
Citation: Zhang, X.; Kong, S.; Han, Y.;

Xie, B.; Liu, C. Lung Nodule CT

Image Segmentation Model Based on

Multiscale Dense Residual Neural

Network. Mathematics 2023, 11, 1363.

https://doi.org/10.3390/

math11061363

Academic Editor: Jakub Nalepa

Received: 9 November 2022

Revised: 3 March 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Lung Nodule CT Image Segmentation Model Based on
Multiscale Dense Residual Neural Network
Xinying Zhang 1,2, Shanshan Kong 2,3,4,*, Yang Han 5, Baoshan Xie 2 and Chunfeng Liu 1,2,3,4

1 The Key Laboratory of Engineering Computing in Tangshan City, North China University of Science and
Technology, Tangshan 063210, China

2 College of Science, North China University of Science and Technology, Tangshan 063210, China
3 Hebei Key Laboratory of Data Science and Application, North China University of Science and Technology,

Tangshan 063210, China
4 Tangshan Intelligent Industry and Image Processing Technology Innovation Center, North China University

of Science and Technology, Tangshan 063210, China
5 Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw

Materials Preparation Processes, North China University of Science and Technology, Tangshan 063210, China
* Correspondence: kongss@ncst.edu.cn

Abstract: To solve the problem of the low segmentation accuracy of lung nodule CT images using
U-Net, an improved method for segmentation of lung nodules by U-Net was proposed. Initially,
the dense network connection and sawtooth expanded convolution design was added to the feature
extraction part, and a local residual design was adopted in the upsampling process. Finally, the
effectiveness of the proposed algorithm was evaluated using the LIDC-IDRI lung nodule public
dataset. The results showed that the improved algorithm had 7.03%, 14.05%, and 10.43% higher
performance than the U-Net segmentation algorithm under the three loss functions of DC, MIOU,
and SE, and the accuracy was 2.45% higher compared with that of U-Net. Thus, the proposed method
had an effective network structure.
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1. Introduction

In 2020, there were 1,796,144 lung cancer-associated mortalities, accounting for 18% of
all new cancer deaths, making it the world’s leading cause of cancer-associated mortality [1].
If lung cancer is diagnosed early, the chance of cure increases significantly, from 14% to
49% within five years [2]. In the early stage, lung cancer is often detected as non-calcified
lung nodules. Research on segmentation methods for lung nodules has important clinical
value [3].

Pulmonary nodule segmentation methods can be grouped into traditional, deep
learning and other methods. Traditional methods are carefully designed according to
the morphological and gray characteristics of pulmonary nodules and performs segmen-
tation based on known nodule locations. The traditional method can be divided into
threshold and region growth, clustering, active contour model and mathematical model
optimization methods. To achieve segmentation, threshold and region growth methods
use the difference in gray values between different regions. In 2003, based on threshold
segmentation, Kostis et al. used a circular operator with a fixed radius to perform open
operation to remove adhering vessels and pleura. Then, they used a circular operator with
a gradually decreasing radius to perform the iterative expansion operation to supplement
the boundary details. However, this operation resulted in over-segmentation [4]. In 2011,
Kubota et al. used the coupled competitive diffusion algorithm to extract the foreground
region, combined with the region growth method to remove background structure, and

Mathematics 2023, 11, 1363. https://doi.org/10.3390/math11061363 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061363
https://doi.org/10.3390/math11061363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11061363
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061363?type=check_update&version=2


Mathematics 2023, 11, 1363 2 of 14

obtained preliminary segmentation results [5]. This method is applicable to segmentation
of nodules with different densities; however, the disadvantage is that seed points have
to be manually selected on each section for growth. The clustering method realizes pixel
clustering through the feature similarity of pixels in the target region. In 2015, Liu et al.
integrated gray and spatial information of nodule pixels into the objective function of a
fuzzy C-means (FCM) clustering algorithm, which was effective for segmentation of adhe-
sion and ground glass nodules [6]. Then, Liu et al. proposed an adaptive FCM clustering
algorithm to achieve faster and accurate segmentation of nodules; however, for nodules
with a diameter of less than 10 mm, the segmentation effect was not good [7]. In 2020,
Li et al. used Gaussian mixture model (GMM) statistics to introduce prior information on
nodules into the traditional FCM algorithm, which markedly improved the segmentation
accuracy by eliminating the uneven strength of nodules and interference from surrounding
tissues [8]. Deformable methods such as the active contour model (ACM) use a curve that
stops evolving at the boundary to get the target contour. In 2016, Nithila et al. combined
an ACM with a FCM clustering method to segment nodules. Even though pulmonary
parenchyma reconstruction based on the ACM reduced the error rate of nodular segmenta-
tion, the parameters were highly uncertain [9]. In 2017, to achieve 3D nodule segmentation,
Farhangi et al. presented the prior shapes of nodules as sparse linear combinations of
training shapes, which were integrated into the level set objective function [10]. The uni-
versality of this method is good; however, the non-automatic initialization of the function
is not satisfactory. Studies on nodule segmentation based on the mathematical model
optimization method have been reported. In 2007, Wang et al. used various rays emitted
from the center of 3D nodules to project 3D nodules onto a 2D plane and then used a
dynamic programming algorithm to determine the optimal contour [11]. The 3D nodule
surface is projected onto a curve, which simplifies the segmentation method and makes the
segmentation results more reliable. In 2016, based on the 3D Hessian matrix eigenvalues of
each voxel point, Goncalves et al. calculated the shape index and curvature and combined
them to set the optimal threshold for segmenting nodules, realizing multi-scale nodule
segmentation. However, this method was sensitive to tubular structures [12].

The traditional method is based on mathematical knowledge representation and strong
robustness, and the accurate segmentation effect does not require a large amount of labeled
data during model training and is easy to integrate with anatomical knowledge and clinician
experience. However, this method is strongly dependent on manual intervention. For
example, the threshold method has a high segmentation efficiency and good repeatability;
however, threshold setting is too empirical, and the segmentation effects of adhesion
nodules are not ideal. Clustering, region growth, and dynamic programming methods
include pixel neighborhood information, which has a low computational complexity but is
sensitive to the location of initial seed points, and the distinction between target boundary
and background. Moreover, it is difficult to combine with prior knowledge, and over-
segmentation as well as under-segmentation are common. The active contour model can
be combined with prior knowledge such as nodule shape and gray level, and it can self-
adjust the energy functional parameters to improve the segmentation accuracy. However,
segmentation based on this method depends on the initial contour position, is sensitive to
noise, and the computational complexity increases with the number of iterations.

Currently, neural networks and deep learning are widely used in medical imaging [13].
Deep learning uses neural network models to train a large amount of image data, actively
learns the low-level features of the nodules, and forms more abstract high-level features to
predict and segment images. According to their network structure, deep learning methods
can be grouped into three types: convolutional neural network-based segmentation meth-
ods, full convolutional neural network-based segmentation methods, and coding–decoding
structural network-based segmentation methods. Since 2013, when Cernazanu-Glavan et al.
used a convolutional neural network (CNN) to segment X-ray images, CNNs have been
widely used because of their good feature extraction and expression abilities [14]. In 2019,
Wang et al. combined a 3D Mask-RCNN with self-stepping and active learning strategies
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and obtained a segmentation accuracy that was almost the same as that of 100% tagged
data when only 14.85% tagged images were used in model training [15]. In 2015, to reduce
excess loss of information by the full convolutional layer in a CNN, Long et al. changed the
full convolutional layer into the convolutional layer and proposed the full convolutional
neural network (FCN), which has been recognized [16]. The parameter number for FCNs is
smaller while the calculation time is shorter. Feature maps can be restored to input image
size via the final deconvolution layer, and end-to-end image prediction can be completed.
In 2019, to obtain a residual network, Liu et al. replaced the convolutional layer with a
residual block. When segmenting nodules with a double-branch full convolutional residual
network, the local features and rich context information of nodules can be extracted from
multiple perspectives and scales, thereby improving the segmentation accuracy [17]. In
2015, Olaf Ronneberger et al. proposed the coding–decoding structural network U-net,
which uses the encoder to extract target features, and integrates the information and re-
covers the resolution via the decoder to achieve finer segmentation [18]. Due to their
low data demand and good segmentation effects, U-Nets have been widely used and are
derived from many optimized networks. In 2018, Nikolov S et al. demonstrated a 3D U-Net
architecture that achieved expert-level performance in describing different head and neck
OARs that are commonly segmented in clinical practice [19]. In 2018, Tong et al. introduced
Bottleneck blocks into the codec and decoder of U-Nets [20]. The rectified linear unit
(ReLU) function, Dropout layer, and Dice loss function effectively replaced the traditional
cross-entropy loss function, improving the segmentation accuracy of pulmonary nodules;
however, the segmentation performance was poor. In 2019, Chen H et al. proposed a
recursive aggregation model based on a 3D U-Net to segment OARs on magnetic resonance
(MR) images [21]. In 2019, Man Y et al. introduced a U-Net with a geometric sensing
function to segment the pancreas [22], while Lu L et al. added a residual module to U-Net
for accurate pancreas segmentation [23]. In the same year, Amorim et al. input the images
of three sections of pulmonary nodules and the corresponding gold standard into three
branches for training and obtained robust segmentation results [24].

The deep learning method can effectively segment all nodule types, overcoming the
limitation that a single traditional method cannot satisfy the segmentation of all nodule
types. With support from high-performance computers, the deep learning method can
quickly complete the task of fully automatic nodule segmentation. However, most of the
current deep learning models rely on a large number of manually marked sections for
supervision and training, which is extremely resource-consuming. Despite the limitation,
the deep learning method may be of significance in the research field of high-accuracy
pulmonary nodule segmentation.

There are other ways for segmenting lung nodules. In 2017, Zhang et al. applied
deep trust network training to detect nodules larger than 30 mm and achieved more than
90% accuracy, sensitivity, and specificity [25]. In 2020, Suji et al. used a motion-based
optical flow method to segment pulmonary nodules, verified the effectiveness of the optical
flow method, and proposed a method for improving the segmentation efficiency [26].
These methods provide different ideas for pulmonary nodule segmentation and should be
investigated further.

Based on the U-Net structure, we combined the residual structure and dense network
principle to improve the feature extraction and upsampling of U-Net. The LIDC-IDRI
dataset, which contains lung cancer CT images, was used as the training data. Under the
same parameters, experimental verification was performed on the improved U-Net and
FCN, SegNet, U-Net, ResNet, U-Net++, as well as DenseNet. The improved U-Net was
shown to improve the segmentation effects of lung nodules.

2. Models and Methods
2.1. U-Net

U-Net is a semantic segmentation network whose development is based on the fully
convolutional neural network [18]. This network has 23 layers and has a symmetric struc-
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ture, similar to the English letter U; therefore, it is called U-Net (Figure 1). The first half
performs feature extraction while the second half performs upsampling; thus, it is an
encoder–decoder structure. In feature extraction, the input image passes through the convo-
lution and pooling layers, after which feature maps of different levels are obtained, which
contain image features at different abstraction levels. In upsampling, the deconvolution
layer is used to gradually recover feature map sizes, and the upsampled feature map
is fused to repair details lost in the training process with a low degree of abstraction to
improve the network’s segmentation accuracy. The U-Net structure is simple, the number
of layers is small, the training does not need a large number of samples, and the training
speed is fast.
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2.2. ResNet

In 2015, He et al. proposed the Residual Network (ResNet) model in the ImageNet
image recognition competition [27], which directly added the input results to the bottom
layer by adding a direct channel in the network. The idea is shown in Formula (1):

C(x) = x + F(x) (1)

Whereby x is the input, F(x) is the output result of the hidden layer, and C(x) is the
underlying mapping. The residual structure is shown in Figure 2. The convergence and
pixel classification performance of the residual network were improved.
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The Batch Normalization (BN) layer is added before the ReLU activation function, the
BN layer is added after the last convolutional layer, and the ReLU activation function is
applied after the unit plus operation. The BN layer can speed up the networks’ training
and convergence, prevent overfitting, and the residual network can effectively avoid the
influence of gradient disappearance. Using the improved residual structure to replace the
convolution layer in the upsampling part of U-Net can effectively avoid the overfitting
phenomenon, and effectively reduce the gradient disappearance problem that is due to the
deepening of the network structure, improving the models’ segmentation performance.
The improved residual structure is shown in Figure 3.
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2.3. DenseNet

Dense Connected Convolutional Networks (DenseNet) establish the connection be-
tween different layers, achieve the reuse of features, and have excellent performance [28].
Introduction of dense blocks in U-Net can improve network fitting to better solve the
limitations associated with missing details in medical images. The schematic presentation
of a two-layer dense block structure is shown in Figure 4. The dense block in the first
layer includes three parts: the BN layer, ReLU activation function, and 3 × 3 convolution
operation. Each layer of the network in the dense block is connected to the next layer but
also to all subsequent network layers so that each layer can accept the remaining layers as
additional data input.
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The dense connection mechanism involves using a dense connection from the con-
volutional layer or from parts of the encoder and decoder [29]. In this paper, the dense
block is introduced into the U-Net in the encoder part, and there is a direct connection
between any two layers of the dense block, which better solves the challenge associated
with image detail loss. The idea of expansive convolution is also introduced. Expansive
convolution increases the receptive field under the same computational conditions. To
avoid excess redundant parameters, the global dense network connection and local dense
network connection are combined to improve the encoder and jump connection, to reduce
the overfitting from dense connections, and to retain as much detailed feature information
as possible while controlling the computation amount (Figure 5).
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2.4. Network Structure

In this paper, Multiscale-Dense-Residual-U-Net (MDRU-Net), which is based on the U-
Net structure, is proposed to improve the segmentation of lung nodule images of different
sizes. The network structure is shown in Figure 6. Feature extraction adopts global dense
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network and local dense network designs to achieve the reuse of multiscale features from
an input image in the channel dimension while controlling the number of parameters.
Moreover, an expanded convolution is introduced to expand the receptive field without
reducing or missing the coverage area of the receptive field. Each convolution output
contains a large range of information while also reducing the cost. In upsampling, the
residual mechanism is used to effectively suppress the influence of network degradation
and gradient fragmentation on segmentation accuracy.
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Figure 6. Schematic presentation of the MDRU-Net structure.

The DNet module shown on the left of Figure 6 is the introduced dense structure.
A dilated convolution with a convolution kernel size of 3 and dilation rates of 3 and 5
is adopted to form a sawtooth structure. The topology of global dense connections is
shown by the solid lines on the left half of Figure 6, where each layer of the network
is connected to all the following layers, making full use of these features. The loss of
background information in the pooling process is reduced by using the average pooling
method. The topological structure of local dense connections is shown by the dashed
line on the left part of (Figure 6). After dimensionality reduction by 1 × 1 convolutional
layer, feature maps with large mesoscale changes in the feature extraction part are spliced
together with the output of the backbone network and input into the upsampling part.
Then, the maximum pooling method is adopted to retain the information of feature maps
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with different scales. The feature map representation method of the pooling process is
shown in Formulas (2) and (3):

Xi= Concat(W1(X1), W2(X2), · · · , Wi−1(Xi−1)) (2)

Y = Concat(Xout, Wconv1(Conv1), · · · , Wconv4(Conv1)) (3)

Xi represents the new feature map obtained by concatenating feature maps for all
previous layers received by the first layer, Y denotes the feature map output by the encoder,
Xout represents the feature map output by the encoder backbone network, Wi stands for
the pooling operation while Wconvi denotes the convolution operation.

3. Experiment
3.1. Introduction to Dataset

Lung cancer CT image training data were acquired from LIDC-IDRI, which consists
of chest medical image files (such as CT and X-ray images) and corresponding lesion
annotations derived from diagnostic results [30]. A total of 1018 research examples are
included in this dataset. The LIDC-IDRI dataset is shown in Table 1.

Table 1. Dataset characteristics.

Collection Statistics Updated 21 March 2012

Data size 124 GB
Image type CT, DX, CR

Picture number 244,527
Number of patients 1010

Number of series 1018 CT
290 CR/DX

Number of studies 1308

Each instance of an image in the data set was independently diagnosed by four
physicians and marked with patient location and category. Three information types were
included: (1) nodules≥ 3 mm; (2) nodules < 3 mm; and (3) non-nodules≥ 3 mm. Each case
in the data set had an XML file storing nodule information. For nodules ≥ 3 mm, nodule
features are described based on fineness, internal structure, calcification, sphericity, edge,
foliation, burr sign, texture, and whether they are benign or malignant, among others. For
nodules < 3 mm, the information consists of an image identifier of nodule location and
coordinates of the nodule center point. Each image has 512 × 512 pixels, and 7379 images
were obtained in the experiment.

3.2. Data Preprocessing

The selected images first marked the positions of pulmonary nodules in the images
according to the annotation file in the case folder. Given the small proportion of pulmonary
nodules in the original CT images, a quasi-imbalance problem would be generated, thereby
affecting the network’s training process. Therefore, to reduce the influence of other lung
tissues on experimental results, the original image obtained was cropped. Based on the
center point of the nodule position provided in the annotation file, the sizes of the original
and labeled images were cut to 96 × 96 pixels to completely retain the nodule information.
The pretreatment experiment results are shown in Figure 7.

3.3. Model Training

This experiment was implemented in the Windows 10 operating system and the deep
learning network was developed and run using the Keras [31] library on Tensorflow [32]
back-end for experimental verification. The experiments’ environment was python3.9, the
processor was an i5-8265U2.30G HzCPU, and the memory was 8 GB. Based on the experi-
mental data processing process in Section 3.2, 7379 pulmonary nodule images obtained by
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LDC-IDRI were divided into a training set, verification set, and test set at a ratio of 8:1:1.
Due to the small number of labels in the segmentation data for pulmonary nodules, the
model is prone to overfitting. To improve the generalization ability of the network, the data
obtained were extended by random clipping, random horizontal flips, and random rotation.
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A ten-fold cross-validation strategy was used to assess the performance of the method,
and a similar data distribution was maintained in the training and test data sets to avoid
over- and under-segmentation due to data imbalance. The Adam optimization algorithm
was used for parameter training. In the standard backpropagation update, the initial
learning rate was set to 0.05, the step decay strategy was used to establish the learning rate,
and the period was 10, that is, the learning rate was reduced by 50% every 10 rounds. The
batch size was set to 2, the number of training iterations was 100, and the momentum factor
was 0.9.

The number of training iterations is very important for training the deep learning
network model. The number of training iterations can be determined by observing the
changing trend of the curve of the training and verification sets during training. If the
model’s performance is not further improved during training, training of the model will
automatically stop after 10 additional training generations.

In Figures 8 and 9, when Epoch = 100, changes in the Dice similarity coefficient value
(DC) and loss function (Loss) curve of the network on the verification set tended to be stable.
Therefore, the number of training iterations was set to 100. Moreover, for the network to be
adequately trained, the Step for each Epoch was set to 500.

3.4. Evaluation Index

The loss function plays an important role in the training of neural networks. The
loss function is used to assess the inconsistency between the real value and the value
predicted by the model and can be backpropagated to the previous layer to update the
optimization weight. Image segmentation can essentially be transformed into foreground
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and background classification problems. When the sample belongs to the positive class and
the classifier correctly predicts it as a positive sample, it is called a true positive (TP); when
positive samples are wrongly predicted to be negative samples, it is called a false positive
(FP). Similarly, when a negative sample is correctly predicted as belonging to the negative
class, it is called a true negative (TN), and when a positive sample is wrongly judged as
being a negative sample, it is called a false negative (FN). In the following equation, the
real image (or expert annotation) is denoted as T ∈ [0, 1]m×n; prediction (or segmentation)
is expressed as P ∈ [0, 1]m×n; and n index represents each pixel value in the image space
N. The label of each class is written as 1 in class C. The following three evaluation indices
were selected.
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1. Dice Coefficient (DC) loss

The DC is a function used to measure the similarity of sets, which shows good perfor-
mance as a loss function [22]. Its element measurements range from 0 to 1, where a DC of
1 indicates perfect and complete overlap. The DC is defined as:

DICE(T, P)=
2×∑N

n=1 (Tn × Pn)

∑N
n=1 (Tn + Pn)

(4)
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The DC loss tends to provide the best segmentation, which is defined as:

LossDC(T, P)= 1− DC(T, P) (5)

2. Sensitivity (SE)

SE=
TP

TP + FN
(6)

3. Mean Intersection over Union (MIOU)

The MIOU is calculated as the ratio of the intersection and union of two sets of true
values and predicted values. This ratio can be transformed into the ratio of TP (intersection)
to the sum of TP, FP, and FN (union). The closer to 1, the more accurate the segmentation
effect. The calculation formula is:

MIOU=
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(7)

which is equivalent to:

MIOU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(8)

where i is the true value, j is the predicted value, pij is the number of j predicted from the
true value i, and pii is the real quantity. pij and pji stand for false positive and false negative,
respectively, and k + 1 is the number of categories (including empty classes). The MIOU is
generally calculated based on classes. After the Intersection over Union (IOU) of each class
is calculated and accumulated, an evaluation based on the global is obtained.

3.5. Contrast Experiment

To verify the segmentation effect of the proposed MDRU-Net model, six models,
including FCN, SegNet, U-Net, Resnet, U-net++, and Densenet, were respectively trained
using the same training data and training parameters. Comparative experimental results
are shown in Table 2.

Table 2. Comparative experimental results.

Model DC MIOU SE Accuracy

FCN 65.77% 53.69% 71.23% 94.13%
SegNet 82.31% 74.29% 84.81% 96.24%
U-Net 80.31% 73.08% 80.56% 95.23%
ResNet 87.91% 82.12% 81.34% 95.97%

U-Net++ 90.87% 85.90% 90.23% 96.63%
DenseNet 88.21% 81.26% 85.76% 96.69%

MDRU-Net 92.37% 92.13% 91.77% 97.68%

In Table 2, the segmentation performance of the FCN network is the lowest because
the FCN is insensitive to details in the nodule region, ignores the relationship between
pixels, and cannot learn the global context information. Since SegNet does not use skip
connections, it cannot send shallow feature information to the deeper level, and the global
context information cannot be utilized. Even though the U-Net network uses a jump
connection, the expression of nodule features is not high, and segmentation results are not
fine enough. The DC, MIOU, and SE values of the three models are all low. The Resnet
model with a residual structure was introduced to effectively avoid the problem of gradient
disappearance or gradient explosion, and all indices improved. U-Net++ is a further
improvement of the U-Net network that uses a multi-scale fusion strategy. Following the
improvement, its indicators are better than those of the U-Net model. The Densenet model
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establishes a dense connection between all the preceding and following layers, achieving
better performance than ResNet with fewer parameters and computational costs. The Dice
coefficient, MIOU, SE, and accuracy on the LIDC-IDRI test set were 92.37%, 87.13%, 91.77%,
and 97.68%, respectively. Compared with the traditional U-Net, the four indices were
improved by 7.03%, 14.05%, 10.43%, and 2.45% respectively, indicating that the proposed
MDRU-net model has certain advantages because it can reuse the multi-scale features of the
image, making the segmentation results more precise and optimizing network performance.

4. Experimental Result

Combined with the comparison experiment, lesion visualization results for pulmonary
nodule images are shown in Figure 10. Figure 10a–i show the original image, the gold
standard segmentation of pulmonary nodules labeled by professional physicians, and
the segmentation results of the FCN, SegNet, U-Net, ResNet, UNet++, Densenet and
MDRU-Net models for pulmonary nodules. The parts in the red box highlight the finer
segmentation of the proposed MDRU-Net as compared with those of other models, and
the segmentation results are more intuitive.
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As the FCN model structure is relatively simple, it is not sensitive to details in the
image. Figure 10c shows that the segmentation effect of the FCN is very rough and contains
a large number of false positive areas. By introducing an anti-pooling structure, the SegNet
model can achieve accurate upsampling. Compared with the FCN model SegNet, false pos-
itive areas are reduced (Figure 10d), and the segmentation effect is improved. U-Net uses
skip connections to make full use of underlying features and improves the segmentation
effect (Figure 10e). However, problems such as low nodule resolution and blurred edges
may lead to the division of some non-nodule tissues into foreground areas in these models,
with obvious false positives and unsatisfactory segmentation effects. The ResNet model al-
leviates such outcomes by introducing a residual structure and improving the segmentation
effect (Figure 10f). U-net++ averages the segmentation maps sampled on different layers
as the final segmentation result, improving the accuracy of segmentation of pulmonary
nodules. However, the importance of different layers is not considered; thus, there are
still some false positive pixels in the model (Figure 10g). Densenet establishes a dense
connection between all front and back layers through the dense connection mechanism,
further refining the segmentation effect (Figure 10h). The MDRU-Net model proposed in
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this paper makes full use of multi-scale feature information. In Figure 10i, the MDRU-Net
model is superior to other models in the processing of model edges, and it can be seen that
the edge outline of pulmonary nodules is clearer. These findings show that the MDRU-Net
model can identify finer edges. The segmentation result is closer to the gold standard.

5. Discussion

To solve the problem of lung nodule CT image segmentation using U-Net, this pa-
per proposes a pulmonary nodule segmentation method based on an improved U-Net
structure. The feature extraction part adopts a dense network which improves the global
image transmission characteristics at different scales. The local characteristics of the dense
network will enable large-scale changes in the further reuse of figures, while also con-
sidering the fact that feature information is easy to lose in the next sampling part. The
expansion of the convolution with different expansion rates enlarged the receptive field.
This makes the network able to capture the characteristics of context information. The
residual design in the upsampling part can effectively suppress the network degradation
and gradient fragmentation problems in the improved method proposed in this paper.
Through comparative experiments, the proposed network model performs better than
other mainstream algorithms and is therefore applicable as a basic network combined with
various attention mechanisms and other models that can be improved. Moreover, although
the proposed method further improves the segmentation performance of the U-Net model
for lung nodules in CT images, the segmentation accuracy of the model can be further
improved, which needs to be studied and solved in future scientific research.
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