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Abstract
The fundamental question of how much we can ultimately

reduce the phase noise of a lumped, inductorless oscillator
through careful design is addressed and it is shown that the
fluctuation dissipation theorem of thermodynamics imposes
a lower limit on the phase noise. An analytical formulation
of this limit is presented and it is shown that the phase noise
of ring oscillators with long-channel MOS devices is closer
to this limit compared to that of the relaxation oscillators or
ring oscillators with short channel MOS devices.

Introduction
Due to the increasing demand for high-level integration of

electronic circuits, lumped, inductorless oscillators (LIOs)
have become an extremely attractive choice for today’s IC
designers. Relaxation and ring oscillators are used in several
applications including clock recovery circuits for serial data
communications (1) and on-chip clock distribution (2).
However, applications in radio frequency (RF) circuits is
quite limited mainly due to inferior phase noise behavior
compared to inductor-based oscillators. Although several
investigations have been performed to improve the phase-
noise of LIOs (e.g. (3)), the fundamental question of whether
or not there is a minimum achievable phase noise for this
class of oscillators has not been addressed. This lingering
question causes a great deal of uncertainty about the scalabil-
ity of RFIC design without using tuned circuits.

In this paper we address this question and show that one
of the fundamental principles of thermodynamics sets a
lower limit on the phase noise of LIOs. Using a simplified
model, we then present a quantitative analysis of this mini-
mum achievable phase noise. Finally, we present several
examples from previously published results on relaxation
and ring oscillators to compare the minimum achievable
phase noise to the experimental results from real designs.

The Physical Argument for Minimum Achievable Phase 
Noise

The phase noise of an oscillator is an indication of the fact
that the oscillator is not continuously oscillating with the
same frequency. To build a stable (and hence low-phase-
noise) oscillator, one should be able to enforce the period of
oscillation in a reliable fashion. In other words, a constant
with the dimension of time is required to dictate the oscilla-
tion period. In inductor-based oscillators (like the Colpitts)
this constant is  were L is the inductor and C is the
capacitor. In transmission-line-based oscillators the ratio of

 establishes the time constant in which l is the length of
the transmission line and v is the velocity of electromagnetic
wave inside the transmission line. In LIOs the product of 
is usually the time constant. There is, however, a fundamen-
tal difference between this latter case and the first two ones.
The fluctuation dissipation theorem of thermodynamics dic-
tates that there exists a finite amount of thermal noise associ-
ated with any resistor. Thus, in contrast to inductor-based
and transmission-line-based oscillators, the time constant of
LIOs is inherently noisy because of the resistor noise. Con-
sequently, even if the rest of the circuit is noise-free, the
resistor noise imposes a lower limit on the phase noise of
LIOs.

To provide a quantitative prediction of this minimum
achievable phase noise, we use a simple model for an LIO
(Fig. 1). Only the equilibrium resistor noise (given by 4kT/R)
is taken into account in this formulation of minimum achiev-
able phase noise. Although ring oscillators do not com-
pletely resemble this model, the final result for the lower
limit of phase noise is still applicable to them. In fact, by tak-
ing into account the transistor noise and noise bandwidth in
critical circuit nodes of a ring oscillator, it can be shown that
their minimum achievable phase noise is always slightly
higher than that of the model given in Fig. 1.

Fig. 1: (a) A typical RC relaxation oscillator. (b) The Schmitt comparator transfer function. (c) The waveform for the capacitor voltage
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Analytical Formulation of Phase Noise for the RC 
Relaxation Oscillator

Fig. 1 shows a typical RC relaxation oscillator, which will
be used as a simplified model for an LIO. The oscillator is
composed of a Schmitt comparator in an RC feedback loop.
We first derive the basic equations governing the behavior of
this oscillator and present an analysis of the jitter. In this anal-
ysis, the equilibrium resistor noise (given by 4kT/R) is taken
into account while all other noise sources associated with the
comparator and all non-equilibrium noise sources (like 1/f
noise) are neglected. We then provide an analytical formula-
tion of phase noise for this relaxation oscillator. The expres-
sion that we derive provides the minimum achievable phase
noise dictated by the first principles of thermodynamics.

A. Frequency and Minimum Power Dissipation
The oscillator of Fig. 1 works as follows: during the first

half of the period, the capacitor voltage changes exponentially
from v1 to v2 (the two comparison levels). The duration of the
first half of the period is found to be

(1)

Similarly, the duration of the second half of the period is

(2)

and the frequency of oscillation is given by

(3)

where To is the period of oscillation.

The absolute minimum power dissipation of this oscillator
(neglecting the power consumed by the comparator) is dic-
tated by the amount of charge transferred to the capacitor as
its voltage moves between v1 and v2 in each cycle:

(4)

B. Jitter
The jitter is generated by the fluctuations of vC which are in

turn caused by the resistor noise. The probability density func-
tion of the fluctuations of vC at any given time t can be found
using the circuit model of Fig. 2. Assuming that the capacitor
voltage is zero at t=0, this voltage as a function of the noise
current, in, is given by

(5)

Since in is a Gaussian process with zero mean, (5) dictates
that vC is also a Gaussian process with zero mean. Conse-
quently, the fluctuations of vC will be completely described by
finding its variance. Using (5) we can find the variance of vC:

(6)

in which  is the autocorrelation function of the noise
source whose value is given in the onset of Fig. 2. Using this
autocorrelation function in (6) and performing the integration,
the variance of vC is found to be1

(7)

Note that as  the variance of vC converges to kT/C
and becomes independent of R. By replacing t in (7) by T1 or
T2, we can find the variance of the vC at the end of the first
and second half-periods, respectively.

As the capacitor voltage approaches the decision levels, the
fluctuations of vC shifts the switching instance form its antici-
pated time and hence results in jitter. As far as the timing jitter
for T1 (T2) is concerned, the fluctuations of vC can be inter-
preted as some uncertainty on the decision level v2 (v1). Using
(1) and (2) the variances of T1 and T2 are then evaluated as:

(8)

(9)
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Fig. 2: The circuit model and the basic equations for calculating the vari-
ance of the capacitor voltage at any time t (vC(t)) given that its value is
accurately known at time t=0.
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where the linearization approximation is justified due to the
fact that the noise level is always small. The total uncertainty
in the period (cycle-to-cycle jitter) is given by:

(10)

We have assumed a duty cycle of 50% so that we can replace
2t in (7) by To. Note also that ∆T1 and ∆T2 are uncorrected
variables. The switching takes place exactly when vC equals
v1 or v2. Consequently, at the beginning of each half cycle the
value of vC is known accurately. Since the only noise source
taken into account is white, the uncertainty of vC and hence
T1,2 at the end of each half cycle is completely independent of
the one at the end of previous half cycle. This ensures us that
∆T1 and ∆T2 are in fact independent.

After solving (3) for R and using it in (10) we get

(11)

where  is the normalized decision level. We have
assumed v2=vdd-v1, which ensures a duty cycle of 50%. The
second part of (11), called the normalized jitter, is only a func-
tion of v1n and can be plotted versus this parameter. Fig. 3
present such a plot showing that the normalized jitter is mini-
mized for v1n=0.24. For constant values of temperature,
capacitance, oscillation frequency and bias voltage, jitter (and
hence phase noise) assumes its minimum value for v1=0.24vdd
and v2=0.76vdd. Hereafter, we will use these values to find the
minimum achievable phase noise. The minimum power dissi-
pation and minimum cycle-to-cycle jitter are then found to be

(12)

(13)

C. Phase Noise
The output of the relaxation oscillator of Fig. 1 is a stochas-

tic square wave signal with mutually-independent, Gaussian-
distribution cycle-to-cycle jitter. As presented in (4), the phase
noise of such a signal has a close-to-Lorentzian shape around
each harmonic. The phase noise around the first harmonic at
an offset frequency of  is given by

(14)

This equation predicts that the phase noise has a 1/f2 shape
for sufficiently large offset frequencies, which is consistent
with the previously reported measurement results ((5) and
(6)). Using (13) in (14) the phase noise at these offset frequen-
cies is found to be

(15)

The phase noise is inversely proportional to the minimum
power dissipation, which is in turn proportional to the capaci-
tor value and the square of the bias voltage.

Experimental Results
The expression given in (15) provides the minimum

achievable phase-noise for the idealized version of the relax-
ation oscillator shown in Fig. 1. Most practical relaxation
oscillators, however, are not implemented in this fashion.
Fig. 4 provides the schematic and the design parameters of a
CMOS relaxation oscillator reported in (5). Although this
oscillator is not exactly of the same form as the idealized
relaxation oscillator given in Fig. 1, it is still considered an
LIO. In the case of the oscillator of Fig. 4, the charging and
discharging mechanism of the capacitor is not through a resis-
tor but rather through the current sources and the transistors.
Nevertheless, these components are noisy and thus impose a
minimum achievable phase noise for this architecture.

Fig. 5 compares the phase noise reported in (5) to the mini-
mum achievable phase noise given by the second part of (15)
under a constraint of constant power. To calculate Pmin, we
have assumed vdd=3.3V which is typical for the 0.5µm tech-
nology. The minimum achievable phase noise for this power
level is -122.6dBc/Hz and -136.6dBc/Hz at 1MHz and 5MHz
offset frequencies, respectively. The measured values reported
in (5) are -102dBc/Hz and -115dBc/Hz. Without increasing
the power dissipation, around 21dB of phase noise improve-
ment is possible before hitting the limit line of minimum
achievable phase noise dictated by the first principles of ther-
modynamics for this class of oscillators. A similar architec-
ture is reported in (6) as a relaxation VCO, which draws
2.3mA of current from a 6V power supply at 115MHz (Fig.
5.a and Fig. 7 in (6)). Under constant power-constrained
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design, (15) predicts that the minimum achievable phase noise
for this oscillator is -139dBc/Hz at an offset frequency of
1MHz. This is again 21dB lower than the reported value of -
118dBc/Hz given in (6). These two examples illustrate that the
relaxation oscillator configuration is not an optimum choice in
terms of the power-phase noise tradeoff.

Experimental data on ring oscillators shows that these
oscillators perform better in terms of power-phase noise
tradeoff. Table I compares the measurement results reported in
(3) to the theoretical prediction of the minimum achievable
phase noise for the same power. The index numbers are the
same as the ones assigned in (3). N is the number of stages
and Lmin is the channel length of the smallest transistor in the
circuit. The data is presented in descending order of Lmin. The
difference between measured and predicted phase noise in this
case is smaller than 9dB with most numbers around 6dB much
better than the relaxation oscillator case. The difference
between the minimum achievable phase noise and the mea-
sured phase noise increases with decreasing Lmin. This can
possibly be attributed to the excess noise in short-channel
MOS devices the origins of which is discussed in (7).

Conclusion
The lower limit of phase noise in LIOs is shown to be dic-

tated by the fluctuation dissipation theorem of thermodynam-
ics. Using a simplified model for this class of oscillators, a
quantitative prediction of this minimum achievable phase
noise is presented and the phase noise is expressed as a func-
tion of temperature, power dissipation, frequency of oscilla-
tion and the offset frequency. The phase noise of ring
oscillators is generally closer to this limit compared to that of
the relaxation oscillators, making a ring oscillator a more
attractive choice in terms of power-phase noise tradeoff. It is
shown that the phase noise improvement through careful
design is fundamentally limited to 5 to 10dB for practical ring
oscillator designs. The difference between the minimum
achievable phase noise and the actual measured phase noise of
a typical ring oscillators increases as we shrink the channel
length of the MOS devices, which can be explained as due to
the excess noise in short-channel MOS devices. 
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Table I: Experimental results vs. theoretical prediction of minimum
achievable phase noise at ∆f=1MHz for the ring oscillators of (3).

Index N Lmin
µm

fosc
MHz

Power
mW

PNmeas.
dBc/Hz

PNmin
dBc/Hz

∆PN
dB

Current
Starved

1 5 2 232 1.5 -118.5 -123.4 4.6 No

2 11 2 115 2.5 -126 -131.7 5.7 No

4 3 0.53 751 5.85 -114 -119.1 5.1 Yes

5 5 0.39 850 6.27 -112.6 -118.3 5.7 Yes

6 7 0.36 931 6.22 -111.7 -117.5 5.8 Yes

7 9 0.32 932 6.82 -112.5 117.9 5.4 Yes

8 11 0.32 869 6.62 -112.2 118.3 6.1 Yes

9 15 0.28 929 7 -112.3 118 5.7 Yes

10 17 0.25 898 9.5 -112 119.6 7.6 Yes

11 19 0.25 959 9.75 -110.9 119.2 8.3 Yes

3 19 0.25 1330 25 -111.5 120.4 8.9 No
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