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Summary 

 

Lung hyperinflation is highly prevalent in patients with chronic obstructive pulmonary disease (COPD) 

and occurs across the continuum of the disease. A growing body of evidence suggests that lung 

hyperinflation contributes to dyspnea and activity limitation in COPD and is an important independent 

risk factor for mortality. In this review, we will summarize the recent literature on pathogenesis and 

clinical implications of lung hyperinflation. We will outline the contribution of lung hyperinflation to 

exercise limitation and discuss its impact on symptoms and physical activity. Finally, we will examine the 

physiological rationale and efficacy of selected pharmacological and non-pharmacological ‘lung 

deflating’ interventions aimed at improving symptoms and physical functioning. 
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Introduction 

COPD is a common respiratory condition that is characterized by inflammation of the large and small 

peripheral airways, the alveoli and adjacent capillary networks.[1,2] Expiratory flow limitation (EFL) is 

the pathophysiological hallmark of the disease and spirometric assessment of EFL at rest is used to 

establish a clinical diagnosis.[3] Lung hyperinflation is another important and related physiological 

manifestation of COPD that has major clinical consequences. Resting lung hyperinflation may be due to 

increased lung compliance (i.e., reduced lung elastance), the effects of EFL, or a combination of both. 

Lung hyperinflation can be acutely amplified above resting values when the respiratory system is 

stressed during a sudden worsening of symptoms or during physical activities. Indices of lung 

hyperinflation in patients with COPD have been shown to be predictive of respiratory and all-cause 

mortality,[4]  and disease exacerbations.[5]  Both resting and dynamic lung hyperinflation are more 

closely associated with symptoms and exercise performance than spirometric assessments of reduced 

maximal expiratory flow rates.[6] The progressive increase in resting hyperinflation as the disease 

advances, has major implications for dyspnea and exercise limitation in COPD.[7]  During exercise, 

hyperinflation may cause functional respiratory muscle weakness, increased work of breathing, and 

impaired cardio-circulatory function, which collectively impair performance.[8-10] The negative 

consequences of dynamic hyperinflation may also be a factor in reduced participation in daily physical 

activity,[11] which is an important component of quality of life in COPD.[12] For these reasons, there is 

increasing interest in therapeutic manipulation of lung hyperinflation to improve clinical outcomes in 

this population.  

The aim of this review was to concisely summarize the recent literature on pathogenesis and 

clinical implications of lung hyperinflation. We attempted to clarify definitions of lung hyperinflation 

(resting versus dynamic), review causative mechanisms, and describe the consequences of 

hyperinflation across the disease continuum. We outlined the contribution of lung hyperinflation to 
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exercise limitation and discussed its impact on symptoms of dyspnea and physical inactivity. Finally, we 

examined the physiological rationale and effectiveness of selected pharmacological and non-

pharmacological ‘lung deflating’ interventions aimed at improving symptoms and physical functioning. 

 

Resting and dynamic lung hyperinflation: definitions and determinants 

For the purpose of this review, we define ‘resting’ lung hyperinflation as an increase in 

plethysmographically-determined end-expiratory lung volume (EELV) beyond the upper limits of the 

predicted normal range. Resting EELV and functional residual capacity (FRC) are used interchangeably in 

this review. Resting hyperinflation has static and dynamic determinants. Static components of lung 

hyperinflation in patients with emphysema can be attributed to an increase in the static relaxation 

volume of the respiratory system due to loss of lung elastic recoil.[13] Thus, reduced lung elastance 

combined with the natural outward elastic recoil of the chest wall resets the lung-chest wall balance to a 

higher EELV than the predicted normal. In this setting, alveolar pressure at end-expiration remains 

atmospheric and, depending on the severity of EELV increase and chest wall compliance, total lung 

capacity (TLC) may increase above the predicted value.[13]  

Additionally, in patients in whom EFL is present during resting breathing, EELV is dynamically 

determined to a variable extent. In such patients, the mechanical time constant (i.e., the product of 

compliance and resistance) for lung emptying is prolonged but the time available for expiration during 

the breathing cycle may not be sufficient to allow EELV to decline to the predicted EELV of the relaxed 

respiratory system – lung hyperinflation is the result.  In this circumstance, the alveolar pressure at end-

expiration becomes higher than the atmospheric pressure and is termed: intrinsic positive end-

expiratory pressure (PEEPi). In the presence of PEEPi, the inspiratory muscles must offset an inspiratory 

threshold load to initiate inspiratory flow with each breath.[14] The dynamic factors controlling EELV in 

COPD become even more important when the respiratory system is abruptly stressed by increased 



5 

ventilatory demands (e.g., physical activity, voluntary hyperventilation, during anxiety/panic attacks, 

transient hypoxemia) or when EFL is suddenly worsened (e.g., during exacerbation or increased 

bronchospasm). The resultant variable and temporary increase of EELV above resting levels is usually 

referred to as ‘dynamic hyperinflation’ (DH). 

  

The value of measuring inspiratory capacity (IC) to estimate lung hyperinflation  

Recently, the value of measuring IC when evaluating lung hyperinflation in patients with COPD at rest 

and during exercise has become increasingly popular.[7,15,16] Measurement of resting IC provides 

important information about the position of tidal volume (VT) relative to TLC and the upper less 

compliant reaches of the respiratory system’s pressure-volume (PV) relation.[16]  It should be 

acknowledged, however, that measurement of plethysmographic lung volume components is required 

to determine if the cause of reduced IC is restrictive (pulmonary fibrosis, chest wall restriction or 

inspiratory muscle weakness) or obstructive (lung hyperinflation). 

 

Development of hyperinflation from mild to advanced COPD 

The natural history of the development of lung hyperinflation in COPD patients is unknown but it is 

probably a process that occurs over decades with a time course of change in the various volume 

compartments that is highly variable among patients. Genetic susceptibility, burden of tobacco smoke, 

and the frequency and severity of disease exacerbations may all be important determinants. It is 

noteworthy that increases in body mass index have been shown to be consistently associated with lower 

static lung volume components (expiratory reserve volume [ERV], and EELV) and increased IC, regardless 

of the severity of airway obstruction; therefore, this needs to be considered when evaluating 

hyperinflation.[17] Until recently, no large longitudinal studies had tracked the temporal progression of 

physiological abnormalities in COPD beyond a decline in the forced expiratory volume in one second 
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(FEV1).[18] The recently completed UPLIFT trial documented a mean rate of decline in pre-

bronchodilator IC of 34 to 50 mL/year in 3569 patients with moderate to very severe COPD that were 

followed-up in 490 investigational centers in 37 countries during a 4 year period.[19] Patients with the 

lowest baseline IC were those with highest exacerbation rates and mortality.[19] A recent cross-

sectional study in 2265 patients with COPD found progressive increases in pulmonary gas trapping 

(increased residual volume [RV]) and resting lung hyperinflation (increased EELV), and a corresponding 

decrease in IC with increasing severity of airway obstruction (Figure 1).[20] Despite considerable 

variability in EELV and RV across severity grades, these lung volume changes have been shown to occur 

even in some patients with milder airway obstruction and to increase exponentially as the severity of 

airway obstruction increases (Figure 1).[7,20] 

 

Hyperinflation in patients with milder airway obstruction 

It is well established that the widespread inflammatory damage to the peripheral airways  

(< 2 mm diameter), lung parenchyma and pulmonary vasculature can be present with only minor airflow 

obstruction.[21] It is postulated that loss of peripheral airways  precedes the onset of centrilobular 

emphysematous destruction.[21] Alveolar inflammation with destruction of alveolar walls and 

attachments to airways is thought to form the basis for the pathogenesis of lung hyperinflation.[22] 

Previous studies in mild COPD have reported increased static lung compliance,[23] and quantitative 

computed tomography (CT) scans show emphysema and gas trapping.[24-26] Gas trapping, as assessed 

by expiratory CT scans, can exist in the absence of structural emphysema and is believed to indirectly 

reflect small airway dysfunction in mild COPD.[1] Corbin and coworkers, in a 4-year longitudinal study of 

smokers with chronic bronchitis, reported a progressive increase in lung compliance leading to gas 

trapping manifested by an increase in RV without significant changes in FEV1.[23] Concomitant increases 

in TLC in this study population served to preserve forced vital capacity (FVC) and IC in the setting of 
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increased RV and FRC, respectively.[23] This suggests that the classic view of the natural history of COPD 

as a progressive decline in FEV1 [18] may be over-simplistic as it may underestimate the extent of injury 

to the small airways and consequent pulmonary gas trapping.[27] The pathogenic mechanisms of 

progressive lung hyperinflation in advancing COPD have not been studied longitudinally but are thought 

to reflect the dual effects of progressive changes in the elastic properties of the lung and worsening EFL.     

Pathophysiological implications of resting lung hyperinflation 

Impact on respiratory muscle function 

The impact of resting lung hyperinflation on respiratory mechanics and respiratory muscle function is 

variable in patients with COPD and can range from minor diaphragmatic dysfunction to severe 

hypercapnic respiratory failure. Resting lung hyperinflation can significantly diminish ventilatory reserve 

which can become further critically reduced during exacerbations,[28,29] or the stress of exercise (see 

below). Resting lung hyperinflation in moderate to severe COPD places the inspiratory muscles on an 

inefficient part of their length-tension relationships, thereby compromising their force generating 

capacity.[30-34] The mechanical advantage of the external intercostals and the accessory muscles is 

possibly less affected than that of the diaphragm but this has not been studied in much detail.[30,32] 

When EELV becomes positioned above ~55% of vital capacity (VC), the inspiratory muscles have to work, 

not only against the elastic recoil of the lungs, but also against the inward elastic recoil of the thoracic 

cage (Figure 2).[35]  The net effect is that resting lung hyperinflation contributes to an increased elastic 

load (aggravated by PEEPi in more severe patients with EFL at rest) on the inspiratory muscles while 

simultaneously impairing their force generating capacity.[10]  

 

Physiological adaptations of the diaphragm to resting lung hyperinflation 

In the presence of chronic lung hyperinflation, functional muscle weakness (outlined above) is partly 

compensated by diaphragm shortening due in part to sarcomere loss, as well as to shortening of 
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diaphragmatic sarcomeres.[36] This results in a leftward shift of the length-tension relationship of the 

diaphragm and improves the ability to generate force at higher lung volumes. Force generating capacity 

at most overlapping absolute lung volumes (corresponding to FRC in severely hyperinflated patients) 

have been shown to be higher in patients than in healthy subjects.[34,37] These volumes, however, 

correspond to volumes at which the diaphragm is maximally shortened in healthy subjects (close to 

TLC). When comparing both groups at muscle lengths that are used during spontaneous breathing at 

rest (i.e., at FRC), force generating capacity is much higher in normal subjects than in patients with 

COPD.[36-38] Nevertheless, the diaphragm undergoes remarkable adaptations to chronic hyperinflation 

and functions better than expected under these circumstances.[36,38] One common feature in COPD is 

a shift towards improved endurance characteristics and increased oxidative capacity.[36] Alterations in 

muscle fiber composition (an increase in the relative proportion of slow-twitch, fatigue resistant, type I 

fibres),[39] and an increase in mitochondrial concentration and the efficiency of the electron transport 

chain,[40,41] are believed to contribute to the relatively well preserved force generating capacity and 

higher fatigue resistance of the overburdened diaphragm.[34] Despite these impressive adaptations, the 

presence of severe resting lung hyperinflation means that ventilatory reserve in COPD is diminished and 

the ability to increase ventilation (V'E) when the demand suddenly arises is greatly limited.[7] Even 

though the described adaptations serve to optimize force-generating and endurance capacity, and are 

partially successful during resting breathing, the abruptly increased ventilatory needs during physical 

activities with accompanying dynamic hyperinflation and breathing pattern adaptations pose ‘acute-on-

chronic’ challenges to the respiratory muscles that are discussed in more detail below.[36] 

 

Impact on cardiac function 

The complex cardiocirculatory consequences of dynamic lung hyperinflation will be discussed in detail 

when we consider the additional challenges brought about by physical exercise. Recent cross-sectional 
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and observational data suggest a negative relationship between lung hyperinflation and cardiac 

function. In a large population-based sample made up of both smokers and non-smokers, a greater 

extent of emphysema on CT scanning correlated inversely with reductions in left ventricular (LV) 

diastolic volume, stroke volume and cardiac output, as estimated by magnetic resonance imaging 

(MRI).[42] In a subgroup of this study population, pulmonary vein dimensions have recently been shown 

to be reduced in patients with emphysema, suggesting a pulmonary mechanism of under filling of the 

LV.[43] Severe hyperinflation, defined as an IC/TLC ratio <25%, has been shown to be associated with 

increased all-cause (including cardiovascular) mortality,[4] and impaired LV filling determined by 

echocardiography.[9] Severe lung hyperinflation has been linked to reduced intra-thoracic blood volume 

and reduced LV end-diastolic volume as assessed by MRI.[44]  

 

Pathophysiological implications of dynamic lung hyperinflation during exercise 

Measuring DH during exercise 

DH can be defined as the temporary and variable increase of EELV above the resting value.[45] Changes 

in EELV during exercise can be reliably estimated from repeated IC measurements,[46,47] assuming that 

TLC remains constant.[48,49] The methodology to perform these measurements has recently been 

reviewed by Guenette et al.[16] Even though the IC measurement gives only indirect information about 

changes in absolute lung volumes, it nevertheless provides important mechanical information, 

irrespective of possible minor shifts in absolute TLC that may occur.[46,47] Valuable information about 

the mechanical limits on ventilation during exercise can be derived from combining serial IC 

measurements with those of dynamic inspiratory reserve volume (IRV, calculated as IC - VT) and 

breathing pattern.[7,50-52] Comparing changes in IC and IRV at standardized levels of V’E (iso-V’E) during 

exercise reveals important information concerning the mechanical limits on VT expansion, independent 

of the ventilatory demand.  
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The reproducibility and responsiveness of serial IC measurements in moderate to severe COPD 

has been demonstrated in small, single-center studies involving detailed physiological measurements, as 

well as in large, multicenter clinical trials.[46,47] Increases in EELV in the range of 0.3-0.5 L 

(corresponding to decreases in IC) have typically been reported during exercise in the majority of 

patients with moderate to severe COPD.[7,46,47,50,51,53] Similar average increases in EELV have been 

measured in symptomatic patients with mild COPD during incremental cycle exercise.[7,54,55] 

The IC represents the operating limits for VT expansion and influences breathing pattern and 

peak ventilatory capacity during exercise. In this context, it should be appreciated that the static PV 

relationship of the relaxed respiratory system is sigmoid-shaped (Figure 2). In health, VT is normally 

positioned on the linear mid-section of the PV relation where the muscles of breathing function 

optimally and there is harmonious neuromechanical coupling of the respiratory system. In other words, 

lung-chest wall displacement is optimized for a given respiratory neural drive (and transpulmonary 

pressure gradient). This has important implications for minimizing the work of breathing and the 

respiratory sensations associated with increasing ventilation. During exercise in healthy subjects, VT 

expands mainly within the linear part of the PV relation, thus avoiding the upper less compliant part of 

the S-bend closer to TLC where elastic loading of the inspiratory muscles is increased. In obstructive lung 

disease, the IC is limited from below as a result of lung hyperinflation. The reduced IC means that VT 

operates closer to TLC where the respiratory muscles are disadvantaged, particularly in situations where 

ventilatory requirements suddenly increase (e.g., during exercise) and VT must expand. 

  

Potential benefits of dynamic lung hyperinflation during exercise 

DH can be seen as both an essential component of adaptation to EFL and an impediment to normal 

inspiratory muscle function.[10]  Increases in EELV at low exercise intensities help attenuate EFL and 

possibly improve ventilation-perfusion relationships and pulmonary gas exchange by reducing airway 
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resistance and improving ventilation distribution.[51,52] DH during early stages of exercise, by reducing 

airway resistance, should help to preserve the balance between central neural drive and the 

mechanical/muscular response of the respiratory system (i.e., neuromechanical coupling) and thus 

attenuate the rise in dyspnea.[51,52] However, this benefit is quickly neutralized when end-inspiratory 

lung volume (EILV) approaches its maximum value (>90% TLC) with corresponding increases in elastic 

and threshold loading on the inspiratory muscles.[10,56]  

 

Negative effects of dynamic lung hyperinflation during exercise 

Important negative consequences of DH include:  1) limits on VT expansion resulting in early ventilatory 

mechanical limitation;[7,50-53] 2) increased elastic and threshold loading on the inspiratory muscles 

resulting in an increased work and oxygen (O2) cost of breathing (reduced efficiency);[10,13,52,56-58] 3) 

increased functional inspiratory muscle weakness due to mechanical disadvantage and increased 

velocity of shortening of the muscles;[52,56,59-61] 4) negative impact of increased inspiratory muscle 

work on leg blood flow and muscle fatigue;[62-65] 5) carbon dioxide (CO2) retention;[66] and 6) adverse 

effects on cardiac function and central hemodynamics.[9,67-69] 

 

Dynamic lung hyperinflation and VT constraints  

As airway obstruction increases in severity, the progressive decline in resting IC causes the respiratory 

system to reach its physiological limits at a progressively lower peak V’E during exercise.[7] This is 

related to the fact that the resting IC limits the possibility for VT expansion during exercise in patients 

with EFL (Figure 3).[7,47,50-53] The lower the resting IC, because of resting lung hyperinflation, the 

lower the peak VT and peak V’E that can be achieved during exercise (Figure 4).[7,47,50-53] When VT 

during exercise reaches approximately 75% of the prevailing IC (or IRV reaches 5-10% of the TLC), there 

is an inflection or plateau in the VT/V’E relation (Figure 4).[7,50-52] The V’E during exercise at which the 
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VT plateau occurs is closely related to the magnitude of the resting IC. In patients with a smaller IC, the 

VT plateau occurs earlier in exercise at a relatively lower V’E.[7,50-52] Associated tachypnea causes 

further functional weakening of the inspiratory muscles by forcing them to increase their velocity of 

contraction, and also contributes to reduction in dynamic lung compliance.[51,52,56,60,61,70] The 

resulting rapid, shallow breathing pattern combined with high physiological dead space can further 

compromise the efficiency of CO2 elimination.[66] The point at which further VT expansion is 

mechanically constrained marks the onset of a rising disparity between increasing central neural drive 

and the mechanical/muscular response of the respiratory system.[51,52] As disease progresses, this 

plateauing of VT (with resulting neuromechanical dissociation) occurs at progressively lower work rates 

and V’E.[7,11,47,50-53,55,71] 

 

Mechanical consequences of dynamic lung hyperinflation on respiratory muscle function 

The previously mentioned effects of resting lung hyperinflation on respiratory mechanics and muscle 

function are further aggravated by dynamic increases in EELV during exercise in patients with moderate 

to severe COPD. Acute-on-chronic (i.e. resting plus dynamic) lung hyperinflation increases elastic 

mechanical loading while simultaneously forcing inspiratory muscles to work at shortened lengths and 

perform contractions at higher velocities.[10,13,52,56-61] Thus, there is both an increase in demand and 

a further reduction in the capacity to meet the demand during exercise and this is imposed on top of the 

functional disturbances that are already present at rest.[60,61,72]  Adaptations to chronic mechanical 

loading at rest can therefore become quickly overwhelmed during exercise.[59,60,73,74] The net effect 

of this increased load/capacity ratio is that further increases in V’E can no longer be sustained. In 

particular, the increased O2 cost of breathing and reductions in efficiency in the setting of reduced O2 

delivery might predispose the inspiratory muscles to fatigue during exercise in severe 

COPD.[10,13,57,58] However, there is no definitive evidence that diaphragm fatigue systematically 
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occurs in these patients.[75,76] Nevertheless, due to the high O2 requirements of breathing at peak 

exercise a competition between limb and respiratory muscles for the available O2 might contribute to 

the exercise limitation in these patients (see below).[10,13,58] 

 

Dynamic hyperinflation and limb muscle function 

Limb muscle weakness is present in many patients with COPD and the sensation of increased ‘leg effort’ 

has been shown to contribute to exercise limitation.[77-80] Circumstantial evidence has accumulated in 

recent years linking DH to impairments in peripheral O2 delivery and muscle function during 

exercise.[64,65,81,82] Data from healthy young athletes suggest that high levels of respiratory muscle 

work during prolonged high-intensity endurance exercise reflexively induces sympathetically mediated 

vasoconstrictor activity, thereby compromising blood flow and O2 delivery to the active limb 

muscles.[83] A reduction in locomotor muscle blood flow and O2 delivery is hypothesized to result in an 

accelerated rate of development of limb muscle fatigue during exercise. The increase in work and O2 

cost of breathing associated with DH should theoretically aggravate these mechanisms.[84] Studies that 

have unloaded the respiratory muscles of hyperinflated patients with COPD during constant work rate 

exercise (i.e., same peripheral O2 demand) have resulted in lower limb muscle fractional O2 extraction in 

the absence of significant changes in arterial oxygenation. According to the Fick principle (O2 extraction= 

O2 uptake / blood flow), the most likely explanation for these results would be a higher muscle blood 

flow.[64,65,81] Louvaris and colleagues recently demonstrated that reducing operating lung volumes in 

hyperinflated COPD patients with heliox enhanced quadriceps muscle O2 delivery during exercise.[82] 

Since cardiac output was similar between exercise conditions (heliox versus room air), the increases in 

muscle blood flow could have been caused by blood flow redistribution from the respiratory 

muscles.[82] Chiappa et al. found that increased muscle O2 delivery during constant work rate exercise 

with heliox supplementation was associated with lower intensity of ‘leg effort’ at isotime and 
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electromyographic evidence of diminished recruitment of easily-fatiguing type II fibres.[64] In line with 

these data, mechanical unloading of the inspiratory muscles reduced post-exercise limb muscle fatigue 

in patients with COPD.[62] 

 

Dynamic lung hyperinflation and cardiac function during exercise 

The effect of acute-on-chronic lung hyperinflation and PEEPi on dynamic cardiac function during 

exercise remains largely speculative as much of the knowledge on the topic stems from intensive care 

studies. It should be noted that lung hyperinflation per se (i.e., independent of PEEPi) may have 

deleterious effects on the cardiopulmonary interactions in patients with COPD. For instance, lung 

hyperinflation increases pulmonary vascular resistance and, due to downward diaphragmatic 

displacement, intra-abdominal pressure.[85] Moreover, the hyperinflated lungs exert a direct 

compressive effect on the heart chambers and ventricular interdependence increases secondary to the 

lung ‘stiffening’ effect of hyperinflation.[86] Figure 5 brings a schematic and simplified view of the 

potential negative effects of increased operating lung volumes and PEEPi upon patients’ hemodynamics 

during exercise.[9,44,85-88] Despite these potential abnormalities, seminal studies reported that while 

stroke volume is generally smaller and heart rate correspondingly higher, cardiac output increased 

normally as a function of oxygen consumption (V’O2) during submaximal exercise in COPD patients 

without cardiac morbidity.[87,89] Peak cardiac output typically reaches a lower maximal value during 

exercise, which may not necessarily indicate cardiac abnormalities as early ventilatory limitation might 

preclude greater cardiovascular stresses in more advanced COPD.[87,89,90] In contrast, recent studies 

reported a more consistent relationship between exercise-induced dynamic hyperinflation in 

combination with cardiac dysfunction and impaired central hemodynamics with reduced daily physical 

activity.[4,15,69,91,92] Patients with severe resting lung hyperinflation (IC/TLC ratio <25%), for instance, 

have been shown to have a decreased peak exercise O2 pulse (a crude estimate of stroke volume),[69] 
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and reduced exercise tolerance.[4,15,69] Interventions that reduce resting hyperinflation, such as lung 

volume reduction surgery, have shown improvements in cardiac function such as increased left 

ventricular dimensions and filling,[44] and improved end-expiratory pulmonary artery wedge pressure.  

Similarly, lung deflation following bronchodilation or heliox was associated with modest but 

consistent improvements in cardiac output and V’O2 kinetics during the transition from rest to 

exercise.[64,93] Moreover, continuous and interval exercise training significantly improved systolic 

function of both right and left ventricle function in patients with moderate to severe COPD.[94] The 

implications of these improvements for exercise performance and daily physical activity remain 

unknown.[92] 

 

Dynamic hyperinflation and dyspnea 

Physiological correlates of dyspnea intensity in COPD 

It is a long held belief that imbalances in the ratio of demand to capacity relate to the intensity and 

quality of dyspnea in COPD.[95]. It has been shown that dyspnea intensity ratings correlate well with a 

number of physiological ratios such as: 1) the ratio of V’E to maximum ventilatory capacity 

(V’E/MVC);[96] 2) the ratio of  tidal esophageal pressure to maximum pressure (Pes/PImax) as an 

indicator of relative respiratory muscular effort;[61] 3) the ratio of Pes/PImax to the VT response (VT/IC 

or VT/VC) relating the relative respiratory muscular effort to volume displacement;[51,52,56] and 4) the 

ratio of electrical activation of the diaphragm during tidal breathing relative to maximal activation (e.g., 

during a sniff maneuver), a measure of respiratory neural drive.[97,98] Dyspnea intensity ratings during 

exercise usually correlate well with indices of DH or its restrictive mechanical effects on VT expansion 

(Figure 6).[7,51,52,56] The proximity of VT to TLC and the upper portion of the respiratory system’s PV 

relation during exercise, as reflected by changes in EILV or IRV, seem to correlate more strongly with 

dyspnea intensity ratings than changes in EELV or IC.[7,50-52] The extent to which DH will contribute to 
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dyspnea intensity seems to depend primarily on the resting IC, reflecting the extent of mechanical 

constraints on VT expansion.[50,99] 

 

Unsatisfied inspiration and lung hyperinflation 

Unsatisfied inspiration (‘can’t get enough air in’) is a qualitative descriptor of dyspnea during exercise 

that, in contrast to the situation in healthy subjects, is frequently reported by patients with COPD.[56] 

This sensation is perceived as unpleasant, in some cases is perceived as life-threatening and evokes 

powerful emotive responses (fear, anxiety, panic, frustration). During physical activity it alerts the 

patient that ventilation cannot be sustained and triggers abrupt behavioural modification (i.e., stopping 

the task, seeking emergency help). It has been speculated that the sensation of unsatisfied inspiration 

has its neurophysiological origins in the so called ‘neuromechanical dissociation’ of the respiratory 

system.[51,52,56] When VT expansion becomes mechanically limited, dyspnea intensity rises sharply to 

intolerable levels and the dominant qualitative descriptor changes from increased work/effort to 

unsatisfied inspiration.[51,52]   

 The neurobiology of unsatisfied inspiration remains understudied.  Many studies in healthy 

subjects have shown that artificially imposed mechanical constraints on the VT response during 

chemostimulation of the respiratory centers result in sensations that mimic unsatisfied inspiration.[100-

104] Perceived unpleasantness associated with the act of breathing is thought to involve cortico-limbic 

affective processing,[105] but has so far mainly been studied in healthy subjects,[106-108] and in 

asthmatics.[109,110] At the point during exercise when unpleasantness associated with the sensation of 

unsatisfied inspiration arises, central neural drive (and central corollary discharge) approximate 

maximum values while the mechanical and muscular response of the respiratory system becomes 

critically limited.[32]  
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Pharmacological and non-pharmacological treatment of hyperinflation  

Pharmacological interventions 

Bronchodilator/lung deflation therapy 

Inhaled bronchodilators of all classes and duration of action favorably alter the dynamically-determined 

component of resting lung hyperinflation by reducing airway resistance, thus improving the mechanical 

time constants for lung emptying. Recruitment of resting IC and IRV in this manner results in delayed  

onset of mechanical limitation and corresponding intolerable dyspnea and exercise limitation (Figure 

7).[52,111,112] DH is often not directly modified after administration of bronchodilators. Rather, 

pharmacotherapy delays the moment at which VT expansion becomes mechanically limited during 

exercise by reducing EELV and increasing IRV at rest. The resulting increase in resting IC causes a parallel 

downward shift in operating lung volumes during exercise in comparison with exercise performed 

without bronchodilation (Figure 8).[16,113]  Thus, for any given exercise intensity or ventilation, 

patients breathe on the more linear portion of the respiratory system PV curve, which delays the onset 

of neuromechanical dissociation and the attendant dyspnea. The absolute magnitude of increase in EELV 

(and reduction in IC) during exercise in comparison with rest (i.e., DH) may even increase at peak 

exercise, reflecting the higher levels of ventilation that can be achieved following release of VT 

restriction with pharmacological bronchodilation.[6,114,115] 

 

Non-pharmacological interventions 

Ventilatory support 

The use of non-invasive ventilatory support consistently increases endurance time and reduces dyspnea 

perception during constant load cycling tasks in selected patients with COPD.[116,117] Assisting 

ventilation by either continuous positive airway pressure (CPAP) or pressure support is less likely to 

affect hyperinflation at rest or the increase in EELV during exercise.[118] Improvements in dyspnea 
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during exercise in response to these interventions are probably mostly related to adjustments in the 

demand/capacity imbalance, which are achieved by unloading the inspiratory muscles during 

exercise.[117,119-122] Optimal CPAP counterbalances the PEEPi thereby minimizing the threshold load 

on the inspiratory muscles while pressure support provides variable resistive and elastic unloading of 

ventilatory muscles during exercise.[118,123] Unloading of the respiratory muscles by proportional 

assisted ventilation (PAV) improved leg blood flow and exercise performance during sustained high 

intensity exercise in healthy trained cyclists.[124,125] In patients with COPD, Borghi-Silva and colleagues 

found positive effects of respiratory muscle unloading by PAV during a relatively short constant load 

cycling task on endurance time, leg muscle oxygenation, and dyspnea and leg fatigue symptoms.[81] 

Amann and colleagues found reductions in leg muscle fatigue after exercise in response to unloading the 

inspiratory muscles by combining PAV with heliox.[62] These data  support  the hypothesis of a 

competition between limb and respiratory muscles for the available O2 delivery during exercise (see 

below).    

 

Manipulations of inspired gas delivery 

Supplemental O2 during exercise consistently improved endurance and maximal exercise capacity and 

reduces ventilation and breathlessness at isotime during endurance exercise testing in COPD patients 

with and without resting hypoxemia.[126] O2 supplementation during exercise delays ventilatory 

limitation and accompanying dyspnea mainly by reducing ventilatory demand.[115,127-130] O2  

supplementation has variable effects on DH and reduced DH is not a prerequisite for dyspnea relief 

(Figure 8).[115,118,127-130] Both improved oxygen delivery to the peripheral muscles (resulting in less 

reliance on anaerobic metabolism) with altered afferent inputs from leg muscle 

mechanoreceptors,[131] and attenuated peripheral chemoreceptor stimulation are  possible 

explanations for the reduction in ventilatory demand for a given level of exertion.[129,130] 
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Heliox is a low density gas mixture (79% helium, 21% oxygen) that has been used in patients 

with COPD to reduce airflow resistance during the increasing ventilatory needs of exercise.[132] Heliox 

supplementation has been shown to improve exercise performance in patients with COPD in 

comparison with room air breathing.[133] Effects on dyspnea are likely but less clearly documented in 

the current literature.[133] Studies evaluating shortness of breath at isotime during an endurance 

cycling task, however, consistently showed significant reductions in dyspnea 

perception.[64,128,132,134] Heliox breathing increases the size of the maximal resting flow-volume 

envelope and seems to actually slow down the increase in EELV during exercise by decreasing airflow 

resistance, thereby directly altering DH.[127,132]  Improvements in exercise capacity were correlated 

with the magnitude of changes in EELV during exercise.[132] In three studies, the response to hyperoxic 

helium (60-70% helium, 30-40% oxygen) and oxygen supplementation alone was compared during a 

constant load cycling task in patients with moderate (non-hypoxemic),[128] severe,[135] and very 

severe (patients on long term O2 therapy) symptoms.[134] These studies all found significant differences 

in endurance time in favor of the hyperoxic helium group. [128,134,135] They further demonstrated 

reductions in the resistive work of breathing,[128] and reductions in exercise induced DH,[134,135] in 

comparison with hyperoxia alone. 

 

Lung volume reduction surgery (LVRS) 

In selected patients, LVRS has been shown to improve operating lung volumes, effort/displacement 

ratios, respiratory muscle function, exertional dyspnea, and exercise performance.[136-139] LVRS has 

been shown to increase maximal ventilatory capacity, as evidenced by increases in both maximal 

voluntary ventilation and maximal minute ventilation at peak exercise after surgery.[136,138-142] The 

positive effects of the intervention have been mainly ascribed to increases in lung elastic recoil (and 

driving pressure for expiratory flow) and a reduction in  lung hyperinflation to have a positive impact on 
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inspiratory muscle function. The exact mechanisms of improved elastic recoil, however, remain 

incompletely understood.[143] Besides the effects on resting hyperinflation, the intervention may also 

exert a direct effect on DH during exercise.[136,138,139] While V’E has been reported to be stable at 

comparable workrates after LVRS, decreases in EELV and increases in VT have been observed with 

reductions in breathing frequency. LVRS thus improves airway conductance and lung emptying both at 

rest  and during exercise.[143] 

 

Exercise training  

Rehabilitative exercise training improves exercise capacity and reduces symptoms of dyspnea in patients 

with COPD.[144]  The improvements observed in constant load cycling tasks after properly conducted 

exercise training programs are larger than those observed with any of the previously described 

interventions.[145] Several physiological and psychological factors have been proposed to explain these 

improvements.[146-148] Reduction in DH has been put forward as one of them.[149-151] A recent 

study provides evidence that improvements in the affective aspect of dyspnea after exercise training can 

also occur without changes in dynamic respiratory mechanics.[152]  

It is generally accepted that exercise training, unlike bronchodilators, does not have an impact 

on resting pulmonary mechanics.[149] Similar to the acute effects of O2 supplementation, exercise 

training seems to reduce ventilatory needs for a given level of exertion.[127,149-151] This is probably 

mainly related to improvements in peripheral muscle function after training, with accompanying 

reduced reliance on anaerobic metabolism during exercise.[146,148] Less ventilation will allow patients 

to reduce their breathing frequency, increase VT and reduce EELV for a given workload, and thereby 

result in reduced symptoms of dyspnea and improved exercise endurance.[146,148] Higher VT decreases 

the dead space/VT ratio, thus further reducing the ventilatory requirments during exercise. For a given 

level of ventilation, EELV does not seem to be altered after exercise training.[127,146-148]   
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Breathing exercises 

Pursed lip breathing (PLB) is used spontaneously by patients with severe dyspnea, airflow obstruction, 

and lung hyperinflation.[153] Therapeutically, it is aimed at reducing breathing frequency and increasing 

VT during exercise. On the basis of physiological models, this should be more efficient than the typically 

adopted rapid, shallow breathing pattern in these patients and should theoretically result in 

improvement of DH, reductions in the work of breathing and increased exercise capacity.[27] PLB has 

only been applied in very few small studies, with mixed results in terms of dyspnea reduction and 

improvements in exercise capacity.[153-156] Spahija et al. observed that during constant work bicycle 

exercise, a reduction in dyspnea sensation during application of PLB was related to observed changes in 

EELV and pressure generation of the inspiratory muscles.[153] Another small study applying breathing 

retraining based on yoga breathing also showed that patients were able to adopt a slower, deeper 

pattern of breathing.[157] Finally, a study by Collins and colleagues used a computerized ventilation 

feedback intervention aimed at slowing respiratory rate, in combination with an exercise training 

program, showed surprising reductions in respiratory rate, ventilation and DH at isotime during a 

constant load cycling task.[158] Feasibility and persistence of the these positive effects in the absence of 

the feedback still need to be determined in order to make this approach applicable for clinical practice. 

 

Inspiratory muscle training (IMT)  

Strengthening inspiratory muscles by specific training programs has been applied frequently in patients 

with COPD to alleviate dyspnea symptoms and improve exercise capacity.[159,160] The rationale for 

IMT is to compensate for the functional weakening that DH and the accompanying rapid, shallow 

breathing pattern impose on the inspiratory muscles.[61,72,159,160] Similar to assisting ventilation by 

CPAP or PAV, IMT is not likely to directly affect hyperinflation at rest or the increase in EELV during 
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exercise. Improvements in dyspnea during exercise in response to these interventions are probably 

mostly related to adjustments in the demand/capacity imbalance in the setting of high inspiratory 

muscle work induced by DH.[122,159-161] This is aimed to be achieved by either unloading (CPAP, PAV), 

or strengthening the inspiratory muscles (IMT). The direct effects of IMT on operating lung volumes 

during exercise have so far only been investigated in a single study.[162] Petrovic and colleagues 

showed that IMT could reduce the rate of DH but, unfortunately, did not provide data on inspiratory 

muscle work and neuromechanical dissociation during exercise.[162]  

IMT has been shown to improve inspiratory muscle function (strength and endurance) and to 

reduce dyspnea and improve exercise capacity when applied as a stand-alone intervention with 

controlled training loads.[159] The intervention seems to be most effective in patients with 

compromised inspiratory muscle function.[159] Significant enhancement in the velocity of inspiratory 

muscle shortening during resistive breathing tasks, and increases in the size of type II muscle fibres 

following IMT have been previously observed in patients with COPD.[163,164] These improvements 

might be of clinical relevance to patients with respiratory muscle weakness secondary, in part, to lung 

hyperinflation since improved muscle performance characteristics may improve dynamic function during 

exercise. Detailed measurements of inspiratory muscle function during exercise in response to 

inspiratory muscle training have however not been performed so far. 

 

Expert commentary  

Over the past decade, lung hyperinflation has emerged as an important physiological marker that is 

linked to clinical outcomes in COPD and that can be partially reversed.   Measures of lung hyperinflation 

are increasingly used in clinical trials  designed to evaluate efficacy of bronchodilator therapy in 

improving dyspnea and exercise tolerance in COPD. Our understanding of the mechanisms by which 

resting and dynamic hyperinflation compromise respiratory muscle and cardio-circulatory function 
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during physical activity (and the attendent negative sensory consequences) has substantially increased. 

We now know that variability in dyspnea and exercise capacity among patients with COPD with similar 

FEV1 can be explained, at least in part, by the concomitant magnitude of lung hyperinflation and 

reduction in inspiratory capacity.    

 

Five-year view  

Lung hyperinflation remains an active and fruitful area of translational research in COPD. Studies are 

currently in progress to chart the natural history of lung hyperinflation and its biological, physiological 

and sensory underpinnings. Currently, there is great interest in identifying clinical phenotypes in COPD 

that will ultimately permit a more personalized approach to management. In this context, ongoing 

studies will help determine if the patient with dominant lung hyperinflation will qualify as a distinct 

phenotype, amenable to specific therapeutic approaches. Physiological studies will continue to address 

the challenge of managing acute severe hyperinflation during exacerbation, which in many instances can 

be life threatening. Thus, future refinements of lung deflation strategies during both invasive and non-

invasive mechanical ventilation for patients with actual or impending respiratory failure will potentially 

improve outcomes in acute care settings. Given the clear links between chronic lung hyperinflation and 

exercise intolerance, researchers will continue to optimize pharmacological and non-pharmacological 

interventions (e.g., endoscopic lung deflation techniques) for lung deflation. Optimization of respiratory 

mechanics in this manner should improve the success of exercise training protocols which is often 

elusive in chronically dyspneic patients with advanced COPD.   

 

Key issues 

 Lung hyperinflation is closely associated with expiratory flow limitation and has major clinical 

consequences for breathlessness and exercise intolerance. 
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 Measurements of IC provide a clinically useful strategy to quantify resting hyperinflation and track 

dynamic hyperinflation during exercise. 

 Acute-on-chronic hyperinflation (e.g. exercise, exacerbations) negatively impacts the 

demand/capacity imbalance of the already compromised respiratory muscles and influences clinical 

outcomes. 

 A growing disparity between increased central neural drive and the reduced respiratory 

muscular/mechanical response due to hyperinflation contributes importantly to the perception of 

respiratory discomfort during exertion. 

 Dynamic hyperinflation-related increases in PEEPi may have important negative hemodynamic 

effects. 

 Decreases in resting lung hyperinflation with bronchodilators result in a downward shift in operating 

lung volumes and a delay in the attainment of critical volume constraints during exercise. 

 In addition to variable effects on resting lung hyperinflation, heliox, lung volume reduction surgery 

and slow and deep breathing can decrease the rate of dynamic hyperinflation for a given level of 

ventilation in selected patients. 

 Pressure-generating capacity of the overburdened inspiratory muscles can be passively (assisted 

ventilation) or actively (inspiratory muscle training) improved with beneficial effects on dyspnea. 

 Decreases in the ventilatory demands with exercise training and oxygen supplementation in some 

patients result in less dynamic hyperinflation for a given work rate and better tolerance to physical 

exertion. 
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Figure legends 

 

Figure 1. Relationships between total lung capacity (TLC), residual volume (RV), functional residual 

capacity (FRC) and inspiratory capacity (IC) are shown against FEV1 in COPD (all measurements shown 

are post-bronchodilator and are expressed as % of predicted normal values). As FEV1 decreased, TLC, RV 

and FRC increased exponentially and IC decreased linearly. These relationships were not affected by 

gender. Constructed with data from reference [20]. 

 

Figure 2. Static lung volumes and adjacent pressure-volume (PV) plots are shown for a typical COPD 

patient and a healthy normal individual. Tidal (filled area) and exercise (open area) PV curves are shown 

on the total respiratory system PV curve. In COPD, an increased resting EELV is further increased (IC 

decreases) during exercise so that tidal volume encroaches on the upper, alinear extreme of the 

respiratory system’s PV curve where there is increased elastic loading. In health, EELV decreases (IC 
increases) during exercise and tidal volume remains primarily within the linear portion of the respiratory 

system’s PV curve. Abbreviations: EELV, end-expiratory lung volume; ERV, expiratory reserve volume; IC, 

inspiratory capacity; IRV, inspiratory reserve volume; RV, residual volume; TLC, total lung capacity; ∆IC, 

change in IC from rest to exercise; ∆P, change in pleural pressure during a tidal breath during exercise; 

∆V, change in volume during a tidal breath during exercise. 

 

Figure 3. Changes in lung volumes at rest and during exercise are shown in healthy normal individuals 

and in patients with COPD. TLC, total lung capacity; VC, vital capacity; RV, residual volume; EELV, end-

expiratory lung volume; IC, inspiratory capacity. From reference [165]. 

 

Figure 4. Inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal volume (VT), and breathing 

frequency (Fb) are shown relative to minute ventilation during constant work rate symptom-limited cycle 

exercise across the continuum of health and COPD severity. The IC at rest and throughout exercise 

progressively decreases with advancing disease. Note the clear inflection (plateau) in the VT-ventilation 

relationship, which coincides with a simultaneous inflection in the IRV-ventilation relationship. After this 

point, further increases in ventilation are accomplished by accelerating Fb. Data from age-matched 

healthy normal subjects and GOLD stage I (i.e., mild COPD) are from Ofir et al. [55]. Quartiles (Q) of 

COPD severity are based on forced expiratory volume in 1 second (FEV1) expressed as percent predicted 

(ranges: Q1 = 54.5–85.1; Q2 = 43.8–54.1; Q3 = 34.9–43.6; Q4 = 16.5–34.9) from O’Donnell et al. [7]. 

Abbreviations: VC, vital capacity; TLC, total lung capacity; GOLD, Global Initiative for Obstructive Lung 

Disease. Reproduced from reference [16]. 

 

Figure 5. Schematic representation of the potential deleterious effects of lung hyperinflation and PEEPi 

on cardiopulmonary interactions during dynamic exercise in patients with COPD. Note that most of 

these interactions may vary according to phase alignment between the respiratory and cardiac cycles. 

Important modulating effects of volemic status, sympathetic nervous system activation, ventilation-

related vagal reflexes and comorbidities (e.g., pulmonary hypertension and chronic heart failure) are not 

depicted. Abbreviations: Circ, circulation; LV, left ventricular; Pab, abdominal pressure; PaCO2, partial 

pressure of arterial carbon dioxide; Ppl, pleural pressure; Pulm, pulmonary; Syst, systemic; RV, right 

ventricular. 

 

Figure 6. Relationships between exertional dyspnea intensity and ventilation and the ratio of tidal 

volume to inspiratory capacity (VT/IC) are shown during symptom-limited cycle exercise in COPD. There 

is a progressive separation of dyspnea/ventilation plots with worsening disease. After the VT/IC ratio 

plateaus (corresponding to the VT inflection point), dyspnea rises steeply to intolerable levels. Quartiles 
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(Q) of COPD severity are based on forced expiratory volume in 1 second (FEV1) expressed as percent 

predicted (ranges: Q1 = 54.5–85.1; Q2 = 43.8–54.1; Q3 = 34.9–43.6; Q4 = 16.5–34.9) from O’Donnell et 
al. [7].  

 

Figure 7. Improvements in cycle exercise endurance time and dynamic IC measured at isotime during 

exercise are shown in response to treatment with long-acting bronchodilators versus placebo. White 

bars = long-acting beta2-agonists (LABA); gray bars = long-acting muscarinic antagonists (LAMA); black 

bar = LABA/LAMA combination; peak = peak exercise instead of isotime during exercise. Treatment 

effects (∆) were statistically significant (p<0.05) unless marked NS (not significantly different from 

placebo). Constructed with data from references [52,112-114,166-175]. 

 

Figure 8. Operating lung volumes are shown during constant work rate cycle exercise in COPD patients 

following acute high-dose anticholinergic therapy versus placebo (left) and during hyperoxia versus 

room air breathing (right). End-expiratory (EELV) and end-inspiratory lung volumes (EILV) were reduced 

at rest (0 min) and throughout exercise following anticholinergic therapy; the parallel shift downwards 

meant that the magnitude of dynamic hyperinflation (DH) at peak exercise (i.e., the difference in EELV 

from resting values) did not change following bronchodilation. The magnitude of dynamic hyperinflation 

was also similar at peak exercise during hyperoxia compared with room air in hypoxemic patient with 

COPD. Abbreviations: IRV, inspiratory reserve volume; TLC, total lung capacity; VT, tidal volume. 

Reproduced from reference [16]. 


