by

our method. Our main goal was to test the overhead incurred by

incoherent sampling and our predictor computation. In the �rst

pass, a low-resolution image with 16-times fewer pixels is rendered.

This image is then used by the predictor to estimate the standard

deviations for the full-resolution image. In the second pass, we trace

additional rays increasing the overall sampling such that it matches

the prediction of our model. All the samples are then combined,

and the �nal image is reconstructed using bilinear interpolation.

An example rendering as well as predicted sigma and sampling
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Fig. 12. The result of our subjective experiments where the participants

compared our method with globally adaptive foveated rendering, which

does not take local distribution of contrast into account. The error bars

represent standard error.
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Fig. 13. On the top, the figure presents images generated by our ray tracer.

On the bo�om, we present the predicted map of standard deviations and

the mask with sampling rates . The notation is the same as in Figure 10.

Insets indicate magnification of the selected regions in the images depicted

by the white rectangles. The white circle shows the gaze location.

rate maps are presented in Figure 13. As a result of applying our

technique, 47 % of all rays was used to render the foveated version.

For a comparison, a standard foveated rendering which would be

below the detection threshold requires 55 % of all rays. Using our

technique, the image from the �gure was rendered in 15.87ms on a

PC with an NVIDIA RTX 2080 Ti graphics card in 2560×1440 pixels

resolution. The rendering of the full resolution image took 22.70ms,

while the standard foveated rendering took 17.24ms.

9 LIMITATIONS AND FUTURE WORK

In our work, we use Gaussian blur to model quality degradation

due to foveated rendering. While this allowed us to derive a closed-

form solution to the problem of �nding the optimal foveation, it is

only an approximation. We believe, however, that the accuracy of

prediction will still hold for small deviations from this assumption,

and when a better accuracy is needed, our method can be retrained

in the future following the strategy proposed in the paper. Another

exciting direction for future work is to consider temporal aspects
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of foveated rendering. It is known that motion also reduces the

sensitivity of the human visual system, and including this factor

might be bene�cial.

Our initial data collection procedure for calibration had a sim-

pler design, where the stimuli consisted of a single patch displayed

at a selected eccentricity from a pre-de�ned set in each trial. The

process turned out to be prohibitively time-consuming, and it did

not simulate well the case of foveated rendering because each patch

was viewed in isolation on a uniform background. To improve the

e�ciency of data collection and to make the stimuli more realistic,

we decided to perform experiments using stimuli �lling the entire

screen. This procedure allowed us to collect data simultaneously

for an extensive range of eccentricity. Tiling the patches may in-

troduce additional luminance frequencies which are not present

in the original patch. We minimized this problem by �ipping the

patches. Furthermore, our experiment was performed for a limited

set of (r ,k)-pairs. Even though a denser sampling could lead to more

accurate measurements, our procedure was su�cient to obtain a

good model, which is con�rmed in our validation.

With our current implementation, it is possible to reach a run-

ning time below 1ms for computing the prediction from our model.

Nevertheless, there is still room for improvement by using lower-

level optimizations, especially for Laplacian pyramid decomposition,

which is themost costly operation in the implementation.We believe

that an implementation which is fully optimized for the hardware

would achieve much shorter running times.

It is known that the total system latency, which is mainly deter-

mined by the display refresh rate and the eye tracker sampling rate,

should be taken into account when testing novel foveated rendering

techniques [Albert et al. 2017]. During our validation studies, our

participants have not reported any artifacts (such as so-called “pop-

ping” e�ects or tunnel-vision) that could be directly attributed to

the system latency. However, similar to other foveation techniques,

we believe that our method would also require a less aggressive

level of foveation in the presence of a noticeable amount of system

latency unless a countermeasure is implemented [Arabadzhiyska

et al. 2017; Gri�th et al. 2018].

Vignetting and acuity reduction for o�-axial viewing directions

are typical problems in HMD optics. This enables further reduction

in sampling rates when combined with standard and our content-

dependent foveated rendering [Ho�man et al. 2018; Pohl et al. 2016].

For the optimal performance in our HMD system, such lens acuity

fallo� should be measured, which we relegate for future work.

During the experiments with VRS, we observed non-negligible

temporal aliasing that this technology introduces. We do not ac-

count for such distortions in our model. In the future, it would be

bene�cial to extend our technique to consider such temporal arti-

facts to possibly avoid additional temporal aliasing which would be

necessary to combat the problem.

Our model is currently targeting saving the computation by lim-

iting the shading computation. We do not consider geometry pass

which can have a considerable contribution to the overall rendering

time. We believe, however, that our way of deriving the model, in

particular, the experimental procedure and modeling, can be suc-

cessfully used in the future to design more complete models for

driving foveated rendering.

10 CONCLUSION

Recently proposed foveated rendering techniques use �xed, usually

manually tuned parameters to de�ne the rate of quality degradation

for peripheral vision. As shown in this work, the optimal degrada-

tion that maximizes computational bene�ts but remains unnoticed

depends on underlying content. Consequently, the �x foveation

has to be conservative and in many cases, its performance ben-

e�ts remain suboptimal. To address this problem, we presented

a computational model for predicting a spatially-varying quality

degradation for foveated rendering that remains unnoticed when

compared to non-foveated rendering. The prediction is based on

previous �ndings from human visual perception, but it is redesigned

and optimized to meet the high-performance requirements of novel

display technologies such as virtual reality headsets. In particular, a

critical feature of our model is its capability of providing an accurate

prediction based on a low-resolution approximation of a frame. Our

validation experiments con�rm that our technique is capable of

predicting foveation which remains just-below the visibility level.

This, in turn, enables optimal performance gains.
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A STIMULI CHOICE

We diversify our dataset of stimuli by choosing 18 patches from

a large collection of 5640 images. We maximize the dissimilarity

between them by choosing every patch in a greedy fashion using

the following formula:

In+1 = argmax
I

{
d(I ,Dn )

}
, (21)

where Dn is the dataset consisting of the �rst n patches and In+1 is

the next patch that is added to the dataset. The dissimilarity measure

d(I ,Dn ) between a candidate image and the dataset is de�ned as

d(I ,Dn ) =

K∑
k=1

������Lk (I ) −
1

|Dn |

∑
Id ∈Dn

Lk (Id )

������ (22)

where Lk (I ) is the mean absolute deviation of pixels in kth level of

Laplacian pyramid for image I . This dissimilarity metric maximizes

the diversity of frequency content in the dataset by picking the

image which has the Laplacian decomposition least similar to the

average of existing images.
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