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Lunar impact crater identification and age
estimation with Chang’E data by deep and transfer
learning
Chen Yang 1,2✉, Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2,

Xingguo Zeng 2, Renchu Guan 3✉, Chunlai Li 2✉ & Ziyuan Ouyang1,2

Impact craters, which can be considered the lunar equivalent of fossils, are the most

dominant lunar surface features and record the history of the Solar System. We address the

problem of automatic crater detection and age estimation. From initially small numbers of

recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively

identify new craters and estimate their ages with Chang’E data and stratigraphic information

by transfer learning using deep neural networks. This results in the identification of 109,956

new craters, which is more than a dozen times greater than the initial number of recognized

craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti-

mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is

derived and distributed to the planetary community together with the related data analysis.

https://doi.org/10.1038/s41467-020-20215-y OPEN

1College of Earth Sciences, Jilin University, 130061 Changchun, China. 2Key Laboratory of Lunar and Deep Space Exploration, National Astronomical

Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of

Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4Department of Information Engineering and Computer

Science, University of Trento, I-38122 Trento, Italy. 5 Electrical and Computer Engineering, University of Iceland, 101 Reykjavik, Iceland. ✉email: yangc616@jlu.

edu.cn; guanrenchu@jlu.edu.cn; licl@nao.cas.cn

NATURE COMMUNICATIONS |         (2020) 11:6358 | https://doi.org/10.1038/s41467-020-20215-y | www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20215-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20215-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20215-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20215-y&domain=pdf
http://orcid.org/0000-0002-7688-9278
http://orcid.org/0000-0002-7688-9278
http://orcid.org/0000-0002-7688-9278
http://orcid.org/0000-0002-7688-9278
http://orcid.org/0000-0002-7688-9278
http://orcid.org/0000-0001-5696-8887
http://orcid.org/0000-0001-5696-8887
http://orcid.org/0000-0001-5696-8887
http://orcid.org/0000-0001-5696-8887
http://orcid.org/0000-0001-5696-8887
http://orcid.org/0000-0003-0621-9647
http://orcid.org/0000-0003-0621-9647
http://orcid.org/0000-0003-0621-9647
http://orcid.org/0000-0003-0621-9647
http://orcid.org/0000-0003-0621-9647
http://orcid.org/0000-0002-4875-3429
http://orcid.org/0000-0002-4875-3429
http://orcid.org/0000-0002-4875-3429
http://orcid.org/0000-0002-4875-3429
http://orcid.org/0000-0002-4875-3429
http://orcid.org/0000-0001-8187-2780
http://orcid.org/0000-0001-8187-2780
http://orcid.org/0000-0001-8187-2780
http://orcid.org/0000-0001-8187-2780
http://orcid.org/0000-0001-8187-2780
http://orcid.org/0000-0002-7162-7826
http://orcid.org/0000-0002-7162-7826
http://orcid.org/0000-0002-7162-7826
http://orcid.org/0000-0002-7162-7826
http://orcid.org/0000-0002-7162-7826
http://orcid.org/0000-0002-0817-2742
http://orcid.org/0000-0002-0817-2742
http://orcid.org/0000-0002-0817-2742
http://orcid.org/0000-0002-0817-2742
http://orcid.org/0000-0002-0817-2742
mailto:yangc616@jlu.edu.cn
mailto:yangc616@jlu.edu.cn
mailto:guanrenchu@jlu.edu.cn
mailto:licl@nao.cas.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications


T
he Moon’s surface contains numerous impact craters that
occupy most of the Moon’s surface. Impact craters on the
Moon span five lunar geologic time periods, i.e., the pre-

Nectarian System, the Nectarian System, the Imbrian System, the
Eratosthenian System and the Copernican System, spanning
approximately four billion years. Their formation and evolution
record the history of the inner Solar System1–5. Sixty years of
advances in lunar exploration projects (e.g., the Luna missions
and NASA’s Apollo programme) have accumulated various lunar
data, including digital images, digital elevation models (DEM)
and lunar samples. Visual inspection of images and/or DEM data
by experts or automatic detection6–8 has recognized a large
number of lunar craters, and consequently, many crater data-
bases9–13 have been established. However, the subjectivity of
manual detection and the limitations of automatic detection with
different types of data have resulted in significant disagreement in
crater number among existing databases14,15. The International
Astronomical Union (IAU)16 has recognized 9137 lunar impact
craters since 1919. The formation ages of 1675 of these lunar
craters were aggregated by the Lunar and Planetary Institute
(LPI)17 in 2015, according to a professional paper, i.e., the Geo-
logic History of the Moon (GHM)18 from the United States
Geological Survey (USGS), updated with the stratigraphy of
craters database19 (see Fig. 1a); at present, this represents a
comprehensive database of craters ages.

The typical characteristics of a crater include large extents, dif-
ferences in diameter on the scale of orders of magnitude, large
variations in shape due to overlapping or filling, and variable and
complex morphologies. Existing automatic detection algorithms6–8

based on pattern recognition and machine learning (ML) can
determine the large extent characteristic of craters from the general
features of craters. Deep learning (DL), in particular convolutional
neural networks (CNNs) applied for the extraction of fine-grained
information, has been used for the identification of lunar
craters20,21. DL has demonstrated fast and accurate performances
based on huge amounts of detected craters as labelled samples.
Nevertheless, available samples mainly include simple craters and
thus do not represent irregular and seriously degraded craters that
may have formed in early periods and provide an important his-
torical record.

In lunar impact chronology, the relative age of lunar geologic
units was first determined by the stratigraphic coverage rela-
tionship22, the morphologic features of craters23,24 and the
optical maturity (OMAT)25. The stratigraphic coverage rela-
tionship is a basic and reliable method. In the absence of strati-
graphic control, relative age is estimated according to the
degradation and freshness of crater morphology, e.g., ray
brightness, rim and terrace sharpness, rim texture, crater shape,
crater walls and superimposed craters26. OMAT is based on the
degree of modification of lunar soil by exposure to space and is
applied to large rayed craters27. The absolute age was obtained by
analyzing the crater cumulative size-frequency distributions
(CSFDs)28–30 and the radiometric ages of returned samples.
These analyses have made OMAT a fundamental technique
applicable to large craters. Recently, a crater age-rock abundance
regression function was derived to estimate the ages of young
craters (age ≤1 Ga) with diameters (D) ≥10 km by analyzing the
thermophysical characteristics of lunar impact ejecta31. However,
crater statistics with scarce lunar samples and complex impact
events result in an extraordinarily difficult age estimation task. It
is difficult to obtain satisfactory crater identification and age
estimation results with a single type of data using conventional
methods.

In the new generation of exploration of the Moon, the
Chang’E-1 (CE-1) and Chang’E-2 (CE-2) orbiters32,33 of China’s
Lunar Exploration Program (CLEP) have provided rich lunar

data, acquiring two image sets with different spatial resolutions,
i.e., 120 and 7 m digital orthophoto images (DOM), and 500 and
7 m DEM data. Obviously, large-scale data with a low resolution
can capture the morphology of large craters, while high-
resolution data are important for capturing the morphology of
small craters. Transfer learning (TL)34, one of the frontiers of ML
that is motivated by the fact that humans can apply previous
knowledge to solve new problems intelligently35, has been suc-
cessfully applied to problems in which sufficient training samples
are not available36–38. Here, we convert the crater identification
problem into a target detection task and progressively identify
craters using the global lunar terrain products of CE-1 and CE-2
DOM and DEM by means of TL34 using deep neural networks.
Then, the estimation of crater age is mapped into a taxonomic
structure, and the relative specific chronology of craters, i.e., the
formation systems, is determined by combining crater morpho-
logical markers with stratigraphic information by an ensemble TL
strategy. In the process of crater identification and age estimation,
only the recognized craters of IAU and dated craters aggregated
by the LPI are used for the training set for TL to ensure the
generalization of the model.

Results
Multiscale lunar impact crater identification. To comprehen-
sively identify lunar impact craters, we proposed a two-stage
crater detection approach with CE-1 and CE-2 data. The process
of identification of lunar craters is described in Fig. 2. Con-
sidering the magnitude difference of crater scale, a series of crater
images are taken from the CE-1 and CE-2 data corresponding to
different spatial resolutions and sizes from different angles from
−65° to 65° in latitude and from −180° to 65°, and 65° to 180° in
longitude on the Moon (the mid- and low-latitude regions).
These crater images are obtained by the fusion of DOM and DEM
data (see Methods section for data consolidation). The DOM data
present the morphological characteristics of craters, whereas the
DEM data present topographic information. Three scales of
images, i.e., 120 m CE-1 images with 5000 × 5000 and 1000 ×
1000 pixels and 50 m CE-2 images with 1000 × 1000 pixels, are
used to detect craters with large, medium and small diameter
ranges, i.e., 50–600, 20–120 and 1–50 km (Fig. 2a). Adjacent
images have a 50% overlap, and each crater may appear in two or
three images.

In the stage of the detection approach (Fig. 2b), recognized
craters in CE-1 images are randomly divided into three separate
datasets, i.e., 5682, 1422 and 791 images for training, validation
and testing, respectively, and all the recognized craters in CE-2
images, i.e., 6511 craters, are used for testing the second stage of
the detection model. In the first stage, a partial network of the
existing CNNs pre-trained with ImageNet data is transferred and
reuses CE-1 data, according to a network-based deep TL
method38. The first stage that uses CE-1 images with 5000 ×
5000 pixels and 1000 × 1000 pixels achieves 94.71% recall,
recovering almost all the recognized craters in the test set.
Figure 2c shows the detection maps with CE-1 images (1000 ×
1000 pixels). There are six adjacent maps that have 50% overlap
with each other. Red squares represent the newly detected craters,
and the red dashed squares represent the undetected craters that
are on the image edge or are not fully displayed. However, these
undetected craters can be detected in other adjacent maps. Then,
in the second stage, we assume that no training data are available
from CE-2, and the first-stage detection model is transferred to
CE-2 images without any training sample. The learning
procedure of the second stage follows transductive TL35, which
can derive learned features and knowledge for CE-2 data,
obtaining a 93.35% recall. Finally, 117,240 craters that range in

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20215-y

2 NATURE COMMUNICATIONS |         (2020) 11:6358 | https://doi.org/10.1038/s41467-020-20215-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


size from approximately 0.9 to 532 km are identified. These
craters are almost 15 times more than the recognized craters, and
88.14% of them are less than 10 km in diameter. Craters that
appear in both CE-1 and CE-2 were removed by selecting the
diameter D ≥ 20 km for CE-1 detections and D < 20 km for CE-2
detections. The average detection time required for each image is
0.17 s. The catalogues of training, validation and test craters with

the DOM and the DEM data and the models of crater
identification are publicly available at https://github.com/
hszhaohs/DeepCraters. The identified lunar craters can be found
at https://doi.org/10.6084/m9.figshare.12768539.v1.

Identified crater distribution and reliability assessment. Fig-
ure 3 shows the distribution of identified craters by the detection
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Fig. 1 Distribution of lunar impact craters on the Moon. a The distribution of recognized and dated craters. The red, brown, yellow, green and blue squares

and points represent the craters of the pre-Nectarian System, the Nectarian System, the Imbrian System, the Eratosthenian System and the Copernican

System, respectively. The grey points show recognized craters without ages. b Distribution of identified craters with assigned ages. From the time scale and

spatial distribution, these dated craters exhibit specific characteristics. Craters with diameters smaller than 8 km and larger than 550 km are not shown in

the distribution map.
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model compared with the distribution of recognized craters. The
number of identified lunar craters is systematically higher than
that of recognized craters for diameters between 1 and 100 km.
This indicates that the detection model finds a substantial num-
ber of craters with both small and medium diameter ranges.
Although large craters can be irregular, seriously degraded and
sparse on the Moon, 46 lunar craters with diameters ranging from
200 to 550 km were identified.

To verify the reliability of identified craters, we analysed
identified craters in comparison with three manually derived
lunar crater databases: (1) Head et al.9 contains 5185 craters with

diameters D ≥ 20 km obtained by using the digital terrain model
(DTM) acquired by the Lunar Orbiter Laser Altimeter (LOLA) of
the Lunar Reconnaissance Orbiter (LRO). (2) Povilaitis et al.10

extended the above database to 22,746 craters with D= 5–20 km.
(3) Robbins11 has a database containing over 2 million craters
with 1.3 million craters with D ≥ 1 km and is the database with
the largest number of lunar craters at present. Moreover, we
considered three automated crater catalogues: (1) Salamunićcar
et al.12, i.e., LU78287GT, which was generated based on the
Hough transform. (2) Wang et al.13 compiled a global catalogue
of 106,016 craters with D > 500 m using CE-1 data. (3) Silburt
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Fig. 2 Identification of lunar impact craters based on transfer learning (TL) with Chang’E-1 (CE-1) data and Chang’E-2 (CE-2) data. a CE-1 and CE-2

digital orthophoto images (DOM) and DOM data fusion and multiscale crater images. b The flowchart demonstrates the two-stage crater detection
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network with the basic network of the ResNet101 convolutional neural networks (CNN) architecture. ResNet101 (only the convolutional layers, not

including the top fully connected layers) is transferred for crater detection. The detection module is fine-tuned by CE-1 data. Then, the detection module is

directly transferred to CE-2 data, as shown in the light green area. It should be emphasized that there is no training in the second-stage TL. c Detection

maps with CE-1 data. There are six adjacent detection maps that have a 50% overlap with each other. The red squares show the edge of detected craters,

and the red dashed squares represent the individual undetected craters (on the image edge or not fully displayed on the image) in one of the detection

maps. However, the individual undetected craters can be detected in the other adjacent detection maps.
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et al.21 generated a crater database using CNN with DEM data
from the LRO. The comparison between craters detected in this
paper and currently public lunar crater databases was carried out
by matching criteria11 in terms of both location and diameter:
distance ≤ 0.25 × avg(Di+Dj), where Di and Dj are the diameters
of the ith and jth craters, respectively, and intersection over union
IoU(Ci, Cj)= (Ci ∩ Cj)/(Ci ∪ Cj) ≥ 0.1, where Ci and Cj indicate the
areas of the ith and jth craters, respectively. In the comparison
process, two craters were recognized as matching when the two
criteria were satisfied simultaneously. Figure 4 shows the CSFD of

the identified craters compared with the published lunar crater
databases. The comparison results in terms of the number and
percentage of matching craters at different scales are listed in
Table 1.

For the manual databases, we can see that for databases of both
Head et al.9 and Povilaitis et al.10, the CSFD and the matching
numbers of identified craters show good agreement with our
work. The matching percentage for both databases from 5 to
550 km is relatively stable. For the largest manual database, i.e.,
Robbins11, it can be observed that the CSFD of craters between 1
and 20 km is systematically higher than that of the identified
craters, whereas at larger diameters, the values are almost
overlapping. It should be noted that the Robbins11 database has
many more craters than estimated in our work for D ≈ 1–20 km
and a comparable number of craters for D ≈ 50–550 km. In terms
of the matching percentage, most of the craters in this work are
consistent with those in Robbins11 when craters with D>3 km are
considered, yielding a high agreement (85.24%). In general, our
results achieve 85.30% agreement with published manual lunar
crater databases for diameters D≳ 1 km.

For the automated catalogues, the CSFD of Salamunićcar
et al.12 is lower than that of the identified craters when D≲ 8 km.
Our database has a significant mismatch for small craters D ≈

1–3 km, whereas the agreement increases as diameter increases.
This may be because small craters are not sufficient in that
automated crater catalogue. For Wang et al.13, the CSFD of
craters between 1 and 5 km is lower than that of the identified
craters, but at larger diameters, they are almost overlapping and
are slightly higher when craters D > 100 km. However, the centre
location of craters in Wang et al.13 has different offsets from those
of other databases due to the lack of global correction. Here, only
the detected craters in CE-1 are used for comparison, represent-
ing ~10% of the total detected craters. The analysis shows that
most of the craters extracted from CE-1 data have good
consistency when D ≈ 10–50 km. For Silburt et al.21, the curve
origin at ~3 km increases gradually but cuts off sharply at
diameters of ~200 km. The curve of the identified craters is
relatively smooth and reaches ~532 km. This indicates that the
TL-based detection approach finds a substantially larger number
of craters (>7× more craters) than the only DL-based model in
both small and large diameter ranges, which include faint, heavily
degraded, and secondary craters that are often hard to detect with
automated methods. Although there is a high matching
assessment when D is between 50 and 550 km in overlapping
areas, a disagreement appears when decreasing the diameter. This
might be due to the crater detection in CNN, which is based on
rectangular windows that cannot guarantee proper scaling to
small crater diameters.

Then, the newly identified craters, i.e., 109,956 craters which
are not included in the recognized craters, are divided into two
sets of scales for manual assessment of detection accuracy. In the
first set, all the newly identified craters with diameters larger than
100 km (i.e., 166) are involved in the assessment. In the second
set, 10% of the other identified craters (i.e., 10,979) with
diameters between 1 and 100 km are considered using a statistical
sampling by random selection. These craters are assessed by
matching with three manual databases and independently
inspected by four scientists from Key Laboratory of Lunar and
Deep Space Exploration, Chinese Academy of Sciences, simulta-
neously. The selected newly identified craters are projected onto
CE-2 7m images and the mean ± standard deviation (s.d.) error
results are provided. The false-positive rates (FPRs) of the newly
identified craters are listed in Table 2. From Table 2, we can see
that the FPRs of identified craters with D= 1–100 and D=
100–550 km are 4.49 ± 0.70% and 4.67 ± 2.10%, respectively. In
the only DL-based model, i.e., Silburt et al.21, the FPR of 361 new

Fig. 3 Identified lunar impact craters distributions compared with the

recognized craters from the International Astronomical Union (IAU) in

different diameter scales. The red column represents the number of the

identified craters compared with the number of the recognized craters

(blue column). Recognized craters used for identification are the ones

completely located within the study area having diameters larger than 1 km

and smaller than 500 km. Source data are provided as a source data file.
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Table 1 Comparison between the identified craters and existing lunar crater databases in terms of number and percentage of

matching craters for different diameter scales.

Head et al.+ Povilaitis et al. Robbins Salamuniccar et al. Wang et al. Silburt et al.

1–2 km

NAa 0 7665 16,686 0 0

NMa 0 2592 4178 0 0

MR(%)b – 33.82 25.04 – –

2–3 km

NA 0 30,332 7631 0 30

NM 0 23,498 4251 0 23

MR(%) – 77.47 55.71 – 76.67

3–5 km

NA 0 40,783 7150 258 2366

NM 0 38,402 5192 120 1744

MR(%) – 94.16 72.62 46.51 73.31

5–10 km

NA 13003 24,551 9719 2160 7458

NM 10210 22,418 6933 1370 5027

MR(%) 78.52 91.31 71.33 63.43 67.40

10–20 km

NA 6859 8810 10,422 5666 3534

NM 5251 8356 6045 4866 2079

MR(%) 76.56 94.85 58.00 85.88 58.83

20–50 km

NA 3246 3829 5023 2985 1841

NM 2522 3582 2881 2537 1004

MR(%) 77.70 93.55 57.36 84.99 54.54

50–100 km

NA 1041 1052 1223 522 372

NM 827 890 877 257 327

MR(%) 79.44 84.60 71.71 49.23 87.90

100–200 km

NA 223 172 230 55 56

NM 169 154 163 29 55

MR(%) 75.78 89.53 70.87 52.73 98.21

200–550 km

NA 43 46 47 14 1

NM 33 42 34 9 1

MR(%) 76.74 91.30 72.34 64.29 100.00

OMR(%)b 77.78 85.24 52.56 78.80 65.53

All compared datasets are sampled from −65° to 65° in latitude and −180° to 180° in longitude on the Moon, and crater diameter is limited in the range of 1–550 km.
aNA is the number of craters in the existing lunar crater databases used for comparisons at different crater scales; NM is the number of matching craters in our lunar craters database.
bMR is the matching percentage between the compared datasets computed as the ratio between NM and NA for different diameter scales; OMR is the overall matching percentage computed as the ratio

between the total NM and the total NA from 1 to 550 km.

Table 2 False-positive rates of newly identified craters.

Num. newly identified Num. assessment Num. false detectiona FPRb

1–2 km 7663 766 64/37/20/44 4.49% ± 0.70%

2–3 km 30,320 3032 187/119/104/133

3–5 km 40,348 4035 153/121/103/117

5–10 km 22,843 2284 147/138/125/135

10–20 km 6860 686 40/38/34/35

20–50 km 1426 143 15/13/12/13

50–100 km 330 33 8/5/4/6

100–200 km 124 124 9/5/9/3 4.67% ± 2.10%

200–550 km 42 42 1/1/3/0

All the newly identified craters with diameters larger than 100 km are involved in assessment; 10% of the other newly identified craters between 1 and 100 km are considered using statistical sampling by

random selection.
aNum. false detection is the number of craters that are supposed to not be craters by matching with the manual databases and scientists.
bFPR is the false-positive rate (mean ± s.d.) of the newly identified craters with D= 100–550 and D= 1–100 km.
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craters is 11 ± 7% derived also with manual inspection by four
scientists and average results. This FPR latter is more than twice
than that of the proposed model. Meanwhile, it should be noted
that the number of detected craters of our TL-based model is
obviously higher than that of DL-based model. This illustrates the
reliability and stability of our detection model in the identification
of lunar craters with both small and large sizes.

Lunar impact crater age estimation. The geological time scale
established for the Moon was based on the recognition of con-
venient geomorphological markers with major impact events18.
Absolute ages can be assigned to the geological periods by cor-
relating the ages of samples obtained from Apollo missions. The
pre-Nectarian System is defined as the period from when the
lunar crust formed to when the Nectaris Basin was formed by a
large impact, and its ejecta blanket serves as a useful stratigraphic
marker. The Nectarian System and Imbrian System are defined by
the occurrence of the Nectaris and Imbrium impact events,
respectively. The Eratosthenian System is the period in which
lunar craters can be recognized with freshly excavated materials
on the lunar surface but with bright sputtering materials, i.e., rays
around those craters, beginning to darken and disappear. The
Copernican System is defined by craters generally surrounded by
bright rays that represent recent lunar geologic records. It is
important to note that some of the ages are uncertain, and we
consider only the formation epoch. Here, the period boundaries
of the five systems defined by Wilhelms18 are used, i.e., the pre-
Nectarian (>3.92 Ga), the Nectarian (3.92–3.85 Ga), the Imbrian
(3.85–3.2 Ga), the Eratosthenian (3.2–1.1 Ga) and the Copernican
(<1.1 Ga). Then, we mapped the five systems into a taxonomic
structure.

As in the detection case, a two-stage crater classification
approach based on TL with CE-1 and CE-2 data is proposed. The

estimation of the age of the lunar crater scheme is shown in Fig. 5.
A semi-supervised dual-channel lunar crater classification
strategy is employed. One of the channels is used for extracting
morphology marks with CNN; the other analyses the generic
morphological information (e.g., diameter and depth) and
stratigraphic attributes (i.e., coverage relationship) of craters
(which cannot be directly derived from DOM data) with a
feedforward neural network. The information on the scarce dated
craters and enormous identified craters are simultaneously
considered (see Methods section for age estimation algorithm).

In the first stage of the classification approach, 1411 dated
craters with sizes ranging from approximately 1.26–1160 km in
CE-1 were associated with the training, validation and test sets
with proportions of 8:1:1. Twelve deep CNN models were
transferred and fine-tuned with CE-1 data following the network-
based deep TL technique38. For CE-2, the learning procedure of
the second stage also followed transductive TL without any
training data. A total of 502 craters from 1.26–50.66 km in the
CE-2 images were used for testing the second stage of
classification. The effectiveness of the classification approach in
the first stage was tested with CE-1 data in five trials. The first
stage of classification obtained an overall accuracy (OA) of 85.44
± 1.94% (mean ± s.d.) (see Methods section for evaluation of ages
of craters classification) and achieves the best OA of 88.97% on
the test set of the dated craters. The corresponding confusion
matrices of the CE-1 and CE-2 data are shown in Fig. 6. This
demonstrates that the crater classification model trained in the
first stage has the ability to accurately classify lunar craters into
their respective systems. The best performance model in the first
stage is transferred to CE-2 without training, resulting in 89.04%
of dated craters being classified correctly. Finally, the best
classification model is utilized to assign ages to identified and
recognized craters larger than 8 km in diameter (because small
craters degrade at an accelerated rate23 with respect to large
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Fig. 5 Estimation of the age of lunar craters based on transfer learning (TL) with Chang’E-1 (CE-1) data and Chang’E-2 (CE-2) data. The flow chart

demonstrates the two-stage crater classification approach based on TL. The two stages are separated by dotted lines. The left part is the TL process, and

the right part shows the crater classification network structure. In the left part, the light green area indicates the first-stage TL. The crater classification

model includes two types of input data, i.e., images and attribute data. Thus, the model consists of two channels. One of the channels is based on the pre-

trained deep convolutional neural networks (CNN) model on ImageNet (only convolutional layers, not including the top fully connected layers) for images,

and the other is the feedforward neural network for attribute data. Meanwhile, a semi-supervised learning strategy, i.e., Meanteacher, is adopted to take

advantage of a large number of newly identified craters. In the second TL stage, the two-channel classification model with the Meanteacher strategy is

directly used for estimating ages with CE-2 data, as shown in the light pink area. There is no other training in the second TL stage. A series of deep CNN

techniques are then used for the classification of crater ages with CE images.
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craters of the same age). The average time of the classification of
each crater is 0.006 s.

Dated lunar impact crater distribution and mapping. The dated
lunar crater distribution is given in Fig. 7. Figure 7a compares the
number of lunar craters with estimated ages to the recognized
craters with formation systems. The results show that the lunar
craters of the pre-Nectarian System are large in diameter (the
number of craters with D ≥ 50 km is far greater than those of
other systems) in both our dataset and previous datasets. There
are 18,996 craters in the study areas and ~1270 larger than 50 km.
However, most of the recognized craters (733 out of 1453) in the
pre-Nectarian System are distributed from 50 to 550 km. Similar
results are obtained for the Nectarian System, which was asso-
ciated with only 645 of the previous mapped craters. The number
of dated craters in the Nectarian System is the highest, i.e., 11,050.
However, there are more craters with diameters smaller than
20 km than those in the pre-Nectarian System. For the Imbrian
System, the number of craters is 1431, and most of them are
smaller than 50 km. For the two young geological periods, the
number of craters in the Eratosthenian System, i.e., 850, and the
Copernican System, i.e., 4212, are obviously different. Craters in
the Eratosthenian System range in size from 20 to 50 km, whereas
the craters in the Copernican System are mainly smaller than
20 km.

In Fig. 7b, we show the CSFDs of the craters with estimated
ages by the TL-based classification model compared with those of
recognized craters in the five systems. For the pre-Nectarian
System, the CSFD curve of estimated craters first decreases slowly
with increasing diameter and runs parallel to or overlaps the
CSFD of recognized craters between 20 and 200 km. Then, it
displays a prominent kink at 200 km and cuts off at diameters of
~500 km. The CSFD curve of estimated craters in the Nectarian
System is clearly higher than that of the recognized craters for
diameters D ≤ 50 km, whereas the number of craters increases

slowly for diameters between 60 and 200 km, breaking at
~532 km (which is the largest identified crater with a radius of
~4433 pixels in the CE1 image). For diameter values between 8
and 30 km, the CSFD curves derived by the TL-based model for
the Imbrian System are higher than the CSFD curves of
recognized craters. Then, they overlap with each other for larger
values and cut off at diameters of ~200 km. For the two relatively
young systems, the TL-based model-derived CSFDs of the
Eratosthenian System and the Copernican System are system-
atically higher than those of the recognized ones when the
diameters of craters are relatively small (D ≤ 30 km). Then, the
newly dated CSFD curve follows the same size distribution as the
recognized craters.

Two typical regions, i.e., nearside mare10 and the northwest of
the farside highlands39, were selected for analyzing the super-
imposed crater populations associated with the five systems
(Fig. 7c, d). Widespread basin resurfacing and basaltic flooding
reset the vast majority of the nearside mare. The Imbrium basin
formed at ~3.91 Ga40 and provides an upper limit for the
emplacement of basalts in this basin. This area has the lowest
density of craters across the entire diameter range in existing
manual databases9–11. In contrast, the northwestern farside
highland region is one of the most heavily cratered terrains of
the Moon for craters with diameters of both >20 (ref. 9) and
5–20 km10. Meanwhile, this area is far from large impact basins
(e.g., the South Pole-Aitken basin) and is unaffected by >5 km
secondaries39. The “Relative” plots (R plots) in Fig. 7c, d show a
distinct difference between the shapes of the CSFDs of the ancient
highlands and the young mare crater population. The farside
highlands have a high density of large craters with D ≈ 50–100 km
in the pre-Nectarian System and the Nectarian System and of
small craters with D ≈ 15–20 km in the Copernican System. The
density of the Imbrian System is intermediate, with craters
with D ≈ 8–50 km. A low density of craters associated with
the Eratosthenian System (D ≈ 8–20 km) is observed. For the
nearside mare, the R plots show a separable distinction between

1 - Pre-Nectarian System         2 - Nectarian System        3 - Imbrian System         4 - Eratosthenian System          5 - Copernican System
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Fig. 6 Confusion matrix of the age estimation algorithm with Chang’E-1 (CE-1) data and Chang’E-2 (CE-2) data. Confusion matrices for the crater age

classification task of CE-1 and CE-2 data reveal acceptable misclassification of different systems. Element (i, j) of each confusion matrix represents the

probability of estimating system j given that the true system is i, with i and j referring to different systems. The diagonal of the matrix represents the

probability of corrected classification for each system. Note that with both CE-1 and CE-2 images, there is some confusion between adjacent systems. For

the first stage of classification with CE-1 images, compared with other systems, the pre-Nectarian System and the Copernican System have a very high

accuracy (100%). Some of the craters of the Imbrian System are confused with those of the Eratosthenian System. For the second stage with the CE-2

image, only two craters of the pre-Nectarian System are used for testing owing to the resolution and confusion with those of the Nectarian System. The

diameters of craters in the Eratosthenian System and the Copernican System are relatively small, and craters of the Copernican System sometimes do not

feature bright rays in the DOM data. However, the overall classification results are accurate and reliable for supporting scientific analysis and

interpretation. Source data are provided as a source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20215-y

8 NATURE COMMUNICATIONS |         (2020) 11:6358 | https://doi.org/10.1038/s41467-020-20215-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the pre-Nectarian System and the Eratosthenian System. This
area has a much higher crater density separable distinction
between the pre-Nectarian System and the Eratosthenian System.
This area has a much higher crater density of small craters with
D ≈ 10–20 km in the Eratosthenian System, whereas it shows the
lowest density of large craters with D ≈ 100–200 km in the pre-
Nectarian System. The Nectarian System and the Imbrian System
have similar crater frequencies. However, their R curves are
different in terms of the crater diameter range. This result
indicates that the populations of craters in the pre-Nectarian
System, the Nectarian System and the Imbrian System were
significantly affected by the resurfacing events. The low density of
the Copernican System is reflected in craters with D ≈ 8–20 km.
In general, the density of large craters (D ≈ 60–100 km) is much
higher than that of small craters (D ≈ 10–20 km) in the farside
highlands than in the nearside mare. This is consistent with a
less-steep production function for this size range9.

The spatial distribution of all the dated craters (D ≥ 8 km) in
the study area is shown in Fig. 1b. The spatial distribution varies

greatly for the five different systems. Craters of the pre-Nectarian
System are widely distributed in the south and north and on the
back of the Moon in the mid- and low-latitude regions. The
craters in the Nectarian System are located on a larger area of the
Moon except for lunar mare. Meanwhile, data from lunar samples
(Apollo, Luna and lunar meteorites) indicate that the Moon was
subjected to an intense period of bombardment, i.e., the Late
Heavy Bombardment (LHB), at approximately 3.8–4.0 Ga41,42.

Craters of the Imbrian System are mainly distributed on
the front of the Moon and around lunar mare, mostly above the
ejecta of mare and filled with mare basalts. This may be due to the
hypothesis that many large-scale basaltic eruptions occurred after
formation of the lunar mare (known as lunar mare flooding),
which occurred between ~3 and 3.5 Ga43. The craters that formed
during the Eratosthenian System are mainly distributed in the
medium and high TiO2 (ref. 44) and FeO45 basalt regions of the
Mare Imbrium. From the chemical compositions of rocks and
surface ages of mare basaltic units in Mare Imbrium estimated
with CE-1 and Clementine ultraviolet to visible spectrum

ba

dc

Fig. 7 Dated lunar crater size-frequency distributions. a Number of estimated craters and related assigned ages from the Lunar and Planetary Institute

(LPI) with five ages in different diameter scales. Source data are provided as a source data file. b The cumulative size-frequency distributions (CSFDs) of

identified craters with estimated ages and recognized craters with ages. Source data are provided as a source data file. The red, brown, yellow, green and

blue lines represent the estimated crater CSFDs of the pre-Nectarian System, the Nectarian System, the Imbrian System, the Eratosthenian System and the

Copernican System, respectively, and the hollow lines show recognized crater CSFDs of the five systems in the LPI used for age estimation. The confidence

interval ±σ, which for the kth crater is log k ±
ffiffiffi

k
p

� �

=A
� �

, where A is the surface area, kth crater means that the kth-largest crater at the level of diameter.

Source data are provided as a source data file. c, d R plots (areal density) of dated craters superimposed on lunar nearside mare and farside highland areas,

illustrating the difference in density and CSFD slope of the five systems on the two terrains. The confidence interval ±σ is log R± R=
ffiffiffiffi

N
p� �

, where R is the R

value, N is the cumulative number of craters. Source data for c, d are provided as a source data file.
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(UVVIS) data, the evolution of the basalts is from low-titanium
and low-iron compositions to high-titanium and high-iron
compositions from the Imbrian System to the Eratosthenian
System46. The impact in the Eratosthenian System may have
been the external cause of the multistage volcanic eruption in
the Imbrium basin. The results show that craters formed in the
Copernican System are scattered all over the lunar surface in the
study area. Recent research47 has pointed out that sporadic
meteoroid bombardment occurred across the whole Moon at
~800Ma.

Analysis of consistency with existing lunar age chronology. The
estimated ages for craters in this work are based on morphologic
and stratigraphic information. Therefore, we compared dated
craters with related literature using OMAT data27, CSFDs30 and
thermophysical characteristics of lunar impact ejecta31 described
in the Introduction section.

Table 3 summarizes the comparison of relative crater ages
derived from the OMAT data27 and the assigned formation
system ages based on the best classification model. The categories
are listed on the basis of the shape of the OMAT profiles of crater

Table 3 Comparison of crater relative ages derived from the optical maturity parameter (OMAT).

The compared craters are identified and recognized craters without assigned formation systems based on the best classification model. The position and diameters of crater centres were measured from

the CE data.
aStratigraphic epoch estimated in USGS Lunar Geologic Map Renovation (2013 edition).
bOld represents the craters older than Copernicus (inferred age of ∼810Myr), and Young is as young or younger than Tycho (inferred age of ∼109Myr), and Intermediate is between Old and Young in

which Copernicus and Tycho are the oldest and youngest end-members, respectively.
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ejecta in which three relative age groups were classified, i.e., older
than Copernicus (~810Myr), intermediate and as young or
younger than Tycho (~109Myr). The estimated ages of craters
are fitted well by the OMAT. We observe only one crater, i.e.,
Stefan L (marked with “+” in Table 3), with an estimated age that
is not consistent with the category derived from OMAT. From
Table 3, one can see that the Stefan L crater has a low ray
brightness with a loss of rim texture. Additionally, the
stratigraphic information estimated in the USGS maps is the
Eratosthenian.

The craters in the test set of the classification model were
selected for comparison of the absolute age by using CSFDs
(Table 4). The previously assessed formation epochs obtained
from the USGS Geologic Atlas of the Moon, the ages aggregated
by the LPI, the absolute ages computed by CSFDs and the
estimated age using the proposed TL-based classification model
are given in the 4–7th columns. Table 4 is organized from old to
young relative to the formation system (column 7). In total, the
ages of 50% of the craters are estimated by the LPI and our
method to be older than those in the USGS maps. The estimated
ages of these craters are generally in the CSFD age range within
error. We observe two craters, i.e., Langmuir and Vavilov
(marked with “+” in Table 4), for which there are differences
between the CSFDs and this work. From Table 4, one can see that
the Langmuir crater features some small superimposed craters,
and the rim and terrace sharpness show irregular degradation.
The CSFD age of Langmuir may be affected by resurfacing; thus,

it is uncertain30. Vavilov shows clear geomorphic features with
only a minimum of subsequent impact erosion but features weak
rays, which may cause confusion with respect to the formation
system.

Table 5 reports the comparison between craters with absolute
ages by analysis of thermophysical characteristics of lunar impact
ejecta31 and those with estimated ages obtained by the best
classification model. The absolute ages of all determined craters
are located in the Copernican. A majority of compared craters
(81%) that do not have any age information are also assigned to
the Copernican. We observe 14 craters (marked with “+” in
Table 5) with estimated ages that are not consistent with the
absolute age. To obtain representative craters, four inconsistent
craters, i.e., Euclides C, Sirsalis F, 16 and 31, and four consistent
craters, i.e., Larmor Q, Cauchy, 15 and 22, were selected for
comparison. The Euclides C and Sirsalis F craters are located in
and around the lunar mare and show weak rays. Crater 16
features three small superimposed craters and a polygonal shape.
In the bottom of crater 31, a sloping channel is observed on the
crater wall. The comprehensive features extracted from the
morphology and the stratigraphic information determined that
these craters are hard to classify as Copernican. In contrast,
Larmor Q, crater 15 and crater 22 are located in the highlands
and have relatively intense rays that help decision-making. The
rays of the Cauchy crater seem not evident for distribution in
mare, but the comprehensive features suggest that it is
Copernican.

Table 4 Comparison with the crater age by the crater size–frequency distributions (CSFDs).

The compared craters are recognized ones in the test set of the classification model. The position and diameters of crater centres were measured from the CE data.
aStratigraphic epoch estimated in USGS Lunar Geologic Map Renovation (2013 edition).
bIn Ga with 1r error.
cThe classification model in five trials.
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Discussion
Through the proposed two-stage detection and classification
approaches, an enormous number of craters were identified, and
starting from the limited number of recognized craters, their ages
were estimated. There are many reasons to argue that the TL-
based strategy with a deep neural network has properly learned
the complex features that define a crater and its age. For identified
craters, despite the large variations in size and shape across the
lunar surface, our approach was able to recover 94.71 and 93.35%
of craters already known and that were not used to train our
model previously. Moreover, it detected a number of new craters

dozens of times larger than the number of recognized craters
throughout the mid- and low-latitude regions of the Moon.
Meanwhile, most of the craters known in the existing manual
database and automated catalogues were also accurately detected
by the proposed approach. The newly identified craters were
attained with low FPR, i.e., 4.49 ± 0.7% and 4.67 ± 2.1% for small
and large sizes, respectively, which demonstrates that our
approach can be used to produce high-precision lunar crater
catalogues. Regarding the ages of craters, 88.97 and 89.04% of the
estimated craters were assigned to their corresponding formation
systems with CE-1 and CE-2 data, respectively, by learning the

Table 5 Comparison of crater ages by analysis of thermophysical characteristics of lunar impact ejecta.

a ab

The compared craters are identified and recognized ones without assigned formation systems based on the best classification model. The position and diameters of crater centres were measured from

the CE data.
aAges in Myr estimated by analysis of thermophysical characteristics of lunar impact ejecta.
bNo name craters with assigned number.
cStratigraphic epoch estimated in USGS Lunar Geologic Map Renovation (2013 edition).
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morphological features and stratigraphic information. From
comparisons with existing lunar age chronologies, most craters
have been shown to have good consistency in terms of both
relative age and absolute age.

As mentioned in the multiscale crater identification section,
missed craters can be avoided to a certain extent by using two
types of Chang’E data with different scales and overlapping
images. From the detection results, large craters (D ≥ 50 km)
exhibited good agreement with existing crater databases and
catalogues. Furthermore, some faint and heavily degraded craters,
which are often hard to detect with automated methods, appear
in our database. However, the identification is obviously incom-
plete, as many medium and small craters (D < 50 km) are missing
from our database compared with the Robbins11 database. This
depends on three main reasons. First, the size of small craters in
the feature map of the last convolutional layer is too small for
accurate detection. Thus, the two spatial resolutions of the data,
i.e., CE-1 120 and CE-2 50 m, are not enough to deal with the vast
presence of craters. In further research, we plan to transfer the
detection approach to the CE-2 global lunar terrain product with
20 and 7 m spatial resolutions for identifying smaller craters and
to build a more complete lunar crater database. Moreover, our
model was able to understand the training objective and correlate
the binary ring targets with the true rims of the craters with a
limited amount of training data. However, the distribution of
recognized craters used is incomplete, thus affecting the complete
learning of crater features.

The age of craters, i.e., the formation system estimated in our
database, is comprehensively estimated by considering morpho-
logical features and stratigraphic information. The CNN
approach works on windows of pixels. It does not recognize the
actual size of craters from the image. Thus, the morphological
features were extracted from DOM images of Chang’E data and
the calculated morphological data of craters. The stratigraphic
features were mapped to corresponding craters. Then, integrated
features were learned to contribute to the estimation of craters by
a dual-channel crater classification model. The need for inte-
grated feature learning was tested by an ablation study48, which
refers to removing some features of the model and analyzing
performance. We applied the classification model with only
stratigraphic features by removing the morphological data and
obtained an OA of 72.21 ± 3.79% and the best OA of 75.74% on
the CE-1 test set of the dated craters. Then, this model was
transferred to CE-2, resulting in a 77.09% OA. Compared with
the proposed classification model with both morphology and
stratigraphic information, the OAs of integrated features are
13.24 ± 2.67% and 11.95% higher than those obtained with only
stratigraphic features. These results highlight the robustness and
flexibility of crater classification solutions. However, it is worth
noting that due to the difference and incompleteness of dated
craters from the LPI with stratigraphic information, some lim-
itations exist in the crater age estimation. For example, the crater
density in the Eratosthenian System may be underestimated
because of the availability of dated samples. More precise strati-
graphic data should be determined in future research to guarantee
the universality of this method.

In conclusion, a new lunar crater database of 117,240 craters of
D ≥ 1 km (the highest quantity with a low FPR among existing
automated catalogues) and 18,996 craters of D ≥ 8 km with ages
(13 times higher than that in existing dated crater datasets)
throughout the mid- and low-latitude regions of the Moon has
been derived and made available. Additionally, the adopted
progressive TL strategy can be applied to assist human crater
studies, in particular generating reliable suggestions when facing
limited samples in planetary research. This progressive TL
strategy implemented in deep architecture is similar to a

supervisor passing his/her knowledge (feature representation)
and experience (detection and classification capability) from one
generation to another. The complex features can be learned
identically for every crater to ensure consistency of decisions. The
student-like learned model (e.g., the two-stage crater detection
approach) can be adapted to other Solar System bodies, e.g., Mars,
Mercury, Venus, Vesta and Ceres, to extract much more semantic
information than the usual manually analysis method. This pre-
diction will generally take minutes followed by a few hours of
post-processing on standard computation hardware.

Methods
Datasets. The data used in this paper come from the CE-1 and CE-2 orbiters of
the CLEP, the IAU, the LPI and the USGS. The DOM and DEM data from the
CCD stereo cameras aboard CE-1 and CE-2. The 120 and 50 m/pixel images and
DEM data were produced by the CE-132 and CE-233 CCD stereo cameras at orbital
altitudes of 200 and 100 km, respectively. The recognized lunar craters come from
the IAU16. The crater dataset was downloaded on June 17, 2018, and contains 9137
craters. The craters with constrained ages are derived from the LPI document
published in 2015 (ref. 17), which includes 1675 craters with constrained ages. The
craters span five lunar geologic periods, i.e., the pre-Nectarian System, the Nec-
tarian System, the Imbrian System (the Lower Imbrian Series and the Upper
Imbrian Series), the Eratosthenian System and the Copernican System. The lunar
geological map is derived from 1:5,000,000 Lunar Geologic Renovation (2013
edition) produced by the U.S. Geological Survey (https://astrogeology.usgs.gov/
search/map/Moon/Geology/Lunar_Geologic_GIS_Renovation_March2013).

Problem extension. Impact craters, as the most dominant lunar surface features,
can usually be identified according to their near-circular depression structure, and
their ages are further estimated from morphological markers and stratigraphic
control19. To identify craters and estimate their ages automatically, we convert the
identification of craters into a target detection task and the age estimation of craters
into a taxonomy structure.

Data consolidation. The study area ranges from −65° to 65° in latitude and from
−180° to 65°, and 65° to 180° in longitude on the Moon. The DOM data and DEM
data are projected by Mercator at 33°. For the crater detection task, the DEM data
of CE-1 and CE-2 were resampled to 120 and 50 m/pixel. The slope information
and the profile curvature were extracted from the DEM data. DOM data and DEM
data were fused. To train the crater detection model, the craters in the study area
were marked based on the lunar dataset published by IAU16. At the same time, the
CE-1 data were cut into 5000 × 5000 pixel and 1000 × 1000 pixel images (two
different projection coordinates), and CE-2 data were cut into 1000 × 1000 pixel
images to detect multiscale craters in the whole study area. To avoid incomplete
craters caused by clipping, the adjacent images have a 50% overlap rate.

For classification of craters, we extracted the recognized and identified craters with
CE-1 and CE-2 DOM data. Forty morphological information of the craters (e.g.,
diameter (km), rim to floor depth (km) and interior volume (km3)) were calculated
with Chang’E data with reference to the lunar impact crater database published by the
LPI17, and 38 stratigraphic attributes of craters were extracted from the 1:5,000,000
Lunar Geologic Renovation (2013 edition) produced by the U.S. Geological Survey.
Finally, 78 attributes of craters were constructed by integrating the morphological
features with the corresponding stratigraphic attributes. In the experiments, the craters
images with all these attributes are used as the input in deep neural network which can
automatically discover the representations needed for classification of craters37. Note
that the 40 morphological information are the generic morphological parameters of
craters, and the 38 stratigraphic attributes are related to the crater materials of the five
systems, which are listed in the table of attribute data. Information on these attributes
can be found at https://github.com/hszhaohs/DeepCraters/tree/master/age_estimation,
together with the documentation of each attribute.

Sample selection. For crater detection, combined with the catalogue data pub-
lished by IAU16, the CE-1 and CE-2 data yield 7895 and 6511 recognized craters in
the study area, respectively. In the detection model, the recognized craters of CE-1
are divided into training and tests set at a ratio of 9:1. During the training process,
20% of the training set is used for validation. All the recognized craters in the CE-2
data are used as the test set.

For estimating crater ages, five classes corresponding to five lunar geologic
periods, i.e., the pre-Nectarian System, the Nectarian System, the Imbrian System,
the Eratosthenian System and the Copernican System, are considered. A total of
1491 craters with constrained ages in the study area were selected based on the
lunar crater database published by the LPI17. On the basis of spatial resolution, the
CE-1 and CE-2 images contain 1411 and 502 craters with different ages,
respectively. To estimate the performance of the classification model and monitor
the training process, these craters in the CE-1 data were divided into training,
validation and test sets at a proportion of 8:1:1 according to the principle of
stratified sampling. All the craters in the CE-2 data are used for testing.
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Crater identification algorithm. For multiscale crater identification, a two-stage
crater detection approach based on TL is designed. The region-based fully convolu-
tional network (R-FCN)49 is selected as the detection model. First, Resnet101 (ref. 50)
is used as the basic network of the R-FCN detection model to extract features from
CE-1 data. The model is initialized with pre-trained parameters on ImageNet51. Then,
all the parameters of the network are fine-tuned by back propagation using the
training craters of CE-1. This is the first-stage TL. The initial learning rate is 0.001.
The total number of iterations is set to 100,000, and the learning rate is reduced to
0.0001 when the training iterations reach 80,000. We use the mini-batch stochastic
gradient descent optimization method to learn the parameters, in which the batch size
is set to 128, the momentum is 0.9, and the weight decay coefficient is 0.0005. The
Caffe52 DL framework is used to train, validate and test the whole detection network.
Then, the first-stage crater detection model is obtained for identifying large-scale
craters. For the 5000 × 5000 pixel and 1000 × 1000 pixel images, we use the same
parameter setting. To identify small-scale craters, we carried out the second stage of
the detection approach, i.e., the first-stage crater detection model, which is fine-tuned
on CE-1 data, is directly transferred to CE-2 data without any training. The two-stage
crater detection approach is implemented with a PC workstation (Intel(R) Core(TM)
i7-5930K CPU at 3.50 GHz with 128 GB of RAM and NVIDIA GeForce GTX TITAN
X Graphics Processing Unit).

Identified accuracy metrics. To evaluate our crater identification algorithm, recall
(R) is used to measure the performance of detection and can be calculated as
follows:

R ¼
Tp

Tp þ Fn
;

where Tp is true positives and Fn is false negatives.
In the calculation process, we define detected craters as those that have

intersection over union (IoU) overlap with a ground-truth box of at least 0.5;
otherwise, they are considered undetected.

Age estimation algorithm. Considering the small number of available craters with
a constrained age, a two-stage crater classification approach based on TL is pro-
posed. For two types of lunar data, i.e., DOM and attribute data, a dual-channel
crater classification model is constructed. One of the channels utilizes a classical
deep CNN to extract information from the image features of craters. The other uses
a feedforward neural network to assess the morphological and stratigraphic fea-
tures of craters of different ages. Finally, the two types of features obtained from the
two channels are merged for classification. A large number of newly identified
craters are used as unlabelled data. A semi-supervised learning strategy (i.e.,
Meanteacher53) is adopted to prevent overfitting37 of the classification model. To
ensure the quality of the unlabelled data, we select identified craters with a con-
fidence level of 0.99 as the input data. In the first stage of the classification
approach, the network is initialized by pre-trained parameters on ImageNet51.
Then, the CE-1 dated craters and the identified craters are fed into the classification
model to fine-tune all the parameters. In this model, the image size is set to 256 ×
256 pixels (i.e., the craters DOM are resampled for network size). In the training
process of the first-stage model, all parameters are fine-tuned by back propagation
and trained by the Adam54 optimizer; the learning rate is 0.0003, the total number
of epochs is set to 10, the batch size is set to 32 and the weight attenuation
coefficient is 0.0001. The PyTorch DL framework (https://pytorch.org/) is used to
train, validate and test the classification network. In the second stage of the clas-
sification approach, the model trained by CE-1 data is directly transferred to CE-2
without training and learning. To improve the classification performance of craters,
12 deep CNN models were utilized to extract crater features, i.e., Resnet50 (ref. 50),
Resnet101(ref. 50), Resnet152 (ref. 50), Senet55, se_Resnet50 (ref. 55), se_Resnet101
(ref. 55), se_Resnet152 (ref. 55), se_Resnext101 (ref. 55), Polynet56, Inceptionv3
(ref. 57), DPN68b58 and Densenet201 (ref. 59). Thus, we obtain 12 age classification
results for the craters. For the CE-1 and CE-2 data, the ensemble strategy is based
on a genetic algorithm for weighting the 12 age classification results. The age that
receives the highest weighted sum is selected as the final age of the crater.

Evaluation of crater age classification. In the age estimation algorithm, the OA is
used to analyse the crater classification results, and the confusion matrix is given to
show the classification situation of craters with different ages in an overall way. The
OA is defined as:

OA ¼
1

N

X

C

i¼1

xii;

where N is the total number of craters, C represents the number of categories, and
xii is the number of correctly classified craters of the ith class.

Quantification and statistical analysis. The lunar impact crater age estimation
experiments were repeated five times independently. In each trial, 10% craters with
constrained ages were independently selected by stratified sampling as the test set.
The OA represents the mean ± s.d.

Data availability
The lunar craters datasets of recognized craters and craters with ages are available from

the IAU (https://planetarynames.wr.usgs.gov/Page/MOON/target) and the LPI (https://

www.lpi.usra.edu/lunar/surface/), respectively. The Chang’E data used in the experiment

are available from the Data Publishing and Information Service System of the CLEP

(http://moon.bao.ac.cn). The databases of identified and dated craters are available in

figshare with the identifier [https://doi.org/10.6084/m9.figshare.12768539.v1]. The

experimental data (including the catalogues of craters and attribute data used to train,

validate and test the TL-based strategy) are available at https://github.com/hszhaohs/

DeepCraters. Source data are provided with this paper.

Code availability
The models of crater identification and age estimation are publicly available at https://

github.com/hszhaohs/DeepCraters.
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