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Purpose: The aim of this study was to quantify the effect of four image registration methods on lung
texture features extracted from serial computed tomography (CT) scans obtained from healthy human
subjects.
Methods: Two chest CT scans acquired at different time points were collected retrospectively for
each of 27 patients. Following automated lung segmentation, each follow-up CT scan was reg-
istered to the baseline scan using four algorithms: (1) rigid, (2) affine, (3) B-splines deformable,
and (4) demons deformable. The registration accuracy for each scan pair was evaluated by measur-
ing the Euclidean distance between 150 identified landmarks. On average, 1432 spatially matched
32 × 32-pixel region-of-interest (ROI) pairs were automatically extracted from each scan pair. First-
order, fractal, Fourier, Laws’ filter, and gray-level co-occurrence matrix texture features were calcu-
lated in each ROI, for a total of 140 features. Agreement between baseline and follow-up scan ROI
feature values was assessed by Bland–Altman analysis for each feature; the range spanned by the
95% limits of agreement of feature value differences was calculated and normalized by the average
feature value to obtain the normalized range of agreement (nRoA). Features with small nRoA were
considered “registration-stable.” The normalized bias for each feature was calculated from the feature
value differences between baseline and follow-up scans averaged across all ROIs in every patient. Be-
cause patients had “normal” chest CT scans, minimal change in texture feature values between scan
pairs was anticipated, with the expectation of small bias and narrow limits of agreement.
Results: Registration with demons reduced the Euclidean distance between landmarks such that only
9% of landmarks were separated by ≥1 mm, compared with rigid (98%), affine (95%), and B-splines
(90%). Ninety-nine of the 140 (71%) features analyzed yielded nRoA > 50% for all registration
methods, indicating that the majority of feature values were perturbed following registration. Nine-
teen of the features (14%) had nRoA < 15% following demons registration, indicating relative feature
value stability. Student’s t-tests showed that the nRoA of these 19 features was significantly larger
when rigid, affine, or B-splines registration methods were used compared with demons registration.
Demons registration yielded greater normalized bias in feature value change than B-splines registra-
tion, though this difference was not significant (p = 0.15).
Conclusions: Demons registration provided higher spatial accuracy between matched anatomic land-
marks in serial CT scans than rigid, affine, or B-splines algorithms. Texture feature changes calculated
in healthy lung tissue from serial CT scans were smaller following demons registration compared
with all other algorithms. Though registration altered the values of the majority of texture features,
19 features remained relatively stable after demons registration, indicating their potential for detect-
ing pathologic change in serial CT scans. Combined use of accurate deformable registration using
demons and texture analysis may allow for quantitative evaluation of local changes in lung tissue due
to disease progression or treatment response. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4730505]
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I. INTRODUCTION

For patients with lung disease, periodic computed tomog-
raphy (CT) scans are often acquired to assess disease
progression or treatment response. Detection of diffuse lung
disease change, however, may be difficult for physicians due
to unclear disease boundaries on CT. Furthermore, variability
may exists among physicians evaluating diffuse lung disease.1

Quantitative measures of radiologic changes are being inves-
tigated to aid physicians with clinical decisions. A number
of groups have developed quantitative image-based texture
analysis techniques to identify and classify lung disease,
improve consistency of measurements, and enhance accuracy
in patient diagnosis. Chabat et al.2 developed a method to
classify lung disease into three types (centrilobular emphy-
sema, panlobular emphysema, and constrictive obliterative
bronchiolitis) using a set of first-order, co-occurrence matrix,
and gray-level run length features. Uchiyama et al.3 used
morphological operations to highlight patterns characteristic
of diffuse lung disease among six categories: ground-glass
opacities, reticular and linear opacities, nodular opacities,
honeycombing, emphysematous change, and consolidation.
Uppaluri et al.4 developed the adaptive multiple feature
method (AMFM), a tool that identifies specific lung disease
patterns using a combination of first-order, co-occurrence
matrix, gray-level run length, and fractal texture features.

While these methods can serve as a metric to assess over-
all changes in the extent of diffuse lung disease between se-
rial CT scans, they cannot be used to track local changes in
lung anatomy throughout treatment. Analysis of local differ-
ences in lung texture becomes important when disease sever-
ity is nonuniform due to localized treatment such as radia-
tion therapy. In these cases, measuring changes in anatomi-
cally matched regions of the lungs between serial CT scans
would allow for closer examination of differences in the ap-
pearance of disease or radiation-induced toxicities. To com-
pare lung texture over time, it is necessary to perform regis-
tration of CT images prior to measuring differences in texture
between the two scans. Rigid and affine registrations are the
most simple and commonly applied registration algorithms.
These algorithms, however, may not be adequate for registra-
tion of lung CT scans due to positioning and diaphragmatic
differences between serial scans. Thus, a number of fully au-
tomated deformable registration algorithms applied to regis-
tration of lung CT images are based on optical flow (demons
deformable registration)5–7 or control point matching (splines
deformable registration).8–10 More recently, the B-splines de-
formable registration algorithm has been used to investigate
CT pixel value changes following radiotherapy, thereby al-
lowing for direct correlation between lung injury and dose to
a local region of the lung.11

Although image registration has the potential to improve
quantitative lung CT image analysis by allowing for direct
comparison of differences between serially acquired scans,
little has been done to investigate the effects of registration on
image texture values. While some feature differences between
registered temporally sequential CT scans result from an ac-
tual change in disease status, other differences may be falsely

TABLE I. Summary of patient demographic information and CT scan acqui-
sition parameters for the patient database.

Patient data Std. Dev.

Number of patients (male:female) 27 (21:6) . . .
Median patient age (range) [yr] 49 (18–68) 14
Contrast enhanced scan pairs 24 . . .
Number of scan pairs acquired with

different scanners
12 . . .

Slice thickness/spacing [mm] 1 0
kVp 120 0
Mean exposure (range) [mAs] 235 (144–351) 40
Mean exposure difference between

paired scans (range) [mAs]
33 (0–156) 45

Mean pixel spacing (range) [mm] 0.67 (0.58–0.87) 0.06
Mean pixel spacing difference between

paired scans (range) [mm]
0.04 (0–0.18) 0.04

Median time between paired scans
(range) [days]

126 (7–719) 179

introduced by image matching and interpolation techniques
used during the registration process or changes in imaging
parameters, such as the concentration of intravenous contrast.
Palma et al.12 demonstrated that CT scans acquired during the
same imaging session and registered using B-splines showed
variations in mean lung density due to differences in contrast
level and the level of inspiration; no other CT features or
registration methods were investigated. In the present study,
we analyzed images from patients with two “normal” chest
CT scans, as determined by an attending radiologist. Because
these CT scans contained no lung pathology, we hypothesized
that differences in the texture features between registered im-
ages of a scan pair were introduced by the registration algo-
rithm or by variations in imaging parameters rather than by
a change in the disease status of the patient. We examined
four commonly used registration algorithms: rigid registra-
tion, affine registration, demons deformable registration, and
B-splines deformable registration. Our goal was to identify
a set of texture features that resulted in relatively stable fea-
ture values following registration with a particular algorithm,
allowing for their combined use for future studies of patient
response to treatment.

II. METHODS

II.A. Database selection

Two clinically indicated de-identified helical thoracic CT
scans acquired from 1 week to 2 years apart at the University
of Chicago Medical Center between November 2005 and Jan-
uary 2011 from each of 29 patients (Table I) were retrospec-
tively obtained through the Human Imaging Research Office
(HIRO)13 under institutional review board (IRB) approval. All
scans were determined to have no lung abnormalities, defined
by the absence of acute disease or micronodules exceeding
4 mm, by an experienced radiologist. During rigid and affine
registration of CT images, two patients were excluded from
the study due to gross mis-registrations that may have been
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due to large differences in patient orientation between the two
scans. Scans were acquired after patients were instructed to
inspire and hold their breath using multislice Philips Bril-
liance CT scanners (Brilliance 16, Brilliance 16P, Brilliance
64, or Brilliance iCT256) and reconstructed at 1 mm slice
thickness using identical high-resolution lung reconstruction
and smoothing kernels. A gray-level thresholding technique
combined with morphological operations and volume thresh-
olding was used to extract lung masks from the CT images.

II.B. Image registration

Two open-source software packages were used to perform
registration: Plastimatch for rigid, affine, and demons registra-
tions and elastix for B-splines registration.6, 14 Computations
were performed on a multicore computing cluster (Scientific
Image Reconstruction and Analysis Facility, SIRAF) at the
University of Chicago.

II.B.1. Rigid and affine registrations

Rigid and affine registrations are global registration meth-
ods whereby transformations are applied across the entire
image. Rigid registration allows for six degrees of freedom
(three translational directions and three rotational directions)
in image motion, and affine registration allows for 12 degrees
of freedom (translation, rotation, scaling, and shear in three
directions). During this study, both rigid and affine registra-
tions were performed in multiple resolution stages to allow
for image matching at low resolution prior to matching at high
resolution. Image similarity at each iteration was assessed us-
ing the mean-squared intensity difference between baseline
and registered follow-up scans.

II.B.2. Demons deformable registration

Demons deformable registration was initially proposed by
Thirion and is modeled after the thermodynamics paradox
termed Maxwell’s “demons.”15 In this technique, a moving
image is allowed to diffuse through the fixed image until
matching is achieved. The force and direction of motion at
each iteration of the diffusion process are calculated using
an optical flow equation. Demons registration as used in this
study again proceeded as a multistage process. All scans were
registered using identical parameters, and the number of it-
erations at each resolution stage was optimized by minimiz-
ing the global mean-squared intensity difference between the
baseline and deformed follow-up scans.

II.B.3. B-splines deformable registration

During B-splines registration, a grid of control points iden-
tified within a moving image is shifted to match points in
a fixed image. These control points determine the coeffi-
cients of cubic B-spline basis functions that in turn define
a deformation field throughout the image.16 Registration us-
ing elastix was performed with the registration parameters
optimized to deform lung CT images for the Evaluation

of Methods for Pulmonary Image Registration 2010 (EM-
PIRE10) challenge.17 The registration was a multistage pro-
cess and used the normalized correlation coefficient penalized
for bending energy to assess image similarity at each iteration.

II.C. Landmark matching

Registration accuracy was evaluated using an open source
semi-automated landmark selection and matching program
(iX v. 1.2.0.0) to calculate the Euclidean distance between
landmark points in the baseline scan and each of the four
corresponding registered follow-up scans (i.e., the results of
registering the follow-up scan using the four considered reg-
istration methods).18 One hundred fifty landmark points were
chosen automatically in each baseline CT scan based on two
factors: (1) the pixel-value gradient in a four-connected neigh-
borhood exceeded 150 HU/pixel, and (2) the points were uni-
formly spaced throughout the three-dimensional scan. For at
least 20 of the 150 landmark points automatically selected
in the baseline scan, an observer [A.R.C.] manually identi-
fied the corresponding location in each of the four variants
of the registered follow-up scan. A thin-plate splines inter-
polation technique was then used to estimate the location of
the remaining landmark points in each of the registrations
of the follow-up scan based on these points. When adequate
matches could not be identified through the thin-plate splines
technique due to registration inaccuracies, landmark matching
was performed manually. All matched landmarks were visu-
ally reviewed by the observer and revised if the observer’s
subjective assessment indicated an improper match.

II.D. Region-of-interest (ROI) selection and texture
feature analysis

An automated method was used to randomly place approx-
imately 2000 (range: 1515–2479) nonoverlapping ROIs that
were fully contained within the lungs in each baseline scan
[Fig. 1(a)]. Spatial image coordinates located within the lung
boundaries in each CT scan section were randomly chosen as
the center of a 32 × 32-pixel ROI. The ROI was accepted pro-
vided it (1) existed entirely within the lung boundaries and (2)
did not intersect with a previously defined ROI. A maximum
of 10 ROIs were selected in each axial CT section. Due to
registration inaccuracies, some ROIs lying entirely within the
lungs of the baseline scan contained background pixels when
mapped to the registrations of the follow-up scan; these ROI
pairs were not included for analysis, resulting in 1432 ROIs
on average (range: 959–1936) per patient.

Using in-house texture analysis software,19 we calculated
a series of first-order, fractal, Fourier, Laws’ filter, and gray-
level co-occurrence matrix (GLCM) texture features in all
baseline ROIs and in the corresponding ROIs mapped to the
registered follow-up scans generated from each of the four
registration methods (Fig. 1). The 140 calculated features are
summarized below.

II.D.1. First-order histogram features

First-order histogram features20–22 describe character-
istics of the gray-level histogram of an image region.
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FIG. 1. (a) A slice taken from the baseline CT scan of a patient with 32 × 32-pixel ROIs superimposed. (b) A slice taken from the corresponding follow-up
scan located in approximately the same anatomic location as (a). (c) A slice taken from a demons-registered follow-up scan with ROIs mapped from the baseline
scan superimposed. Note the improved anatomic agreement with (a).

Nineteen first-order features were calculated: mean, median,
maximum, minimum, mean absolute deviation, range, in-
terquartile range, standard deviation, skewness, kurtosis, en-
ergy, entropy, binned entropy (calculated after sorting data
into 256 histogram bins), 5%, 30%, 60%, and 95% histogram
quantiles, and balance of the inner 40% and inner 90% of the
gray-level histogram.

II.D.2. Fractal features

The fractal dimension characterizes the self-similarity of a
region at different scales and is an indicator of region detail.
Three methods to compute the fractal dimension were used:
the blanket method,23 the Brownian motion method,24 and the
box-counting method.22, 25 In addition, the coarse and fine as-
pects of the box-counting dimension were calculated.26

II.D.3. Fourier features

Features extracted from the Fourier transform of an im-
age region characterize the spatial frequency components of
the region. The first moment of the power spectrum and root-
mean-squared variation were measured.27 Using the rotation-
ally invariant Fourier transform of a region, the energy of the
transformed region and the energy of several subspaces repre-
senting specific frequency components were computed. These
subspaces were the high- and low-frequency rings formed
when the region was divided into two subsections; the low,
moderately low, moderately high, and high frequency rings
formed when the region was divided into four subsections;
and the eight sectors formed when the region was divided into
45◦ slices.20

II.D.4. Laws’ filter features

Laws’ filters emphasize region microstructure, specifically
spot, wave, ripple, edge, and level surfaces.28 Each filter is
convolved with a region of interest, and features are calcu-
lated on the filtered regions. Six features were calculated on
14 rotationally invariant Laws’ filtered regions: mean, energy,
entropy (after sorting into 256 histogram bins), maximum,
minimum, and standard deviation.

II.D.5. Gray-level co-occurrence matrix features

Also referred to as Haralick features, GLCM
features20, 21, 29 quantify the spatial relationship of gray-
level values in a region. A GLCM is constructed to represent
and count all gray-level pairs separated by a distance d and
at angle θ in a selected region. Features are calculated from
the GLCM to reveal underlying region structure. Fourteen
features were calculated: correlation, inertia, absolute value,
inverse difference, energy, entropy, contrast, sum of squares
variance, sum average, sum variance, sum entropy, difference
average, difference variance, and difference entropy. Four
directions were examined (θ = {0◦, 45◦, 90◦, and 135◦}),
and each feature was calculated by taking the average over
all directions; a single pixel distance was considered: d = 1
pixel.

II.E. Statistical analysis

Bland–Altman 95% limits of agreement30 for the case of
multiple measurements were used to assess agreement be-
tween feature values calculated in ROIs of the baseline scan
and each of the four registrations of the follow-up scan. Biases
in the values of features in registered ROIs were calculated,
and upper and lower bounds of agreement between feature
values were generated. For each of the 140 features, the bias
and range of the 95% limits of agreement were compared to
the feature value itself. The normalized bias and normalized
range of agreement (nRoA) were calculated according to

Normalized bias = Bias

|Mean feature value| × 100%,

nRoA =
(95%Limit upper bound − 95%Limit lower bound)

|Mean feature value| 100%,

Mean feature value =
1

nROIs

∑

all ROIs

Feature valuebaseline + Feature valuefollowup

2
,

where nROIs is the total number of ROIs across all patients. A
nRoA close to zero indicated low variability in feature value
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change between baseline and registered follow-up scans, in-
dicating that the feature was relatively “registration stable.”
For registration methods that consistently achieved different
nRoA values across features compared with the other algo-
rithms, two-sided paired Student’s t-tests were performed to
test the significance of the observed differences. To maintain
an overall model significance level of 0.05, significance lev-
els for the individual t-tests were adjusted according to the
Bonferroni method, resulting in significance at α = 0.017.

Due to the retrospective nature of data collection, pa-
rameters such as exposure, pixel size, or contrast level at
the time of image acquisition varied between scans (see
Table I), resulting in inevitable variations in image texture
between sequential CT scans. In addition to these image
acquisition-related variations, the registration method itself
could introduce global changes in feature values, causing
consistent feature value changes between baseline and
registered follow-up scans. To characterize the extent of
feature value change introduced by the registration methods
rather than image-acquisition differences, the registration
direction was reversed so the baseline scan was registered to
match the follow-up scan. ROI placement, texture analysis,
and Bland–Altman analysis as detailed above were repeated.
Feature value change was calculated by subtracting feature
values in the fixed follow-up scan from feature values in
matched ROIs from the registered baseline scan. For image
acquisition-dependent feature value changes, reversing the
registration direction was expected to reverse the sign of
normalized bias while preserving the magnitude, whereas
biases with similar magnitudes and signs were expected for
feature changes introduced by registration irrespective of the
registration direction. The normalized biases obtained using
forward and reverse registrations were averaged to yield
an overall bias introduced by registration for each feature.
This reverse ordering analysis was limited to the deformable
registration methods. Two-sided paired Student’s t-tests were
performed to test if the average bias in feature value change
across all features was significantly different between the two
deformable registration methods.

III. RESULTS

III.A. Landmark matching

Landmark matches were automatically identified in the
follow-up scans for 61% of the landmarks in the baseline
scans when demons registration was used, as compared with
9%, 23%, and 24%, respectively, for B-splines, affine, and
rigid registration. For individual patients, the mean Euclidean
distance between corresponding landmarks ranged from 2.0
to 7.8 mm for rigid registration, from 1.6 to 9.9 mm for affine
registration, from 1.5 to 5.6 mm for B-splines registration,
and from 0.004 to 2.2 mm for demons registration. After com-
bining all patient data, the mean Euclidean distance between
landmarks and the 95% range of distances were calculated for
the four registration methods (Table II). The mean for demons
surpassed the next best algorithm (B-splines) by 2.8 mm.

TABLE II. Mean Euclidean distances and 95% range of distances between
matched landmarks for four registration methods.

Registration method Mean (mm) 95% range of data (mm)

Rigid 4.76 (0.99, 13.30)
Affine 4.16 (0.65, 11.70)
B-splines 3.16 (0, 9.20)
Demons 0.39 (0, 5.27)

The percentage of landmarks separated by a range of
Euclidean distances was plotted for the four registration
methods (Fig. 2). When all patient landmarks were con-
sidered, demons registration reduced the percentage of
matched landmark points separated by at least 1 mm to 9%
compared with rigid (98%), affine (95%), and B-splines reg-
istration (90%). Demons registration outperformed B-splines
registration, B-splines outperformed affine registration,
and affine outperformed rigid registration, as shown by the
noncrossing curves in Fig. 2. This trend did not necessarily
hold for individual patients. When comparing the percentage
of landmarks matched to within 1 mm, rigid registration
outperformed affine registration for five patients, and affine
registration outperformed B-splines registration for three pa-
tients. In all patients, however, demons registration achieved
better matching than any of the other registration methods.

III.B. Texture feature analysis

Fifty-two of the 140 features exhibited a high degree
of variability between the registered scan pairs, with nRoA
greater than 100% for all four registration methods. Figure 3
depicts a plot of the number of features with nRoA less than
or equal to a given value ranging from 0% to 100% in 5% in-
crements. This plot was generated with nRoA resulting from
demons registration because of its superior landmark match-
ing accuracy compared with the other registration algorithms.
Visual inspection of this figure revealed inflection points lo-
cated approximately at nRoA = 15% and nRoA = 75%.
To identify registration-stable features, further analysis was
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FIG. 3. The cumulative number of features with at most a given nRoA. For
visualization purposes, only the features with nRoA < 100% are displayed.

focused on the 19 features with nRoA ≤ 15%. This cutoff
was chosen both because it was low in value and because the
number of features per nRoA increment declined once nRoA
exceeded 15% (i.e., the slope in Fig. 3 declined). With the ex-
ception of three of the 19 features identified, nRoA was larger
for rigid, affine, and B-splines registration than for demons
registration due to the higher relative registration accuracy

of demons registration. Furthermore, all features with nRoA
≤ 15% for rigid, affine, or B-splines registration also had
nRoA ≤ 15% using demons registration. Two-sided paired
Student’s t-tests (Table III) showed that for the 19 features
identified, the mean nRoA for demons registration was sig-
nificantly smaller than the mean nRoA calculated using each
of the other registration methods (the maximum p-value
among these three comparisons was p = 4 × 10−5). The bias
was generally lowest when B-splines registration was used,
though the variance in feature value change between base-
line and registered scans was higher than for demons due to
the inferior anatomic matching achieved (Fig. 4). Boxplots
displaying the percent change in the values of the Brownian
fractal dimension across all 27 patients for the four registra-
tion methods are displayed in Fig. 5, demonstrating that the
lowest variance in feature value change was achieved using
demons registration.

Of the 20 first-order features considered, eight had nRoA
≤ 15% for demons deformable registration (Table III). Five
features also had nRoA ≤ 15% for the other registration
methods. For gray-level entropy, there was a clear negative
bias in the data for demons registration that was not present
for other registration methods, indicating that gray-level en-
tropy tended to decrease due to demons deformable registra-
tion. Three of the five fractal features considered had nRoA

TABLE III. Range of agreement and bias normalized to the mean feature value as a function of the registration algorithm used to register the follow-up to the
baseline CT scan. All features with nRoA ≤ 15% for at least one registration method are listed.

Demons B-splines Affine Rigid

nRoA (%) Bias (%) nRoA (%) Bias (%) nRoA (%) Bias (%) nRoA (%) Bias (%)

First-order features
Minimum 9.92 3.07 12.70 − 3.62 8.17 1.18 8.26 1.13
Mean 7.56 0.01 16.91 − 0.27 18.50 − 0.36 19.76 − 0.41
Median 7.28 − 0.11 11.40 − 0.44 11.83 − 0.32 11.57 − 0.37
Entropy (binned) 14.68 − 3.86 19.47 − 0.26 21.18 − 1.74 22.92 − 1.74
Entropy (unbinned) 10.33 − 4.30 12.54 0.95 13.26 − 1.85 14.34 − 1.84
5% quantile 11.04 4.30 10.44 − 0.07 11.33 2.45 11.37 2.39
30% quantile 7.49 1.37 9.73 − 0.36 9.86 0.59 9.59 0.54
70% quantile 9.10 − 1.50 19.03 − 0.50 22.11 − 1.13 24.02 − 1.18

Fractal features
Box-counting dimension 11.80 − 5.49 19.41 − 0.41 21.22 − 3.65 23.00 − 3.68
Coarse dimension 14.64 − 2.34 33.22 − 0.06 37.35 − 1.54 38.89 − 1.62
Brownian dimension 4.50 − 1.15 9.44 − 0.09 12.15 − 0.76 13.11 − 0.77

Laws’ filter features
E5L5 entropy 10.79 − 2.16 24.09 0.25 26.42 − 1.44 30.02 − 1.46
R5L5 entropy 14.41 − 3.53 20.89 − 0.74 22.09 − 4.79 23.80 − 4.79
S5L5 entropy 11.70 − 3.26 24.83 0.22 27.34 − 2.57 30.66 − 2.58
W5L5 entropy 12.69 − 4.05 22.31 − 0.07 24.31 − 3.84 26.77 − 3.86

GLCM features
Difference average 11.47 0.19 13.98 − 4.12 10.44 − 0.90 10.73 − 0.95
Sum of squares variance 1.47 − 0.29 3.75 − 0.01 4.43 − 0.25 5.06 − 0.24
Sum average 5.78 − 1.27 12.51 1.35 12.75 − 0.74 13.83 − 0.75
Sum variance 11.67 − 2.52 25.78 2.73 26.54 − 1.46 28.83 − 1.49

Mean nRoA 9.91 16.97 17.96 19.29
pa . . . 1 × 10−5 4 × 10−5 3 × 10−5

aCompared with mean nRoA for demons registration.
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FIG. 4. Noise smoothing was observed when demons deformable registration was used. (a) A baseline CT image region. (b) A matched region in the demons
deformed follow-up scan. Note the change in lung parenchymal texture. (c) A matched region in the B-splines deformed follow-up scan. Lung parenchymal
texture is similar to the texture observed in (a), although anatomic matching is inferior to (b).

≤ 15%. Negative bias in fractal feature value change was
observed due to all registration algorithms, though this bias
was consistently larger when demons registration was used
due to the noise smoothing introduced by demons (Fig. 4).
The entropy of rotationally invariant Laws’ E5L5-, R5L5-,

S5L5-, and W5L5-filtered microstructure regions yielded
nRoA ≤ 15%. A negative bias resulted from demons, affine,
and rigid registrations, indicating a decrease in microstructure
entropy from baseline to follow-up scans due to these regis-
tration algorithms.
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FIG. 5. For each registration method, boxplots display the percent change in the Brownian fractal dimension measured in baseline and registered follow-up CT
scans for all 27 patients. Statistical outliers, comprising approximately 5% of the data, were excluded for visualization purposes. Horizontal lines are drawn at
±5% to also aid in visualization.
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TABLE IV. Bias introduced by demons and B-splines deformable registration when forward and reverse image registrations were used.

Demons B-splines

Forward bias (%) Reverse bias (%) Average bias (%) Forward bias (%) Reverse bias (%) Average bias (%)

First-order features
Median − 0.11 0.50 0.20 − 0.44 0.57 0.07
Mean 0.01 0.46 0.24 − 0.27 0.57 0.15
70% quantile − 1.50 − 1.38 − 1.44 − 0.50 0.18 − 0.16
30% quantile 1.37 2.37 1.87 − 0.36 1.06 0.35
Minimum 3.07 3.84 3.46 − 3.62 − 2.38 − 3.00
Entropy (binned) − 3.86 − 4.37 − 4.12 − 0.26 − 0.02 − 0.14
Entropy (unbinned) − 4.30 − 5.24 − 4.77 0.95 0.27 0.61
5% quantile 4.30 5.61 4.96 − 0.07 1.80 0.87

Fractal features
Brownian dimension − 1.15 − 1.42 − 1.29 − 0.09 − 0.55 − 0.32
Coarse dimension − 2.34 − 3.09 − 2.72 − 0.06 − 0.88 − 0.47
Box-counting dimension − 5.49 − 6.69 − 6.09 − 0.41 − 2.24 − 1.33

Laws’ filter features
E5L5 entropy − 2.16 − 2.99 − 2.58 0.25 − 0.37 − 0.06
S5L5 entropy − 3.26 − 4.22 − 3.74 0.22 − 1.07 − 0.43
R5L5 entropy − 3.53 − 4.65 − 4.09 − 0.74 − 3.47 − 2.11
W5L5 entropy − 4.05 − 4.86 − 4.46 − 0.07 − 1.98 − 1.03

GLCM features
Difference average 0.19 0.25 0.22 − 4.12 − 3.92 − 4.02
Sum of squares variance − 0.29 − 0.41 − 0.35 − 0.01 − 0.18 − 0.10
Sum average − 1.27 − 1.28 − 1.28 1.35 1.40 1.38
Sum variance − 2.52 − 2.54 − 2.53 2.73 2.83 2.78

Mean average bias . . . . . . −1.50 . . . . . . − 0.37
pa . . . . . . . . . . . . . . . 0.15

aCompared with average bias for demons registration.

Four of the 14 average GLCM features were observed to
have nRoA ≤ 15%. nRoA was comparatively small across
all registration methods and generally smallest for demons
registration and largest for rigid or affine registrations. One
exception was the difference average of the GLCM, which
yielded a slightly smaller nRoA with rigid and affine registra-
tions than with B-splines or demons registration. Small nRoA
did not, however, indicate that the scans were well registered,
since landmark matching demonstrated the superior anatomic
matching achieved by demons registration (Fig. 2). Rather,
the difference average feature may not be appropriate for de-
tecting texture change in this particular application, resulting
in similar feature values regardless of changes between the
two regions.

All of the Fourier features had nRoA > 15%, indicating a
high degree of variability between feature values measured
in the baseline and registered follow-up scans. nRoA was
smallest for the first moment of the power spectrum and root-
mean-squared variation (nRoA ≈ 40%). The relatively high
degree of variability in texture value change indicated that
these Fourier features were too sensitive to differences be-
tween serial scans in healthy patients and would therefore not
be useful in the detection of actual pathologic changes in se-
rial imaging studies.

III.C. Reverse image registration texture
feature analysis

The extent of feature value change introduced specifically
by deformable registration was measured for the 19 features
with nRoA ≤ 15%. This evaluation was based on the average
bias calculated using Bland–Altman analysis when forward
and reverse registrations were used (Table IV). The average
bias between forward and reverse registrations reflected the
overall bias in feature value change introduced by deformable
registration itself rather than by differences in image acquisi-
tion parameters, for which the sign of the bias depended on
the registration direction.

The extent of average bias in feature values introduced by
deformation ranged from 0.20% (median gray-level value)
to 6.09% (box-counting fractal dimension) using demons
registration and from 0.06% (Law’s filter E5L5 entropy) to
4.02% (difference average) using B-splines. Using a paired
Student’s t-test, the average bias for the 19 features was not
significantly different between demons and B-splines regis-
tration methods (p = 0.15), though this value suggests the
existence of a trend (Table IV). For both registration methods,
mean, median, and sum of squares variance achieved average
biases <1%, indicating that they were minimally affected by

Medical Physics, Vol. 39, No. 8, August 2012



4687 Cunliffe et al.: Deformable registration and texture analysis in lung CT 4687

FIG. 6. Boxplots display the percent change in median gray-level value be-
tween fixed and deformed scans for all patients using demons deformable
registration.

changes introduced by registration. Nine additional features
achieved biases <1% using B-splines registration; using
demons, however, only one other feature had bias <1%
(difference average). As noted earlier (see Fig. 4), demons
registration resulted in a decrease of high spatial frequencies
in the registered images, yielding lower values for features
that measure image roughness such as entropy and fractal
dimension. This smoothing also resulted in narrowing of the
image histogram, causing registration-dependent changes
in the 30% and 70% histogram quantile features. Figure 6
displays boxplots representing percent feature value change
between registered and fixed images across all 27 patients
for median gray-level value. Although overall bias was
low, feature values were affected by image acquisition
parameters such as the exposure and pixel spacing and
patient-dependent parameters such as the level of inspiration
and contrast uptake at the time of image acquisition, resulting
in feature value differences that were similar in magnitude
but opposite in sign between forward and reverse registration
directions.

IV. DISCUSSION

IV.A. Evaluation of registration algorithm accuracy

Demons deformable registration provided higher accuracy
for landmark matching of masked lungs in serially acquired
chest CT scans compared with B-splines, affine, or rigid reg-
istration. Analysis of landmark matching averaged over 27 pa-
tients with “normal” chest CT scans demonstrated that rigid,
affine, and B-splines registrations failed to accurately match
landmarks to within 1 mm for at least 90% of the landmarks,
whereas demons registration resulted in matching to within
1 mm for all but 9% of the landmarks. The semi-automated
landmark matching program successfully identified matched

landmark locations for 61% of the points using demons, com-
pared with 9% using B-splines. The low automatic matching
percentage for B-splines may have occurred because the vec-
tor field interpolation technique introduced distortions in the
appearance (e.g., size or shape) of landmark matches and/or
their surrounding neighborhoods. Although manual match-
ing may have affected the accuracy with which landmarks
were placed, resulting in systematic over- or underestimates
of the average Euclidean distances measured for B-splines
compared with demons, the landmark matching data indi-
cates that demons achieved better registration accuracy than
B-splines.

Several studies have been performed to evaluate the regis-
tration accuracy achieved using B-splines and demons regis-
tration algorithms. Kashani et al.31 found that although three
B-splines algorithms and one demons algorithm achieved
similar mean landmark matching error when they were used
to deform scans acquired with a deformable phantom, the
maximal error was between 0.9 mm and 4.8 mm higher
for B-splines than for demons. A multi-institutional study
by Brock32 found demons registration algorithms achieved
higher average landmark matching accuracy between phases
of 4D CT scans than all but one of the B-splines algo-
rithms, though the average landmark displacement differ-
ence between B-splines- and demons-registered scans re-
mained small (<0.6 mm). For these studies, landmarks
were identified based on 10–21 embedded markers or rec-
ognizable anatomic landmarks (i.e., bronchial bifurcations
and aortic calcifications), whereas the present study selected
150 landmarks automatically based on pixel-value gradients.
Additionally, these previous studies were performed using
controlled deformation environments (i.e., phantom studies
or clinical 4D scans performed on the same day and scan-
ner) so that the extent of true landmark displacement due
to deformation could be measured and compared with the
displacement during registration. In the present study, clin-
ical CT scans acquired during separate imaging sessions
were deformed, thereby increasing the complexity of the
registration task since several factors (e.g., patient position
and scanner parameters) were not identical. When register-
ing CT scans acquired three months apart, Palma et al.12

achieved results similar to those observed in this study, mea-
suring mean B-splines inaccuracies ranging from 3.1 mm
to 8.0 mm depending on the location of landmarks in the
lungs.

Although demons registration has been evaluated using 4D
CT datasets,5, 8 it has not been widely applied to serial CT
scan registration. The present results demonstrate that demons
registration has the potential to improve registration accuracy
for studies of serially acquired clinical CT scans. The fact that
demons deformable registration outperformed B-splines reg-
istration may be due to the larger number of degrees of free-
dom for demons registration, providing this method with a
superior ability to achieve matching of lung volumes. While
CT scans at our institution are routinely acquired using a
breath-hold technique, no direct control on the level of in-
spiration is utilized, potentially complicating the registration
problem.
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Although demons deformable registration achieved supe-
rior anatomic matching relative to the other registration al-
gorithms that were investigated, it introduced texture arti-
facts that were absent or less severe when B-splines registra-
tion was used. For example, demons registration caused noise
smoothing (Fig. 4) that lowered gray-level entropy and frac-
tal feature values. While this bias in feature value change ex-
isted to some extent when using B-splines, it was most ex-
treme as a result of demons registration (Table IV). Although
bias was consistently introduced for many of the features due
to demons registration, the variance of texture feature value
change between baseline and registered follow-up scans was
lower for demons registration than for B-splines, affine, and
rigid registrations. While this study used “normal” CT scans,
the low variability in texture change between normal lung CT
scans achieved using demons registration could facilitate its
use to detect local changes in registered scans, thereby allow-
ing for analysis of disease status change in serial scans. Fur-
ther studies in patients with nonhealthy lungs are needed to
determine the utility of combining demons registration with
texture feature analysis.

IV.B. Registration-stable texture features

Nineteen features were identified that remained relatively
stable when deformable registration was used to register “nor-
mal” lung CT scans. Some of these features may have been
ill-suited to measure the patterns in lung CT images, yield-
ing consistent values regardless of actual changes present in
the images. These features would appear to be minimally
affected by registration when in fact they were insensitive
to real change in CT images due to, for example, disease
progression. Such features were identified by comparing tex-
ture feature value change across the four registration meth-
ods used. Due to the inferior anatomic matching achieved
by rigid and affine registrations, a higher degree of vari-
ability between baseline and follow-up texture values intro-
duced by registration inaccuracies would exist for these reg-
istration methods than for deformable registration. For three
features (minimum gray-level value, 5% histogram quan-
tile, and difference average of the GLCM), this trend was
not observed, indicating that these particular features were
ill-suited for detecting real changes in lung CT images as
they remained invariant even to large registration inaccura-
cies. However, for 16 of these 19 features, lower variabil-
ity existed between baseline and follow-up texture values
when registration was performed with demons or B-splines
than with rigid or affine registration. Moreover, the variabil-
ity in feature value change for these relatively “registration-
stable” features was lowest with demons registration, indi-
cating that the combination of demons registration and tex-
ture analysis has the potential to detect true changes in lung
parenchymal texture caused by disease progression. It should
be noted that in future experiments, the cutoff of nRoA
≤ 15% may be modified based on the magnitude of change
to be detected.

IV.C. Future applications of texture analysis and
deformable registration

We have identified 16 features that achieved low variabil-
ity of texture feature value change between baseline and reg-
istered follow-up CT scans when demons deformable regis-
tration was used. For several features, demons registration in-
troduced bias in feature values. Knowledge of such bias is
vital for application of deformable image registration to tex-
ture feature analysis since in future work, this bias could be
removed from texture changes to separate changes in disease
status from artifacts introduced by the registration process.
Texture change that is atypical of known registration effects
may serve as an indicator of actual change in lung disease
status.

For some features, changes may be introduced as a result
of differences in the images themselves rather than by differ-
ences due to the registration process. Palma et al.12 demon-
strated that differences in the concentration of intravenously
injected contrast media or breathing phase at the time of im-
age acquisition resulted in differences in the mean HU value
of otherwise similar CT scans, though differences were ac-
counted for on a per-scan basis by normalizing mean values
by the average HU value in the contralateral lung. In addi-
tion to mean, other first-order features may be influenced by
variations in image acquisition parameters or contrast uptake.
Image acquisition-dependent changes may complicate the de-
tection of texture changes due to a change in disease sta-
tus. This complication may be remedied by normalizing to
the average feature value in nondiseased lung regions. Rather
than raw feature values, normalized feature values in base-
line and deformed follow-up scans may then be compared
to determine changes in lung disease status. Alternatively, it
may be possible to normalize intravenous contrast-dependent
feature values by the average gray-level value in the aorta to
account for contrast injection differences (e.g., concentration
and timing), though the utility of this approach remains to be
investigated.

This study used only CT scans from subjects with no noted
lung pathology. The registration task becomes more difficult
when widespread pathologic differences are present between
two scans, as is the case for changes due to diffuse lung dis-
ease or other pathologies. The application of the algorithms
used in this study for registration of pathologically differ-
ent lung CT images remains to be investigated. Lu et al.33

incorporated landmark-guided registration with demons de-
formable registration, and this registration method may be
more appropriate in the presence of gross pathologic changes.
Additionally, the utility of the identified features and deforma-
tion algorithms remains to be investigated when images are
acquired using different CT scanners and/or technical param-
eters, as these factors have the potential to alter image texture.

V. CONCLUSIONS

This study investigated the accuracy of four image regis-
tration algorithms (rigid, affine, B-splines, and demons) and
their effects on texture feature values using a set of 140
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features distributed among first-order, fractal, Fourier, Laws’
filter, and GLCM classes. Of the four registration methods,
the highest accuracy of spatially matched landmarks was
achieved using demons. Nineteen features demonstrated val-
ues that exhibited low variation (nRoA ≤ 15%) between
baseline and registered follow-up feature values as a re-
sult of demons deformable registration. nRoA was signifi-
cantly larger when the other three registration methods were
used.

The extent of feature value change introduced by de-
formable registration was characterized by measuring the
bias between the values of the 19 “registration-stable” fea-
tures in registered follow-up and baseline scans. Demons de-
formable registration introduced registration-dependent bias
greater than 1% in the majority of the features, and knowl-
edge of the magnitude of these changes would allow for bet-
ter distinction between texture differences caused by disease
progression and texture differences from registration-induced
artifacts. Texture differences introduced by image-dependent
factors were also observed.

This research creates an avenue for deformable image reg-
istration and texture feature analysis to be combined, and fu-
ture work will target the utility of this combination to accu-
rately detect and categorize local changes in lung disease sta-
tus using serially acquired CT scans.
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