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Abstract

Comprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple

detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges,

extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY,

a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We

show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage

data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the

NA12878 human genome. https://github.com/arq5x/lumpy-sv.

Background
Differences in chromosome structure are a prominent

source of human genetic variation. These differences are

collectively known as structural variation (SV), a term that

encompasses diverse genomic alterations including de-

letion, duplication, insertion, inversion, translocation

or complex rearrangement of relatively large (for ex-

ample, >100 bp) segments. While SVs are considerably

less common than smaller-scale forms of genetic vari-

ation such as single nucleotide polymorphisms (SNPs),

they have greater functional potential due to their larger size,

and they are more likely to alter gene structure or dosage.

Our current understanding of the prevalence and im-

pact of SV has been driven by recent advances in gen-

ome sequencing. However, the discovery and genotyping

of SV from DNA sequence data have lagged far behind

SNP discovery and genotyping because they are funda-

mentally more complex. SVs vary considerably in size,

architecture and genomic context, and read alignment

accuracy is compromised near SVs by the presence of

novel junctions (that is, breakpoints) between the ‘sample’

and reference genomes. Moreover, SVs generate multiple

alignment signals, including altered sequence coverage

within duplications or deletions (read-depth), breakpoint-

spanning paired-end reads that align discordantly relative

to each other (read-pair), and breakpoint-containing single

reads that align in split fashion to discontiguous loci in

the reference genome (split-read) [1,2]. These diverse

alignment signals are difficult to integrate and most algo-

rithms use just one. Other methods use two signals, but to

our knowledge these limit initial detection to one signal

and use the second to add confidence, refine breakpoint

intervals, or genotype additional samples [3-7].

An approach that integrates multiple signals allows for

more sensitive SV discovery than methods that examine

merely one signal, especially when considering heteroge-

neous samples and/or low coverage data, because each

individual read generally produces only one signal type

(for example, read-pair or split-read, but not both). The

impact of improved sensitivity is particularly acute in

low coverage datasets or in studies of heterogeneous

cancer samples where any given variant may only be

present in a subset of cells. However, even with high

coverage data, integration of multiple signals can increase

specificity by allowing for more stringent criteria for

reporting a variant call.

Results
Here, we present a novel and general probabilistic SV

discovery framework that naturally integrates multiple

SV detection signals, including those generated from read

alignments or prior evidence, and that can readily adapt to

any additional source of evidence that may become avail-

able with future technological advances.

* Correspondence: arq5x@virginia.edu; irahall@virginia.edu
1Department of Biochemistry and Molecular Genetics, Center for Public

Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
2Department of Public Health Sciences, University of Virginia, Charlottesville,

VA 22908, USA

Full list of author information is available at the end of the article

© 2014 Layer et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Layer et al. Genome Biology 2014, 15:R84

http://genomebiology.com/2014/15/6/R84

https://github.com/arq5x/lumpy-sv
mailto:arq5x@virginia.edu
mailto:irahall@virginia.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Overview of LUMPY

Our framework is based upon a general probabilistic

representation of an SV breakpoint that allows any num-

ber of alignment signals to be integrated into a single

discovery process (Materials and methods). We define a

breakpoint as a pair of bases that are adjacent in an ex-

perimentally sequenced ‘sample’ genome but not in the

reference genome. To account for the varying level of

genomic resolution inherent to different types of align-

ment evidence, we represent a breakpoint with a pair of

probability distributions spanning the predicted break-

point regions (Figure 1; Materials and methods). The

probability distributions reflect the relative uncertainty

that a given position in the reference genome represents

one end of the breakpoint.

Our framework provides distinct modules that map

signals from each alignment evidence type to the com-

mon probability interval pair. For example, paired-end

sequence alignments are projected to a pair of intervals

upstream or downstream (depending on orientation) of

the mapped reads (Figure 1A). The size of the intervals

and the probability at each position is based on the em-

pirical size distribution of the sample’s DNA fragment li-

brary. The distinct advantage of this approach is that

any type of evidence can be considered, as long there ex-

ists a direct mapping from the SV signal to a breakpoint

probability distribution. Here, we provide three modules

for converting SV signals to probability distributions:

read-pair, split-read, and generic. However, we emphasize

that our framework is readily extensible to new signals

that may potentially result from new DNA sequencing

technologies or alternative SV detection approaches. The

read-pair module maps the output of a paired-end se-

quence alignment algorithm such as NOVOALIGN

(C Hercus, unpublished) [8] or BWA [9], the split-read

module maps the output of a split-read sequence align-

ment algorithm (for example, YAHA [10], BWA-SW [11],

or BWA-MEM [5]), and the generic module allows users

to include signals that do not have a specific module

implemented such as prior knowledge of known SV

(for example, 1000 Genomes [12]), and output from

copy number variation (CNV) discovery tools (for ex-

ample, CNVnator [13]).

Once the evidence from the different alignment signals

is mapped to breakpoint intervals, overlapping intervals

are clustered and the probabilities are integrated (see

Materials and methods for details). Any clustered break-

point region that contains sufficient evidence (based on

user-defined arguments) is returned as a predicted SV.

The resolution of the predicted breakpoint regions can

be improved by trimming the positions with probabilities

in the lower percentile of the distribution (for example,

the lowest 0.1%).

It is well established that variant calling is improved by

integrating data from multiple samples [5,6,14,15]. The

LUMPY framework naturally handles multiple samples

by tracking the sample origin of each probability distri-

bution during clustering (Figure 1B; Materials and

methods). As an example of a typical analysis, LUMPY

can identify SVs in a whole-genome, 50X coverage

paired-end Illumina dataset from the NA12878 CEPH

individual in 12.2 hours using 8 Gb of memory using a

Figure 1 The LUMPY framework for integrating multiple structural variation signals. (A) A scenario in which LUMPY integrates three

different sequence alignment signals (read-pair, split-read and read-depth) from a genome single sample. Additionally, sites of known variants are

provided to LUMPY as prior knowledge in order to improve sensitivity. (B) A single signal type (in this case, read-pair) that is integrated from three

different genome samples. We present these as example scenarios and emphasize that multi-signal and multi-sample workflows are not mutually

exclusive. CNV, copy number variation.
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single processor (Materials and methods). Given that these

performance characteristics are comparable to existing ap-

proaches for SNP and indel detection, and that there is an

approximately linear relationship between data volume,

time and memory usage, we anticipate that simultaneous

analysis of tens and eventually hundreds of human ge-

nomes will be possible with LUMPY using commodity

hardware.

We implemented LUMPY in an open source C++ software

package (available at [16]) that is capable of detecting SV

from multiple alignment signals in BAM [17] files from

one or more samples.

Performance comparisons

We compared LUMPY’s performance to three other

popular and actively maintained SV discovery packages:

GASVPro [4], DELLY [3] and Pindel [18]. These algo-

rithms were selected due to their widespread use and in-

clusion in large-scale projects such as The Cancer

Genome Atlas (GASVPro) and 1000 Genomes (DELLY

and Pindel). Moreover, Pindel was one of the first pub-

lished SV discovery tools, and GASVPro and DELLY

both consider a secondary SV signal along with paired-

end alignments (read-depth and split-read, respectively).

Both GASVPro and DELLY have also demonstrated

substantial improvement over other popular SV tools

such as Breakdancer [19] and HYDRA [20].

Detection performance was measured using both simu-

lated data and previously published Illumina sequencing

data from the widely studied NA12878 CEPH individual.

The first simulation measured each tool’s basic detection

capabilities in a prototypical scenario by simulating 2,500

homozygous variants from various SV classes at random

genomic locations. The second simulation assessed the

power of each tool to detect 5,516 known deletion variants

present at varying allele frequencies within a mixed sam-

ple, as often occurs in heterogeneous tumors. Lastly, the

analysis of SVs in the NA12878 genome assessed the per-

formance of each tool on real data containing sequencing

errors and other detection confounders that are difficult

to simulate. In addition, the analysis of NA12878 (and

her parents) measured the effect of considering multiple

samples, prior SV knowledge, and third-party CNV predic-

tions on LUMPY’s performance. In each case, we measured

performance in terms of sensitivity and false discovery rate

(FDR) by comparing the predicted SV breakpoints to either

known breakpoints or split-read alignments from long-

reads (Pacific Biosciences (PacBio) and Illumina Moleculo)

that span the breakpoint. Predictions that either overlapped

known variants or had sufficient long-read support were

considered true positives, and all other predictions were

considered false positives (Materials and methods).

The simulated results were base on alignments gener-

ated by NOVOALIGN, and the NA12878 results were

based on BWA alignments. In both cases, YAHA was

used to generate split-read alignments. LUMPY was also

tested using alternative read alignment pipelines using

either BWA-backtrack or BWA-MEM for paired-end

alignment, and BWA-MEM for split-read alignment (with

roughly similar results; Figure 2D, E).

Homozygous variants of different structural variation

types

To assess the impact of coverage, SV type and SV size on

algorithm performance, we first simulated a set of sample

genomes that included 2,500 deletions, tandem duplica-

tions, inversions and translocations, randomly placed

throughout the human genome (Additional file 1). Vari-

ants were created with SVsim, a tool that creates defined

alterations to the reference genome (G Faust and I Hall,

unpublished) [21]. For each SV type, the variant size

ranged from 100 bp to 10 kb. We then used the WGSIM

read simulator (H Li, unpublished) [22] to ‘sequence’ each

simulated genome at 2X, 5X, 10X, 20X, and 50X haploid

coverage.

LUMPY was consistently more sensitive than the other

algorithms across nearly all coverage levels and SV types

(Figure 2A). DELLY had negligibly higher sensitivity (less

than one percentage point) for translocations at higher

coverage. LUMPY and DELLY were the only algorithms

that detected all variant types; GASVPro and Pindel do

not support detection of tandem duplications. (Note that

tandem duplication was added to Pindel since we per-

formed the analysis.) LUMPY’s superior sensitivity was

most dramatic in lower coverage tests (<10X). For ex-

ample, LUMPY detected 32.4% and 87.2% of all deletions

at 2X and 5X coverage, respectively, whereas GASVPro

detected 7.4% and 49.8%, DELLY detected 10.3% and

63.8%, and Pindel detected 7.4% and 50%. At best,

LUMPY was 35.5 times more sensitive than Pindel for

detecting translocations at 5X coverage (69.1% versus

2%). At worst, LUMPY was 0.009 times less sensitive

than DELLY for detecting translocations at 2X coverage

(69.1% versus 70.0%). At higher coverage (10 to 50X),

LUMPY’s sensitivity advantage persisted; it ranged from

88.8% to 99.6% across all SV types, whereas GASVPro

ranged from 14.3% to 94.3%; DELLY ranged from 81.2%

to 98.0%; and Pindel ranged from 5.2% to 96.5% (exclud-

ing the SV types that GASVPro and Pindel are incapable

of detecting).

LUMPY’s FDR remained low (less than 4%) in all but

the highest coverage cases (Figure 2B), and there was only

one instance where LUMPY’s FDR was more than two

percentage points higher than the best performing tool

(GASVPro’s FDR for inversions at 50X was 1.6% while

LUMPY’s was 4.9%). In general, the FDR for LUMPY,

GASVPro, DELLY, and Pindel increased as coverage in-

creased, ranging from 0% to 7.2% for LUMPY, 0% to 7.1%
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for GASVPro, 1% to 10% for DELLY, and 0% to 53.2% for

Pindel. These patterns suggest that coverage-based param-

eter tuning could be used to minimize FDR for all the

tools (as in Figure 3). We also note that FDR calculations

depend on the number of true positives, which vary widely

across SV varieties (Figure 2C). In certain cases (for ex-

ample, translocations), LUMPY had a far higher absolute

number of false positives, but these were counterbalanced

by a much higher number of true positives as well. Alterna-

tively, in cases where a specific SV type is not supported

and no true positive calls were made (that is, GASVPro and

Pindel for tandem duplications), the FDR reached 100%.

Heterogeneous tumor simulation

Variant detection is especially challenging in tumor stud-

ies because biopsied samples generally include a mixture

(See figure on previous page.)

Figure 2 Performance comparison using homozygous variants of various structural variation types. We simulated a genome with SVs by

embedding 2,500 deletions, tandem duplications, inversions or translocations in random locations in the human reference genome. We then

simulated sequence data from the altered genome with varying levels of sequence coverage. The performance measurements for LUMPY and

DELLY were based on paired-end (pe) and split-read (sr) alignments, GASVPro considered pe and read-depth (rd), and Pindel considered sr

alignments. (A) Sensitivity for each tool. LUMPY was the most sensitive in most cases, and had a marked improvement at lower coverage. DELLY

detected three more translocations than LUMPY at 20X, at the expense of 93 more false positives. (B) The corresponding FDR for each tool.

LUMPY’s FDR was low in all but the highest coverage cases. GASVPro and Pindel did not support tandem duplications, but false calls were made

in some cases, which resulted in a 100% FDR. (C) The absolute number of false positive calls. LUMPY had a high number of false positives in some

cases, but these are counterbalanced by a higher number of true positives (A). (D,E) To determine the impact that sequence alignment strategies

had on SV detection accuracy, LUMPY’s sensitivity (D) and FDR (E) are shown when predicting deletions at 5X coverage via different alignment

strategies from the simulations in (A-C). BWA-MEM produces both pe and sr alignment signals in a single alignment step, and serves as a basis of

comparison to the NOVOALIGN (pe) and YAHA (sr) strategy. BWA-MEM provides better sensitivity than NOVOALIGN when using the pe signal

alone, yet YAHA provides better sensitivity than BWA-MEM when using the sr signal alone. Sensitivity and FDR are roughly equivalent with either

the BWA-MEM or NOVOALIGN/YAHA strategies when LUMPY integrates both alignment signals.
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Figure 3 Receiver operating characteristic (ROC) curves comparing deletion prediction performance in the NA12878 individual. The

relationship between true positive and false positive calls for deletions in the NA12878 genome is given for LUMPY, GASVPro, DELLY, and Pindel.

Each point on a given tool’s ROC curve represents a minimum evidence support threshold ranging from 4 to 11 for 5X coverage and 4 to 20 for

50X coverage. Correctness was determined by two different methods: intersection with one of the 3,376 non-overlapping validated deletions

from Mills et al. [12], or validation by PacBio/Moleculo data. (A,B) As in Figure 5, prediction performance was measured with both 5X mean

genome coverage (A) and 50X coverage (B). The curves are colored following the same convention described in Figure 5. LUMPY outperforms

all other tools in all but one case. Pindel slightly outperforms LUMPY at higher-evidence thresholds in the 5X coverage case considering the Mills

et al. truth set; we note that this is expected given Pindel was used by the 1000 Genomes Project as one of the tools to define this truth set. At

the lower coverage, LUMPY’s performance is boosted by the inclusion of either prior evidence or NA12878’s parental genomes, but the read-depth

signal is too weak to offer any improvement. The distinction between tools at 50X coverage is low, but it is expected given the coverage and quality

of the data. At higher coverage, LUMPY is able to provide a high-confidence call set when considering read-depth, but priors and parental genomes

have little added benefit. pe, paired-end; rd, read-depth; sr, split-read.
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of abnormal and normal tissue, and because many tumor

samples are composed of multiple clonal lineages defined

by distinct somatic mutations. To assess the performance

of our algorithm in this more realistic scenario where in-

creased sensitivity is crucial, we simulated heterogeneous

samples by pooling reads from an ‘abnormal’ genome and

a ‘normal’ genome at varying ratios (Additional file 2). The

source of the simulated abnormal genome was the human

reference genome (build 37) modified (using SVsim) with

5,516 non-overlapping deletions identified by the 1000

Genomes Project [12], and an unmodified human refer-

ence genome was used to simulate the normal genome.

As above, each genome was ‘sequenced’ using WGSIM,

and the reads from the two genomes were combined in

varying proportions to create a single heterogeneous sam-

ple. The ratio of the reads from the abnormal genome (SV

allele frequency) varied between 5% and 50%, and the total

coverage ranged from 10X and 80X. For example, to simu-

late a sample with a 5% SV allele frequency at 10X cover-

age, the abnormal genome was sequenced at 0.5X

coverage and the normal genome at 9.5X coverage: when

combined, the two sets of reads represent a single hetero-

geneous sample sequenced at 10X coverage.

LUMPY was more sensitive than GASVPro, DELLY,

and Pindel in nearly all cases, especially when the coverage

of the abnormal genome was low owing to either lower

coverage, low SV allele frequency, or both (Figure 4A). For

example, at 10X coverage and 20% SV allele frequency

LUMPY detects 30.7% of the SVs, whereas GASVPro,

DELLY, and Pindel detect only 9.6%, 10.9%, and 6.2% of

the SVs, respectively. This represents a 2.8-fold increase in

sensitivity over the next best method. In general, to

achieve the same level of sensitivity, GASVPro, DELLY

and Pindel required roughly twice as much evidence as

LUMPY (by either increased coverage or SV allele fre-

quency). For example, at 20X coverage LUMPY detected

6.2% of variants present at 5% SV allele frequency, whereas

GASVPro, DELLY, and Pindel required 10% SV allele fre-

quency to achieve similar sensitivity (10.3%, 9.1%, and

5.5%, respectively). We note that this trend is also appar-

ent across SV varieties in the previous homozygous test

(Figure 2A). LUMPY had slightly lower sensitivity at

higher coverage levels and SV allele frequencies, but was

never more than four percentage points lower than the

best performing tool. For example, at 80X coverage and

50% SV allele frequency LUMPY’s sensitivity was 95.9%

and the best performing tool was GASVPro at 99.69%

(a 3.79% difference).

In all but the highest coverage and SV allele frequency

case, the FDR for LUMPY was less than 4% (Figure 4B),

and the FDR for GASVPro was less than 1% in all cases.

For DELLY and Pindel, the FDR was particularly high

when SV allele frequency was low. For example, at 10X

coverage the FDR for DELLY was 3.4 times higher at 5%

SV allele frequency than at 50% frequency, and the Pin-

del FDR was 111.9 times higher. At 20X coverage these

differences were 10.9 and 21.5 times higher at 5% fre-

quency than at 50% frequency for DELLY and Pindel, re-

spectively. This is in contrast to LUMPY, where modest

coverage-associated increases to FDR can likely be man-

aged via parameter tuning, without significantly decreas-

ing sensitivity.

SV detection in the NA12878 genome

Although it is difficult to precisely measure the sensitiv-

ity and accuracy of SV predictions made from a real data

set, it is also important to evaluate each tool’s perform-

ance when confronted with real data containing artifacts

that are not easily captured by simulations (for example,

PCR artifacts, chimeric molecules, reads from poorly as-

sembled genomic regions, and so on). In this experiment

we compared SV detection performance in the NA12878

individual by analyzing the Illumina Platinum Genomes

dataset, which represents approximately 50X coverage of

the NA12878 genome (European Nucleotide Archives;

ERA172924). We additionally subsampled this dataset to

approximately 5X coverage to assess SV detection in low

coverage scenarios.

To estimate sensitivity and FDR, we compared predic-

tions made by each tool to two truth sets: 1) 3,376 vali-

dated, non-overlapping deletions from the 1000 Genomes

Project [12] (Additional file 3); and 2) 4,095 deletions that

were detected by at least one tool in the 50X dataset, or

that were reported by Mills et al. [12] (which used nu-

merous SV detection tools), and that were validated by

split-read mapping analysis of independent long-read

sequencing data from PacBio or Illumina Moleculo plat-

forms (Additional file 4). We expect that most bona fide

SV calls will be validated by PacBio and/or Moleculo

data given the read lengths (mean 3.7 kb and 1.8 kb, re-

spectively) and coverage depth (mean 28.8X and 29.2X)

of these datasets. The rationale for two truth sets is that

although the 1000 Genomes callset is, to our knowledge,

the most comprehensive set of deletions for NA12878,

it still represents only a subset of the actual deletions in

that individual’s genome. Analyses performed here have

the benefit of higher quality sequencing data, longer

reads and improved SV detection tools, and thus are

likely to discover novel variants that were missed by

Mills et al. [12]. Furthermore, since Pindel was one of

the tools used to generate the 1000 Genomes callset

[12], this truth set is biased against predictions made by

LUMPY, GASVPro and DELLY. Monte Carlo shuffling

of each SV callset resulted in validation efficiencies of

less than 3%, indicating a low rate of spurious validation

for false positive calls (Table 1; Materials and methods).

Together, these two complementary approaches establish
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the other tools required twice the evidence from the ‘tumor’ genome. pe, paired-end; rd, read-depth; sr, split-read. (B) The FDRs for each tool at

varying allele frequencies and coverage levels. The FDR for LUMPY was better than all other tools in all cases, with a notable improvement at

lower SV allele frequencies. (C) The change in sensitivity when considering two SV detection signals versus a single signal alone is shown for the

three tools at 40X coverage and at different SV allele frequencies. At low SV allele frequencies (for example, 5%), LUMPY’s use of two signals

(that is, pe + sr) has a super-additive effect on sensitivity relative to either signal alone (that is, pe or sr), whereas the sensitivity of GASVPro and

DELLY was either unchanged or modestly improved with one signal versus two.
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a catalog of high-confidence structural variants in the

NA12878 genome.

A unique strength of LUMPY relative to other tools is

the ability to consider different types of evidence from

multiple samples. To demonstrate this capability, we in-

cluded results for four different LUMPY configurations:

1) the standard configuration of read-pair and split-read

signals from NA12878; 2) read-pair and split-read signals

from NA12878, as well as prior knowledge (using LUM-

PY’s generic evidence module) of deletions discovered

by the 1000 Genomes Project using low coverage whole

genome sequencing (phase 1, release version 3); 3) read-

pair and split-read signals from both NA12878 and her

parents (NA12891 and NA12892); 4) read-pair and split-

read signals from NA12878, plus CNV predictions based

on read-depth analysis using CNVnator [13] (also using

LUMPY’s generic evidence module). For clarity, this last

dataset was filtered to only include LUMPY calls with

both read-pair/split-read and CNV evidence. The last

three calling strategies are unique to LUMPY and are

intended to demonstrate both the ability and the benefit

of including data from different samples, prior results,

and other SV detection methods.

At 5X coverage (Figure 5A), LUMPY was more sensi-

tive than both GASVPro and Pindel (16.4% versus 8.6%

and 15% for the first (that is, 1000 Genomes) truth set

and 16.3% versus 8.6% and 13.7% for the second (that is,

the expanded ‘long-read’) truth set and had a better FDR

(10.7% versus 15.7% and 14.1% for the first truth set and

8.1% versus 10.1% and 19.2% for the second truth set).

While DELLY was more sensitive than LUMPY (18.1%

for the first truth set and 18.3% for the second), it was at

the expense of at least 60% higher FDR (20.4% and

13.4%). When LUMPY is provided with priors from the

1000 Genomes low coverage deletion calls, sensitivity in-

creased to 21.3% and 20.8% with almost no change to

FDR. Sensitivity is further improved to 25.6% and 24.7%

when LUMPY performs simultaneous variant calling on

NA12878 and her parents, with a similarly small effect

on FDR, which clearly demonstrates the benefit of

pooled variant calling on genetically related samples. In-

clusion of read depth-based CNV calls as an additional

input to LUMPY, followed by filtering to require CNV

evidence, resulted in the lowest FDR among all tools

(6.8% and 4.1%) but also greatly reduced sensitivity

(1.7% in both cases); however, we note that CNVnator

makes very few calls using low coverage data (n = 507),

and thus this approach is better suited to high-coverage

data (see below). As expected, the observed FDR for

LUMPY, GASVPro, and DELLY was reduced (decreasing

by 2.6, 5.6, and 7 percentage points, respectively) when

lower coverage SV predictions were compared to the ex-

panded ‘long-read’ truth set. In contrast, Pindel’s FDR

increased by 5.2 percentage points; however, we note

that this effect is expected considered that Pindel was

used in part to create the 1000 Genomes Project truth

Table 1 Long-read validation rates for each tool relative to randomly permuted data

Method Total calls Observed validations (fraction) Expected validations (fraction)

50X coverage

LUMPY (pe + sr) 4,347 2,653 (0.61) 37.9 ± 1.2 (0.009)

LUMPY (pe + sr + prior) 4,809 2,706 (0.563) 41.1 ± 1.3 (0.009)

LUMPY trio (pe + sr) 5,108 2,660 (0.521) 31.5 ± 1.1 (0.006)

LUMPY (pe + sr&rd) 1,355 1,114 (0.822) 5.4 ± 0.5 (0.001)

GASVPro 3,929 2,249 (0.572) 61.1 ± 1.5 (0.016)

DELLY 12,272 3,127 (0.255) 219.2 ± 2.9 (0.018)

Pindel 7,219 2,208 (0.306) 0.7 ± 0.2 (~0)

5X coverage

LUMPY (pe + sr) 643 619 (0.963) 4.9 ± 0.4 (0.008)

LUMPY (pe + sr + prior) 840 785 (0.935) 4.3 ± 0.4 (0.005)

LUMPY trio (pe + sr) 1,006 958 (0.952) 4.1 ± 0.4 (0.004)

LUMPY (pe + sr&rd) 73 66 (0.904) 0.01 ± 0.02 (~0)

GASVPro 356 338 (0.949) 10.2 ± 0.6 (0.029)

DELLY 798 698 (0.875) 4.5 ± 0.4 (0.006)

Pindel 640 521 (0.814) 0.04 ± 0.04 (~0)

Monte Carlo simulations were performed to assess the rate at which false positive SV calls are validated purely by chance using split-read mapping analysis of

PacBio and Moleculo data. For each NA12878 deletion callset shown in Figures 5 and 6, deletion coordinates were shuffled 100 times (retaining the breakpoint

interval sizes and total span of each deletion call), and validation experiments were conducted precisely as for real data. For each callset, we show the total

number of deletion calls, the number of validated calls with the fraction validation in parentheses, and the number of validations expected by chance and the

95% confidence interval (with the expected fraction in parentheses) based on Monte Carlo simulations. pe, paired-end; rd, read-depth; sr, split-read.
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set [12]. These results demonstrate that the expanded

‘long-read‘ truth set is a more comprehensive and un-

biased reference; it will, therefore, be the basis for the

remaining performance comparisons.

At 50X coverage (Figure 5B) and considering solely

the second (‘long-read’) truth set, the effect on perform-

ance was dramatic for all the tools except Pindel (as ex-

pected given the aforementioned bias). DELLY had the

highest sensitivity at 83.8%, but this came at the expense

of an extremely high FDR (72.9%). GASVPRO and Pin-

del exhibit intermediate levels of sensitivity (58.3% and

61%, respectively) and FDR (41.2% and 66.2%). LUMPY

had the second highest sensitivity (69.1%) and the lowest

FDR (37.5%) of any tool. When read depth-based CNV

calls from CNVnator (n = 6,248) are included as input to

LUMPY, the resulting FDR (15.3%) is nearly 2.5X lower

than the next-best performing tool, although this comes

at the cost of reduced sensitivity (29.5%). The main util-

ity of such an analysis is therefore to greatly reduce

lower FDR at calls exhibiting independent read-depth

evidence, and to properly classify SVs that alter copy

number. Similarly, if we consider a high confidence sub-

set of 1,195 deletion calls that are detected by both

paired-end and split-read signals, the FDR falls dramatic-

ally from 37.5% to 7.6%, but sensitivity also decreases

from 69.1% to 28.9% (Figure 6A). This indicates that

most variant calls exhibiting both paired-end and split-

read signals are true positives, but that many variants

are not well captured by one or the other signal, presum-

ably due to local sequence features that inhibit accurate

alignment. This interpretation is consistent with the ob-

servation that the strength of paired-end and split-read

signals are not well correlated with each other (Figure 6B),

which may account (at least in part) for LUMPY’s im-

proved sensitivity over methods that consider the two

signals sequentially. Taken together, the above results

demonstrate that LUMPY provides significantly improved

performance over other tools when one considers the

trade-off between sensitivity and FDR.

In addition, the 4,095 deletions from our ‘long-read’

truth set (Additional file 4) combined with the 469

validated non-deletion variants reported by LUMPY
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Figure 5 Performance comparison of deletion detection in high and low coverage Illumina sequencing data from NA12878. We

analyzed an approximately 50X coverage dataset of the NA12878 genome from the Illumina Platinum Genomes dataset. We tested LUMPY’s

performance under four different variant calling scenarios. First, ‘LUMPY (pe + sr)’ considered both paired-end (pe) and split-read (sr) alignments

(using YAHA) from NA12878. Second, ‘LUMPY with prior’ considered pe and sr alignments as well as 1000 Genomes variants as prior evidence.

Third, ‘LUMPY trio’ considered pe and sr alignments for NA12878 as well as alignments from her parents (NA12891 and NA12892). Lastly, ‘LUMPY

with CNVnator’ integrated pe and sr alignments with copy number loss predictions made by CNVnator (read depth (rd)). DELLY considered pe

and sr alignments, GASVPro considered pe alignments and rd, and Pindel considered sr alignments. Sensitivity and FDR were estimated using

two truth sets: 3,376 non-overlapping validated deletions from Mills et al. [12], and 4,095 deletions that were predicted by at least one tool and

validated by PacBio or Moleculo alignments. (A) SV detection sensitivity and FDR on a 5X coverage subsample of the original data. LUMPY pe + sr

was more sensitive than both GASVPro and Pindel and had either an equivalent or better FDR. DELLY was more sensitive than LUMPY pe + sr,

but also had a higher FDR. Prior evidence or parental genomes improved LUMPY sensitivity. Given the low coverage, the read-depth signal was

weak and only a small number of CNVs clustered with paired-end or split-read calls. (B) SV detection sensitivity and FDR on the original 50X

coverage data. LUMPY pe + sr, DELLY, and Pindel had similar sensitivity in the Mills et al. truth set, and in the PacBio/Moleculo truth set DELLY

had the highest sensitivity and FDR. LUMPY pe + sr had the next best sensitivity and the lowest FDR.
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(Additional file 5) provide what is, to our knowledge,

the largest collection of validated SV breakpoints (N = 4,564)

yet reported for a single ‘normal’ human genome. This

dataset will be a valuable resource for future benchmark-

ing studies.

Improved performance in common usage scenarios

Importantly, although the comparisons presented in

Figure 5 are based upon the choice of a single detection

threshold chosen for each tool (Materials and methods),

LUMPY outperforms other tools across a broad spectrum

of thresholds (Figure 3), indicating that the framework it-

self - not arbitrary parameter choices - underlies LUMPY’s

superior performance. It is also clear from this result that

a more relevant measure of tool performance is the rela-

tive SV detection sensitivity achieved by each tool under

parameter settings that result in an acceptably low FDR.

We therefore varied the minimum-evidence parameter of

each tool to select settings that achieved an FDR of ap-

proximately 10% at 5X coverage and approximately 20%

at 50X coverage (Figure 7A). Using these settings, LUMPY

was twice as sensitive as the next-best performing tool

GASVPro (16.3% versus 8.6%) on low coverage 5X data,

with DELLY at 4.9% and Pindel at 0.4% (Figure 7A). At

50X coverage, LUMPY was 1.1X more sensitive than the

next-best performing tool, DELLY (58.2% versus 53%),

with GASVPRO at 32.5% and Pindel at 33.5%. Therefore,

when we control for FDR, LUMPY is significantly more

sensitive than other tools on both low and high coverage

data.

The above result has important practical implications:

in the vast majority of genome sequencing-based study

designs it is necessary to select tool parameter settings

that constrain the FDR to acceptable levels, and an algo-

rithm’s sensitivity under these conditions determines the

number of true variants that can be discovered and the

biological insights that can be gleaned. For example, at

5X coverage LUMPY finds 281 more true deletion vari-

ants than the next-best tool, GASVPro (619 versus 338),

and finds 237 ‘novel’ deletions not found by any other
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Figure 6 Relationship between paired-end and split-read signals for the NA12878 callset. (A) Venn diagram showing the total number of

calls identified by paired-end alignments alone (left), by split-read alignments alone (right), or by both (center). Shown are the total number of

calls, the sensitivity, and the FDR. Sensitivity and FDR are calculated precisely as in Figure 5. (B) Scatter plots showing the relationship between

the number of split-reads (y-axis) and paired-end reads (x-axis) that identify each SV breakpoint in the entire callset (left), the unvalidated SV calls

(center) and the validated SV calls (right). The number of variants in each category and the R2 values are shown above each plot. Note that one

unvalidated call is not visible in these plots due to cropping; it was identified by 236 split reads and 0 paired-end reads.
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tool (Figure 7B). At 50X coverage, LUMPY finds 232

more deletions than the next-best tool, DELLY (2,246

versus 2,014) and 312 ‘novel’ deletions not found by any

other tool. In contrast, all other tools combined find

only 46 variants not detected by LUMPY at 5X coverage,

and only 428 at 50X coverage. Thus, although LUMPY

finds only 196 truly novel validated deletions in NA12878

when one considers the entire set of calls made by all tools

regardless of FDR (90 of which were not reported previ-

ously [12]), LUMPY detects hundreds of true variants that

are not detected by the other methods when rational

parameters that constrain FDR are used. Considering

that our algorithmic approach is especially advantageous

when variant coverage is low, and that clinically relevant

somatic variants are often present at low allele frequencies

due to tumor heterogeneity, LUMPY’s unsurpassed sensi-

tivity at acceptable FDR levels translates directly to more

comprehensive variant callsets and, hence, new biological

insights.

Discussion
We have developed a general probabilistic framework

for SV discovery, and have demonstrated that our frame-

work outperforms existing discovery tools across all SV

types and coverage levels, and in both real and simulated

human genome datasets. LUMPY’s performance improve-

ments are especially pronounced when evidence is scarce,

either due to low coverage data or low variant allele fre-

quency. LUMPY therefore represents an important techno-

logical advance, particularly in the context of cancer

genomics where sensitivity is crucial for identifying low

frequency variants within heterogeneous tumor samples.

LUMPY’s high sensitivity is a direct consequence of

combining multiple SV detection signals. LUMPY inte-

grates disparate signals by converting them to a common

format in which the two predicted breakpoint intervals in

the reference genome are represented as paired probability

distributions. SV prediction operations are then per-

formed at this higher level. This novel approach has the
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Figure 7 Detection performance in the NA12878 individual when restricting false discovery rates. We compared the performance of each

tool in terms of sensitivity and novel variant discovery ability when considering only the subset of calls that meet a maximum FDR threshold.

Using the results given in Figure 6, each tool’s FDR was calculated for each of the minimum-evidence settings used to generate the respective

receiver operating characteristic (ROC) curves. This provided a mapping from the maximum FDR to the subset of calls that meet the associated

minimum-evidence threshold for each tool. Sensitivity and FDR were estimated using the 4,095 deletions that were predicted by at least one tool

and validated by PacBio or Moleculo alignments. (A) Sensitivity given a maximum FDR threshold. At 5X coverage, an FDR threshold of approximately

10% is achieved with a minimum of four alignments for LUMPY (8.1% FDR), four for GASVPro (10.1% FDR), six for DELLY (11.3% FDR), and nine for

Pindel (6.3% FDR). An approximately 20% FDR at 50X coverage requires 8 alignments for LUMPY (18% FDR), 16 for GASVPro (19% FDR), 12 for DELLY

(17.6% FDR), and 20 for Pindel (18.8% FDR). LUMPY had the highest sensitivity at both coverage levels and the relative improvement was most

substantial at lower coverage. (B) Venn diagrams reflecting the absolute number of variants discovered uniquely and jointly among the

different tools at both 10% FDR for 5X and 20% FDR for 50X. In both cases LUMPY found the most number of unique variants. The difference

was most dramatic in the 5X coverage experiment, where only 46 out of 665 (6.9%) of the variants found among all four tools were missed by

LUMPY. pe, paired-end; rd, read-depth; sr, split-read.
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key advantage that any SV detection signal can be inte-

grated into the framework so long as a breakpoint prob-

ability can be assigned to each base pair in a candidate

breakpoint region. Potential detection signals include

paired-end and split-read alignments, alignments from

assembled contigs, raw read-depth measurements, or

CNVs detected by segmentation of read-depth, array

comparative genomic hybridization or SNP array data.

As we demonstrate using the NA12878 genome, inclu-

sion of previously discovered SVs as priors can signifi-

cantly enhance SV discovery sensitivity, while inclusion

of third-party CNV calls as an input signal can signifi-

cantly lower FDR, both of which are examples of the

flexibility and generality of our framework. To facilitate

integration, each evidence type can be assigned a differ-

ent weight reflecting the user’s prior expectations. As

sequencing technologies and SV detection strategies

evolve, new sources of evidence can be easily incorpo-

rated without modifying the underlying logic of the SV

detection algorithm itself; the sole requirement is the

development of a new module that maps the SV detec-

tion signal to a paired probability distribution.

In addition to facilitating signal integration, our use of

probability distributions should, in theory, enable more

accurate prediction of breakpoint positions. In most

cases, not all coordinates within a predicted breakpoint

interval are equally likely to be the breakpoint based on

input data, and LUMPY’s use of probability distributions

allows this spatial uncertainty to be propagated through-

out the SV detection process. Although a detailed analysis

of the spatial resolution provided by each SV detection

tool is complicated by the variable ways in which different

tools report breakpoints, our data suggest that LUMPY is

matching if not exceeding the resolution of other tools.

LUMPY reported significantly smaller breakpoint intervals

than GASVPro (Figure 8), and although DELLY and Pin-

del report predictions at single base resolution, in order to

achieve respectable validation rates it was necessary to

‘pad’ these coordinates to a similar interval size as those

reported by LUMPY (Materials and methods). The use of

probability distributions also allows LUMPY to report

breakpoints at different levels of precision; by default,

LUMPY reports the entire interval predicted to contain

each breakpoint, the 95% confidence interval, and the

most likely single base position. This feature will enable

more accurate functional annotation of SV predictions.

Following SV detection, LUMPY can report the final inte-

grated probability distribution for each predicted variant

to allow for comparison across studies. Alternatively, the

final breakpoint probability distributions from one study

could potentially be used as a source of prior evidence

in another.

How could LUMPY’s performance be further improved?

First and foremost, native support for read-depth data as

an input signal should significantly improve performance

at duplication and deletion variants. Here, we have incor-

porated read-depth information by converting the output

of a copy number segmentation tool to breakpoint prob-

ability distributions, and providing these to LUMPY using

the generic module (Figure 1A); however, we expect that

more significant improvements will be possible using raw

read-depth data. Second, for applications that require

ultra-sensitive detection of known structural variants -

such as low coverage population scale sequencing -

LUMPY could be packaged with dataset priors reflecting

the positions and allele frequencies of previously identified

SVs. While we show that this is feasible using the existing

LUMPY framework (Figure 5), we note that substantial

improvements to sensitivity may require more compre-

hensive and accurate SV catalogs than are currently avail-

able. Third, LUMPY’s current evidence clustering logic is

suboptimal for small insertion variants that are fully cap-

tured within a single read. These insertions are a special

case because proper clustering of split-read signals re-

quires that the size of the insertion event - as defined by

read coordinates rather than the reference genome coordi-

nates - be taken into account during clustering. Although

this weakness is predicted to have minimal impact using

short-read data, improving LUMPY’s behavior on inser-

tion variants is a high priority given increasing use of

long-read data. Finally, a major challenge for SV detection

is distinguishing bona fide variants from false positives

caused by alignment artifacts and other sources of error.

In this respect, breakpoint probability distributions pro-

vide a highly quantitative source of information regarding

the relative spacing of discordant and/or split alignments

at a locus. By training on a set of known variants, it should

be possible to derive a probabilistic measure of variant

confidence that is based not only on the number of clus-

tered reads, but also on the shape of the final integrated

probability distribution. Alternatively, knowledge of the

shape of ‘true’ breakpoint probability distributions could

potentially be used as an objective function during read

clustering.

In a more general sense, our approach for integrating

SV detection signals - in essence, performing genome

interval comparison operations using probability distribu-

tions rather than ‘flat’ features - could be useful for any ap-

plication that involves comparison of genomic features

whose exact coordinates are unknown, and whose pos-

itional uncertainty can be represented rationally in the

form of a probability distribution. Rapid and efficient prob-

abilistic comparisons could be enabled through extensions

to existing interval-based software such as BEDTools [23].

Conclusions
LUMPY’s superior sensitivity in these performance tests

is a direct consequence of the fact that it simultaneously
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integrates multiple SV detection signals during SV discov-

ery. The benefits of this approach are clear from the

super-additive effect of combining read-pair and split-read

signals within the LUMPY framework, relative to using ei-

ther signal alone (Figure 4C). In contrast, although other

tools such as GASVPro [4], DELLY [3], CNVer [7],

CREST [6] and Genome STRiP [5] also exploit multiple

SV detection signals, to our knowledge they first use one

signal (that is, read-pair) to drive discovery and then refine

and/or genotype candidates with a second signal (that is,

split-read or read-depth). An intrinsic limitation of stepwise

integration is that other available signals cannot increase

the number of true positive SV calls beyond those candi-

dates identified by the signal used for initial discovery.

Consistent with this interpretation, inclusion of a second

SV detection signal has little to no effect on DELLY’s or

GASVPro’s sensitivity (Figure 4C) relative to using the

primary read-pair signal alone.

Materials and methods
We propose a breakpoint prediction framework that can

accommodate multiple classes of evidence from multiple
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Figure 8 Breakpoint interval size distributions for structural variation calls in NA12878. LUMPY refines the location of a given breakpoint

by taking the product of the probability distributions in the breakpoint’s evidence set. The shape of each distribution depends on the breakpoint

uncertainty that is inherent to the evidence signal type (for example, the spatial uncertainty of breakpoints predicted by paired-end alignments is

much higher than with split-read alignments). (A) The distribution of predicted breakpoint intervals for SV calls when using solely paired-end

alignments. The variability in fragment size causes a significant amount of uncertainty in the paired-end signal, which results in a wide (over 500

bases for the NA12878 sample) distribution in the predicted breakpoint intervals. (B) The distribution of predicted breakpoint intervals for SV calls

when using solely split-read alignments. Split-read alignments inherently have far less uncertainty in the predicted breakpoint location and,

therefore, they yield a distribution with much lower variance. (C) The resulting breakpoint uncertainty distribution when both paired-end and

split-read alignments are jointly considered. By taking the product of the distributions, the inherent breakpoint precision afforded by split-read

alignments is not substantially diluted by paired-end alignments. (D) A comparison of the predicted breakpoint intervals reported by GASVPro

(left) all LUMPY calls (center), and the 95% confidence interval for the LUMPY calls (right). Size distributions are not shown for DELLY or Pindel

since they only report single base coordinates. stdev, standard deviation.
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sources in the same analysis. Our framework makes use

of an abstract breakpoint evidence type to define a set of

functions that serve as an interface between specific evi-

dence subtypes (for example, paired-end sequence align-

ments and split-read mappings) and the breakpoint type.

Any class of evidence for which these functions can be

defined may be included in our framework. To demon-

strate the applicability of this abstraction, we defined

three breakpoint evidence subtypes: read-pair, split-read,

and a general breakpoint interface.

Since our framework combines evidence from multiple

classes, it extends naturally to include evidence from mul-

tiple sources. The sources that can be considered in a sin-

gle analysis may be any combination of evidence from

different samples, different evidence subclasses from a sin-

gle sample, or prior information about known variant po-

sitions. We refer to a given set of data as a breakpoint

evidence instance, and assume that each instance contains

only one evidence subtype and is from a single sample. To

help organize the results of analysis with multiple samples

or multiple instances for a single sample, each instance is

assigned an identifier that can be shared across instances.

Breakpoint

A breakpoint is a pair of genomic coordinates that are

adjacent in a sample genome but not in a reference gen-

ome. Breakpoints can be detected, and their locations

predicted by various evidence classes such as paired-end

sequence alignments or split-read mappings. To support

the inclusion of different evidence classes into a single

analysis, we define a high-level breakpoint type as a col-

lection of the evidence that corroborates the location

and variety (for example, deletion, tandem duplication,

and so on) of a particular breakpoint. Since many evi-

dence classes provide a range of possible breakpoint lo-

cations, we represent the breakpoint’s location with a

pair of breakpoint intervals where each interval has a

start position, an end position, and a probability vector

that represents the relative probability that a given pos-

ition in the interval is one end of the breakpoint. More

formally, a breakpoint is a tuple b = ⟨E,l,r,v⟩, where b.E is

the set of evidence that corroborates the location and

variety of a particular breakpoint; b.l and b.r are left and

right breakpoint intervals each with values b.l.s and b.l.e

that are the start and end genomic coordinates and b.lp

is a probability vector where |b.l.p| = b.l.e – b.l.s and b.l.

p[i] is the relative probability that position b.l.s + i is one

end of the breakpoint (similar for b.r); and b.v is the

breakpoint variety. Within the context of this method,

breakpoint variety determinations are based on the

orientation of the evidence. It is important to note that

while a breakpoint may be labeled as a deletion when it

contains evidence from a paired-end sequence align-

ment with a +/−orientation, the breakpoint may in fact

be the result of some other event or series of complex

events.

If there exist two breakpoints b and c in the set of all

breakpoints B where b and c intersect (b.r intersects c.r,

b.l intersects c.l, and b.v = c.v), then b and c are merged

into interval m, b and c are removed from B, and m is

placed into B. The evidence set m.E is the union of the

evidence sets b.E and c.E.

A straightforward method to define breakpoint inter-

vals m.l and m.r would be to let m.l.s =max(b.l.s, c.l.s)

and m.l.e =min(b.l.e, c.l.e), similar for m.r. However, if a

spurious alignment is merged into a set of genuine

breakpoints, the resulting breakpoint interval can be

‘pulled’ away from the actual breakpoint. The impact of

an outlier can be minimized or eliminated once the full

set of corroborating alignments is collected for a given

breakpoint, but collecting the full set is complicated by

the fact that alignments are considered in order and out-

liers typically occur first. To account for this, we define

a liberal merge process where m.l.s is the mean start

position for the left intervals in m.E, and m.l.e is the

mean end position for the left intervals in m.E, similar

for m.r.

Once all the evidence has been considered, an SV call

s (also a breakpoint) is made for each breakpoint b ∈ B

that meets a user-defined minimum evidence threshold

(for example, four pieces of evidence). The boundaries

of the breakpoint intervals s.l and s.r are the trimmed

product of the distributions of the left and right inter-

vals in b.E. Let s.l.s = max({e.l.s | e ∈ b.E}), s.l.e = min

({e.l.e | e ∈ b.E}), and s.l.p[i] =∏e∈b.E e.l.p[i-o] where o is

the offset value e.l.s - s.l.s (similar for s.r). The intervals s.l

and s.r can then trimmed to include only those positions

that are in the top percentile (for example, top 99.9% of

values) based on a user-provided value. Given the liberal

merge process, it is possible for b.E to contain non-

overlapping distributions that would result in a zero-

length product. In this case, we identify the maximum

point among the sum of the distributions in b.E, any dis-

tribution not intersecting this point is removed, and the

resulting subset processed normally. Regardless of the

trimming value, LUMPY reports both the intervals that

contain 95% of the resulting probability distribution and

the maximum position of s.l.p and s.r.p. Summation is an-

other option for calculating the combined distribution

boundaries and values. In that case s.l and s.r are the

trimmed mixture distributions of the left and right in-

tervals in b.E. Let s.l.s =min({e.l.s | e ∈ b.E}), s.l.e =max

({e.l.e | e ∈ b.E}), and s.l.p[i] = ∑e∈b.E e.l.p[i-o]. The value

at s.l.p[i] (or s.r.p[i]) represents the level of agreement

among the evidence in b.E that position i is one end of

the breakpoint. While summation will give less precise

breakpoint predictions, it can be a useful option when

considering low-quality data.
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Breakpoint evidence

To combine distinct SV alignment signals such as read-

pair and split-read alignments with the general breakpoint

type defined above, we define an abstract breakpoint evi-

dence type. This abstract type defines an interface that al-

lows for the inclusion of any data that can provide the

following functions: is_bp determines if a particular in-

stance of the data contains evidence of a breakpoint; get_v

determines the breakpoint variety (for example, deletion,

tandem duplication, inversion, and so on); and get_bpi

maps the data to a pair of breakpoint intervals.

To demonstrate the applicability of this abstraction,

we defined three breakpoint evidence instances: paired-

end sequencing alignments, split-read alignments, and a

general breakpoint interface. Read-pair and split-read are

the most frequently used evidence types for breakpoint

detection, and the general interface provides a mechanism

to include any other sources of information such as

known variant positions or output from other analysis

pipelines (for example, read-depth calls). As technologies

evolve and our understanding of structural variation im-

proves, other instances can be easily added.

Paired-end alignments

Paired-end sequencing involves fragmenting genomic

DNA into roughly uniformly sized fragments, and se-

quencing both ends of each fragment to produce paired-

end reads ⟨x, y⟩, which we will refer to as ‘read-pairs’.

Each read is aligned to a reference genome R(x) = ⟨c, o, s, e⟩,

where R(x).c is the chromosome that x aligned to in the

reference genome, R(x).o = +| − indicates the alignment

orientation, and R(x).s and R(x).e delineate the start and

end positions of the matching sequence within the

chromosome. We assume that both x and y align uniquely

to the reference and that R(x).s < R(x).e < R(y).s < R(y).e.

While in practice it is not possible to know the position of

read x in the sample genome (in the absence of whole-

genome assembly), it is useful to refer to S(x) = ⟨o, s, e⟩ as

the alignment of x with respect to the originating sample’s

genome.

Assuming that genome sequencing was performed with

the Illumina platform, read-pairs are expected to align to

the reference genome with a R(x).o = +, R(y).o = − orienta-

tion, and at distance R(y).e - R(x).s roughly equivalent to

the fragment size from the sample preparation step. Any

read-pair that aligns with an unexpected configuration

can be evidence of a breakpoint. These unexpected con-

figurations include matching orientation R(x).o = R(y).o,

alignments with switched orientation R(x).o = −, R(y).o = +,

and an apparent fragment length (R(y).e - R(x).s) that is ei-

ther shorter or longer than expected. We estimated the

expected fragment length to be the sample mean fragment

length l, and the fragment length standard deviation to be

the sample standard deviation s from the set of properly

mapped read-pairs (as defined by the SAM specification)

in the sample data set. Considering the variability in the

sequencing process, we extend the expected fragment

length to include sizes l + vls, where vl is a tuning parameter

that reflects spread in the data.

When x and y align to the same chromosome (R(x).c =

R(y).c), the breakpoint variety can be inferred from the

orientation of R(x) and R(y). If the orientations match,

then the breakpoint is labeled as an inversion, and if R(x).

o = − and R(y).o = + then the breakpoint is labeled as a

tandem duplication. Any breakpoint with the orientation

R(x).o = + and R(y).o = − is labeled as a deletion. When x

and y align to different chromosomes (R(x).c ≠ R(y).c), the

variety is labeled inter-chromosomal. At present, LUMPY

does not explicitly support identification of insertions that

are spanned by paired-end reads; however, if desired these

can be identified in a post-processing step through as-

sessment of ‘deletion’ calls.

To map ⟨x, y⟩ to breakpoint intervals l and r, the

ranges of possible breakpoint locations must be deter-

mined and probabilities assigned to each position in

those ranges. By convention, x maps to l and y to r, and

for the sake of brevity we will focus on x and l since the

same process applies to y and r. Assuming that a single

breakpoint exists between x and y, then the orientation

of x determines if l will be upstream or downstream of

x. If the R(x).s = +, then the breakpoint interval begins

after R(x).e (downstream), otherwise the interval ends

before R(x).s (upstream).

The length of each breakpoint interval is proportional

to the expected fragment length L and standard deviation

s. Since we assume that only one breakpoint exists between

x and y, and that it is unlikely that the distance between the

ends of a pair in the sample genome (S(y).e - S(x).s) is

greater than L, then it is also unlikely that one end of the

breakpoint is at a position greater than R(x).s + L, assuming

that R(x).o = +. If R(x).o = −, then it is unlikely that a

breakpoint is at a position less than R(x).e - L. To ac-

count for variability in the fragmentation process, we

extend the breakpoint to R(x).e + (L + vf s) when R(x).o = +,

and R(x).s - (L + vf s) when R(x).o = −, where vf is a tuning

parameter that, like vl, reflects the spread in the data.

The probability that a particular position i in the

breakpoint interval l is part of the actual breakpoint can

be estimated by the probability that x and y span that

position in the sample. For x and y to span i, the frag-

ment that produced ⟨x, y⟩ must be longer than the dis-

tance from the start of x to i, otherwise y would occur

before i and x and y would not span i (contradiction).

The resulting probability is P(S(y).e - S(x).s > i - R(x).s) if

R(x).o = +, and P(S(y).e - S(x).s > R(x).e - i) if R(x).o = −.

While we cannot directly measure the sample fragment

length (S(y).e - S(x).s), we can estimate its distribution

by constructing a frequency-based cumulative distribution
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D of fragment lengths from the same sample that was

used to find L and s, where D(j) gives the proportion of

the sample with fragment length greater than j.

Split-read alignments

A split-read alignment is a single DNA fragment X that

does not contiguously align to the reference genome. In-

stead, X contains a set of two or more substrings xi…xj
(X = x1x2…xn), where each substring aligns to the refer-

ence R(xi) = ⟨c, o, s, e⟩, and adjacent substrings align to

non-adjacent locations in the reference genome R(xi).e ≠

R(xi + 1).s + 1 or R(xi).c ≠ R(xi + 1).c for 1 ≤ i ≤ n – 1. A

single split-read alignment maps to a set of adjacent

split-read sequence pairs (⟨x1, x2⟩,⟨x2, x3⟩,…,⟨xn-1,xn⟩),

and each pair ⟨xi,xi + 1⟩ is considered individually.

By definition, a split-read mapping is evidence of a

breakpoint and therefore the function is_bp trivially

returns true.

Both orientation and mapping location must be consid-

ered to infer the breakpoint variety for ⟨xi, xi + 1⟩. When

the orientations match R(xi).o = R(xi + 1).o, the event is

marked as either a deletion or a tandem duplication. As-

suming that R(xi).o = R(xi + 1).o = +, R(xi).s < R(xi + 1).s in-

dicates a gap caused by a deletion and R(xi).s > R(xi + 1).s

indicates a tandem duplication. These observations are

flipped when orientations R(xi).o = R(xi + 1).o = −. When

the orientations do not match R(xi).o ≠ R(xi + 1).o, the

event is marked as an inversion and the mapping locations

do not need to be considered. When x and y align to

different chromosomes, the variety is marked as inter-

chromosomal. LUMPY does not currently attempt to

identify insertions that are completely contained within a

long read, but this will be supported in future versions.

We note that this capability requires long-read aligners to

report the number and order of alignments within a read

(which is not formally supported in the current SAM for-

mat specifications).

The possibility of errors in the sequencing and align-

ment processes creates some ambiguity in the exact lo-

cation of the breakpoint associated with a split-read

alignment. To account for this, each alignment pair

⟨xi, xi + 1⟩ maps to two breakpoint intervals l and r cen-

tered at the split. The probability vectors l.p and r.p are

highest at the midpoint and decrease exponentially toward

their edges. The size of this interval is a configurable

parameter vs and is based on the quality of the sample

under consideration and the specificity of the alignment

algorithm used to map the sequences to the reference

genome.

Depending on the breakpoint variety, the intervals l

and r are centered on either the start or the end of R(xi)

and R(xi + 1). When the breakpoint is a deletion l is cen-

tered at R(xi).e and r at R(xi + 1).s, and when the break-

point is a tandem duplication l is centered at R(xi).s and

r at R(xi + 1).e. If the breakpoint is an inversion, l and r

are both centered either at the start positions or end po-

sitions of R(xi) and R(xi + 1), respectively. Assuming that

R(xi).s < R(xi + 1).s, if R(xi).o = + then l and r are centered

at R(xi).e and R(xi + 1).e, otherwise they are centered at

R(xi).s and R(xi + 1).s. If R(xi).s > R(xi + 1).s, then the

conditions are swapped.

Generic evidence

The generic evidence subclass provides a mechanism to

directly encode breakpoint intervals using the BEDPE

format [17]. BEDPE is an extension of the popular BED

format that provides a means to specify a pair of gen-

omic coordinates; in this case the pair represents the

two breakpoint positions in the reference genome. This

subclass extends our framework to include SV signal

types that do not yet have a specific subclass imple-

mented. For example, the set of variants that are known

to exist in the population can be included in the analysis

of an individual or variants that are known to exist in a

particular type of cancer can be included in the analysis

of a tumor. This signal can be included in the analysis

by expanding the edges of the predicted intervals to cre-

ate breakpoint intervals, and encoding these intervals in

BEDPE format. Each BEDPE entry is assumed to be a

real breakpoint (is_bp), the variety is encoded in the

auxiliary fields in BEDPE (get_v), and the intervals are

directly encoded in BEDPE (get_bpi).

Performance comparisons

Both simulated and real datasets were used to compare

the sensitivity and FDR of LUMPY to other SV detection

algorithms (GASVPro, DELLY, and Pindel). Two types

of simulations were performed: one in which homozy-

gous variants of diverse varieties were introduced at ran-

dom positions throughout the reference genome, and

another in which a heterogeneous tumor sample was

simulated by mixing reads from a modified ‘abnormal’

human reference genome (containing 1000 Genomes de-

letions) and an unmodified ‘normal’ human reference

genome in varying proportions. We also used publicly

available Illumina sequencing data of the NA12878,

NA12891, and NA12892 individuals. Two scenarios were

considered: the original 50X coverage files, and 5X sub-

samples of the original data sets.

In the case of the homozygous simulation, we used

SVsim to create new versions of the human reference

genome (build 37) containing 2,500 simulated variants

of each variety. For deletions, tandem duplications and

inversions we randomly placed 2,500 non-overlapping

variants ranging from 100 bp to 10,000 bp in size. To

simulate translocations, we randomly inserted 2,500

non-overlapping inter-chromosomal regions of 1,000 bp,

derived from random donor sites in the reference genome.
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Although we note that the true variant variety in this case

is actually an insertion, the inserted segment exceeds the

insert size of the sequencing library as well as the read

length, and thus the breakpoints formed by such inser-

tions accurately simulate a translocation. Each simu-

lated genome was sampled to 40X, 20X, 10X, 5X, and

2X coverage.

To simulate a heterogeneous tumor sample, we com-

bined simulated reads from both a modified and unmodi-

fied version of the human reference genome (build 37).

The modified genome was created using SVsim, and in-

cluded 5,516 non-overlapping deletions identified by the

1000 Genomes Project. Each simulation combined reads

from both the modified and unmodified genomes in vary-

ing proportions. We refer to the proportion of reads that

were derived from the modified genome as the SV allele

frequency. The simulated SV allele frequencies were 5%,

10%, 20% and 50%, and the simulated coverages were

10X, 20X, 40X, and 80X. For example, in the simulation

with 5% SV allele frequency and 10X coverage, the modified

genome was sampled at 0.5X coverage and the unmodified

genome was sampled at 9.5X coverage. The two sets of

reads are then pooled into a single 10X coverage sample.

For all simulations, WGSIM was used to sample paired-

end reads with a 150 bp read length, a 500 bp mean outer

distance with a 50 bp standard deviation, and default error

rate settings. Paired-end reads were mapped to the refer-

ence genome with NOVOALIGN version V2.07.08, using

the random repeat reporting and allowing only one align-

ment per read. From the NOVOALIGN output, all soft-

clipped (≥20 bp clipped length) and unmapped reads were

realigned with the split-read aligner YAHA using a word

length of 11 and a minimum match of 15. The NOVOA-

LIGN output was used as input to DELLY, GASVPro, and

Pindel, and both NOVOALIGN and YAHA output were

used as input to LUMPY. In all algorithms, the minimum

evidence threshold was four. For LUMPY, the tuning

parameters min_non_overlap was set to 150, discor-

dant_z was set to 4, back_distance was set to 20, weight

was set to 1, and min_mapping_threshold was set to 1.

For GASVPro, LIBRARY_SEPARATED was set to all,

CUTOFF_LMINLMAX was set to SD = 4, WRITE_

CONCORDANT was set to true, and WRITE_LOWQ

was set to true. For DELLY, map-qual was set to 1, and

the inc-map flag was set. DELLY paired-end (pe) and

split-read (sr) calls were combined into a single paired-

end and split-read (pe + sr) callset by taking the union

of the two sets where the split-read call was retained

when a call was common to both sets. For Pindel, mini-

mum_support_for_event was set to 4, all chromosomes

were considered, and report_interchromosomal_events

was set to true. Since the output of DELLY and Pindel

are single-base-resolution intervals, we increased the

size of those intervals to match the mean interval size of

a similar LUMPY call. Any call that had split-read sup-

port (Pindel and DELLY sr calls) was expanded to a

28 bp interval, and any call that had only paired-end

support (DELLY pe calls) was expanded to a 282 bp

interval. The intervals for GASVPro were not modified

since, like LUMPY, it reports an interval whose size is

based on the supporting evidence.

For the real data, LUMPY, GASVPro, DELLY, and Pindel

considered Illumina sequencing of the NA12878 individ-

ual. The original sequencing files were at 50X coverage

and were used in the 50X experiments. The 5X experi-

ments considered sequencing files that were created by

subsamples 10% of the original paired-end alignments. For

all the tools, only deletion predictions on chromosomes 1

though X were considered. All sequencing samples were

retrieved from the European Nucleotide Archives (sub-

mission ERA172924), and were previously aligned using

BWA. Soft-clipped (≥20 bp clipped length) and unmapped

reads were realigned with the split-read aligner YAHA

using a word length of 11 and a minimum match of 15. In

addition to the NA12878 data, the LUMPY trio results

also considered sequencing data from that individual’s

parents, NA12891 and NA12892. The LUMPY prior re-

sult considered all 1000 Genomes variant calls using the

generic evidence module. The LUMPY read-depth results

considered all deletion calls made by CNVnator [13] for

the NA12878 genome with a window size of 100 for the

50X coverage experiment and 1,000 for the 5X coverage

experiment. The single-base-resolution regions predicted

by CNVnator were extended upstream and downstream

by one-half the window size before being considered by

LUMPY. Each tool was run with the same options that

were used in the simulation experiments, except the mini-

mum mapping quality for LUMPY, GASVPro, and Pindel

was increased to 10. Since Pindel uses paired-end reads

differently than the other tools, the default mapping qual-

ity of 20 was used. Each call required support of at least

four. In the LUMPY trio result, a call had to have support

of four from at least one individual (NA12878, NA12891,

or NA12892) and at least one piece of support from

NA12878. The weight for the 1000 Genomes variant calls

in the LUMPY prior result was set to 2. In the LUMPY

read-depth result, a call had to have support from read-

depth and paired-end or split-read.

For the identification of the first truth sets, the Mills et al.

study [12] validated 14,012 deletions in NA12878 across

11 independent laboratories. Once duplicate predictions

were removed, the first truth set contained 3,376 non-

overlapping deletions. The SV breakpoints predicted by

each algorithm were compared to the known variants. A

true positive was defined as a variant call where the two

breakpoint intervals reported by a given SV detection tool

both intersect with the two breakpoints introduced in the

reference genome by simulation, and where the SV types
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(for example, deletion) match. To account for varied

spatial resolution among the tools, we pad the simulated

breakpoint coordinates with 50 bp of bidirectional slop,

such that each simulated variant is represented by two

100 bp breakpoint intervals.

The second truth set consisted of the 4,095 deletions

called by at least one tool in the 50X dataset or by the

1000 Genomes Project [12], and that were also validated

by long-read sequencing from PacBio or Illumina Moleculo

data. Overlapping calls were merged by retaining the mini-

mum shared interval. PacBio reads (median length, 880 bp;

mean depth, 30X) were aligned to GRCh37 using BWA

Smith-Waterman (bwa bwasw -b 5 -q 2 -r 1 -z 20 -w 500).

Illumina Moleculo reads (median length, 3,012 bp; mean

depth, 30X) were aligned to GRCh37 with BWA-MEM

(bwa mem -t 1 -B 4 -O 6 -E 1 -M). These BAM files are

available from the 1000 Genomes Project repository at

[24,25], respectively.

Deletion calls were considered to be validated if sup-

ported by at least two non-duplicate PacBio split reads or

at least one Moleculo split read. A supporting long-read is

defined by the following criteria: 1) the long-read is split

by the aligner such that at least 20 bp aligned to the flank-

ing sequence on either side of the reported breakpoint; 2)

the left and right intervals of the split long-read both

intersect with the respective left and right intervals of re-

ported breakpoint, allowing 5 bp of slop space on either

side of the long-read breakpoint to account for microho-

mology or inserted sequence at the novel adjacency; 3) the

strand orientation of the split long-read is consistent with

the strand orientation at the reported breakpoint; 4) in the

case of PacBio, where at least two non-duplicate long-

reads are required to validate a call, the two long-reads

must not only fill criteria 1 to 3, but must also overlap

with each other within 5 bp of slop on either side.

We performed Monte Carlo shuffling of the callsets to

estimate the number of spurious long-read validations due

to random chance. We shuffled each callset 100 times

using BEDTools shuffle while retaining identical interval

sizes, variant spans, and number of variants for each iter-

ation [23]. Regions of the genome that were excluded

from the original analyses were also excluded from the

shuffling (see ‘Excluded regions’ section below). We then

performed long-read validation as described above to each

shuffled callset, with less than 3% of shuffled calls validat-

ing (Table 1).

Excluded regions

For structural variation detection with LUMPY and other

tools, we excluded regions of the reference genome with

consistently high sequencing depth over multiple individ-

uals, since high depth is indicative of artifacts in the refer-

ence assembly. To define these regions, we first aligned

the 17-member CEPH 1463 pedigree to the GRCh37

human reference genome using BWA-MEM 0.7.5a-r405

(bwa mem -t 32 -M -p) [26]. Each member of the pedigree

was whole-genome sequenced from a PCR-free library to

50X coverage with 101 bp reads, and is publicly available

through the Illumina Platinum Genomes project [27]. We

used BEDTools v2.17.0 to generate a BED graph of aggre-

gate per-base coverage from all 17 individuals [23]. The

mode and standard deviation of the aggregate depth were

calculated separately for the autosomes and sex chromo-

somes. Any regions with depth exceeding 2 * mode + 3

standard deviations were excluded from our analyses. (We

chose to double the mode to allow inclusion of duplicated

copy number variant regions.) Finally, the mitochondrial

chromosome was excluded entirely. A BED graph of the

excluded regions can be obtained at [28].

Additional files

Additional file 1: This file contains the breakpoints used for the

homozygous variant simulation. The format is BEDPE. Each line has a

‘TYPE:’ field that indicates DELETION, DUPLICATION, INVERSION, or

TRANSLOCATION.

Additional file 2: This file contains the breakpoints used for the

heterogeneous tumor simulation. The format is BEDPE. These deletions

are based on the variants released by the 1000 Genomes Project in [29].

We selected non-overlapping deletions that were at least 50 bases long

and successfully lifted over from build 36 of the human reference

genome to build 37.

Additional file 3: This file contains the breakpoints used for the

Mills et al. truth set. The format is BEDPE, which is described by [30].

The breakpoints are the non-overlapping validated deletions observed in

NA12878 and are based on the variants given in [31].

Additional file 4: This file contains the breakpoint intervals for the

deletion predictions that were made by LUMPY (pe + sr, trio, prior,

pe + sr&rd), GASVPro, DELLY, Pindel, or the 1000 Genomes Project

[12] and that were validated by long read alignments from PacBio

and/or Illumina Moleculo sequencing. The format is BEDPE, and the

score field indicates the number of overlapping predictions. Note: in

some cases one algorithm made two predictions that contributed to a

single call. For example, there are two calls with a score of 8. In both

cases Pindel contributed two very similar calls.

Additional file 5: This file contains the calls made by LUMPY for

NA12878 with paired-end and split-read evidence that were also

validated with PacBio/Moleculo data. The format is BEDPE and the

score field is the total amount of supporting evidence. This file contains

extra fields that are described at [16].
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