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Abstract: Impact cratering process is the major geologic activity on the surface of the Moon, and the
spatial distribution and size-frequency distribution of lunar craters are indicative to the bombardment
history of the Solar System. The substantial efforts on the development of automated crater detection
algorithms (CDAs) have been carried out on the images from the remote sensing observations.
Recently, CDAs via convolutional neural network (CNN) on digital elevation model (DEM) has
been developed as it can combine the discrimination ability of CNN with the robust characteristic
of the DEM data. However, most of the existing algorithms adopt a traditional two-stage detection
pipeline including an edge segmentation and a template matching step. In this paper, we attempt
to reduce the gap between the existing DEM-based CDAs and the advanced CNN methods for
object detection, and propose a complete workflow including an end-to-end deep learning pipeline
for lunar crater detection, in particular for craters smaller than 50 km in diameter. Based on the
workflow, we benchmark nine representative CNN models involving three popular types of detection
architectures. Moreover, we elaborate on the practical application of the proposed workflow, and
provide an example method to demonstrate the performance advantage in terms of the precision
(82.97%) and recall (79.39%). Furthermore, we develop a crater verification tool to manually validate
the detection results, and the visualization results show that our detected craters are reasonable and
can be used as a supplement to the existing hand-labeled datasets.

Keywords: crater detection algorithm (CDA); digital elevation model (DEM); impact crater;
deep learning

1. Introduction

In the past few decades, several missions have been carried out to explore the Moon,
including the detection of crater structure on the lunar surface. Due to no tectonic activities
occurring on the Moon, the structures of most impact craters are well preserved, even
including the ones formed four billion years ago [1,2]. As a typical geomorphologic
structure over the lunar surface, the impact craters record the bombardment history of
the inner Solar System. As the bombardment flux of the Solar System decreases with the
increases of time, the density and size-frequency distribution of craters over the lunar
surface directly provide the critical information on the relative age of the mare units on the
Moon because older mare unit has massive impact records, whereas the younger one has
less impact imprint [3,4]. Therefore, the spatial crater distribution and crater size-frequency
distribution is critical to understand the bombardment history of the Moon, from which the
impact flux of the Solar System can be well derived. As there are hundred-million impact
craters on the Moon with the diameter range from centimeter to thousand kilometers, how
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to count their size and spatial distribution is a difficult problem. The conventional method
that is still used in the planetary researches currently is the manual detection method,
which heavily relies on human experts to annotate lunar craters by using visual inspection
of images and DEMs. The manual detection is very time-consuming and is difficult for
exhaustive coverage, in particular for small or overlapping craters at specific geographic
region [2,5].

In order to develop an efficient detection method with a high accuracy, the automated
crater detection algorithm (CDA) has been widely considered by numerous researchers.
According to the target data, the developed CDAs can be divided into two categories:
(1) remote sensing image-based CDA and (2) digital elevation model (DEM)-based CDA.
Generally, the optical images from the remote sensing observations of lunar surface with a
high resolution could be more easily acquired than the DEM map with the similar resolution
because the latter highly relies on the interpolation of the observations. Therefore, most
of previous works prefer to employ the optical image as the dataset to study the crater
detection method [6–10]. However, the remote sensing observed images are normally
disturbed by unconstrained factors, such as illumination of the Sun, which increases the
difficulty of the crater detection because the complicated terrains on the lunar surface have
significant effects on the optical images and the detection error therefore increases [11]. In
contrast, the DEM map is a composite of physical elevation data that describes the terrain
variations and provides the actual position and height information. More importantly,
the DEM map can avoid the uncertain optical error with robust data quality as it is not
influenced by the illumination. As a consequence, the DEM-based CDA, such as the
morphology-based approaches [12–15], the traditional machine learning methods [16,17],
and the convolutional neural network (CNN) models [18–21], has become popular recently.

With the quick development of deep learning in the field of computer vision, the
CNN models have demonstrated impressive performances on many vision tasks such as
image classification [22], semantic segmentation [23], and object detection [24]. The major
reason for their successful applications in the aforementioned fields is that CNN replaces
the raw pixel data or the hand-crafted feature descriptors such as Scale-Invariant Feature
Transform (SIFT) [25] and Histogram of Oriented Gradients (HOG) [26], with the feature
representations learned from the expert-annotated dataset. Due to the data-driven nature,
the CNN models can quickly adapt to different complex scenarios through a training
process with the given labels, and generalize well to new data with the same distribution
as the annotated data.

In the planetary science, the CNN model has been developed for automatic crater
detection for the remote sensing observed images. In the early works [18,19,27], CNN
is applied as a binary classifier to perform crater/non-crater classification on the remote
sensing images, such as High Resolution Imaging Science Experiment (HiRISE) for Mars,
Lunar Reconnaissance Orbital Camera (LROC) and High Resolution Stereo Camera (HRSC)
for the Moon, respectively. These works claim a high identification accuracy with CNN
in comparison with other machine learning methods, such as the support vector machine
(SVM). In addition, Wang et al. [28] developed a novel fully convolutional neural network
(FCN) for crater classification and position regression at the cell level by utilizing the
HRSC images. Hashimoto and Mori [29] adopted U-Net [30] and the generative adversarial
network to perform the grid-based crater classification on the LROC images. Recently, some
works began to combine the identification ability of CNN with the robust characteristic of
DEM. Silburt et al. [20] proposed a classic DEM-based CDA using deep learning, which
includes a U-Net model for edge segmentation and a template matching algorithm for
crater extraction. Ali-Dib et al. [21] used a general instance segmentation framework [31]
to detect craters while simultaneously producing their masks. Jia et al. [32] combined an
improved R-FCN and the transfer learning method for crater detection by using multiple
data sources. More recently, some works [33–35] aimed to improve the method [20] by
designing a new CNN with the similar structure as Unet.
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However, we found that most of recent methods involve a two-stage pipeline process-
ing as shown in Figure 1, in which an image patch is first input to a CNN model for edge
segmentation through a forward calculation, and then the crater regions are extracted by
performing a template matching algorithm on predicted masks. The template matching
algorithm is computationally expensive as it has to calculate the matched probability of
each segmentation target by iteratively sliding a group of ring templates with a discrete
size distribution on an image patch. By contrast, there have been many works [24,36–38]
proposed for object detection by directly predicting the position and size of a visual target.

c

Input DEM

Edge 
Segmentation

Template 
Matching

Both Location and Size Predicting

Predicted Masks Predicted Craters

Figure 1. Comparison of the two-stage pipeline (dotted line) and the end-to-end pipeline (solid line)
for lunar crater detection on the DEM data.

In this work, we attempt to reduce the gap between the existing DEM-based CDAs
and the advanced methods for object detection, and propose a complete workflow with an
end-to-end deep learning pipeline to focus on the detection of craters smaller than 50 km in
diameter on the DEM data. The workflow consists of four steps as follows:

1. In data preparation, a global DEM image is divided into a less number of sub-region
images than the previous work [20] through a carefully designed grid cropped strategy.
The new strategy can not only improve the detection rate of lunar craters by exploiting
their size compensation, but also effectively reduce the cost of computation in both
inference and post-processing steps as the number of each duplicate crater is reduced
in an order of magnitude.

2. In the detection process, the cropped DEM images are input into a CNN model for
joint detection of multiple lunar craters, which predicts their classification probabilities
and location coordinates in an end-to-end manner.

3. During the post processing step, we merge all the detected craters while transforming
their pixel coordinates to the geographical coordinates, and remove the duplicate
craters by using a non-maximum suppression (NMS) algorithm before and after
the merger.

4. In performance evaluation, we adopt the Average Precision (AP), a standard detection
metric for the object detection task. Comparing to the single precision and recall met-
rics usually used in previous works [20,21], the AP metric can fully verify the detection
performance of a CDA by considering a full range of precision and recall rates.

Based on the workflow, we use three popular types of object detection architectures
with nine advanced CNN models [24,36–43] in the detection process, and build a new
benchmark for lunar crater detection on the DEM data by comprehensively comparing
the performances of all these CNN models. In order to verify the effectiveness of our
workflow in practical application, we provide an example method and show that the
automatically detected craters have a better overall performance with respect to precision
(82.97%) and recall (79.39%) on the hand-labeled datasets than the recent DEM-based
method [20]. In addition, we develop a crater verification tool to manually validate the
detection results and find some newly identified lunar craters missed in the hand-labeled
datasets. The visualization results show that the size-frequency distribution of the detected
craters (D ă 50 km) is almost similar to the labeled craters on the lunar surface; therefore,
our detected craters can be used as a supplement of the hand-labeled datasets for the
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lunar community to investigate the bombardment history of the Moon, even the inner
Solar System.

The rest of the paper is organized as follows: We introduce the proposed workflow
in Section 2. The experimental protocol and results are given in Section 3. The practical
application of the workflow is discussed in Section 4. Our conclusions is presented in
Section 5.

2. Methods

In this section, we will describe our proposed workflow with details, which includes the
steps of data preparation, crater detection process, post processing, and model evaluation.

2.1. Data Preparation

In this work, we used the DEM data from the Lunar Orbiter Laser Altimeter (LOLA)
onboard Lunar Reconnaisance Orbiter (LRO) and the Terrain Camera (TC) on Kaguya
(SELENE), which is released by the LOLA and Kaguya teams [44]. The DEM data is a
near-global elevation map with a resolution of 512 pixels/degree that represents the lunar
terrain elevation with a latitude range between ´60˝ and 60˝ and a full range of longitude.
For the crater information (position and size), we used the two released hand-labeled
datasets, in which Povilaitis et al. [5] annotated the craters with a diameter between 5 and
20 km based on the LRO Wide Angle Camera (WAC) DEM data [45] with a resolution
of 303 pixels/degree, and Head et al. [2] exploited the craters for a diameter larger than
20 km according to the LOLA DEM data with a resolution of 64 pixels/degree. We follow
the work of Silburt et al. [20] to transform the resolution and bit depth of the original
global image from 184,320 ˆ 61,440 pixels with 16 bits/pixel to 92,160 ˆ 30,720 pixels with
8 bits/pixel. The image is equally divided into three local images in the longitude ranges
from ´180˝ to ´60˝, from ´60˝ to 60˝ and from 60˝ to 180˝ for the training, validation and
test in the following steps, respectively.

To get a satisfied input for the follow-up CNN models, the local DEM images have
to be cropped into multiple sub-region patches with a small size. A reasonable cropped
strategy is required because the following problems have to be considered: (1) The integrity
of craters around the edge of image patches is easily destroyed. (2) It is hard to select a
suitable size of cropped window for image cropping. Generally, a large cropped patch
contains more craters with an unbalanced size distribution that increases the learning
difficulty of models, while a small one has less craters in a narrow size range but likely
loses the partial terrain information for large craters.

Inspired by the works [24,46] that use multiple scales of an image pyramid to improve
the detection performance, we propose a multi-scale grid cropping strategy that could
reduce the scale sensibility of a CNN model by providing multiple scales of each crater
from different image patches in both the training and detection procedures. As shown
in Figure 2, each local image with 30,720 ˆ 30,720 pixels is divided into 22n sub-region
images with the same resolution, where n P t1, 2, 3, 4, 5, 6u and represents 6 different sizes
of cropped windows, i.e., 15,360ˆ 15,360, 7680ˆ 7680, 3840ˆ 3840, 1920ˆ 1920, 960 ˆ 960
and 480 ˆ 480 pixels. In order to compensate for partial structure of craters near the edges
of cropped images, we further divide each local image or each sub-region image (except for
that with the smallest size) into 9 identically sized patches by using 6 additional cropped
windows, i.e., 10,240 ˆ 10,240, 5120 ˆ 5120, 2560 ˆ 2560, 1280 ˆ 1280, 640 ˆ 640 and
320 ˆ 320 pixels. For an example, Figure 2 shows the cropped results of a local image for
training, where the red and green dotted lines denote two stages of image cropping through
the 2 ˆ 2 and 3 ˆ 3 grids, respectively. These cropped images are resized to a resolution
of 512 ˆ 512 pixels. After the cropping process, we can get 17,745 sub-region images on
the training, validation, and test sets. All the craters in each image are annotated with the
radii lengths and the center coordinates that are derived from their spatial locations and
diameters in the hand-labeled datasets. As the original DEM image is released in a Mercator
projection, which leads to a noticeable image distortion and unreal pixel coordinates for
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the cropped images, we reformat these images and the crater annotations by applying
an orthographic projection, which are implemented by the Cartopy Python package [47].
In addition, we use a linear transformation to improve the contrast of these images and
enhance the visual differentiation of the craters.

Training set Validation set Test set

Raw DEM image

Patches by a 2x2 grid cropping

Patches by a 3x3 grid cropping

…

Figure 2. A multi-scale grid cropping strategy applied to the lunar DEM image.

2.2. Crater Detection Process via Convolutional Neural Network

In the detection process, we formulate the lunar crater detection task as the problems
of target classification and associated location regression, which have been widely explored
by the previous object detection methods [24,36–43]. According to the architecture design
of the detection network, these previous methods can be classified into three categories:
Region-based Detection Network (RDN), Anchor-based Detection Network (ADN), and
Point-based Detection Network (PDN).

2.2.1. Region-Based Detection Network (RDN)

As shown in Figure 3, the RDN architecture contains four key modules: Backbone,
Neck, Region Proposal Network (RPN), and Head. Given an input image patch, the
backbone module is used to generate the basic feature maps through a forward calcula-
tion. In general, the backbone module is a classic CNN model that is pre-trained on the
Imagenet [48] dataset for image classification. Several previous works [49,50] indicated
that such feature maps can capture hierarchical semantic information and are suitable for
different visual tasks. The neck module is an optional structure that further exploits the
feature hierarchy of CNN to extract multi-scale feature maps with different receptive fields,
and provides scale-specific context information for different objects. The RPN module
can be considered as a sliding-window object detector, which is implemented by perform-
ing a 3ˆ 3 convolution and two sibling 1ˆ 1 convolutions on each single-scale feature
map to generate the classification and regression maps. Each pixel in the classification
map is a probability for crater/non-crater classification, while each pixel in the regression
map denotes the coordinate offsets of a pre-defined anchor box described in Section 2.2.2.
Through the RPN module, we can get a set of candidate crater targets called region pro-
posals, and then apply the region-of-interest (RoI) extractor to get region-wise features
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corresponding to the positions of these region proposals on basic feature maps. The head
module is designed as a sub-network followed by two parallel fully-connected layers. It
can iteratively receive the proposal features and output a refined classification probability
as well as associated coordinate offsets of each region proposal.

c

Output

Backbone

Input

512

512

Neck

RoI

Head

RPN 

Figure 3. Architecture of the region-based detection network for lunar crater detection.

In this work, we adopt three popular RDN models: Faster R-CNN [24], Faster
R-CNN + FPN [37], and Cascade R-CNN [39] for lunar crater detection. Faster R-CNN uses
partial convolutional layers of the ResNet-50 model from the work [51] as the backbone
module, and adopts the final convolutional layer with a global average pooling as the body
of the head module. Based on the output feature maps with the strides of 16 pixels, the RPN
module defines 15 types of anchor boxes having areas of {322, 642, 1282, 2562, 5122} pixels
and aspect ratios {1:2, 1:1, 2:1}. Faster R-CNN + FPN extends the work [24] by exploiting all
convolutional layers of the ResNet-50 model as the backbone module, a feature pyramid
network (FPN) as the neck module, and two fully-connected layers as a sub-network in
the head module. The FPN neck module applies the top-down and skip connections to the
backbone module, and generates five scales of feature maps that have strides of {4, 8, 16,
32, 64} pixels with respect to the input image. It is worth mentioning that FPN has been
developed as an important component in recent detection models because it can provide
multi-scale feature maps with strong semantics for detecting different sizes of targets. The
RPN module would evenly assign the anchor boxes with the same setting as Faster R-CNN
to each single-scale feature map from FPN. Cascade R-CNN follows the major design of
Faster R-CNN + FPN and uses three cascaded head modules with the same structure, each
of which aims to refine different qualities of region proposals by using a set of gradually
increased thresholds {0.5, 0.6, 0.7} to filter the ones with the mismatched Intersection-over-
Union (IoU) overlap with the ground-truth (GT) target. During the training of all the RDN
models, the RPN and head modules use the sigmoid cross-entropy loss and the softmax
loss for crater classification respectively, and adopt the smooth L1 loss [46] for coordinate
offset regression of identified craters.

2.2.2. Anchor-Based Detection Network (ADN)

Although the RDN architecture has demonstrated excellent detection performance on
various complex datasets such as PASCAL VOC [52] and MS COCO [53], the refinement
process of region proposals has high computation cost, especially if an input image includes
a large number of objects. To implement an one-stage detection process, a simplified RDN
have been developed as a new detection architecture called ADN by removing the region-
based refinement sub-network. At the ADN architecture, the head module follows the
design of the RPN module to receive different scales of feature maps from the neck module,
and generate the crater classification and location regression maps associated to each prior
anchor box. As shown in Figure 4, the red rectangles denote the anchor boxes with different
sizes and aspect ratios, which are evenly tiled on each location of output maps to match the
GT boxes described by the green rectangles. We can detect lunar craters with a wide size
distribution by aggregating the classification probabilities and coordinate offsets of all the
anchor boxes. Comparing to the RPN module in RDN, ADN tends to apply more reasonable
anchor assignment and learning strategies to improve the detection performance.
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Figure 4. Architecture of the anchor-based detection network for lunar crater detection.

To evaluate the performance of the ADN architecture for lunar crater detection, we
select three typical ADN models which are called SSD [36], RetinaNet [41], and YOLOv3 [40]
respectively. SSD uses the VGG16 model from the work [54] as the backbone module, and
introduces an SSD-style pyramid as the neck module by adding ten new convolutional
layers. The SSD-style pyramid provides seven scales of feature maps with a wider range
of stride lengths than those in the FPN module. Each scale of feature map is fed to an
individual head module that contains two parallel 3ˆ 3 convolutions. According to the
anchor assignment strategy in SSD, the corresponding output map is tiled by six or ten
types of anchor boxes covering the size range 20–500 pixels. During the training, SSD
adopts the softmax loss and the smooth L1 loss to learn the classification and regression
tasks, respectively. RetinaNet follows the designs of the backbone and neck modules from
Faster R-CNN + FPN, and builds a deeper head module that consists of two separate sub-
networks with five 3ˆ 3 convolutions. For denser anchor covering than RPN, RetinaNet
assigns nine types of anchor boxes with the size range 32–813 pixels and the original aspect
ratios {1:2, 1:1, 2:1} in each scale of output map. In the training process, RetinaNet replaces
the softmax loss with the focal loss [41] to improve the classification of hard samples.
YOLOv3 adopts Dartnet-53, a more efficient CNN model than ResNet-50 as the backbone
module, and uses a normal neck module with three scales of output feature maps by
applying similar operations as FPN. The head module consists of seven alternative 1ˆ 1
or 3ˆ 3 convolutions, and uses the sigmoid cross-entropy loss and the sum of squared
error loss to learn the classification and regression tasks, respectively. Instead of the hand-
designed anchor boxes, YOLOv3 uses nine dimension clusters as anchor boxes by running
the k-means clustering of GT bounding boxes on the training set.

2.2.3. Point-Based Detection Network (PDN)

The PDN architecture is another popular detection architecture, and focuses on con-
ducting target classification and point offset regression in a per-pixel prediction fashion.
Comparing to RDN and ADN, PDN does not rely on the setting of prior anchor boxes,
which usually results in additional hyper-parameters with respect to anchor shapes and
anchor assignment strategies. These hyper-parameters are not always applicable for all the
datasets because they are carefully tuned to make anchor boxes densely cover the targets
with a regular distribution. As seen in Figure 5, the PDN architecture has similar network
structures of the backbone and neck modules as the RDN and ADN architectures. Given a
single-scale feature map, the head module of PDN only outputs a single branch of detection
results including a classification map and a group of regression maps, rather than multiple
branches of ones associated to different types of anchor boxes.

c
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Input

512

512

Neck

Figure 5. Architecture of the point-based detection network for lunar crater detection.
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Recently, the PDN architecture has been proved to be effective in different detection
tasks such as the face detection and the pedestrian detection [55]. In our experiments, we
use three advanced PDN models: FoveaBox [42], FCOS [38] and RepPoints [43] as parts of
the benchmark methods for lunar crater detection. Following the structure of RetinaNet,
these models adopt the ResNet-50 model as the backbone module, and build a FPN neck
module to extract five scales of feature maps with strides of {8, 16, 32, 64, 128} pixels, each of
which is responsible for the prediction of the targets with a specific size range. In FoveaBox
and FCOS, the head module performs similar convolution operations as that of RetinaNet,
and produces a classification probability and four point offsets at each location in output
maps. These offsets denote the distances between the current location and four edges of
an associated target box. The main difference is that FCOS uses an additional convolution
layer in parallel with the classification layer to predict the deviation of each location to
the center of the target box. During inference, the deviation is used to down-weight
the probability of a predicted box far away from the center of the corresponding target.
RepPoints builds a two-stage head module composed of a classification sub-network and
two location sub-networks. At the first stage, the first location sub-network conducts four
3ˆ 3 convolutions and a 1ˆ 1 convolution to compute nine point offsets for the prediction
of a coarse bounding box at each output location. At the second stage, the classification
sub-network and the second location sub-network exploit these point offsets to extract
feature maps by performing three 3ˆ 3 convolutions and a 3ˆ 3 deformable convolution,
and then apply a 1ˆ 1 convolution to generate a classification probability and nine refined
point offsets at the corresponding location, respectively. In the training process, all the
PDN models adopt the focal loss and the smooth L1 loss to learn the classification and
regression tasks respectively, except that FCOS uses the IoU loss as in the work [56] to
learn point offset regression, and employs the sigmoid cross-entropy loss to learn center
deviation regression.

2.3. Post Processing

When any detection network mentioned above is used, there are quite a number
of output bounding boxes having different IoU overlaps with each other. Therefore, an
additional filter is required to get a set of unique targets from the detection results of each
cropped image. Here, we follow the work [57] and adopt a greedy NMS algorithm which is
detailed as follows. Firstly, all candidate boxes are sorted by their classification probabilities
in reverse order. Based on this step, we take the first one as a detected target and calculate
all the IoU values with other bounding boxes. If the IoU valve is greater than a predefined
threshold, the corresponding box would be removed as a repeated target. Once again, we
take the second one with highest classification probability from the remaining candidate
boxes, and eliminate all associated repeated targets. This process is executed repeatedly
until each bounding box is labeled as the detected target.

For practical purposes, we would transform the coordinates of the detected bound-
ing boxes from the rectangle form (x1, y1, x2, y2) to the circle form (x, y, r) by the follow-
ing formulas:

x “
x1 ` x2

2
,

y “
y1 ` y2

2
,

r “
px1 ´ x2q ` py1 ´ y2q

4
,

(1)

where px1, y1q and px2, y2q are the coordinates of two rectangle vertices at the top left corner
and bottom right corner, respectively. px, yq denotes the coordinate of the circle center, and
r is the length of the corresponding radius.

To get the geographical coordinates pLong, Lat, Rq of the detected craters from their pixel
coordinates (x, y, r), we follow the work [20] and adopt the following conversion formulas:
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Lat “
∆Lat
∆y

py´ y0q ` Lat0,

Long “
∆Lat

cospπLat
180˝ q∆y

px´ x0q ` Long0,

R “ r
∆Lat

CKD∆y
,

(2)

where pLong, Latq denotes the longitude and latitude of the crater center, and R is the
kilometer length of the crater radius. The variables with subscript 0 represent the associated
center coordinates of the cropped image. ∆Lat and ∆y are the ranges of latitude and
pixel respectively along the vertical axis of the image center. CKD depicts a conversion
relationship between degrees and kilometers on the Moon by the following formula:

CKD “
180˝

πRMoon
, (3)

where RMoon is the kilometer length of the Moon’s radius.
When we obtain the geographical coordinates of all the craters scattered in different

cropped images, we need to merge these sub-region results into a global crater collection.
As we adopt a multi-scale grid cropping strategy for image cropping, the same craters
will be detected in multiple image patches with different scales. Therefore, we introduce
another required filtering process to remove the duplicate craters. This step is similar to the
previous duplicate filter by using the NMS-based algorithm. However, we note that there
are two main differences in comparison with previous step: (1) The craters are reformulated
as circles represented by geographical coordinates with degrees (of longitude and latitude)
and kilometers (of radius), while the previous filter tackles the carters as bounding boxes
with pixel coordinates. (2) The new filter needs to consider all detected craters in a global
DEM image rather than handling the duplicate craters in each sub-region image.

In the new duplicate filter, we would combine shape transformation with unit conver-
sion in the IoU calculation, and a new formula to get the IoU value is derived as follows:

IoU “
overlap

πr2
1 ` πr2

2 ´ overlap
, (4)

where overlap represents the intersection area of two craters, and is calculated according to
their relative geographical positions:

overlap “

$

&

%

0 if r1 ` r2 ď d
min

`

πr2
1, πr2

2
˘

if |r1 ´ r2| ě d
r2

1α` r2
2β´ r1dsinα otherwise,

(5)

where the first case represents two craters lie outside each other or touch externally, the
second case indicates two craters lie touch internally or one lies completely inside the other,
and the third case implies that they intersect at two points.

In this formula, α and β are the central angles of two craters corresponding to the
intersection area:

α “ arccos
r2

1 ` d2 ´ r2
2

2r1d
,

β “ arccos
r2

2 ` d2 ´ r2
1

2r2d
.

(6)

Here, r1 and r2 denote the radiuses of two craters, and d is the distance between their centers.
The following equations are used to unify the radius and the distance in latitude (degree).

d “
c

´

`

Long1 ´ Long2
˘2 cos2

´ π

180˝
xLaty

¯

` pLat1 ´ Lat2q
2
¯

, (7)
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r “ CKDrkm, (8)

where pLong1, Lat1q and pLong2, Lat2q are the longitude and latitude coordinates of two
craters. To make the conversion error as small as possible in the distance calculation, we use
the mid-point latitude xLaty between the centers of the craters for the longitude conversion.
rkm denotes the radius of a crater in kilometer, and is transformed to the radius r in latitude
by Formula (3).

2.4. Model Evaluation

After the step of post-processing, we get all detected craters with geographical coor-
dinates and classification probabilities in a global DEM image. In previous works [20,21],
the precision, recall and F1 score metrics are used to evaluate the overall performance
of CDAs, while the fractional error rates in latitude, longitude and radius are used to
measure the accuracy of identified craters. We find that these metrics would inevitably
rely on a specific confidence threshold for the crater decision. It is difficult to search an
optimal hyper-parameter for different models and ensure a fair comparison among them.
In this work, we follow the standard evaluation procedure from the PASCAL VOC and
MS COCO challenges, and use the AP metric to validate the detected craters with geo-
graphical coordinates. Comparing to the previous metrics, AP denotes the area under
the precision-recall (P-R) curve without the setting of the confidence threshold, and can
be made a comprehensive assessment for the detection performance of models since it
considers a full range of precision and recall rates. Moreover, we also use the AP metric
to analyze the quality of detected craters by applying different IoU thesholds during the
evaluation, which are responsible for quantifying the matching degree of a predicted crater
and the corresponding GT target. The AP metric is implemented by the following steps:

1. Calculate a cumulative set of precision and recall values. We first sort all detected
craters in reverse order with respect to their classification probabilities, and use
Formula (4) with a pre-defined IoU threshold to calculate the cumulative numbers of
true positives (TP) and false positives (FP) according to their maximum IoU overlaps
with the associated GT targets. Note that we only regard the detected crater with the
highest classification probability as TP when a GT target matches multiple predicted
craters. And then, we can get the corresponding precision and recall values by using
the following formulas:

Precision “
NTP

NTP ` NFP
,

Recall “
NTP
NGT

.
(9)

2. Draw the P-R curve with interpolation of all points. We first get the P-R scatter
plot according to a given set of precision and recall values, and then interpolate the
precision of each point by using the maximum precision whose recall value is greater
or equal than the one of the current point. The interpolation formula is as follows:

P̂pRnq “ max
rR:rRěRn

PprRq, (10)

where P̂pRnq denotes the interpolated precision at recall Rn.
3. Calculate the AP value. We can use the following formula to get the area under curve

(AUC) of the P-R curve, which is the AP value for crater detection.

AP “
ÿ

n
pRn ´ Rn´1qP̂pRnq. (11)
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3. Results

In this section, we conduct extensive experiments for lunar crater detection and
provide a detailed benchmark by evaluating and analyzing different CNN models.

3.1. Hyper-Parameter Setting

In the post processing of the workflow, there are two hyper-parameters called IoU
threshold, which are involved in the NME algorithm to filter the duplicate craters before
and after the merger of sub-region results, respectively. For the first hyper-parameter, we
follow the standard setting in previous works and adopt a IoU threshold of 0.5 to remove
the duplicate craters with pixel coordinates in each image patch. The value of the second
hyper-parameter is associated with the real distribution of lunar craters with different
degrees of overlaps, since it is used to remove the duplicate craters with geographical
coordinates in a global DEM image. In this work, we perform a discrete exhaustive search
of the second IoU thresholds in a possible range from 0.1 to 0.9 by evaluating all the models
on the validation and test sets. Our results, as shown in Figure 6, indicate that the IoU
threshold of 0.2 is more reasonable because all the models can almost achieve the optimal
detection performance on both sets.
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Figure 6. Variation of Average precision (AP) for nine CNN models with the IoU threshold on the
validation (a) and test (b) sets.

3.2. Experimental Results

To evaluate the overall performance of selected representative models, we conduct
three groups of experiments on the validation and test sets to calculate the AP metric of
each model by using different matching thresholds also called IoU threshold. As shown
in Table 1, we found that Faster R-CNN and Faster R-CNN + FPN can get the excellent
performance on both sets under the standard setting of IoU threshold (IoU thr = 0.5), and
consistently maintain the advantage comparing to most of models, even if IoU threshold is
gradually increased (IoU thr = 0.6 and IoU thr = 0.7). It means that both the models have a
better trade-off between each pair of precision and recall, and can detect the craters with
more accurate position and radius than other models. In addition, we also observe that
SSD and FCOS have better performance than other methods based on the ADN and PDN
architectures. Especially, the FCOS model shows a competitive regression ability since
it gets the highest AP value on the test set when we use a IoU threshold of 0.7. Figure 7
demonstrates the corresponding P-R curves of different models on both sets, which indicate
the variation of precision with recall under the setting of different IoU thresholds. We
can see that the precision in Faster R-CNN and Faster R-CNN + FPN begins with a high
value and declines slowly with the gradually increasing recall. In contrast, the precision
in some models earlier starts from a low value such as FoveaBox and YOLOv3, or drops
dramatically with the increasing recall such as RetinaNet. As a result, the AP metrics and
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the P-R curves can consistently demonstrate the robust detection performance of Faster
R-CNN and Faster R-CNN + FPN. From Table 1, we also found that the performances of
models are not strictly related to the number of parameters and computational cost, and
Faster R-CNN + FPN achieves better trade-off among these metrics than Faster R-CNN.

Table 1. Average precision (AP) of nine CNN models on the validation and test sets with their
parameters and GFLOPs. IoU thr is the IoU threshold during model evaluation.

Method APÒ (IoU thr = 0.5) APÒ (IoU thr = 0.6) APÒ (IoU thr = 0.7) Parameters GFLOPsValidation Test Validation Test Validation Test

Faster R-CNN 86.04% 86.38% 81.80% 80.70% 72.74% 68.79% 33.57 M 760.86

Faster R-CNN + FPN 86.01% 87.02% 80.92% 80.70% 70.58% 67.94% 41.53 M 63.65

Cascade R-CNN 84.76% 84.98% 78.36% 77.31% 66.23% 64.37% 69.17 M 91.29

SSD 85.08% 84.61% 79.02% 78.28% 69.42% 66.20% 36.04 M 98.81

RetinaNet 68.97% 66.11% 65.72% 61.76% 58.37% 53.43% 37.74 M 61.22

YOLOv3 78.53% 77.73% 71.15% 70.46% 57.26% 54.34% 61.95 M 50.06

FoveaBox 73.94% 76.02% 67.24% 66.73% 55.60% 54.86% 36.19 M 52.77

FCOS 82.74% 85.22% 78.52% 80.22% 70.77% 71.18% 32.02 M 51.32

RepPoints 82.60% 82.83% 77.06% 75.76% 65.79% 64.37% 36.62 M 48.66

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

IoU threshold = 0.5

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

IoU threshold = 0.6

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

IoU threshold = 0.7

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

IoU threshold = 0.5

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

IoU threshold = 0.6

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

IoU threshold = 0.7

Faster R-CNN
Faster R-CNN + FPN
Cascade R-CNN
FCOS
FoveaBox
RepPoints
RetinaNet
SSD
YOLOv3

(f)

Figure 7. Precision-recall (P-R) curves of nine CNN models with different IoU thresholds on the
validation (a–c) and test (d–f) sets.

According to previous works [2,58], some researchers are more concerned with the
distribution of lunar craters in a specific diameter range. Therefore, we conduct the
performance evaluation of different models for lunar crater detection on different diameter
groups of the test set. As shown in Table 2, we found that different models are good at
detecting the craters in different diameter ranges. Faster R-CNN and Faster R-CNN + FPN
achieve the superior performance for the detection of lunar craters with 5–20 km and
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ě50 km diameters. FCOS gets the highest AP values when detecting lunar craters with
20–30 km and 40–50 km diameters. SSD has a more balanced detection performance than
other models on all the diameter groups. We think that the reason of the performance
differences among models is mainly due to the assignment strategy of the positive and
negative samples, which involves the assignment of a specific set of anchor/point samples
on different levels of features for the classification and regression tasks. For example, Faster
R-CNN + FPN assigns three types of anchor boxes with different scales and aspect ratios
to each output feature map of the FPN module, while SSD uses six or ten types of anchor
boxes tiled on each feature map of the SSD-style pyramid module. How to design the
optimal assignment is an open question. Figure 8 shows the variation of AP for the models
on different diameter groups of the test set with the number of the GT craters on the training
set. We observed that AP of most of models begins with a high value on the diameter
groups of 5–10 km and 10–20 km, and then dramatically drops on the diameter groups of
20–30 km and 30–40 km, and finally raises on the diameter groups of 40–50 km andě50 km.
It could be that the detection performance of the small and medium craters mainly depends
on the number of the GT samples, and is worse when the samples are decreased on the
diameter range of 5–40 km. With the improvement of resolution for the large craters, the
corresponding samples provide easily recognizable information so that the performance of
models is gradually improved on the large diameter groups of 40–50 km and ě50 km.
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Figure 8. Variation of Average precision (AP) for nine CNN models on different diameter groups of
the test set with the number of the ground-truth (GT) craters on the training set.

Table 2. Average precision (AP) of nine CNN models on different diameter groups of the test set.

Method APÒ (IoU Threshold = 0.5)
5–10 km 10–20 km 20–30 km 30–40 km 40–50 km ě50 km Total

Faster R-CNN 84.39% 87.51% 73.68% 66.36% 64.56% 82.68% 86.38%

Faster R-CNN + FPN 83.94% 87.10% 71.32% 65.84% 66.19% 83.57% 87.02%

Cascade R-CNN 82.29% 85.83% 65.85% 60.63% 63.27% 79.90% 84.98%

SSD 80.45% 85.08% 74.11% 70.53% 73.39% 83.51% 84.61%
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Table 2. Cont.

Method APÒ (IoU Threshold = 0.5)
5–10 km 10–20 km 20–30 km 30–40 km 40–50 km ě50 km Total

RetinaNet 65.53% 64.90% 68.86% 64.41% 70.36% 81.59% 66.11%

YOLOv3 72.99% 78.22% 67.27% 65.67% 64.00% 68.94% 77.73%

FoveaBox 80.36% 85.53% 62.71% 29.21% 58.42% 55.17% 76.02%

FCOS 82.96% 86.57% 74.53% 63.10% 73.67% 80.95% 85.22%

RepPoints 79.35% 84.05% 67.96% 59.16% 71.43% 83.19% 82.83%

4. Discussion

In this section, we discuss the practical application of the proposed workflow, and
give an example method to demonstrate the performance advantage by comparing to a
recent DEM-based CDA using CNN. To prove that the method can detect new lunar craters
missed in the hand-labeled datasets, we develop a crater verification tool to manually
validate the detection results and provide a revised confidence threshold in the detection
stage. Furthermore, we show the visualization results to indicate that the detected craters
(D ă 50 km) are reasonable and can be used as a supplement to the hand-labeled datasets.

4.1. Lunar Crater Detection

According to the benchmark results in Section 3.2, we find that our workflow with
the Faster R-CNN + FPN model can obtain a much better overall performance for lunar
crater detection. We use this model as an example to further analyze the effectiveness
of our workflow in this section. To determine a set of detected craters, we need to use a
specific confidence threshold for crater/non-crater classification. Here, we apply a discrete
exhaustive search of confidence thresholds in a range from 0.5 to 1.0 on the validation set.
The blue curve in Figure 9 shows that the confidence threshold of 0.96 leads to a highest
F1 score. We compare the detection metrics of our method with DeepMoon [20], a classic
deep learning approach for lunar crater detection on DEM data, and find that our method
has lower recalls but much higher precisions on the validation set and test set, resulting in
a better overall performance with the higher F1 scores (see Table 3). As the dataset we use
only provides the annotated craters with a diameterě 5 km, we also give the corresponding
precision and F1 score for our detection results on the both sets, and prove the detection
capacity of our method for the existing GT craters. In addition, we find that the fractional
errors in latitude and radius of our method are similar to the results of DeepMoon, while
the fractional longitude error we achieved has an obvious improvement.

Table 3. Detection metrics of the DeepMoon method and our workflow using Faster R-CNN + FPN
on the validation and test sets.

Accuracy Metric DeepMoon Our Method
Validation Test Validation Test

RecallÒ 92% 92% 81.20% 79.39%

PrecisionÒ 53% 56% 80.99% 82.97%

Precision(diameter ě 5 km)Ò - - 90.67% 91.61%

F1 scoreÒ 0.67 0.69 0.81 0.81

F1 score(diameter ě 5 km)Ò - - 0.86 0.85

Fractional longitude errorÓ 13% 11% 6.19% 7.33%

Fractional latitude errorÓ 10% 9% 9.39% 9.25%

Fractional radius errorÓ 6% 7% 6.05% 6.76%
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Figure 9. Variation of F1 score with confidence threshold for our workflow using Faster R-CNN +
FPN on the validation set. The red and blue curves denote the results with (w/) and without (w/o)
manual verification of detected craters, respectively.

4.2. Lunar Crater Verification

From the statistics of our detection results, there are 15,311 predicted craters with
confidence score greater than 0.5, of which 10,991 are considered as FPs in the validation
set. Since the current hand-labeled datasets include the incomplete GT craters, we have to
manually validate the detection results and get a revised confidence threshold reflecting
the real distribution of lunar craters. For this purpose, we develop an off-line crater
verification tool as shown in Figure 10. The tool applies the orthographic projection and
linear transformation operations for display preparation, and provides the two-dimensional
and three-dimensional visualizations of each detected crater with the edge marked by a red
circle. In addition, the tool also provides some simple buttons for the crater judgement and
the annotation backtrack. In our work, we first sample 499 FP craters with the confidences
covering the ranges from 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1.0 by using the same
distribution proportion as the overall results. Then, these samples are independently
verified and re-labeled by three scientists, and used to estimate the new TP craters in
total. Finally, we re-calculate the precision and recall of our detection results by using the
following formulas:

Precisionnew “
NTP ` NTPnew

NTP ` NFP
,

Recallnew “
NTP ` NTPnew

NGT ` NTPnew

.
(12)

The red curve in Figure 9 shows the variation of revised F1 score with confidence
threshold on the validation set. We can see that all the F1 scores are improved obviously
after the manual verification. It indicates that our method can identify lunar craters that
were missed in previous hand-labeled datasets. In addition, our experimental results
show that the confidence threshold of 0.90 is more reasonable for the lunar crater detection
because it has an optimal F1 score in the crater validation on the lunar surface. Furthermore,
we apply the new confidence threshold to manually validate 384 new detected samples
from the test set, and estimate the true positive rate of new identified craters to be 83%,
which leads to a consistent performance improvement with a F1 score of 0.93.
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Figure 10. Graphical user interface of our crater verification tool.

4.3. Visualization Results

The crater size-frequency distribution (CSFD) is a widely used technique to investigate
the impact processes of the planetary surface. Previous works [2,59,60] show that the CSFD
of the Moon follows a power law function, which is almost similar to the size-frequency
distribution of asteroids in the main belt. Here we follow the works [20,21] and use the
CSFD as a direct parameter to validate whether our automatic detection of craters over
the lunar surface is plausible. As the asteroids from the main belt are considered as the
impactor source forming the craters over the lunar surface, the CSFD from the automatic
detection should follow the power law function even the efficiencies of crater detections for
different size are different (see Table 2).

In Figure 11a, we show the CSFD of the craters detected by our proposed workflow
with an example CNN model, while comparing with the CSFD of the GT craters obtained
by human classification in the previous works [2,5]. We follow the recommendation in the
work [61] and use the concerned surface area, A, to normalize the number of the craters over
the Moon within the latitude range from ´60˝ to 60˝ for a diameter between 1 and 50 km.
We found that the CNN derived CSFD is systematically higher than the human derived
CSFD, but they have a similar trend with a part of the same slopes. Combined with the
size statistics of the craters in Figure 11b, it suggests that the CNN detection results include
a larger number of craters than the hand-labeled results, while the new identified craters
have the similar size distribution as the human identified craters. According to the manual
verification in Section 4.2 and the previous works [20,21], which have pointed out that the
GT craters are not complete, it reassures us that most of the new identified craters could
be real. In Figure 12, we show two examples for our detection results, which include the
matched craters, the newly identified craters and the undetected craters denoted by yellow
circles, red circles and blue circles, respectively. Here, we regard a detected crater as the
matched one of a GT crater when the IoU between them is larger than 0.5. We see that our
method can detect most of GT craters with different diameters, and further identifies new
craters that conform to the visual feature of a real crater on the DEM image. Although there
are a few GT craters undetected by our method, which lead to a lower recall (see Table 3),
our detection results can be used as a supplement of the previous hand-labeled datasets for
the lunar research. In Table 4, we compare two existing lunar crater catalogs [2,5] with our
extended lunar crater catalog by combining new identified craters with all the GT craters
over the Moon within the latitude range from ´60˝ to 60˝.
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Figure 11. Cumulative size-frequency distribution (CSFD) (a) and size statistics (b) of the craters
detected by CNN (blue) and obtained by human classification (red) with a diameter between 1 and
50 km.

Figure 12. Example results of our method on the test set. Yellow circles represent detected craters
that were successfully matched to the ground-truth targets. Red circles are newly identified craters
that are not labeled on the current datasets. Blue circles represent the ground-truth craters undetected
by our method.

Table 4. Comparison of two existing lunar crater catalogs and our extended lunar crater catalog for
different diameter ranges over the Moon within the latitude range from ´60˝ to 60˝.

Number of Lunar Craters

Diameter Range Head et al. [2] Povilaitis et al. [5] Ours

1–5 km - - 991
5–20 km - 19,335 24,186
ě20 km 4301 - 6429

Total 4301 19,335 31,606

5. Conclusions

In this work, we propose a complete and effective workflow using deep learning for
lunar crater detection on the DEM data, which focuses on the detection of small craters
(D ă 50 km) over the lunar surface. The workflow is highly flexible to integrate various
CNN-based detection models, and avoids a traditional two-stage pipeline processing by
directly predicting the location and size of each crater. To reduce the gap between the
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existing DEM-based CDAs and the advanced methods for object detection, we build a new
benchmark based on our workflow by conducting a thorough evaluation of three popular
types of detection architectures with nine CNN models. In addition, we demonstrate a
detailed example for the best practice of the proposed workflow, including the choice
of a confidence threshold in the detection stage by developing a crater verification tool.
Extended experiments show that our method has good performance since it effectively
trades off the precision and recall of detected craters while identifying new craters missed
in the hand-labeled datasets. In future work, we will apply our workflow to the detection of
impact craters over other terrestrial planets besides the Moon, such as Mercury and Mars.
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