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ABSTRACT Pulmonary breathing sound plays a key role in the prevention and diagnosis of the lung diseases.
Its correlation with pathology and physiology has become an important research topic in the pulmonary
acoustics and the clinical medicine. However, it is difficult to fully describe lung sound information with
the traditional features because lung sounds are complex and nonstationary signals. And the traditional
convolutional neural network cannot also extract the temporal features of the lung sounds. To solve the
problem, a lung sound recognition algorithm based on VGGish-BiGRU is proposed on the basis of transfer
learning, which combines VGGish network with the bidirectional gated recurrent unit neural network
(BiGRU). In the proposed algorithm, VGGish network is pretrained using audio set, and the parameters
are transferred to VGGish network layer of the target network. The temporal features of the lung sounds
are extracted through retraining BiGRU network with the lung sound data. During retraining BiGRU
network, the parameters in VGGish layers are frozen, and the parameters of BiGRU network are fine-tuned.
The experimental results show that the proposed algorithm effectively improves the recognition accuracy
of the lung sounds in contrast with the state-of-the-art algorithms, especially the recognition accuracy
of asthma.

INDEX TERMS BiGRU, lung sound recognition, Mel spectrogram, transfer learning, VGGish.

I. INTRODUCTION

Pulmonary auscultation is one of the effective methods to
diagnose the lung diseases. Early lesions of the lungs can be
earlier detected by diagnosing the lung diseases with stetho-
scopes. However, the frequency range of the lung sounds is
about 100Hz to 2000Hz, while the human ear is only sensitive
to the frequency range of 1000Hz to 2000Hz. Therefore,
it is easy for the artificial auscultation to lose the important
information of the low frequency part of the lung sounds. And
the auscultation results are affected by the doctor’s medical
experience, hearing condition, and external environment. It is
possible for some lung diseases to have a risk of the misdiag-
nosis and missed diagnosis.
With the advancement of digital signal processing and

artificial intelligence technologies, the traditional acoustic
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stethoscope has been gradually replaced with the electronic
stethoscope, which provides an opportunity to solve the
above problems. The electronic stethoscope can store the
lung sound signals and transmit the lung sound signals to the
computer when the doctor uses the electronic stethoscope to
diagnose the lung diseases. The lung sound signals can be
recognized by analyzing the time-frequency characteristics
of the signals and building the recognition model. It can
further predict the healthy status of the lung. Therefore,
it can not only improve the diagnostic accuracy, but also
improve the diagnostic efficiency by using the artificial
intelligence technologies to analyze and identify the lung
sound signals collected by the electronic stethoscope. It is
greatly significant for the prevention and treatment of the lung
diseases.

In the early stage of the lung sound recognition, the lung
sounds were recognized by using the traditional machine
learning methods. The crackles were effectively recognized
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through extracting the time-frequency distribution features of
the peaks from the lung sounds after being executed Hilbert
Huang transform in [1]. Fast Fourier transform was used to
construct feature vectors and lung sounds are classified by
the self-organizing map in [2]. Short-Time Fourier Transform
was utilized to extract features from lung sounds and sup-
port vector machine (SVM) was used for wheeze recogni-
tion in [3]. Lung sound signals were decomposed into the
frequency subbands using wavelet transform and a set of
statistical features was extracted from the subbands to repre-
sent the distribution of wavelet coefficients. Lung sounds are
classified into six categories by using artificial neural network
in [4]. The wavelet analysis was used to extract the features
of the lung sounds, and SVMwas utilized to classify the lung
sounds in [5]. Wavelet transforms and neural networks are
used to classify asthmatic breath sounds in [6]. The wavelet
coefficients were extracted from the lung sounds, and neural
network and SVM were used to identify the lung sounds
in [7]. The lung sounds are extracted wavelet coefficients
and linear discriminant analysis to reduce the dimension of
wavelet coefficients in [8]. The lung sounds are classified
by BP neural network. The wavelet packet decomposition
was used to get the energy of the lung sounds with different
frequency range, which was taken as features to recognize
four kind of lung sounds including the normal, tracheitis,
pneumonia and asthma in [9].
The method was obtained based on the bispectrum, which

extracted the spectral peak, the spectral peak interval and
the slice energy in [10]. A set of features based on temporal
characteristics of filtered narrowband signal were proposed
to classify respiratory sounds into normal and continuous
adventitious types in [11]. The lung sound signal was mapped
onto a rich spectro-temporal feature space and was classified
by using SVM in [12]. The method combining linear predic-
tive cepstral coefficient (LPCC) with the wavelet decomposi-
tion was put forward in [13]. It could effectively recognize
the polyphonic lung sounds and the sharp lung sounds.
Mel frequency cepstral coefficients (MFCC) were extracted
from the pre-processed pulmonary acoustic signals. And the
performance of SVM and KNN classifiers in diagnosis respi-
ratory pathologies was compared by using respiratory sounds
from R.A.L.E database in [14]. MFCC features of the lung
sounds to recognize the lung sounds in [15]. Results showed
that the method outperformed commonly used wavelet-based
features as well as standard cepstral coefficients includ-
ing MFCCs. The features were extracted from the wavelet
coefficients by MFCC and non-Gaussian power, which was
used to detect cough and burst sounds in the lung sounds
and was taken as a basis for judging children’s pneumonia
in [16].
Gaussian mixture model was established to distinguish the

normal lung sounds and the abnormal lung sounds in [17].
Multi-layer perceptron was employed to classify the lung
sound signals in [18].The genetic BP neural network was
proposed to recognize the lung sounds in [19]. And experi-
ments showed that the improved genetic BP neural network

was prior to the traditional BP neural network. The linear
parameterized method of multi-channel lung sound infor-
mation was employed to recognize the lung sound signals
in [20]. The neural network was used during the classifica-
tion process. And better recognition results were achieved.
A set of statistical features was computed from each sub-
band of lung sounds and applied to ANN and SVM classi-
fiers to classify normal and asthmatic subjects on 4-channel
data in [21]. Different parameterization techniques for lung
sounds acquired on the whole posterior thoracic surface
for normal versus abnormal lung sound classification were
assessed in [22]. Some methods including logistic regression,
decision tree, K near-neighbor, SVM, and naive Bayesian
were compared and analyzed in the application of the lung
sound recognition in [23].

In recent years, it provides a new identification method
for the medical lung sound diagnosis technology with the
development of deep learning. A lung sound recognition
method based on convolutional neural network (CNN) was
proposed in [24]. Themethod extractedMFCC features, and a
two-layer convolutional neural network (2L-CNN) was used
to train and recognize the lung sounds. Experimental results
showed that the recognition method based on CNN is prior
to the method based on SVM. MFCC features were utilized
to identify the lung sounds by a five-layer convolutional neu-
ral network (5L-CNN), and better recognition results were
obtained in [25]. Short time Fourier transform was used to
analyze time-frequency features of the lung sounds and the
lung sounds were classified into three categories by combin-
ing two-layer convolutional neural networks with two-layer
full connections in [26]. A combinedmodel frameworkDNN-
HMMwas proposed to identify the normal and abnormal lung
sounds, which combined deep neural networkwith the hidden
Markov model in [27]. The model could greatly improve the
classification performance. A method for the identification
of wheeze, crackle, and normal sounds was proposed, which
uses the optimized S-transform and deep residual networks
in [28]. Better results were obtained.

Although these methods can better recognize the lung
sounds, most of them are built based on the artificial fea-
tures or small datasets because there is not enough big open
lung sound dataset. It leads to high dependence on data and
features, which causes weak generalization ability. At the
same time, the lung sound signal as a kind of time series signal
contains rich temporal characteristics, which is an important
feature of the lung sounds. However, the temporal feature is
not fully reflected in the above methods.

In this paper, a lung sound recognition algorithm based on
deep learning and transfer learning is proposed. In the algo-
rithm, VGGish is firstly used to overcome the dependence of
the algorithms on data and features. Secondly, the temporal
feature of the lung sound signals is captured by taking the
bidirectional gated recurrent unit neural network (BiGRU) as
the retraining layer of transfer learning. Experimental results
in section IV also show that the recognition accuracy is
greatly improved.
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II. LUNG SOUND RECOGNITON MODEL BASED ON

VGGISH-BIGRU

A. MODEL ARCHITECTURE

With the rapid development of artificial intelligence, deep
neural networks have achieved great success in many fields.
CNN and recurrent neural network (RNN) have been widely
applied in audio recognition. However, it is easy to generate
over-fitting directly using the depth model due to the insuffi-
cient lung sound data. Therefore, it is a better choice to use
transfer learning to improve the generalization ability of the

model. VGGish network can better handle audio data, and
RNN can better process time series data. From the view of the
spatial domain and the time domain, a lung sound recognition
model based on VGGish-BiGRU is proposed by combining
VGGish convolutional neural network with BiGRU recurrent
neural network. It is shown in Fig. 1.

In the model, the source domain data of transfer learn-
ing is Audio Set [29], which is a large-scale labeled audio
dataset that Google opened in 2017. And the target domain
data is the self-collected lung sound data. The model mainly

FIGURE 1. The lung sound recognition model based on VGGish-BiGRU.
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includes two parts: VGGish convolution neural network and
bidirectional GRU network. VGGish network part is trans-
ferred from VGGish network in the source domain, and the
parameters of the corresponding trained network are loaded.
The network outputs a 128-dimensional feature vector for
each time series information. The bidirectional GRU network
part inputs the features extracted by the transfer layer into
BiGRU network and locally fine-tunes BiGRU layer. Here,
the number of the hidden layer neurons in BiGRU is 128 × 2.
Since the similarity between the target data and the source

domain data is lower, it is very indispensable to retrain the
model with the target data. To this end, BiGRU network is
taken as the retraining layer in the model, and the problem of
insufficient data is compensated by freezing the parameters of
the network layer of the pretraining model. RNN is chosen as
the retraining part of themodel since RNN has a strong ability
to capture the time series features of the signals, and can pay
more attention to the data context. As a kind of time series
data, the temporal relationship existing in the lung sounds
can effectively be captured through retraining BiGRU. The
process of the model is as follows:

1) Train VGGish network on Audio Set and save the train-
ing parameters of the model. Since Audio Set is too large,
we directly utilize the .ckpt model file, which has been trained
by Google on VGGish.

2) Transfer the model parameters trained on the source
domain to the target model.

3) Retrain VGGish-BiGRU model on the target domain.
During retraining the model, the parameters of VGGish
model are frozen, and the parameters in BiGRU model are
only fine-tuned.

B. PREPROCESSING OF THE LUNG SOUNDS

During the process of detecting the lung sounds, it is unavoid-
able to mix the low frequency noise such as noise of the
collecting devices, friction sound of the internal organs of
the human body and so on. And the frequency range is more
concentrated. It can be considered that there are no lung
sound signals under 100Hz since the frequency band of the
lung sound signals is 100HZ to 2000Hz. Therefore, the low
frequency noise under100Hz can be removed by high-pass
filters. At the same time, the lung sounds also mix a lot of the
heart sounds besides the low frequency noise. The frequency
band of the heart sounds in the lung sounds is 5HZ to 600Hz,
which highly coincides with the low frequency part of the
lung sounds. It is difficult to remove the interference of the
heart sounds under without damaging the lung sounds by sim-
ple filtering. To remove the noise of the lung sounds, a hybrid
de-noising technique is used. At first, the low frequency noise
is deleted by a fourth-order Butterworth high-pass filter [30].
Then the heart sounds are removed by the wavelet threshold
method.

Thewavelet thresholdmethod uses themulti-scale analysis
method to decompose the target signal and extract different
wavelet coefficients. And the wavelet coefficients are parti-
tioned from the level of the wavelet decomposition by setting

the appropriate wavelet threshold. The wavelet coefficients
below the threshold are cleared, and the wavelet coefficients
above the threshold are retained. Finally, the pure lung sound
signals can be obtained by reconstructing the wavelet coeffi-
cients.

The results by removing the noise from the lung sounds
with the above method are shown in Fig. 2 and Fig. 3.

FIGURE 2. Comparison of the lung sound signals before and after
Denoising (a) Original lung sound signal (b) The lung sound signal after
high-pass filtering (c) The lung sound signal removed the heart sounds.

FIGURE 3. Changes in the spectrogram of the lung sound signals (a) The
spectrogram of the original lung sound signal (b) The spectrogram of the
lung sound signal by high-pass filtering (c) The spectrogram of the lung
sound after deleting the heart sounds.

As shown in the above figures, the low frequency region
of the spectrogram of the lung sounds mainly includes the
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ambient sounds and other low frequency noise. Therefore,
it is necessary to remove the low frequency noise by the
high-pass filtering. Simultaneously, it can be found from the
spectrogram after the high-pass filtering that there are still
a lot of heart sound components in the lung sound signals.
And the energy of the heart sound signals is generally higher
than that of the lung sound signals. If the heart sounds are
not removed, the heart sounds with higher energy will greatly
affect the recognition effect of the relatively weak lung sound
signals. It can be seen from the results that the low frequency
noise and the heart sound components are effectively deleted.

C. INPUT PROCESSING OF THE LUNG SOUND DATA

The original lung sound signals cannot be directly used as the
input of the model. It is necessary to perform time frequency
analysis on the lung sounds to obtain their input features.
The model takes Mel spectrogram features of the lung sounds
as the input of the network. To extract the Mel spectrogram
features, the following processes need to be completed.
Firstly, pre-emphasis, framing and windowing are per-

formed on the lung sounds, where the window function is
a Hamming window, the window size is 25ms, and the step
length is 10ms. The lung sounds are transformed from the
time domain to the frequency domain by performing STFT.
In the time-frequency transformation, it is necessary to define
a range of the frequency domain of the lung sounds to obtain
the main frequency domain information. The sampling fre-
quency of the lung sounds is 4000Hz, so Nyquist frequency
of the signal is 2000Hz. From the spectrogram of the lung
sounds, the frequency components of the lung sound signals
above 1000 Hz are few. And the starting frequency is 100Hz.
Therefore, we set the frequency range of the lung sounds to
be extracted the features to 100Hz to 1000Hz.
Secondly, the spectrum line energy of the lung sounds is

filtered by usingMel filter bankHm(k). The function of filters
is as follows:

Hm(k) =































0 k < f (m− 1)
k − f (m− 1)

f (m) − f (m− 1)
f (m− 1) ≤ k ≤ f (m)

f (m+ 1) − k

f (m+ 1) − f (m)
f (m) < k ≤ f (m+ 1)

0 k > f (m+ 1)

(1)

where 0 ≤ m ≤ M , and M is the number of filters. Its center
frequency f (m) can be expressed as:

f (m) =

(

N

fs

)

F−1
mel

(

Fmel(fl) + m
Fmel(fh) − Fmel(fl)

M + 1

)

(2)

where fl is the lowest frequency in the frequency domain of
filters, and fh is the highest frequency. N is the length of
Fourier transform, and fs is the sampling frequency. Fmel is
Mel frequency. The transform formula between Fmel and the
ordinary frequency f is as follows:

Fmel = 2595log(1 + f /700) (3)

Then the inverse function F−1
mel of Fmel is:

F−1
mel(b) = 700(eb/2595 − 1) (4)

where b is the real frequency.
The amplitude spectrum obtained by short time Fourier

transform is separately multiplied with each filter. And all
items are accumulated. Each frame contains 64 Mel bands
while extracting Mel spectrogram features.
Finally, Mel spectrogram is achieved by taking the log

value of the energy and expanding it in the time domain. Mel
spectrogram of a lung sound signal is given in Fig. 4.

FIGURE 4. Mel spectrogram of the lung sound.

The length of the collected lung sound is about 30 seconds.
To ensure the consistency of the input signal dimensions,
the lung sound data need to be sliced before being input
into the network. In the process, we need ensure that the
length of each slice is the same, and there is at least one
complete respiratory cycle in each slice. According to the
respiratory characteristics of the human body, one cycle con-
tinues about 2-4s. Considering that the respiratory cycle of
each person is slightly different, and the starting time of each
audio is not always the starting time of one respiratory cycle,
the length of each slice is set to 10s. Thus, all slices have the
same length, and each slice exists 1 to 2 complete respiratory
cycles at least.

At the same time, the retraining part of the model is
BiGRU, which is based on the data time series relationship as
the input. Therefore, 10s Mel spectrum is firstly segmented
in the time domain when inputting data into the network.
10s lung sound is divided into 10 time series with 1s length.
Each second audio is segmented into 96 frames and 64 Mel
features are extracted per frame. Thus, the last input of the
network is a 10 × 96 × 64 matrix. 10 represents ten time
scales, 96 denotes the number of frames in each time scale,
and 64 is the number of Mel features.

D. TRANSFERRING THE MODEL PARAMETERS FROM THE

SOURCE DOMAIN TO THE TARGET DOMAIN

Themodel parameters can be transferred to the target network
after the source domain model completes the training. The
transferring model is shown in Fig. 5. VGGish network in the
dotted box on the right needs to be transferred to the target
model. In the transferred process, two networks must have
the same structure to fully match their parameters. Therefore,
VGGish network with the same structure is firstly built on
the target network. Secondly, VGGish network model trained

139442 VOLUME 7, 2019



L. Shi et al.: Lung Sound Recognition Algorithm Based on VGGish-BiGRU

FIGURE 5. Transfer learning model based on VGGish-BiGRU.

and the reserved parameters are loaded by loading the tensor
node of the checkpoint in TensorFlow. Thus, the parameters
of the corresponding layers in the source domain network are
transferred to the target network.

There are two main reasons for freezing the source domain
model parameters after transferring the source domain model
parameters to the target domain. Firstly, the insufficient target
data can be compensated by freezing the network parameters
of the pretrained model. Secondly, Audio set as a general
audio dataset, contains a great number of samples and many
categories. By transferring the model parameters, the target
network has learned the basic knowledge, which is obtained
by training the large scale audio data. The weights are ran-
domly initialized while retraining the network. A large num-
ber of weight parameters will be propagated back through
the network if the parameters of the transfer layer are not
frozen, which will damage the feature representation learned
in advance. In this way, the meaning of transfer learning is
lost. According to the above reasons, the parameters of the
transfer layers are frozen, and VGGish network is used as a
feature extractor during the training model. VGGish network
is only performed forward propagation and is not executed
backpropagation. The retraining layer is trained with the
target data.

III. RETRAINING OF BIGRU NETWORK

In the forward propagation of the network, VGGish network
will output a 10 × 128 feature vector for each 10 second
lung sound, and randomly initializes a bidirectional GRU
network. The 10 × 128 feature vector will be input into
BiGRU network in time series. The structure of BiGRU is
given in Fig. 6.
As shown in the figure 6, BiGRU consists of a forward

and a backward gated recurrent unit (GRU) neural network,
and they are connected to the same output layer. GRU is an

FIGURE 6. The structure of BiGRU.

important variant of LSTM, which simplifies the structure of
LSTM. In GRU, there are only two gates called an update
gate and a reset gate. It makes the network parameters less
and converge more easily. The structure of GRU is shown
in Fig. 7.

FIGURE 7. The structure of GRU.
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In GRU, the update gate controls how much information
from the previous hidden state will carry over to the current
hidden state. The update gate is computed by

atz = f (
∑

wiz[h
t−1, x ti ]) (5)

where x ti and h
t−1 are respectively the input and the previ-

ous hidden state. wiz is the weight between the input and
the update gate. f(·) adopts the sigmoid function in [31].
The update gate in the GRU uses the sigmod function to
help update and filter the data information, since any number
multiplied by 0 is 0, which causes the value to disappear or be
forgotten. Any number multiplied by 1 is the same value,
so the value remains the same or keep. Through the sigmod
function network, it can be understood which data is not
important may be discarded or which data is important to be
maintained. In the paper, we found that the better results could
be gained by using the sigmoid function in experiments of
section IV.

The reset gate mainly determines how much information
will be forgotten, which represents the importance of the
previous hidden state to the current hidden state. The reset
gate is computed by

atr = f (
∑

wir [h
t−1, x ti ]) (6)

where wir is the weight between the input and the reset gate.
In the backpropagation of VGGish-BiGRU network, only

BiGRU layers are fine-tuned since the parameters of VGGish
layers are frozen. For the classification problem, the softmax
loss is taken as the loss function of the backpropagation. The
output of the softmax layer is computed by

Si = exp(xi)/
T

∑

k=1

exp(xk ) (7)

where Si is the predicted probability of the sample belonging
to the ith class lung sound, x expresses the output vector of the
previous layer, xi is the ith attribute of x, and T is the number
of categories. Then the softmax cross entropy loss function is
defined as:

L = −

T
∑

i=1

yi log Si (8)

where yi is the true value of the ith category.
During the gradient descent of BiGRU, the gradient of the

function storing the previous layer information is:

∂L

∂atc
=

∂L

∂ht
atz(1 − at

2

c ) (9)

where atc is the unit storing the previous layer information,
and ht is the output value at time t . The gradient of the update
gate is:

∂L

∂atz
= (−

∂L

∂ht
ht−1

+
∂L

∂ht
atc)(1 − atz) (10)

The gradient of the reset gate is:

∂L

∂atr
=

∂L

∂atc
ht−1atr (1 − atr ) (11)

Therefore, the error gradient of the backpropagation of the
network can be expressed as:

∂L

∂ht−1
=wtir

∂L

∂atr
+wtiz

∂L

∂atz
+wtic

∂L

∂atc
atr+

∂L

∂ht
(1 − atz) (12)

IV. EXERIMENTAL RESULTS

To verify the effectiveness of the proposed model, the pro-
posed algorithm is tested on a self-collected dataset. The
experiments consist of six parts: the effectiveness verifica-
tion of the model, the effect of the heart sounds on results,
the influence of different time-frequency analysis methods on
results, the effect of transfer learning on results, the influence
of the retraining layer on results, and comparison of different
methods. To test the generalization ability of the model,
we use six-fold cross-validation in the experiment. The lung
sound dataset is randomly divided into six subsets where the
proportion of samples in each subset is the same for each
category. 5 subsets are taken as the training data in turn, and
one subset as the testing data. Finally, the mean of six times
is taken as the final results.
For convenience, we abbreviate the lung sound recognition

method based on VGGish-BiGRU model proposed in this
paper as LSR-VBG. In experiments, the data preprocessing
is completed on Matlab R2016a, and the construction and
recognition of the deep transfer model is carried out on Ten-
sorFlow 1.8. GPUs used in experiments are NVidia P4 (four
GPUs in total). The system is LinuxUbuntu 18.04 and the lan-
guage is Python3.6. In the proposed model, the loss function
of the model and the hyper parameters such as learning rate,
iterative number, and batch size are jointly optimized by a
large number of experiments, and finally the optimal network
parameters are determined in the paper.
We obtained the optimal parameters by gradually tuning.

The parameters are listed in table 1.

TABLE 1. List of parameters.

A. DATASET

The experimental data were collected by the professional
doctors using 3M Littmann 3200 electronic stethoscope.
During collecting the lung sounds, each person was collected
30 seconds respiratory sound signals under the natural status.
The normal lung sounds were collected from volunteers with
the healthy lung status, and the abnormal lung sounds were
collected from patients with pneumonia and asthma diseases
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in the hospital. The patient selected as samples include male
and female. They are adults with different ages. And the
severity of their lung disease is various. Some lung sound
data are of poor quality because of uncorrected collecting
method. It is difficult to train and test the model by these
data. Therefore, we selected 384 typical lung sound samples
with better quality from all collected lung sounds. They
include 120 normal lung sounds, 156 pneumonia sounds and
108 asthma sounds. The frequency band of the lung sound
signal is about 100HZ to 2000Hz. According to Nyquist sam-
pling theorem, the sampling frequency of the experimental
signal is set to 4000Hz.
In experiments, each lung sound is divided into three 10s

segments to input the lung sound into the network. Thus,
the dataset is expanded to include 360 normal lung sound
samples, 468 pneumonia sound samples, and 324 asthma
sound samples. The length of each sample is 10s. The total
number of samples is 1152.

B. EFFECTVIENESS VERIFICATION OF THE MODEL

In experiments, the parameters of VGGish network provided
by Google are directly transferred to the model and frozen.
Then BiGRU network is fine-tuned by using the lung sound
data. Finally the model is tested with the testing data. The
results are shown in table 2.

TABLE 2. Results of LSR-VBG (%).

From the results, the precision and F1-score of the normal
lung sound is the highest, and the recall is lower than other
two categories. The precision of pneumonia is lower than
that of the normal lung sound, and its recall and F1-score are
higher. The precision, recall and F1-score of asthma are all the
lowest in three categories. The total accuracy reaches 87.41%,
which demonstrates that the proposedmodel can better recog-
nize the lung sounds. To further analyze the misclassification
of various categories, the confusion matrix is used to analyze
the experimental results in detail. The confusion matrix of the
above results is given in table 3.

TABLE 3. Confusion matrix of results.

From the confusion matrix, the probability of asthma rec-
ognized as pneumonia is higher than that of being recognized
as the normal, and the probability of pneumonia recognized
as asthma is also higher than that of being recognized as the

normal. It indicates that pneumonia and asthma have a greater
similarity from the view of the audio.

C. EFFECT OF THE HEART SOUNDS ON RESULTS

To test the influence of the heart sounds on the recognition
results, the proposed model is firstly performed on the lung
sound dataset which are not deleted the heart sounds. Then
the model is executed on the lung sound dataset that has been
removed the heart sounds. The results are shown in table 4.

TABLE 4. Effect of the heart sounds on results (%).

It can be concluded from the experimental results that the
recognition accuracy is greatly affected by the heart sounds.
When the heart sounds are not removed, the recognition
accuracy of three kind of the lung sounds is all lower than
that from deleting the heart sounds from the lung sounds.
The recognition accuracy of asthma reduces nearly 20%,
the total accuracy drops about 10%. Experiments show that
the heart sound is an important interference factor in the
lung sound recognition. The recognition accuracy is greatly
improved by using the wavelet threshold method to remove
the heart sounds, especially the accuracy of asthma is greatly
improved.

D. INFLUENCE OF DIFFERENT TIME-FREQUENCY

ANALYSIS MEHTODS ON RESULTS

To compare the effects of different time-frequency analysis
methods on the recognition results, STFT, MFCC, and Mel
spectrogram are used to extract features from the lung sounds.
The features are input into the deep transfer learning models
proposed in the paper. The results are shown in table 5. Here,
the window functions and the frame shift in the three time-
frequency analysis methods are the same. Per second lung
sound is divided into 96 frames, and each frame is extracted
64 features. The input of the model is a 10 × 96 × 64 feature
vector.

TABLE 5. Comparison of different time-frequency analysis methods (%).

From the results, the recognition accuracy obtained by
STFT is lower than those of MFCC and Mel spectrogram.
The accuracy fromMel spectrogram is near to that of MFCC.
However, the difference of the accuracy of three classes
from MFCC is bigger that from Mel spectrogram, espe-
cially the accuracy of asthma from MFCC is relatively poor.
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Therefore, we select Mel spectrogram for time-frequency
analysis in the following experiments.

E. IMPACT OF TRANSFER LEARNING ON RESULTS

To validate the effect of transfer learning on results, we com-
pare the model including transfer learning with the model
without transfer learning. In the two cases, the data collecting,
the preprocessing, the feature extraction method, and the
input dimension are the same. For without transfer learning,
themodel still uses the architecture adopted VGGish-BiGRU.
The parameters of VGGish are randomly initialized, but are
not transferred from the results obtained by Audio Set. The
results are shown in table 6.

TABLE 6. Effect of transfer learning on results (%).

From the results, transfer learning effectively improves the
experimental results. The recognition accuracy is improved,
especially the accuracy of asthma. It shows that the lung
sound recognition can be effectively improved by transferring
the parameters from the source domain model.
At the same time, to verify the reliability of Audio Set as

the source domain of transfer learning for the lung sound
recognition, we compare Audio Set with two other open
datasets. They are GTZAN dataset and GTZAN dataset.
GTZAN dataset is a music audio dataset, which includes
10 kind of audio, such as jazz, rock, folk, pop, etc. Each
category has 100 audio samples, and each audio is about
175 seconds. UrbanSound8K dataset is ambient sound
dataset, which contains 10 kind of audio, such as car
horn, children’s play, dog bark, drill hole, etc. It contains
8732 audio samples, and each category includes a different
number of audio. Each sample is about 4 seconds. In exper-
iments, Audio Set is replaced with the two datasets as the
source domain data. The preprocessing and the feature extrac-
tion method are the same as the previous experiments. When
the two datasets are input into the network, they are resampled
to the same frequency of Audio Set, namely 16000Hz. The
frequency range is set to 125Hz-7500Hzwhile extractingMel
spectrogram. The environment and other processing are the
same as the previous experiments. The results are given in
table 7.

TABLE 7. Comparison of different source domains (%).

From the results, the accuracy of each category is greatly
decreased when GTZAN and UrbanSound8K are taken as the
source domain dataset. And the difference between different

categories is also relatively bigger. It demonstrates that it
generates a certain negative transfer on the target data when
GTZAN and UrbanSound8K are taken as the domain source
dataset. There are two main reasons to lead to the results. One
is that the data volume of the two datasets is much smaller
than that of Audio Set. Another is that GTZAN and Urban-
Sound8K are both single domain sound data, which contains
the number of audio categories much lower than that of Audio
Set. The two sets are too unique and not universal. In this
case, it will cause the phenomenon of negative transfer when
transferring the knowledge to the target domain. According to
the results, Audio Set has good generality and can be used as
the source domain of transfer model for the lung sound data.

F. EFFECT OF RETRAINING METHODS ON RESULTS

During transferring the model parameters, although the trans-
fer learning can bring the common features learned from the
source domain data, there is only a few cardiopulmonary
sound data in the source domain data. And there is less
similarity between the target data and the source domain data.
Therefore, it is necessary to retrain the model for extracting
some unique features from the target dataset. It will better
improve the recognition accuracy. To verify the importance
of the retraining process, VGGish transfer network is directly
connected to the flatten layer and the softmax layer for the
classification after deleting the retraining layer. The results
are given in table 8.

TABLE 8. Effect of retraining on results (%).

From the results, the recognition accuracy is greatly
reducedwhen deleting the retraining layer. Experiments show
that the retraining can better improve the recognition accu-
racy of the target data when the source domain data and the
target domain data are not much similar.

To test the performance of the retraining network BiGRU,
it is compared with the fully connected layer, LSTM, GRU,
and BiLSTM. In experiments, the number of nodes in the
fully connected layer is 128. The hidden layer in LSTM and
GRU includes 128 nodes. The number of nodes in the hidden
layer in BiLSTM is 2× 128. The input dimension of the fully
connected layer is 10 × 128. Other parameters are the same
as those in BiGRU. The results are shown in table 9.

TABLE 9. Comparison of different retraining methods (%).
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From the above table, the recognition accuracy of the
model is slightly improved by taking single fully connected
layer as the retraining layer. The accuracy from taking single
fully connected layer as the retraining layer is much lower
than that from taking structural variants of the recurrent
neural network as the retraining. The recognition accuracy
of the normal lung sound from LSTM, GRU, and BiLSTM
is slightly higher than that from BiGRU. The accuracy of
the pneumonia, and asthma from BiGRU is higher than that
from LSTM, GRU, and BiLSTM, especially BiGRU greatly
improves the recognition accuracy of asthma. It shows that
BiGRU as the retraining network has better balance than
other RNN networks. And the mean accuracy from BiGRU
is the highest in all cases. Therefore, we take BiGRU as the
retraining part of the model.

G. COMPARISON WITH OTHER METHODS

To validate the effectiveness of the proposed algorithm,
the model is compared with SVM, KNN, random
forests (RF), 2L-CNN, 5L-CNN, and DNN-HMM. The
results are shown in table 10. In experiments, Mel spectro-
gram features of the lung sounds are as the input of these
methods. And Mel spectrogram is taken as a whole to input
into the model instead of segmenting into 10 slices in SVM
KNN, random forests, 2L-CNN, 5L-CNN, and DNN-HMM.
The input dimension is 960 × 64. SVM, KNN, and Random
Forests are executed by using Scikit-learn (Sklearn) library
in Python. In SVM, the penalty parameter C is 0.9, the kernel
function is Gaussian kernel function, and the rest parameters
are the default value. In KNN, the number of the nearest
neighbors is 6, the rest parameters use the default values.
In random forests, the number of decision trees is 100.
2L-CNN [24] consists of two convolutional layers, two
pooling layers, and a fully connected layer. The size of the
convolution kernel is 3 × 3, and the two convolutional layers
both contain 64 convolution kernels. The pooling layers adopt
2 × 2 max pooling. The fully connected layer includes
128 hidden nodes. Finally softmax is used to output the
category of the lung sounds. The number of iterations is
350, the learning rate is 0.001, and the optimizer is Adam.
5L-CNN [25] includes five convolution layers and five max
pooling layers. The sofmax layer is taken as the classification
layer. The size of the first two convolution layers is 7∗7 and
5∗5, and that of the last three layers are 3∗3. The learning rate
is 0.01, and the dropout rate is 0.5. DNN-HMM [27] contains

TABLE 10. Comparison with other methods (%).

a dual hidden layer deep neural network and a hiddenMarkov
model, where the number of the hidden nodes is 500 and
the number of iterations is 150. The parameters in other six
algorithms are the most optimal by gradually tuning.

From the results, our method achieves the best recogni-
tion results. The main reason is that the model uses transfer
learning to better solve the problem of insufficient data, and
the model fully utilize the time series feature of the lung
sounds by using BiGRU to retraining the network. In contrast
to other algorithms, the proposed method greatly improves
the recognition accuracy of three kind of the lung sounds,
especially greatly progresses the accuracy of asthma.

V. CONCLUSION

The prevention and diagnosis of the lung diseases plays an
important role in the human life system. Lung auscultation is
one of the important methods for the lung disease detection.
Most of recognition of lung sounds have weak generalization
ability because they have higher dependency on data and
the artificial features. Simultaneously, the recognition effect
will be affected because the traditional CNN doesn’t extract
the temporal features of the lung sounds. To this end, a
lung sound recognition model based on VGGish-BiGRU is
proposed, which uses transfer learning and combines VGGish
network with BiGRU network. BiGRU can capture the time
series features of the lung sounds. Experiments show that
the proposed algorithm effectively improves the recogni-
tion accuracy of the lung sounds, especially the accuracy of
asthma in contrast to other methods. The method has higher
generalization ability as well as better captures the temporal
features of the lung sounds. At the same time, Experiments
show that the low-frequency noise in the lung sounds is better
deleted by high-pass filtering and the heart sounds in the lung
sounds are better removed by the wavelet threshold method.
And, the algorithm can be improved from the following
aspects.

Firstly, lung sound samples are relatively few, which
affects the accuracy of the model. And only one type of
electronic stethoscope is used during collecting lung sound,
which causes lack of data diversity. Moreover, the dataset
only includes the normal lung sounds and two category lung
disease samples. Themodel is needed to generalize other lung
diseases.

Secondly, the model uses transfer learning. Although
AudioSet has better generality, it has less similarity with
the lung sounds, which also affect the recognized accuracy.
The model needs to find more appropriate source domain to
optimize the model.

In the future, we will collect more lung sounds, and further
optimize the model. And the method is applied in auxiliary
diagnosis of pulmonary diseases.
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