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Wavelet Transform and Entropy to  

Detect Lung Abnormality 

Achmad Rizal1, Attika Puspitasari1 

Abstract: Lung sounds provide essential information about the health of the lungs 

and respiratory tract. They have unique and distinguishable patterns associated 

with the abnormalities in these organs. Many studies attempted to develop various 

methods to classify lung sounds automatically. Wavelet transform is one of the 

approaches widely utilized for physiological signal analysis. Commonly, wavelet 

in feature extraction is used to break down the lung sounds into several sub-bands 

before calculating some parameters. This study used five lung sound classes 

obtained from various sources. Furthermore, the wavelet analysis process was 

carried out using Discrete Wavelet Transform (DWT) and Wavelet Package 

Decomposition (WPD) analysis and entropy calculation as feature extraction. In 

the DWT process, the highest accuracy obtained was 97.98% using Permutation 

Entropy (PE), Renyi Entropy (RE), and Spectral Entropy (SEN). In WPD, the best 

accuracy achieved is 98.99 % when 8 sub-bands and RE are used. These results 

are relatively competitive compared with previous studies using the wavelet 

method with the same datasets. 

Keywords: Wavelet transform, Sub-bands, Entropy, Feature reduction, Classifier. 

1 Introduction 

Lung sounds contain necessary information about the health of the lungs and 

respiratory tract. They have unique and distinguishable patterns associated with 

the abnormalities that probably occurred [1]. Therefore, many studies attempted 

to develop various methods to classify lung sounds automatically. Wavelet 

transform is one of the methods frequently used for physiological signals analysis 

[2]. Commonly, wavelet in feature extraction is used to break down the lung 

sounds into several sub-bands before calculating some parameters [3]. 

Certain studies have been carried out to classify lung sounds using wavelet 

analysis. Kandaswamy et al., for instance, used the 7th level of Discrete Wavelet 

Transform (DWT) to decompose the lung sound signals [4] with the 
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characteristics of mean absolute value, mean average power, standard deviation 

of coefficient, and ratio of mean absolute value of the adjacent sub-band. 

Hashemi et al. used skewness and kurtosis for feature extraction in the signal sub-

bands [5]. Wavelet Packet Decomposition (WPD) is another approach that 

decomposes the detailed and approximation sub-bands of the analysis process. 

Rizal et al. used the WPD level to classify lung sounds using the specific sub-

band selection scenario [6]. Ref. [2] shows a comparison of the performance of 

WPD and DWT for lung sound categorization, with DWT producing greater 

accuracy but employing more features.  

One of the features used in previous studies is entropy, a metric for assessing 

the randomness of the signals [7]. Shannon entropy was combined with various 

features as the extraction method in the sub-bands of wavelet analysis. However, 

the measurement of wavelet and entropy transformation in lung sound 

classification has not been conducted. Therefore, only Shannon entropy was used 

for feature extraction in the wavelet sub-bands.  

This study proposes the combination of WPD/DWT with various entropies 

for feature extraction. The WPD and DWT schemes in [4] and [6] were combined 

with Shannon, Spectral, Renyi, Wavelet, Approximate, Sample, Permutation, and 

Tsalli entropy. Furthermore, the sub-bands selection process was carried out and 

resulted in the highest accuracy. Multilayer Perceptron (MLP) was used as the 

classifier in which the results were compared with previous studies [2]. This study 

is expected to obtain the recommendations for the best entropy method for lung 

sound classification using wavelet analysis. 

2 Study Methods 

2.1 Lung Sounds Datasets 

Table 1 shows the lung sound data used in which 99 data were obtained from 

various sources such as from CD complimentary books [8], the internet as in [9], 

and [10]. The resources provide multiple classes representing several normal and 

abnormal lung sound cases. As a result, the sounds with the most data reflected 

numerous aspects of lung sounds, such as Continuous Adventitious Sounds 

(CAS) and Discontinuous Adventitious Sounds (DAS). The classes were 

obtained using the data presented in Table 1, which included normal sound from 

bronchial data, wheeze, crackle, pleural rub, and stridor data classes. Each lung 

sound data consists of one respiration cycle, one inspiration, and one expiration, 

with a sample length of 15000  34000 and a sampling frequency of 8000 Hz. 

Normal sounds are non-musical and heard in the inspiratory and expiratory 

phases, indicating a healthy lung condition [11]. There are four normal lung 

sounds based on location: normal tracheal, normal bronchial, normal 

bronchovesicular, and normal vesicular sound [11]. The normal bronchial sound 

was used as the dataset in this study. Fig. 1 depicts the signal plot and frequency 
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spectrum of normal lung sounds. There is a distinct difference between the 

expiration and inspiration stages. The signal energy tends to be uniform at a 

frequency below 1000 Hz. Meanwhile, crackle is an adventitious non-musical 

respiratory sound that is short, explosive, and classified into fine and coarse [12]. 

Fig. 2 illustrates the signal plot and spectrum of this type of sound, with signal 

energy that tends to be a frequency below 300 Hz. The crackle sound indicates 

several signal pulses in the signal plot, and some of the diseases that produce this 

sound are asbestosis and pneumonia. Furthermore, wheeze is a high-pitched, 

continuous musical lung sound heard during inspiration, expiration, or both 

phases [11]. Asthma is one of the lung diseases that causes wheezing. Figure 3 

describes the signal plot and spectrum of wheeze sound, and the dominant 

frequency appears around 300  400 Hz, which is indicated by a sharp increase in 

the signal spectrum. A pleural or friction rub is the lung sound associated with 

pleural inflammation or tumor [11]. Meanwhile, stridor is a low-frequency 

wheeze sound that is common with tracheal stenosis [8]. In the inspiration phase, 

the stridor has a wheeze-like pattern with the lower pitch. Class-imbalance does 

not occur despite the differences in the amount of data since the percentage 

difference in amounts is small. 

Table 1 

Lung Sounds Data. 

Data Classes Amount of Data Percentage 

Normal bronchial 22 22,22% 

Crackle 21 21,21% 

Wheeze 18 18,18% 

Friction rub 18 18,18% 

Stridor 20 20,20% 

 

 

Fig. 1   Normal Lung Sound and the Frequency Spectrum. 
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Fig. 2   Crackle Sound and the Frequency Spectrum. 

 

Fig. 3  Wheeze Sound and the Frequency Spectrum. 

 

2.2 Wavelet transform 

Multiresolution analysis is always associated with wavelet analysis. One of 

the advantages of wavelet analysis over other methods is the simplicity with 

which the signal resolution may be varied in response to the frequency bandwidth 

[4]. Mathematically, the wavelet transform can be shown in (1) [13]: 

    
1

, dx

t
WT s x t t

ss

    
     

 
. (1) 

The variable s, τ and ψ(t) represents scale, dilation, and mother wavelet. The 

choice of dilation and scale changes the observed signal resolution. Meanwhile, 

the mother wavelet used includes Haar, Daubechies2 (DB2), Daubechies8 (DB8), 

Biorthogonal1.5 (Bior1.5), and Biorthogonal2.8 (Bior2.8). The selection was 
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based on previous studies’ best results [14], and the calculation of signal 

complexity was conducted on the wavelet sub-bands. The sub-bands based on the 

decomposition included Discrete Wavelet Transform (DWT) and Wavelet Packet 

Decomposition (WPD). Furthermore, the scheme of each decomposition is 

described below. 

2.2.1 Discrete Wavelet Transform (DWT) 

In DWT, the input signal x(t) was put into a pair of LPF and HPF filters 

before being downsampled. The output of the HPF was called the detail 

components, while LPF was called the approximation components. This 

approximation component is decomposed at the following level. The DWT 

process is shown in Fig. 4. 
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Fig. 4  Scheme of 2nd Level of DWT. 

 

The 7th level of DWT was used in this study, resulting in 8 sub-bands for 

each bandwidth, as indicated in Table 2, as conducted by Kandaswamy et al. [4] 

and Hasheemi et al. [5]. 

Table 2 

Frequencies Range for Each Sub-bands in Wavelet Decomposition. 

Sub-band fs = 8000 Hz 

D1 2000 – 4000 

D2 1000 – 2000 

D3 500 – 1000 

D4 250 – 500 

D5 125 – 250 

D6 62,5 – 125 

D7 31,25 – 62,5 

A7 0 – 31,25 
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2.2.2 Wavelet Packet Decomposition (WPD) 

In DWT, only the approximate components were decomposed, while in 

WPD, all components were decomposed. Furthermore, 2N sub-bands are 

obtained when WPD is set to N, as shown in Fig. 5. 
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Fig. 5  The 2nd Level of WPD. 

 

In this study, the decomposition was conducted up to the 5th level, and only 

15 sub-bands were used to calculate the characteristics of lung sounds [6]. The 

frequencies range of each sub-bands for each fs = 8000 Hz is shown in Table 3. 

Table 3 

Frequencies Range for Each Sub-bands Used in WPD. 

Frequency range 

(Hz) 
Lung sound’s sub-band 

0 - 250 

A1 

AA2 

AAA3 

AAAA4 
AAAAA5 

DAAAA5 

250 - 500 DAAA4 
ADAAA5 

DDAAA5 

500 - 1000 DAA3 

ADAA4 
AADAA5 

DDDAA5 

DDAA4 
ADDAA5 

DDDAA5 

1000 -2000 DA2 

ADA3 
AADA4  

DADA4  

DDA3 
ADDA4  

DDDA4  

2000 - 3000 
D1 

AD2 
AAD3   

DAD3   

3000 - 4000 DD2    
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2.3 Entropy 

The second approach used the system’s entropy to compute the signal 

complexity. Meanwhile, statistics were used to determine how regular and 

complicated signals were, while entropy was used as a feature of the statistical 

analysis in the previous technique. This study used several entropy calculation 

techniques. 

2.3.1 Shannon entropy 

Shannon Entropy (ShEN) is the measurement of signal complexity [15]. 

Mathematically, it is shown in (2). 

 
2

1

log
N

i i

i

ShEN p p


  ,  (2) 

where pi is the probability of the sample value in the signal x(i). Generally, the 

signal histogram is employed to aid in the calculation of ShEN.  

2.3.2 Spectral entropy 

Spectral Entropy (SEN) is the normalized form of ShEN calculated from the 

signal spectral, which describes the signal spectrum’s irregularity. It is shown in 

(3). 
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where pf  represents the power density of the frequency band, and fi and fh 

represent the boundary frequency of the signal. The signal’s power is normalized, 

hence, ∑pn = 1 [15]. 

2.3.3 Renyi entropy 

Renyi Entropy (RE) is the common form of entropy calculation [16]. 

Mathematically, it can be expressed as in (4). 

 2
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Practically, RE is only used for q = 2. 

2.3.4 Wavelet entropy 

Wavelet Entropy (WE) is computed from the energy of each sub-band in the 

wavelet transform as written in (5) [17]. 

 
0
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  , (5) 

where
ip  represents the wavelet relative energy obtained from (6). 
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where 𝐸𝑖 represents the energy for the i resolution, while 𝐸𝑡 represents the total 

energy. 

Noise can be eliminated when concentrated in the same frequency band, and 

changes can be detected in stationary signals based on the localization 

characteristic of wavelet transform [17]. Therefore, Db2 was employed as the 

mother wavelet with the seventh level of decomposition as conducted by 

Hashemi et al. [5]. 

2.3.5 Approximate entropy 

Approximate Entropy (ApEN) is the feature of the signal complexity by 

calculating the number of occurrences of the signal pattern that occurred with the 

signal [18]. When the signal straddles along, hence: 

 ( ),1 N u i i N  , m is given to form the vector 𝑋𝑖
𝑚 up to 1

m

N mX   as in (7). 

       ,   1 ,   , 1 ,   1, ,   1m

iX u i u i u i m  i N m         , (7) 

where m represents the length of the window to be compared. For   1i N m  

, defined ( )m

iC r  is 1( 1)N m    multiplied by the sum of m

jX  in r from m

iX . By 

defining ( )m r  as in (8). 
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     , (8) 

where ln represents natural logarithm, Pincus represents the ApEN as in (9) [18]: 

      1, lim Φ Φm m

N
ApEn m r r r


    . (9) 

ApEN is estimated with the statistic, and then the ApEN becomes (10). 

      1, , Φ Φm mApEn m r N r r  . (10) 

2.3.6 Sample entropy 

Sample Entropy (SampEN) is an effort to overcome the disadvantages of 

ApEN proposed by Richman and Moorman [19]. In ApEN, there is a bias that 

occurs given self-matches where the code template of the signal is considered the 

same. SampEN is the measurement of the probability of the data series m that 

will be the same as another series in the signal with the tolerance of r, which will 

remain equal when the m data series increases to m+1. Equality refers to 

comparing the scalar distances between two vectors [18]. Mathematically, 

SampEN is shown in (11). 
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where  mA r represents the probability in which the two series will be 

appropriate for m+1 in the tolerance r, and  mB r represents the probability that 

the two series will be suitable for the number of m points in the tolerance r. In 

(11), self-matches are avoided. Furthermore, (11) can be estimated by creating 

 {[( 1)( )] / 2} ( )mB N m N m B r    , 

 {[( 1)( )] / 2} ( ).mA N m N m A r     

SampEN can be shown as in (12),  

  , ,   lnSampEN m r N A B  . (12) 

The advantages of SampEN include being able to be used for short data series 

containing noise, distinguishing the wide variety of systems, performing better 

than ApEN based on the theory, and the consistency of entropy values for 

different pattern lengths uncalculated self-matches. Meanwhile, the disadvan-

tages of SampEN are associated with the inconsistency of the entropy value for 

short data [20]. 

2.3.7 Permutation Entropy 

Permutation Entropy (PE) calculates signal complexity by identifying the 

code between the sequences of the signals [21]. It analyzes the patterns of 

disparate elements in the signal and is shown in (13). 

 2

1

log
n

j j

j

PE p p


  , (13) 

where 𝑝𝑗 represents the relative frequency of the pattern of series. Meanwhile, n 

represents the permutation order with n ≥ 2, and n = 6 was used according to Aziz 

and Arif [22]. 
 

2.3.8 Tsalli’s Entropy 

Tsalli’s Entropy (TE) is commonly used to represent a system’s physical 

behavior [23]. For example, it is described as a system with long-term memory 

effects, long-range interaction, and multifractal space-time constrain [24]. 

Furthermore, TE is not exhaustive, which means that when two identical systems 

exist, the total entropy is less than the sum of the two entropies. It is shown as in 

(14). 
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where q is the measurement of non-extensity, pi represents the discrete 

probability, and W is the microscopic configuration. TE can calculate any 

unexpected signal changes and show the effect of long-term memory on the signal 

strings. It has several advantages, including quantifying uncertainty, suitability 

for non-Gaussian calculations, and provision of more detailed information than 

ShEN.  

2.4 Feature reduction 

Feature reduction is intended to decrease the number of features used in the 

classification process. This is conducted by reducing the number of sub-bands 

used in the feature extraction process. The least number of features with the 

highest accuracy will be the recommendation of the method. In this study, 

methods such as feature subset selection were not used for feature reduction. 

In the DWT method, because the 7th level of decomposition was used, then 

8 sub-bands were obtained. Entropies were calculated in each sub-band as the 

features of the signal complexity. The sub-bands formed occupied the frequency 

as shown in Table 2. The feature reduction process omitted sub-bands A7, D2, 

and D1 because they did not provide the necessary information [4].  

In the WPD, the 5th level of decomposition was used with the scenario, as 

shown in Table 3, to produce 15 sub-bands. First, feature reduction was made by 

eliminating the sub-bands occupying the frequency above 1000 Hz. The 8 sub-

bands with a width of 125 Hz were then used [6]. 

2.5 Classifier 

Multilayer Perceptron (MLP) is one of the architectures of neural networks 

that are often used to solve classification problems [25]. It is the simplest form of 

neural network architecture. It comprises three layers, i.e., the input, hidden, and 

output, as shown in Fig. 6. 

 

 

Fig. 6  Basic Configuration of MLP. 
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A neuron-based input layer has as many attributes as recognized by the 

neurons. In contrast, an output layer contains as many classifications as 

acknowledged. The amount of neurons in the hidden layer is determined by trial 

and error [25]. MLP can be described through a one-neuron model such as in 

(15). 

 0 0 1 1 n n j j

j

z x w x w x w x w     , (15) 

where x represents the input signal and w is the weighting representing the 

synaptic modulation and determining how tough the input signal influences the 

neurotransmitter. Additionally, z represents the number of responses that affect 

the neurons. 

The neuron’s output is stated by the activation of function with the input of 

the total weighted response of the signal as represented by ( ).y f z The simplest 

function of y is the linear function, i.e., y z . The sigmoid function is frequently 

used as an activation function in (16). 

 
1

1 e z
y





.  (16) 

In MLP, the back-calculation is conducted for the training process to change 

the value of w. The method used, for example, is backpropagation. In this study, 

MLP was only used to test the performance of the signal complexity of the multi-

scale analysis method. However, it was not the focus of the discussion. This used 

MLP, a simple artificial neural network (ANN), not a deep learning method. MLP 

was selected because the other studies on lung sound classification also used the 

same method, making it easier to compare previous results using Hjorth 

descriptor on wavelet sub-band and MLP as classifier [26]. 

MLP network training necessitates data because it is part of supervised 

learning. N-Fold Cross Validation is a method for separating training from test 

data (NFCV). The N-1 dataset is utilized for training, whereas the other dataset is 

used for testing. Furthermore, each of the datasets is turned into test data, and the 

advantage of NFCV is regarding the accuracy value, which is relatively stable 

compared with the random distribution of test and training data [25].  

This paper used 3fold CV to divide the lung data into three datasets. The first 

was used as testing data at the first iteration, while the remaining two were used 

as training data. The second dataset was also used as testing data in the iteration. 

In contrast, the other two were used as training data, and this process was repeated 

until the third iteration, as shown in Fig. 7. The advantage of a 3fold CV is that it 

reduces the possibility of overfitting. Therefore, only total accuracy was shown 

in the results of this study. 
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Fig. 7 – Three-fold Cross-Validation. 

 

3 Result and Discussion 

3.1 DWT entropy 

Table 2 represents the result of DWT with 8 sub-bands. Furthermore, the 

number was reduced to 5 from D3 to D7, according to Kandaswamy et al. [4]. 

The classification was carried out using MLP and Three-Fold CV. The test for 

the 8 and 5 sub-bands are represented in Table 4. 

Table 4 represents that DWT PE obtained the highest accuracy with 97.98% 

for Bior2.8 and Db8. DWT RE and DWT SEN also obtained an accuracy of 

97.98% for Db8 and Db2. Reducing the number of sub-bands lowered the result 

of the accuracy.  

Table 4 

Accuracy (%) of DWT-Entropy. 

Entropy 

 8 Sub-bands    5 Sub-bands   

Bior2.8 Bior1.5 Db8 Db2 Haar Bior2.8 Bior1.5 Db8 Db2 Haar 

ShEN 90,91 86,87 87,88 88,89 86,87 77,78 66,67 82,83 75,76 72,73 

RE 95,96 93,94 97,98 95,96 90,91 92,93 94,95 94,95 95,96 90,91 

SEN 87,88 95,96 93,94 97,98 92,93 85,86 86,87 86,87 86,87 82,83 

WE 75,76 79,8 85,86 87,88 87,88 71,72 73,74 76,77 76,77 76,77 

TE 96,97 95,96 96,97 96,97 96,97 90,91 90,91 93,94 92,93 91,92 

PE 97,98 93,94 97,98 94,95 92,93 90,91 81,82 95,96 93,94 81,82 

SamEN 62,63 77,74 71,72 78,79 59,6 62,63 71,72 66,67 61,62 47,48 

ApEN 87,88 89,9 92,93 90,91 86,87 84,85 77,78 83,84 78,79 77,78 
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As shown in Table 4, the best accuracy attained with five sub-bands was 

95.96 % for DWT PE and DWT RE utilizing Db8 and Db2 as filters. This 

demonstrated that, despite the low energy in the sub-bands A7, D2, and D1, they 

contributed to the accuracy. The average PE and RE values for each sub-bands 

using the Db8 filter are shown in Fig. 8. 

 

(a) 

 

(b) 

Fig. 8  (a) DWT-Permutation Entropy with Db8 Filter;  

(b) DWT Renyi Entropy with Db8 Filter. 
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As illustrated in Fig. 8 the PE value is relatively low (1) for all sub-bands. 

This corresponds with the PE formula and the permutation of the series of signals. 

Meanwhile, in Fig. 7b, the RE value is relatively large, with the negative value 

influenced by the RE used, i.e., 2nd order. The RE values are entirely separate 

between the classes in the sub-bands, D1, D2, and A7. This indicates when the 

three sub-bands are removed, the accuracy will be decreased. Meanwhile, there 

are no visible differences between classes in the sub-bands D1, D2, and A7 in the 

PE calculation. It is determined by the small differences in PE values between the 

sub-bands and classes. The minimum and maximum PE values are 0.809 and 

0.992, respectively, with a standard deviation of 0.043. Even though the PE value 

is minimal, it is evident that the accuracy is relatively high. 

Fig. 9 shows the comparison between crackle and friction rub features. The 

crackle data that were incorrectly identified are identical to those in the previous 

procedure. The fault is caused by the signal spectrum similar to the friction rub, 

resulting in the same entropy value for each sub-band. 

 

Fig. 9  Differences Between Crackle and Friction Rub Features. 

 

Generally, the lung sound frequency spectrum ranges from 50-1000 Hz [4]. 

Based on this information and range frequency of sub-band in Table 2, A7, D2, 

D1 range from 0-31.25 Hz, 1000-2000 Hz, and 2000-4000 Hz. Therefore, Figs. 

1, 2, and 3 were visually confirmed, showing that the frequency spectrum >1000 

Hz and < 50Hz is relatively low. However, in Table 4, eight sub-bands 

classification produced higher accuracy than five. It means that A7, D2, and D1 

still significantly contribute to the classification accuracy. 
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3.2 WPD-Entropy 

As illustrated in Table 3, WPD is a procedure that generates 15 sub-bands. 

Furthermore, the sub-bands will be reduced to 8, dividing the 0-1000 Hz 

frequency range into 125 Hz sub-bands [6]. The classification was carried out 

using MLP and NFCV. Table 5 shows the test results for the 8 and 5 sub-bands.  

Table 5 

Accuracy (%) of WPD-Entropy 

Entropy 
15 sub-band 

Bior2.8 Bior1.5 Db8 Db2 Haar 

ShEN 93,94 91,92 97,98 92,93 89,9 

RE 98,99 98,99 98,99 98,99 97,98 

SE 93,94 94,95 94,95 93,94 92,93 

WE 58,59 80,81 68,69 71,72 84,85 

TE 86,87 93,94 90,91 87,88 92,93 

PE 95,96 98,99 93,94 94,95 94,95 

SamEN 97,98 97,98 95,96 97,98 94,95 

ApEN 96,97 97,98 93,94 97,98 96,97 

Entropy 
8 sub-band 

Bior2.8 Bior1.5 Db8 Db2 Haar 

ShEN 89,9 92,93 87,88 92,93 90,91 

RE 96,97 95,96 98,99 95,96 91,92 

SE 86,85 96,97 76,77 84,85 92,93 

WE 50,51 72,73 58,59 72,73 68,69 

TE 90,91 93,94 94,95 92,93 91,92 

PE 88,89 94,95 88,89 92,93 91,92 

SamEN 96,97 96,97 97,98 97,98 94,95 

ApEN 86,87 88,89 92,93 92,93 88,89 

 

The highest accuracy with 98.99% for all wavelet filters except Haar was 

obtained for 15 sub-bands RE. Meanwhile, PE obtained 98.99% of the accuracy 

only for Bior1.5. Sub-bands reduction produced a similar accuracy for RE with 

the Db8 wavelet filter. Except for SampEN, which was steady, the lowering of 

sub-bands decreased accuracy, but SE and TE increased. The accuracy of 

SampEN remained constant due to the characteristic of SampEN, which 
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calculated the repetition of data patterns in the signal. The signal with high 

fluctuation was between 0 and 1000 Hz, and the significant SampEN value was 

located at this frequency. Meanwhile, SE and TE obtained increasing accuracy as 

the values of both at frequency >1000 Hz, which was relatively small and 

coincided between data classes. The accuracy is increased when the value is 

omitted. 

As shown in Table 5, the accuracy of SampEN, SE, and ShEN was higher 

than DWT for 15 sub-bands. This showed that the decomposition scenario 

obtained the right sub-bands, and it distinguished each of the data classes very 

well. The low accuracy was obtained for DWT-entropy and WPD-entropy. The 

wavelet decomposition was performed twice on the signal using DWT or WPD 

and on the entropy using DWT. As a result, the information components in each 

sub-band are divided. This study used the 7th level of DWT with Db2, meaning 

that the possible decomposition and the wavelet filter did not match the needs. 

 

Fig. 10  Crackle and Friction Rub Features which Resulted in Error Classification. 

 

3.3 Discussion 

Tables 4 and 5 show the analysis of various subjects, as seen below. At DWT 

level 7, feature reduction disregards the A7, D2, and D1 sub-bands, resulting in 

reduced accuracy. Despite having relatively limited information [14], the three 

frequency spectrum sub-bands were substantial enough to influence the 

classification procedure. The differences in DWT and WPD were caused by 

differences in width for the two processes. Meanwhile, 5 sub-bands on DWT and 

8 on WPS occupy the same frequency range. Therefore, WPD generated 8 sub-

bands with consistent widths, as seen in Table 3. 
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DWT produced different sub-band widths, as in Table 2. Therefore, the 

resulting features will also be different because the width sub-bands are different. 

With the sub-band width that is not uniform, the resulting DWT-entropy method 

sometimes cannot distinguish information at a 250-1000 Hz frequency, which is 

the difference in several types of lung sounds. Meanwhile, in WPD-entropy, the 

sub-band width is uniform at a frequency of <1000. This makes the feature 

reduction in WPD-entropy produce an accuracy as good as the 15 features in 

WPD-entropy. 

Table 6 represents various comparative studies. The most similar method is 

the combination of WPD/DWT with the Hjorth descriptor [26]. The WPD/DWT 

Hjorth descriptor accuracy was 98.99% for 15 and 8 features. Meanwhile, DWT-

entropy obtained the highest accuracy of 97.98%, while WPD-entropy obtained 

98.99%. This showed that the proposed method obtained the same high accuracy 

as before.  

Table 6 

Comparison with the Previous Studies. 

Ref. Dataset Method Classifier 
Number of 

Features 

The Highest 

Accuracy 

[27] 

81 lung 

sound data, 5 

classes 

MLSD, Hjorth 

descriptor 
MLP 20 97.98% 

[14] 

99 lung 

sound data, 5 

classes 

DWT level 7/WPD 

level 5, mean 

absolute value, 

mean average 

power, standard 

deviation of 

coefficient dan 

ratio of the mean 

absolute value of 

adjacent sub-band, 

skewness, kurtosis 

MLP 46 
97.98%/97.98% 

 

[28] 

85 data 

(normal, 

crackle, 

wheeze) 

Higuchi FD, Katz 

FD, Entropy, Zero 

crossing, flux, roll-

off, energy, 

kurtosis 

KNN, 

SVM, 

Naïve 

Bayes 

15 
F-measure = 

94.1% 

[26] 

99 lung 

sound data, 5 

classes 

DWT/WPD, 

Hjorth descriptor 
MLP 24/8 98.99% 

This 

Study 

99 lung 

sound data, 

5 classes 

DWT/WPD, 

entropy 
MLP 8/8 97.98%/98.99% 
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Principal component analysis (PCA) was not employed to reduce lung sound 
signal data in this investigation. PCA is a technique for data reduction while 
maintaining data variability. The weakness is losing information from the original 
data [29]. The difference between PCA and the proposed method is calculating 
the lung sound signal in the wavelet subband. The proposed hypothesis is based 
on the fact that each data class has a different frequency spectrum. Therefore, 
calculating the entropy in the signal decomposed subband is expected to 
distinguish the class of lung sounds. This study also used MLP instead of other 
classifiers. The usage makes the feature extraction method more visible, 
depending on the classifier. In addition, the use of MLP facilitates the comparison 
with previous studies using wavelets and MLP [14, 26]. 

The main contribution of this study is to provide an alternative feature 
extraction method for lung sound classification. Previously published study 
employed the average energy from the sub-band, the average sub-band 
coefficient’s absolute value, the sub-band coefficient’s standard deviation, and 
the absolute value ratio of each adjacent sub-band utilizing DWT at a sampling 
rate of 11,050 Hz [4]. In other studies, the energy was used in the WPD sub-band 
[6] and the Hjorth descriptor [26]. The feature proposed to be used is entropy in 
this study. Signal complexity from lung sounds can differentiate each type using 
entropy. With the entropy method, the number of features produced will be less 
with similar accuracy (98.99% using RE on the WPD). 

The advantage is related to the ease in determining the sub-band selection 
scenario from the lung sound signal used. The entropy to be used can be chosen 
and changed to meet specific requirements. At the same time, the disadvantage 
of the proposed method is the absence of standard criteria for the sub-band 
selection. The selection method of an appropriate wavelet sub-band to improve 
the classification accuracy should be discussed in future studies. 

4 Conclusion 

The classification of lung sounds using wavelet decomposition and entropy 
was described. Five classes of normal bronchial, crackle, wheeze, pleural rub, 
and stridor data were used as the input data. First, wavelet decomposition was 
carried out using DWT and WPD with the decomposition scenario described 
previously. Furthermore, the results data were obtained by the entropy approach, 
and the feature reduction with classifier processes was conducted using 
Multilayer Perception (MLP). In the DWT process, the highest accuracy was 
obtained by DWT PE with an accuracy of 97.98% for Bior2.8 and Db8. DWT RE 
and DWT SEN also obtained an accuracy of 97.98% for Db8 and Db2. The WPD 
process obtained 15 sub-bands reduced to 8 to divide the 0-1000 Hz frequency 
into 125 Hz. The best results were given by RE using Db8 with 8 sub-bands, 
having an accuracy of 98.99%. Compared with the previous studies, the proposed 
method provides relatively high accuracy. 
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