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Luteal Function: The Estrous Cycle and Early Pregnancy
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ABSTRACT

A number of morphological and biochemical changes occur as the cells of the recently ovulated follicle luteinize and develop
into a functional CL There are two distinct steroidogenic luteal cell types that appear to differentiate from thecal and granulosal
cells in the follicle. The control of progesterone secretion is quite different in the two cell types. Prostaglandin F. (PGFZ.) is
the primary luteolytic hormone in most mammals. PGF2~ appears to exert its antisteroidogenic actions via activation of the protein
kinase C system, while its cytotoxic effects appear to be mediated via a dramatic increase in intracellular levels of free calcium.
The mechanisms involved in maternal recognition of pregnancy are very diverse between species and may involve direct luteo-
tropic stimulation of the CL, reduced uterine secretion of PGF,, and/or inhibition of actions of PGF,2 at the level of the CL.

INTRODUCTION

The corpus luteum (CL) is a transient endocrine organ

required for normal pregnancy in mammals. The first re-

port of the biological significance of this gland was pub-

lished in 1903 by Frankel [1], who demonstrated that preg-

nancy was terminated in rabbits after removal of the CL.

Subsequent purification and crystallization of progesterone

were accomplished in 1934 by four groups [2-5]. Perhaps

it is of evolutionary significance that the simplest steroido-

genic pathway is that for biosynthesis of progesterone, which
plays such a key role in successful reproduction.

The biosynthetic pathway for progesterone is depicted

in Figure 1 for a generic luteal cell. In most cases, choles-

terol utilized as substrate is obtained from high or low den-

sity lipoproteins (HDL, LDL) rather than synthesized de novo

from acetate [6, 7]. Uptake of LDL occurs through classic

receptor-mediated endocytosis [8], whereas uptake from HDL

involves binding to specific membrane binding sites and
shuttle of cholesterol into the cell by an unknown mech-

anism [9]. Cholesterol from the various sources can then

be utilized for steroid synthesis or can be incorporated into

cholesterol esters by acyl CoA cholesterol acyltransferase

(ACAT) and stored as lipid droplets (reviewed in [10]). As

luteal progesterone secretion increases during the luteal

phase of the reproductive cycle, lipoprotein binding sites

increase on luteal cells [11, 12].

Release of cholesterol from cholesterol esters is depen-

dent on a neutral cholesterol esterase (also known as hor-

mone-sensitive lipase). Activity of this enzyme is regulated

by phosphorylation of two serine residues. Cyclic AMP-de-

pendent protein kinase A (PKA) causes phosphorylation of

one serine residue and activation of the enzyme, whereas

Ca2+/calmodulin-dependent protein kinase phosphorylates
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the other serine residue and prevents activation of the en-

zyme (reviewed in [10]).

The rate-limiting step in progesterone biosynthesis is

cleavage of the side chain of cholesterol. This process in-
volves transport of cholesterol from cytoplasm to the mi-
tochondria and from the outer to the inner mitochondrial

membrane, the site of side-chain cleavage. Transfer of cho-

lesterol to the mitochondria appears to involve the cyto-

skeleton (reviewed in [13]). Cholesterol must also be trans-
ported from the outer mitochondrial to the inner
mitochondrial membrane, where cytochrome P450 side-chain
cleavage enzyme (P450scc) is localized. This transport may

be mediated by many factors, including steroidogenesis ac-
tivator peptide, sterol carrier protein 2, endozepines/ben-

zodiazepines, and lipoxygenase metabolites (reviewed in

[10]).
Three proteins are involved in conversion of cholesterol

to pregnenolone: adrenodoxin, adrenodoxin reductase, and

cytochrome P450scc. Messenger mRNAs for these proteins
are regulated similarly; thus mRNA for P450scc is often used
to monitor transcription of genes encoding the enzymes in

this complex [14,15]. Conversion of pregnenolone to pro-

gesterone is catalyzed by 3-hydroxysteroid dehydroge-

nase, A5,A4 isomerase (3-P3HSD) (reviewed in [16]).

LUTEINIZATION AND FORMATION OF THE CL

The preovulatory surge of LH sets in motion a series of

morphological and biochemical changes resulting in re-
organization of follicular cells into the CL. The basement
membrane between the theca interna and membrana gran-
ulosa begins to break down, blood vessels invade the fol-
licular antral space, and an extensive vascular network de-

velops. During luteinization, there is significant hypertrophy
and hyperplasia of thecal cells [17], which migrate into the
previous follicular cavity and become dispersed among lu-
teinizing granulosal cells. Granulosal cells accumulate smooth
endoplasmic reticulum, mitochondria become rounded with

tubulovesicular cristae, and glycogen-containing granules
accumulate [18]. Mitotic activity occurs in thecal cells after
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NISWENDER ET AL.
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FIG. 2. The volume density (solid circles) of the corpus luteum occu-

-pied by small and large luteal cells, changes in cell volume (solid squares)

and cell number (open circles) throughout the estrous cycle in ewes. Adapted
from Farin et al. [37].

[33], while receptors for FSH are present in CL from only

a few species, e.g., hamsters [34] and cows [35]. In a study

of rats, there was enhanced expression of the gene encod-

ing the LH receptor as the CL developed, apparently due

to the stimulatory effects of prolactin [31].

FIG. 1. Pathway for progesterone biosynthesis in a generic luteal cell.

Four sources of cholesterol can be utilized for substrate and include cho-

lesterol derived from HDL (1) or LDL (2) from the blood, synthesis of cho-

lesterol from acetate (3) and hydrolysis of cholesterol esters (4). The free

cholesterol is transported to the mitochondria (5) apparently with cytoske-

letal involvement. The transport of cholesterol from the outer to the inner

mitochondria membrane (6) appears to be a key mechanism increased by

trophic hormone stimulation or decreased by protein kinase C activation.

ovulation, but there does not appear to be significant cell

division in luteinizing granulosal cells [19].

There are also numerous biochemical changes associ-

ated with the process of luteinization. After the LH surge,

but prior to ovulation, there is a temporary decrease in mRNA

for P450scc and 3f3-HSD [20]. This is followed by increases

in mRNA and enzyme activity for P450scc and 3P-HSD after

ovulation and during luteal formation. The activity of cho-

lesterol esterase [21], cytochrome P450scc [22-24], and 33-

HSD [23-26] increases as the CL becomes fully functional.

In most species there are decreases in androgen and es-

trogen production as follicular cells luteinize. Levels of mRNA

and protein for 17t-hydroxylase cytochrome P450, which

catalyzes conversion of pregnenolone or progesterone to

androgen, are abundant in preovulatory follicles but are low

in CL of cattle [14, 22] and rats [27]. Levels of mRNA and

protein for aromatase cytochrome P450 enzyme decrease

rapidly after the LH surge in several species [28, 29]; how-

ever, in other species such as the human and the rat, aro-

matase activity is present in the CL.

After ovulation, receptors for FSH and LH on granulosal

cells are down-regulated due to internalization of occupied

receptors and reduced expression of genes encoding the

receptors [30-32]. Receptors for LH increase as the CL forms

LUTEAL PHASE OF THE ESTROUS CYCLE

The majority of the parenchyma of the CL consists of

steroidogenic cells referred to as luteal cells. Support cells

account for approximately 20% of the volume and include

vascular elements (endothelial cells, pericytes), macro-

phages, smooth muscle cells, and fibroblasts [36,37]. There

are at least two morphologically and biochemically distinct

steroidogenic luteal cell types in the ewe [38,39], cow [40,41],

pig [42], rat [43, 44], rabbit [45], monkey [46], and human

[47]. The most obvious difference between the two ste-

roidogenic cell types is size, leading to their designation as

small and large luteal cells. Ovine small luteal cells are 12-

22 ,tm in diameter, are usually spindle-shaped, and contain

an abundance of smooth endoplasmic reticulum, numer-

ous mitochondria, and lipid droplets within the cytoplasm.

In contrast, ovine large luteal cells are 22-50 RIm in di-

ameter, are spherical in shape, and contain numerous mi-

tochondria, abundant smooth endoplasmic reticulum, stacks

of rough endoplasmic reticulum, and electron-dense secre-

tory granules. In some species, large luteal cells also con-

tain lipid droplets. The secretory granules in large cells have

been shown to contain oxytocin [48] or relaxin [49] and are

released by exocytosis [48]. These granules may also con-

tain growth factors, depending upon the reproductive state

and species.

Morphometric analyses have provided reliable data re-

garding numbers of steroidogenic luteal cells in the ewe

[37, 50, 51] and cow [51]. Number, volume, and volume

density of ovine small and large luteal cells throughout the

estrous cycle are depicted in Figure 2. The number of small

cells increases approximately 5-fold with little change in

cell volume, while large cells increase in size with little

change in number. The net result is that the volume of the

CL occupied by each cell type (volume density) remains

relatively constant [37, 50].
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THE CORPUS LUTEUM

FIG. 3. Relative levels of mRNA encoding tubulin, 3-HSD and cyto-
chrome P450, in ovine luteal tissue (densitometric units/20 ig total RNA)
during the estrous cycle. Adapted from Hawkins et al. 126] and Belfiore et
al. [61].

The principal hormone that stimulates progesterone
production by the CL is LH [18]. In a study of ovine CL, the

number of LH receptors did not reach maximum until the
midluteal phase (Day 10) of the estrous cycle [33]. Similar
observations have been made in monkeys [52] and humans

[53]. Levels of mRNA encoding LH receptors in monkey CL
are also higher during the midluteal than in the early luteal
phase of the cycle [54]. In rat CL, mRNA encoding the re-
ceptor for LH returns to amounts similar to those seen in
the preovulatory follicle by Day 4 of pregnancy [31]. Lu-

teinization of rat granulosal cells is also associated with an
increase in prolactin receptors [55], which are essential for

normal luteal function (reviewed in [56]).
There is evidence that unstimulated large luteal cells se-

crete progesterone at a higher rate (2-40 fold) than small
luteal cells [38,41, 42, 44,46, 57]. Small luteal cells respond
to maximally effective doses of LH with a large increase (up
to 40-fold) in secretion of progesterone, while LH has little

or no effect on large luteal cells [38, 39, 41,42]. In normally
cycling animals, a similar number of receptors for LH has
been observed on large and small luteal cells in the ewe

[58], cow [59], and rat [44]. Large luteal cells produce over
80% of the progesterone secreted by the CL during the
midluteal phase of the estrous cycle [60].

There is evidence that during the ovine estrous cycle,
luteal 33-HSD mRNA is maximally expressed by Day 3 and
remains relatively constant through Day 12 [26], while max-
imum expression of P450scc mRNA does not occur until the
midluteal phase [61]. This suggests that these enzymes are
differentially regulated in ovine luteal cells (Fig. 3). Differ-
ential regulation of these messages also appears to occur
in rats [62]. Removal of LH support in monkeys was re-
ported to cause dramatic down-regulation of mRNA for both
P450,cc and 33-HSD [63]. Interestingly, removal of prolactin
support decreased luteal mRNA encoding for P450scc and
the enzyme itself in pregnant rats [64].

The mechanism whereby LH stimulates secretion of pro-
gesterone from small luteal cells involves formation of cAMP,
activation of PKA, and subsequently increased progesterone
production ([65]; Fig. 4). Generation of cAMP and activation

FIG. 4. Current model of the regulation of progesterone secretion from the two types of ovine luteal cells. LH
activates protein kinase A (PK-A) and stimulates secretion of progesterone from small but not large luteal cells. Ac-
tivation of PK-C inhibits secretion of progesterone from LH-stimulated small luteal cells and from large luteal cells.
PGF2. activates PK-C in large cells but it is not clear what activates PK-C in small cells. PGF2. also stimulates influx
of Ca

+
in large cells which appears to induce changes associated with cellular degeneration. An anti-PGF2 factor

prevents the anti-steroidogenic and cytotoxic effects of PGF2. in large cells through some unknown cellular mecha-
nism. How LH exerts its trophic effect on large cells or how PGF 2,, exerts cytotoxic effects on small cells is not known
at the present time. Adapted from Wiltbank et al. 104].
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NISWENDER ET AL.

FIG. 5. Current model for maternal recognition of pregnancy in the ewe. A) High amplitude pulsatile secretions
of PGF2, do not occur during pregnancy, although basal levels are higher than in ewes during the late luteal phase
of the estrous cycle. This change in the pattern of PGF2 secretion appears to be due to oTP-1 secretion from the
embryo. B) During the time of maternal recognition, uterine secretion of PGE2 is increased. C) Secretion of oTP-1 is
increased during maternal recognition of pregnancy. D) The corpus luteum of ewes on Days 13 and 16 of pregnancy
is resistant to the luteolytic actions of PGF2 (4 mg/58 kg) but is not resistant on Days 10, 19, 22, or 26 of pregnancy.
An anti-PGF2 factor is produced by the embryo which makes the corpus luteum of pregnancy resistant to PGF2?.

of the PKA system stimulates cholesterol esterase activity

[21, 66] and may enhance transport of cholesterol to the

inner mitochondrial membrane [66,67]. Large and small lu-

teal cells have similar amounts of PKA activity [68]; but treat-

ment of large cells with cAMP, cholera toxin, or LH does

not enhance secretion of progesterone [69]. Activation of

the protein kinase C (PKC) enzyme system with phorbol-

12 myristate-13 acetate (PMA) decreases progesterone pro-

duction [68]. The identity of the factor(s) that stimulates PKC

activity in small luteal cells is not known.

In the monkey, it has been shown that both small and

large luteal cells isolated from tissue collected early in the

menstrual cycle respond to hCG, dbcAMP, or PGE2 with in-

creased progesterone secretion; but responsiveness in small

luteal cells was lost when cells were collected past the early

luteal phase [46,70]. Incubation of small or large luteal cells

with PGF 2. causes an increased production of inositol phos-

phates (IP) and induces a transient rise in intercellular Ca2+

concentrations. Percentages of cells responding increase as

the CL ages [71].

Rat large and small luteal cells also respond to LH [44],

forskolin, and dbcAMP stimulation with an increase in pro-

gesterone secretion [57]. Large luteal cells contain more

P450,c and sterol carrier protein-2, suggesting a higher rate

of cholesterol transport and conversion to pregnenolone

than in small cells [72]. Large but not small luteal cells also

express mRNA for IGF-I and IGF-I receptor and respond to

IGF-1 with an increase in progesterone secretion [73].

Receptors for steroid hormones are also present in most

CL. Estrogen receptors have been localized in sheep [74]

and rats [75]; and in rats and rabbits it is well established

that estrogens are involved in maintaining and enhancing

luteal progesterone secretion [56, 77]. CL of monkeys con-

tain androgen [78] and progesterone receptors [76], but their

function has not been defined. While the positive effect of

estradiol on progesterone production in vivo in CL from

pregnant rats is clear, conflicting data have been reported

in vitro. Nelson et al. [44] reported no effect on basal pro-

gesterone production by estradiol, whereas Tekpetey and

Armstrong [57] reported an inhibitory effect of estradiol on

progesterone secretion. That the dose of estradiol varied

greatly between these two experiments perhaps explains

the differing results.

LUTEAL REGRESSION

If pregnancy does not occur, it is essential that the CL

regress, allowing initiation of a new reproductive cycle. Two

processes are involved in loss of luteal function at the end

of the cycle. First, there is decreased secretion of proges-

terone followed by loss of luteal tissue, or luteolysis. At the

onset of luteal regression, there is a precipitous decline in

concentrations of progesterone in serum [33,79, 80] fol-
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THE CORPUS LUTEUM

lowed by loss of luteal weight [81,82]. Morphological changes

during luteal regression include accumulation of lipid

droplets in the cytoplasm of luteal cells, degeneration of

capillaries, and an increase in the number of primary ly-

sosomes [83]. As luteal regression continues, there is an

eventual decrease in the number of steroidogenic luteal cells

[37, 82].

Prostaglandin F2 . (PGF2.) of uterine origin is the pri-

mary luteolytic agent in domestic farm animals and most

rodents (reviewed in [84]). In monkeys, infusion of PGF2.

directly into the CL causes premature luteal regression [85].

In most rodents and in ruminants and pigs, the luteolytic

action of uterine PGF2a appears to be a local effect, since

removal of the uterine horn ipsilateral to the CL prevents

luteal regression whereas removal of the contralateral horn

has no effect on luteal life span (reviewed in [86]). In pri-

mates, the uterus does not appear to be necessary for nor-

mal luteal regression [87]; therefore, intraluteal production

of PGF2a may be important in modulating luteal life span.

An interaction between PGF2 . and estrogens appears to be

important for normal luteolysis in monkeys [88,89] and ewes

[90, 91]. The role of estrogens may be to regulate luteal lev-

els of receptors for PGF2,,.

The CL is not always maintained for its normal duration

but may instead undergo premature luteal regression. This

short luteal phase has been studied extensively in beef cat-

tle; it occurs at puberty [92] and during the transition from

postpartum anestrus to cyclicity [93]. Evidence is accumu-

lating that the CL regresses early as a result of a premature

release of PGF2a from the uterus [94].

Prostaglandin F2 . appears to have multiple biological ac-

tions, all of which have a negative effect on luteal function.

Early investigators proposed that luteolysis might be the re-

sult of reduced luteal blood flow [95]. The CL is a highly

vascularized gland that receives over 80% of the ovarian

blood supply [83]. Injection of PGF2a into rats does not de-

crease ovarian blood flow [96], but PGF2 . causes a rapid

reduction in luteal blood flow in ewes [83]. It remains un-

clear whether reduced luteal blood flow is a major factor

in the initiation of luteal regression or simply a symptom

of luteolysis.

It has been reported that numbers of receptors for LH

decrease after treatment with PGF2. in rats [97] and ewes

[81]. However, in the latter study, the decrease in number

of receptors did not occur until after a significant decrease

in concentrations of progesterone in serum. In rats, admin-

istration of PGF2 , decreased plasma membrane fluidity and

increased superoxide radical formation [98,99]. Thus, in the
rat an initial site affected by PGF2,, may be the plasma mem-

brane.

The antisteroidogenic effects of PGF2, appear to be me-

diated through the PKC second messenger system (Fig. 4).

PGF2 . activates phospholipase C [100, 101], which causes

hydrolysis of membrane phosphatidylinositol 4,5-bisphos-

phate (PIP2) to inositol-1,4,5-triphosphate (IP3 ) and 1,2-dia-

cylglycerol (DAG) [102]. Diacylglycerol increases the affin-

ity of PKC for calcium and IP3 releases calcium from

intracellular stores, resulting in an increase in free intra-

cellular calcium concentrations [103] and activation of PKC.

In the rhesus monkey, treatment of dispersed luteal cells

with PGF2. results in an increase in PIP2 hydrolysis [71]. In

populations of purified large ovine luteal cells, the addition

of PGF2. results in activation of PKC [104]. Pharmacological

activation of PKC reduces progesterone production from

large ovine luteal cells [104-106] and isolated rat luteal cells

[107]. The acute antisteroidogenic effects of PKC do not ap-

pear to be exerted directly on the activity of any steroido-

genic enzyme; rather they appear to inhibit cholesterol

transport to cytochrome P450c,, [66]. However, activation of

PKC may have long-term effects on steroidogenic enzymes.

PGF2a has been found to reduce steady-state levels of mRNA

encoding 31-HSD [26]. Interestingly, pharmacologic acti-

vation of PKC has no detrimental effects on cell viability

[104,106]. Similar effects have been noted after PMA treat-

ment of ewes in vivo [108]. The second messenger system

implicated in mediating the luteolytic effects of PGF2a is free

intracellular calcium. Treatment of ovine large luteal cells

with PGF2a increases free intracellular calcium concentra-

tions [104]. Large luteal cells are unable to equilibrate this

increased calcium; ovine luteal cells cultured in the pres-

ence of A23187 died in culture [106]. Treatment of dis-

persed rhesus monkey luteal cells with PGF2. also caused

a rapid but transient increase in concentrations of free in-

tracellular calcium in both cell types [71].

Ovine luteal cells appear to undergo apoptosis during

PGF2a induced luteolysis [109], and cleavage of DNA into

characteristic oligonucleosome-size fragments by endonu-

cleases appears to be a common mechanism in the apop-

totic process [110]. The developmental expression of a cal-

cium/magnesium-dependent endonuclease has been

demonstrated in both granulosa and luteal cells in the rat

[111]. In the cow and ewe, PGF2a treatment results in oli-

gonucleosome formation similar to that seen in other cases

of apoptosis [112,113]. This effect is not due to activation

of PKC, since infusion of PMA into the ovarian artery of

ewes has been found to decrease serum levels of proges-

terone without oligonucleosome formation [113].

In summary, the mechanisms involved in luteal regres-

sion in the different species are complex and varied; but

evidence is accumulating that the antisteroidogenic actions

of PGF2 ,, are mediated through activation of the PKC path-

way while the luteolytic actions of PGF2. are most likely to

be manifested through the process of apoptosis, with in-

creases in concentrations of free intracellular calcium being

the signal for induction of this process.

EARLY PREGNANCY

Normal pregnancy depends upon the early embryo's sig-

naling its presence to the maternal system, a process termed
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NISWENDER ET AL.

maternal recognition of pregnancy. Hormones involved in

this signaling differ between species, as do the mechanisms

by which these signals maintain the CL. In species in which

secretion of PGF2 . from the uterus is the primary signal for

luteolysis, an obvious potential strategy for blocking lute-

olysis is the inhibition of PGF2. secretion. In cattle there

appears to be inhibition of both basal and oxytocin- or es-

tradiol-stimulated PGF 2,, secretion in pregnant animals, pos-

sibly due to secretion of an endometrial prostaglandin in-

hibitor [114]. In sheep, there is an inhibition of pulsatile

PGF2,, secretion but an apparent increase in basal PGF2a se-

cretion (Fig. 5) [115]. Alterations in PGF2, production in

ruminants are probably due to secretion of embryonic in-

terferon, also termed interferon tau or ovine or bovine tro-

phoblast protein-1 (see reviews [116-119]). There is also

evidence from sheep that embryo-derived platelet-activat-

ing factor may play a role in suppressing uterine PGF2,, se-

cretion [120].

In pigs there appears to be an alteration in PGF2a secre-

tion such that PGFz2 is secreted into the uterine lumen rather

than into the bloodstream [118]. This change in PGF2 . se-

cretion appears to be due to secretion of estradiol by the

early pig embryo. It appears that estradiol-induced calcium

cycling and synergistic effects of prolactin may be involved

in this redirection of PGF2a secretion [118].

Another potential mechanism for maintaining the CL is

inhibition of the action of secreted PGF2. at the level of the

luteal cell. In sheep, injections of low doses of PGF2a will

induce luteolysis in nonpregnant but not in pregnant ani-

mals (Fig. 5) [121,122]. Wiepz et al. [123] found that the

number of receptors for PGF 2,, was similar in pregnant and

nonpregnant animals during the period of maternal rec-

ognition of pregnancy. In addition, responsiveness of large

luteal cells to PGF 2a was not different between pregnant

and nonpregnant animals [124]. Thus, it appears that the

pregnant uterus secretes a factor that reduces the luteolytic

effects of PGF2 ,, injections.

The factor from the pregnant uterus may be PGE2, since

this hormone inhibits the PGF2a-induced decrease in pro-

gesterone synthesis and since treatments with PGE 2 appear

to lengthen the life span of the CL in sheep [125], cattle

[126], and primates [127]. However, definitive studies on

the role of PGE2 in maternal recognition of pregnancy have

not yet been performed. Another substance that may be im-

portant during maternal recognition of pregnancy in sheep

is a luteal protective protein(s), secreted by the early ovine

embryo, that appears to antagonize the action of PGF2,, (Fig.

5) [128].
In primates, the secretion of chorionic gonadotropin ap-

pears to be the central factor in the maintenance of the CL

during early pregnancy (reviewed in [18]). This hormone

has been found to stimulate luteal progesterone secretion

both in vivo and in vitro and may inhibit intraluteal pro-

duction of PGF2a, allowing sustained luteal function [129].

In the rat there are dramatic increases in serum pro-

gesterone concentrations as well as in luteal weight be-

tween Days 10 and 16 of gestation [130]. Decidual and tro-

phoblastic tissues both secrete a prolactin-like luteotrophin

important for stimulating luteal function [56]. This luteotro-

phin maintains LH receptor numbers and the capacity of

luteal cells to secrete estradiol. Prolactin (or prolactin-like

compounds) is sufficient to maintain luteal function for 10

days after ovulation; however, later increases in luteal weight

and progesterone secretion require both prolactin and in-

traluteal estradiol [56,131]. Thus, pregnancy-associated in-

creases in luteal function in the rat are due to a synergistic

action of prolactin-like luteotrophins and estradiol.

Estradiol also has a key role in maintenance of the CL

in rabbits [132]. Although there is not a dramatic stimula-

tion of progesterone secretion during pregnancy, there is

an approximate doubling in luteal life span (30 vs. 15 days)

as compared to pseudopregnancy [77]. This extended life

span of the CL during pregnancy appears to be due to an

unidentified embryonic factor, probably of placental origin,

that interacts with estradiol to maintain luteal function dur-

ing pregnancy [132].

Although successful maternal recognition of pregnancy

is essential to the survival of an embryo and ultimately of

a species, the mechanisms for maternal recognition of

pregnancy do not appear to be well conserved during

mammalian evolution. Maintenance of the CL of pregnancy

is due to a surprisingly diverse group of hormones and

mechanisms in different species. In general, these diverse

mechanisms are focused on preventing regression of the

CL either by stimulating luteal function or by inhibiting PGF2.

secretion or action. Questions remain on the identity of

certain factors involved in maternal recognition of preg-

nancy as well as on the intracellular mechanisms for many

of the hormones involved in this process.
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