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Abstract

Luteolin, 3′,4′,5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants

including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese

traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and

cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer,

luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of

luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may

be linked to its anticancer property. Luteolin's anticancer property is associated with the induction

of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin

sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways

such as phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-κB), and X-linked

inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce

the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for

various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention

property to luteolin. In this review, we summarize the progress of recent research on luteolin, with

a particular focus on its anticancer role and molecular mechanisms underlying this property of

luteolin.
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INTRODUCTION

Luteolin, 3′,4′,5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds

called flavonoids that are found widely in the plant kingdom. Flavonoids are polyphenols that

play an important role in defending plant cells against microorganisms, insects, and UV

irradiation [1]. Evidence from cell culture, animal, and human population studies have

suggested that flavonoids are also beneficial to human and animal health. Because of their

abundance in foods, e.g., vegetables, fruits, and medicinal herbs, flavonoids are common
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nutrients that are antioxidants, estrogenic regulators, and antimicrobial agents [2]. It has been

noticed that flavonoids may be a cancer preventive [3,4]. Flavonoids may block several points

in the progression of carcinogenesis, including cell transformation, invasion, metastasis, and

angiogenesis, through inhibiting kinases, reducing transcription factors, regulating cell cycle,

and inducing apoptotic cell death [2].

Belonging to the flavone group of flavonoids, luteolin has a C6-C3-C6 structure and possesses

two benzene rings (A, B), a third, oxygen-containing (C) ring, and a 2−3 carbon double bond.

Luteolin also possesses hydroxyl groups at carbons 5, 7, 3’, and 4’ positions (Fig. 1) [5]. The

hydroxyl moieties and 2−3 double bond are important structure features in luteolin that are

associated with its biochemical and biological activities [6]. As in other flavonoids, luteolin is

often glycosylated in plants, and the glycoside is hydrolyzed to free luteolin during absorption

[7]. Some portion of luteolin is converted to glucuronides when passing through the intestinal

mucosa [8]. Luteolin is heat stable and losses due to cooking are relatively low [9].

Vegetables and fruits such as celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages,

apple skins, and chrysanthemum flowers are luteolin rich [4,10-13]. Plants rich in luteolin have

been used as Chinese traditional medicine for hypertension, inflammatory diseases, and cancer

[1]. The pharmacological activities of luteolin could be functionally related to each other. For

instance, the anti-inflammatory effect of luteolin also may be linked to its anticancer function.

The anticancer property of luteolin is associated with inducing apoptosis, which involves redox

regulation, DNA damage, and protein kinases in inhibiting proliferation of cancer cells and

suppressing metastasis and angiogenesis. Furthermore, luteolin sensitizes a variety of cancer

cells to therapeutically induced cytotoxicity through suppressing cell survival pathways and

stimulating apoptosis pathways. Notably, luteolin is blood-brain barrier permeable, rendering

it applicable to the therapy of central nerve system diseases, including brain cancer [14].

Furthermore, recent studies have attributed a cancer prevention potential to luteolin. In this

review, we summarize recent progress in luteolin researches. Particularly, we focus on the roles

and molecular mechanisms underlying luteolin's anticancer property.

REDOX MODULATION ACTIVITY

Antioxidant Activity

Most flavonoids, including luteolin, are regarded as antioxidants. Reactive oxygen species

(ROS) refers to a diverse group of reactive, short-lived, oxygen-containing species, such as

superoxide (O2
•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), singlet oxygen (1O2),

and lipid peroxyl radical (LOO•). ROS serve as second messengers for cellular signaling

[15]. However, excessive production of ROS results in oxidative stress and damage to DNA,

lipids, and protein that is involved in cancer as well as cardiovascular and neurodegenerative

diseases. Luteolin was found to inhibit ROS-induced damage of lipids, DNA, and protein

[16,17].

Multiple mechanisms may underlie luteolin's antioxidant effect. First, luteolin functions as a

ROS scavenger through its own oxidation [18]. Luteolin possesses the structures essential to

flavonoid's antioxidant activity: 3′, 4′ hydroxylation, the presence of a double bond between

carbons 2 and 3, and a carbonyl group on carbon 4 [18]. The hydrogen atom from an aromatic

hydroxyl group can be donated to free radicals. As an aromatic compound, luteolin can support

unpaired electrons around the M-electron system [17,18]. Direct evidence showing luteolin as

a ROS scavenger was obtained in cell-free systems [19]. Second, luteolin inhibits ROS-

generating oxidases. For example, luteolin suppresses O2
•− formation by inhibiting xanthine

oxidase activity [20]. However, it is unclear in mammalian cells whether luteolin affects ROS

generation in the mitochondria, the main ROS generation site, although it interferes with the

mitochondrial electron transportation chain in parasite (leishmanial) cells [21]. Third, luteolin
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may exert its antioxidant effect by protecting or enhancing endogenous antioxidants such as

glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and

catalase (CAT) [5,22,23]. Fourth, luteolin may directly inhibit the enzymes that catalyze

oxidation of the cellular components. For example, luteolin suppresses lipoxygenase,

cyclooxygenase, and ascorbic acid-stimulated malonaldehyde formation in liver lipids [16].

Lastly, luteolin may chelate transition metal ions responsible for the generation of ROS and

therefore inhibit lipooxygenase reaction, or suppress nontransition metal-dependent oxidation

[5,17]. It should be noted that concordant antioxidant mechanisms of luteolin may occur in

vivo. For example, inhibition of LPS-induced •OH production in macrophages by luteolin may

be through scavenging O2
•−, inhibiting xanthine oxidase activity, or a combination of both

[24].

Pro-oxidant Activity

Although the ability of flavonoids to protect cells from oxidative stress has been well-

documented, there is increasing evidence for their pro-oxidant property [25,26]. The pro-

oxidant activity of flavonoids may be related to their ability to undergo autoxidation catalyzed

by transition metals to produce superoxide anions [27]. In other reports, however, it was

observed that the phenol rings of flavonoids are metabolized by peroxidase to form pro-oxidant

phenoxyl radicals, which are sufficiently reactive to co-oxidize glutathione (GSH) or

nicotinamide-adenine hydrogen (NADH) accompanied by extensive oxygen uptake and ROS

formation [28]. The structure-activity relationship study on pro-oxidant cytotoxicity of

flavonoids shows that flavonoids with a phenol ring are generally more bioactive than the

catechol ring-containing ones [28]. Cytotoxicity induced by flavonoids is correlated with their

electrochemical oxidation susceptibility and lipophilicity [29]. Luteolin has been shown to

induce ROS in untransformed and cancer cells [30,31]. In lung cancer cells, luteolin induced

accumulation of O2
•− while it reduced H2O2 concentration. Although a suppression of

manganese superoxide dismutase (MnSOD) activity, which converts O2
•− to H2O2, was

observed, it remains to be determined whether other mechanisms underlie luteolin-induced

pro-oxidation [31].

How the anti- or pro-oxidant effects of luteolin ensue has not been well determined. It is

believed that flavonoids could behave as antioxidants or pro-oxidants, depending on the

concentration and the source of the free radicals [32]. Also, the context and microenvironment

of the cell may be important determinants of the outcome of luteolin-induced effects on cellular

redox status. For example, the antioxidant activity of luteolin is dependent on Cu, V, and Cd

ions in the cells. Changes in the Fe ion concentrations dramatically impact the effect of

luteolin's redox-regulating activities. With low Fe ion concentrations (< 50 μM), luteolin

behaves as an antioxidant while high Fe concentrations (>100 μM) induce luteolin's pro-

oxidative effect [33].

Understanding whether and how luteolin's redox regulation activity is involved in its cellular

effects is key to evaluating its potential as an anticancer agent, a cardioprotectant, or an inhibitor

of neurodegeneration [34]. Because oxidative stresses are closely related to mutagenesis and

carcinogenesis, luteolin, as an antioxidant, may act as a chemopreventive agent to protect cells

from various forms of oxidant stresses and thus prevent cancer development. On the other

hand, the pro-oxidant properties of luteolin may be involved in its ability to induce tumor cell

apoptosis, which is achieved partly through direct oxidative damage of DNA, RNA, and/or

protein in the cells [30,35]. Interference of cellular signaling by ROS may also contribute to

luteolin-induced apoptosis in cancer cells. We found that luteolin-induced oxidative stress

causes suppression of the NF-κB pathway while it triggers JNK activation, which potentiates

TNF-induced cytotoxicity in lung cancer cells [31]. It was suggested that the antioxidant

activity of luteolin is associated with apoptosis in lung cancer cell line CH27. However, the
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induction of SOD-1 and −2 proteins by luteolin is moderate, and no causative relationship

between the induction of SOD proteins and suppression of ROS or apoptosis was established

[22]. Thus, the anti-and pro-oxidant roles of luteolin in cytotoxicity need to be further

investigated.

ESTROGENIC AND ANTI-ESTROGENIC ACTIVITY

Estrogens are hormones involved in the proliferation and differentiation of their target cells.

In response to estrogens, the estrogen receptor (ER) is activated to stimulate DNA synthesis

and cell proliferation [36]. Flavonoids are naturally occurring phytoestrogens because they can

bind to ERs and activate their signaling pathways [37-39]. Because luteolin possesses potent

estrogenic activity at low concentrations, it could be a useful agent for hormone replacement

therapy [40].

However, there are also reports showing anti-estrogenic effects of luteolin [38]. The

mechanism behind this apparently contradictory effect may be attributed to its relative low

estrogenic activity when it binds to ERs. Flavonoids bind and activate ERs when estrogen is

deficient. However, due to their relative weak estrogenic activity, which is 103- to 105-fold

lower than 17-β-estradialluteolin, they may function as anti-estrogenic agents through

competition with estrogens for binding to ERs [40,41]. Another mechanism of luteolin's anti-

estrogenic activity is that it inhibits aromatase whose function is to aromatize androgens and

produce estrogens [42]. Additionally, luteolin reduces the ER expression level through

inhibiting transcription of the ER gene or potentiating degradation of the ER protein [43,44].

Finally, some alternative signaling mechanisms unrelated to ERs could also be involved [37].

Although the interaction of estrogen agonists and antagonists with the ER is a primary event

in estrogen action, mammalian cells contain a second binding site (type II site) for estrogen to

control cell growth, which resides in endogenous proteins such as histone [45]. Luteolin was

found to bind to nuclear type II sites irreversibly and to compete for estradiol binding to these

sites [46].

The etiology of breast, prostate, ovarian, and endometrial cancers is associated with estrogen

activity. Thus, consumption of luteolin in diet may reduce risk of these cancers through

regulation of estrogen-induced cellular effects. Indeed, luteolin, as well as other flavonoids, is

able to inhibit DNA synthesis and proliferation in mammary epithelial cells and breast cancer

cells induced by estrogens, both in vitro and in vivo [38,47]. Suppressing estrogen-induced

cancer cell proliferation may contribute to luteolin's therapeutic and preventive activities

against estrogen-associated cancer.

ANTI-INFLAMMATION

Inflammation is one of the body's defense mechanisms that guard against infection and help

heal injury. However, chronic inflammation may result in harmful diseases such as arthritis,

chronic obstructive pulmonary disease, and cancer [48-50]. During inflammation macrophages

are activated by various molecules, including cytokines from the host and toxins from the

pathogens. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative

bacteria, is a common endotoxin and inflammation trigger. The activated macrophages

vigorously produce inflammatory molecules such as tumor necrosis factor α (TNFα),

interleukins (ILs), and free radicals (ROS and reactive nitrogen species, RNS), leading to

recruitment of inflammatory cells, such as neutrophils and lymphocytes, to the infection site

and clearance of the pathogens [48,50]. Persistent production of these molecules during chronic

inflammation can result in diseases such as cancer. Luteolin exerts its anti-inflammatory effect

through suppressing the production of these cytokines and their signal transduction pathways

[51-53]. Experiments with animals show that luteolin suppresses LPS or bacteria-induced

inflammation in vivo [54,55]. LPS-induced-high mortality was effectively alleviated by

Lin et al. Page 4

Curr Cancer Drug Targets. Author manuscript; available in PMC 2009 November 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



luteolin, which is associated with reduction of LPS-stimulated TNFα release in serum and

intercellular adhesion molecule-1 (ICAM-1) expression in the liver [54]. Luteolin was found

to suppress inflammation in lung tissue that was caused by Chlamydia pneumoniae [55].

In vitro experiments provided more direct evidence of luteolin's anti-inflammatory effect.

Pretreating murine macrophages (RAW 264.7) with luteolin inhibited LPS-stimulated TNFα
and IL-6 release, which was associated with blockage of LPS-induced activation of nuclear

factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) family members ERK,

p38, and JNK [51,52,56,57]. NF-κB and MAPK are two major pathways that are involved in

macrophage activation and in responses of tissue epithelial and stromal cells to inflammation

mediators such as TNFα and ILs [58]. Suppression of these pathways by luteolin underlies the

main mechanism of its inhibitory effect on both acute and chronic inflammation. The

suppression of inflammatory cytokine-induced signaling is at least partly on the level of the

receptor, because accumulation of lipid rafts, which is the critical step for receptor signaling,

was blocked by luteolin [53].

NF-κB can be activated by both the primary (LPS) and secondary (TNFα and IL-1)

inflammatory stimulators. As a heterodimer typically consisting of RelA (p65)/p50, NF-κB is

retained in the cytoplasm as an inactive form by association with IκB proteins. Through binding

to Toll-like receptor 4 (TLR-4), LPS activates the IκB kinase (IKK), which in turn

phosphorylates IκB to trigger its rapid degradation. This allows NF-κB to migrate into the

nucleus and activate its targets, including a number of genes with anti-apoptotic properties and

cytokines such as TNFα and IL-1 [59]. A positive feedback loop for NF-κB activation is

established by these cytokines through binding to their cognate receptors. The NF-κB pathways

activated by LPS and the inflammatory cytokines converge at IKK activation [59]. Luteolin

can effectively block the NF-κB pathway and interfere with the functions of the primary (LPS)

and secondary (TNFα and IL-1) inflammatory stimulators through inhibiting IKK activation

and IκB degradation [51,56,60]. However, it remains to be determined whether luteolin directly

inhibits IKK activity or blocks the upstream steps in the IKK activation pathway such as the

formation of the receptor signaling complex. On the other hand, the mechanism by which

luteolin suppresses MAPK, which is awaiting the dissection of the MAPKKK-MAPKK-

MAPK cascade for each MAPK activation, is less well understood. It is unlikely that luteolin

suppresses the binding TNFα and IL-1 to their respective receptors because luteolin selectively

suppresses each MAPK in macrophages [57].

Based on the observations that some flavonoids with strong antioxidant activities are

completely ineffective in suppressing LPS-stimulated TNFα production, it is assumed that the

inhibitory action of flavonoids on proinflammatory cytokine production is not directly

associated with their antioxidant properties [61]. However, because luteolin is able to scavenge

ROS directly and to suppress the LPS-activated nitric oxide production in activated

macrophages, the antioxidant activity of luteolin at least in part contributes to luteolin's anti-

inflammatory effect [62,63]. Because inflammation and its involved signaling pathways are

strongly associated with carcinogenesis [64,65], luteolin's anti-inflammation role may

contribute to cancer prevention.

ANTI-CANCER ACTIVITIES

Carcinogenesis is a long-lasting and multi-stage process that results from clonal expansion of

mutated cells. A typical carcinogenic process can be divided into three stages: initiation,

promotion, and progression. During initiation, a potential carcinogen (pro-mutagen) is

converted to a mutagen by enzymes such as cytochrome P450. The mutagen then reacts with

DNA to induce irreversible genetic alteration including mutations, transversions, transitions,

and/or small deletions in DNA. During the promotion stage, alterations in genome expression
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occur to favor cell growth and proliferation. During the progression stage tumorigenicity is

established and becomes irreversible; it is characterized by karyotypic instability and malignant

growth in an uncontrolled manner [66]. The transformed cells acquire a number of

characteristic alterations, including the capacity to proliferate in an exogenous growth-

promoting signal-independent manner, to invade surrounding tissues and metastasize to distant

sites. In addition, cancer cells elicit an angiogenic response, evade mechanisms that limit cell

proliferation (such as apoptosis and senescence), and elude immune surveillance [67]. These

properties of cancer cells are reflected by alterations in the cellular signaling pathways that

control cell proliferation, motility, and survival in normal cells [67]. Luteolin is able to interfere

with almost all of the characteristics of cancer cells, mainly through the following mechanisms

[68]. The main potential molecular targets for luteolin's anticancer activity are summarized in

Table 1.

Preventing Carcinogen Metabolic Activation

In earlier reports, luteolin was found to inhibit the metabolism of carcinogens that generates

active mutagens in liver microsomes [69,70]. Recently, it was determined that luteolin potently

inhibits human cytochrome P450 (CYP) 1 family enzymes such as CYP1A1, CYP1A2, and

CYP1B1, thereby suppressing the mutagenic activation of carcinogens [71]. Suppressing these

enzymes reduces the generation of active mutagens such as benzo[a]pyrene diol epoxide, a

metabolite of the tabacco-specific carcinogen benzo[a]pyrene carcinogenesis [72].

Inhibiting Cancer Cell Proliferation

Unrestricted proliferation, which is often due to lose of cell cycle control, allows cancer cells

to outgrow and form tumors. Like many other flavonoids, luteolin is able to inhibit the

proliferation of cancer cells derived from nearly all types of cancers, mainly through regulating

the cell cycle [38,73-75].

In eukaryotic cells, proliferation proceeds through DNA replication followed by division of

the nucleus and separation of the cytoplasm to yield daughter cells. The sequential process,

called cell cycle, consists of four distinct phases, G1, S, G2, and M [76]. Cell cycle progression

is timely regulated by cyclin-dependent kinases (CDKs) and their cyclin subunits at the two

checkpoints, G1/S and G2/M [76]. The G1/S checkpoint is regulated by CDK4-cyclin D,

CDK6-cyclin D, and CDK2-cyclin E. When associated with cyclin A, CDK2 controls the S-

phase, while the G2/M transition is regulated by CDK1 in combination with cyclins A and B

[76]. CDK activity is negatively controlled by two groups of CDK inhibitors (CKI), INK4 and

CIP/KIP families. The INK4 family members inhibit CDK4 and CDK6; while the CIP/KIP

family, consisting of p21cip1/waf1, p27kip1, and p57kip2, inhibits a broad range of CDKs

[76].

Inhibiting cell cycle progression—Flavonoids have been found to inhibit the proliferation

of many cancer cells by arresting cell cycle progression either at the G1/S or G2/M checkpoint

[77,78]. Luteolin is able to arrest the cell cycle during the G1 phase in human gastric and

prostate cancer, and in melanoma cells [79-81]. The G1 cell cycle arrest induced by luteolin

is associated with inhibition of the CDK2 activity in melanoma OCM-1 and colorectal cancer

HT-29 cells. This arrest is achieved by up-regulation of the CDK inhibitors p27/kip1 and p21/

waf1, or direct inhibition on the CDK2 activity [81,82]. Luteolin arrests mouse cancer cell

tsFT210 at the G2/M checkpoint [83]. DNA damage-activated tumor suppressor protein p53

is involved in both the G1/S and G2/M transition regulation [84,85]. Luteolin can bind and

suppress DNA topoisomerases I and II, enzymes essential for repairing damaged DNA, and

intercalates directly with the substrate DNA to cause DNA double-strand breaks [85-87]. This

action of luteolin induces cell cycle arrest though p53-mediated expression of p21/waf1[81].
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Suppressing growth factor receptor-mediated cell proliferation signaling—
Growth factors promote DNA synthesis and cell cycle progression through binding to their

respective receptors. Common growth factors include epidermal growth factor (EGF), platelet-

derived growth factor (PDGF), insulin-like growth factor (IGF), and fibroblast growth factor

(FGF). TNFα can also stimulate cancer cell proliferation through NF-κB. The inhibitory effect

of luteolin on cancer cell proliferation is partly achieved through blocking the proliferation

signaling pathways induced by these factors.

EGF receptor (EGFR) is a typical receptor protein tyrosine kinase (PTK) that mediates cell

growth and proliferation. When activated by its ligands, EGFR is phosphorylated to mediate

activation of downstream signaling pathways, including MAPK and PI3K/Akt [88]. Luteolin

was found to inhibit the proliferation of pancreatic and prostate cancer and human epidermoid

carcinoma cells, which is closely associated with the inhibition of the PTK activity and

autophosphorylation of EGFR, transphosphorylation of EGFR downstream effector protein

enolase, and activation of MAPK/ERK [89].

Luteolin is able to inhibit IGF-1-induced activation of IGF-1R and Akt, and phosphorylation

of the Akt targets p70S6K1, GSK-3β, and FKHR/FKHRL1. This inhibition is associated with

suppressed expression of cyclin D1, and increased expression of p21/waf1 and proliferation

in prostate cancer cells in vitro [90]. Luteolin also suppressed prostate tumor growth in vivo

through suppressing IGF-1R/Akt signaling [90]. Similarly, luteolin inhibits PDGF-induced

proliferation by inhibiting PDGF receptor phosphorylation in vascular smooth muscle cells

[91]. As a consequence, luteolin significantly inhibits PDGF-induced ERK, PI3K/Akt and

phospholipase C (PLC)-γ1 activation, and c-fos gene expression. These results suggest that the

inhibitory effect of luteolin on the PDGF-induced proliferation may be mediated by blocking

phosphorylation of the PDGF receptor [91]. As PDGF stimulates cancer cell proliferation

[92], it remains to be determined whether luteolin can block PDGF-induced signaling to

suppress cancer cell proliferation.

As discussed above, ER induces proliferation in several types of cancer cells [5]. Luteolin

suppresses proliferation of prostate and breast cancer cells in both an androgen-dependent and

-independent manner, suggesting that luteolin's anti-estrogen activity may at least partly

contribute to its anti-proliferation effect[38,44,75]. Similar observations were also made in

thyroid carcinoma cell lines bearing the ER [93]. Further experiments suppressing the

expression and function of the ER are needed to confirm the role of ER-mediated signaling in

luteolin-induced anti-proliferation in ER-responsive cancer cells.

In addition to affecting the receptors, luteolin may directly target the downstream pathways

that are involved in cell proliferation. For example, protein kinase C, a family of serine-

threonine protein kinases that regulates growth factor response and cell proliferation,

differentiation and apoptosis [94,95], can be inhibited in a concentration-dependent manner

by luteolin in both cell-free systems and in intact cells [96].

Taken together, the above reports suggest that luteolin suppresses cell proliferation signaling

on distinct components of the growth factor receptor signaling pathways. In addition,

carcinogens activate cell survival pathways such as NF-κB and MAPK during the course of

carcinogenesis; these pathways could be additional targets for flavonoids, including luteolin,

in anti-carcinogenesis [97,98].

Eliminating Transformed Cells by Induction of Apoptosis

Accumulating evidence shows that uncontrolled proliferation of mutated cells due to lack of

programmed cell death or apoptosis is closely associated with tumorigenesis [99]. Cancer cells’

resistance to apoptosis is acquired through a variety of biochemical changes that also contribute
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to cells’ reduced responsiveness to anticancer therapy. Apoptosis is a tightly regulated cell

death process that is critical for maintaining tissue homeostasis as well as preventing cancer

development. Two apoptosis pathways, the death receptor pathway (extrinsic) and the

mitochondrial (intrinsic) pathway, are established during evolution. The intrinsic pathway

involves functional incapacitation of mitochondria by pro-apoptotic Bcl2 family members,

including Bax, Bak, and Bik, that cause mitochondria potential loss and release cytochrome c

to activate caspase 9, which in turn activates executor caspases (−3, −7) and destroys cellular

proteins [100]. The extrinsic pathway is initiated by the binding of TNF family cytokines

(TNFα, Fas and TNF-related apoptosis-inducing ligand, TRAIL) to their cognate death

receptors, to activate caspase 8, which in turn activates downstream executor caspases [101].

Luteolin kills cancer cells by inducing apoptotic cell death in many types of cancer cells,

including epidermoid carcinoma, leukemia, pancreatic tumor, and hepatoma [89,102-104].

Although the mechanisms underlying luteolin-induced apoptosis are complex, they can be

generalized as breaking the cell survival and death balance by either enhancing apoptosis or

decreasing the survival signaling in cancer cells, which is summarized in Fig. 2.

Activating the apoptosis pathway—Luteolin is potent to activate both the extrinsic and

intrinsic apoptosis pathways. Direct increase in expression of the death receptor 5 (DR5), the

functional receptor for TRAIL, has been demonstrated in cervical and prostate cancer cells,

which is accompanied by activation of caspase-8, −10, −9 and −3, and cleavage of Bcl-2-

interacting domain (BID). The increase of DR5 expression is likely through activated

transcription of the dr5 gene [105]. Interestingly, DR5 was not induced and no cytotoxicity

was observed in luteolin-treated normal human peripheral blood mononuclear cells [105].

Luteolin was also found to enhance expression of Fas to induce apoptosis in human hepatoma

cells through triggering the degradation of STAT3, a known negative regulator of fas
transcription [106].

Luteolin also activates the intrinsic apoptosis pathway through inducing DNA damage and

activating p53 [107,108]. This is achieved by inhibiting DNA topoisomerases [85,87].

Additionally, luteolin triggers sustained JNK activation that can promote the apoptosis

pathway, presumably through modulation of BAD or p53 [31,108-110]. The JNK-mediated

p53 activation results in transcriptional expression of Bax that facilitates apoptosis [108,110].

JNK activation causes the mitochondria translocation of Bax and Bak to initiate the intrinsic

apoptosis pathway [103,104].

Suppressing cell survival signaling—On the other hand, luteolin suppresses cell survival

pathways to decrease the threshold of apoptosis. As discussed above, luteolin inhibits survival

pathways, such as PI3K/Akt, NF-κB, and MAPKs in cancer cells, which may mimic

deprivation of growth factors that blocks the growth factor-triggered signaling pathways.

Suppressing the death receptors-mediated cell survival pathway NF-κB augments apoptosis

induced by their cognate ligands TNFα or TRAIL. TNFα plays a critical role in inflammation-

associated carcinogenesis through NF-κB-mediated cell survival and proliferation [97,111].

Blockage of NF-κB by luteolin shifts the cell survival and death balance to the side of death

[31,109], converting TNFα from a tumor promoter to a tumor suppressor. TRAIL can promote

proliferation and metastasis in TRAIL-resistant cancer cells via a mechanism involving NF-

κB [112]; thus, suppressing NF-κB with luteolin can sensitize cancer cells to TRAIL-induced

apoptosis and prevent the detrimental effect of TRAIL.

Luteolin also suppresses cell survival by inhibiting apoptosis inhibitors and anti-apoptotic Bcl2

family members. It was found that luteolin inhibits PKC activity, which results in a decrease

in the protein level of XIAP by ubiquitination and proteasomal degradation of this anti-

apoptotic protein. Reducing XIAP sensitizes cancer cells to TRAIL-induced apoptosis [113].
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In addition to increasing Bax protein, luteolin decreases the Bcl-XL level in hepatocellular

carcinoma cells, which elevates the Bax/Bcl-XL ratio and lowers the threshold for apoptosis

[114]. Additionally, luteolin-induced apoptosis in prostate and breast cancer cells is associated

with its ability to inhibit fatty acid synthase (FAS), a key lipogenic enzyme overexpressed in

many human cancers [115]. Although presently the mechanism is unclear, inhibiting FAS

causes apoptosis in cancer cells [116].

Anti-angiogenesis

Due to lack of sufficient nutrition and oxygen, avascular tumors cannot grow beyond a diameter

of 1−2 mm [117]. Angiogenesis, a process to generate new blood vessels, is critical for solid

tumor growth and metastasis. Growing in a hypoxic microenvironment, tumor cells secret

angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix

metalloproteases (MMP) to trigger angiogenesis [118]. Luteolin was found to be a potent

angiogenesis inhibitor [119]. In a murine xenograft tumor model, luteolin inhibited tumor

growth and angiogenesis in xenografted tumors [120].

Suppression of VEGF secretion and signaling induced by VEGF appears to be the main

mechanism of luteolin-induced anti-angiogenesis. Transcription of the VEGF gene is enhanced

by hypoxia-inducible factor-1α (HIF-1α) [121]. Luteolin may suppress VEGF expression by

inhibiting HIF-1α through p53-mediated proteasomal degradation of this transcription factor

[122]. Additionally, luteolin can suppress VEGF-induced signaling in endothelial cells [73,

120]. Luteolin effectively blocked activation of the VEGF receptor and its downstream PI3K/

Akt and PI3K/p70S6 kinase pathways, which may directly contribute to luteolin-induced anti-

angiogenesis, resulting in suppression of proliferation and survival of human umbilical vein

endothelial cells [120].

Luteolin may also suppress angiogenesis by stabilizing hyaluronic acid, a neovascularization

barrier. Hyaluronic acid is one of the most abundant constituents of the extracellular matrix

that block neovacuole formation and extension [123]. Hyaluronidase catalyzes hyaluronic acid

to break the barrier and to promote angiogenesis through the processed product.

Oligosaccharides generated from hyaluronic acid bind to the CD44 receptor on the membranes

of endothelial cells to trigger their proliferation, migration, and eventually angiogenesis.

Luteolin has been found to be a potent inhibitor of hyaluronidase and maintain the

neovascularization barrier [124].

Furthermore, tumor angiogenesis is dependent on the activity of MMPs, especially that of

MMP-9, which renders MMP inhibitors a potential choice for blocking tumor angiogenesis

[125]. Thus, luteolin's additional anti-angiogenesis mechanism may be via its suppression of

MMPs. Indeed, luteolin is a potent MMP inhibitor that suppresses MMP expression through

suppressing NF-κB or directly inhibiting MMP activity [126].

Anti-metastasis

In addition to rapid and continuous division and proliferation, another important and unique

feature of cancer cells is their ability to invade surrounding tissues and to migrate from their

primary site to distal sites. This process, namely metastasis, contributes to over 90% of human

cancer mortality [127]. The metastasis cascade is thought to consist of multiple steps: local

invasion; intravasation into the systemic circulation; survival during transport, extravasation,

and establishment of micrometastases in distant organs; and colonization of macroscopic

metastases [128].

Although direct evidence showing luteolin suppresses cancer metastasis is not seen in

literature, available results strongly suggest that luteolin has this function. First, luteolin
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suppresses production and secretion of cytokines such as TNFα and IL-6 that can stimulate

cancer cell migration and metastasis [51,56,129,130]. TNFα stimulates expression of

molecules involved in cancer cell migration and metastasis such as intercellular adhesion

molecule-1, which can be blocked by luteolin [52]. IL-6 is known to induce MMP-1 expression.

Luteolin potently inhibits the production of IL-6 and IL-6-induced expression of MMP-1

[131]. Second, luteolin blocks critical signal transduction pathways for migration and

metastasis in cancer cells. For example, activation of the EGFR is involved cell migration. By

blocking the EGFR-signaling pathway, luteolin reduces cell invasion and metastasis [102,

132]. Luteolin blocks NF-κB[31,109], which is critical for the expression of Twist and MMP

expression. Twist is a transcription factor that is important for epithelial-mesenchymal

transition to facilitate metastasis [128]. MMPs are involved in several stages of metastasis,

including the escape of individual tumor cells from the primary tumor, their intravasation,

extravasation, and establishment of tumor foci at secondary sites [125]. Focal adhesion kinase

(FAK) activity in human carcinoma cells is associated with increased invasive potential;

luteolin's inhibitory effect on FAK phosphorylation may contribute to suppressing FAK's cell

invasion ability [133]. Finally, luteolin directly inhibits MMP or hyaluronidase enzyme activity

to maintain the neovascularization barrier [124,126], which may also contribute to suppressing

cancer cell metastasis. In vitro studies have shown that luteolin potently inhibits migration and

invasion of cancer cells through blocking the MAPK/ERKs and PI3K-Akt pathways [134,

135]. Experiments with cancer metastasis animal models are needed to verify luteolin's anti-

metastasis activity.

LUTEOLIN AS AN ANTICANCER OR CHEMOPREVENTION AGENT

As discussed above, luteolin induces apoptotic cell death in a variety of cancers [103,104,

136,137], inhibits cancer cell proliferation [82,90,138], and suppresses tumor angiogenesis

[120]. Thus, luteolin is expected to be a putative anticancer therapeutic. Supporting the in vitro

results, in vivo experiments in nude mice with xenografted tumors showed that luteolin

suppressed growth of tumors formed from human skin carcinoma, hepatoma, and human

ovarian cancer cells [106,120,137] or mouse Lewis lung carcinoma [139] in a dosage-

dependent manner. Interestingly, in a 7,12-dimethylbenz(a)anthracene (DMBA)-induced

mammary carcinogenesis in Wistar rat model, luteolin inhibited the incidence rate of tumors

and decreased tumor volume significantly without changing the total body weight of the

animals. Long-term treatment did not show any apparent toxicity in rats (30mg/kg, p.o. for 20

days)[140]. Consistently, luteolin induces marginal cytotoxicity in normal cells[105,141].

These results imply that luteolin is relatively safe when used as an anticancer agent.

Combination therapy with distinct anticancer drugs can improve the therapeutic value of the

combined agents by allowing the use of lower, subtoxic doses to achieve more effective cancer

cell killing. Luteolin has been tested with other anticancer drugs for its anticancer cell

properties, and has sensitized different drug-induced cytotoxicity in a variety of cancer cells.

The drugs tested include cisplatin [108], TRAIL [105,113], TNFα [31,109], and the mTOR

inhibitor rapamycin [137]. Although the mechanism of this sensitization vary in different

cancer cells or with different drugs, it is generally thought to be through suppressing cell

survival signals in cancer cells or activating apoptosis pathways. Cancer cells often have

constitutively activated cell survival pathways such as NF-κB and Akt. Cancer therapeutics

also activate these pathways, dampening their cancer cell-killing activities [142,143]. Thus,

luteolin's suppression of the constitutive or drug-induced cell survival pathways contributes to

the sensitized anticancer activity. Additionally, luteolin is also capable of promoting apoptotic

pathways. For instance, luteolin-induced upregulation of the TRAIL receptor DR5 contributes

to sensitizing not only TRAIL-induced, but also other chemotherapeutic-induced cytotoxicity

[144].
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Thus, data from previous studies suggest luteolin is a promising agent for anticancer therapy.

More preclinical work is needed for establishing the efficacy and safety of luteolin alone or in

combination with other therapeutics before conducting clinical trials. Because extracts from

fruits such as black raspberries, apples and grapes exerts anticancer activities that are associated

with suppressing of cell survival and potentiation of apoptosis pathways, it is interesting to

determine if luteolin or other flavonoids contributes to the anticancer activity of these fruits

[145-149].

Based on the observations that luteolin is able to interfere with almost all the aspects of

carcinogenesis, and it is relatively safe for animals and humans, it is assumed to be a potential

chemopreventive agent against cancer through blocking cell transformation, suppressing tumor

growth, and killing tumor cells. Using luteolin to suppress chronic inflammation can potentially

prevent inflammation-associated carcinogenesis.

In a 20-methycholanyrene-induced fibrosarcoma model using Swiss albino mice, luteolin

administered in diet significantly suppressed tumor incidences, which are associated with

reduction in lipid peroxides and cytochrome P450, increased activity of GST, and suppressed

DNA synthesis [150]. In a murine two-stage skin carcinogenesis model, topical application of

luteolin prior to 12-tetradecanoylphorbol 13-acetate (TPA) treatment in DMBA-initiated

mouse skin resulted in a significant reduction in tumor incidence and multiplicity, which is

associated with inhibiting the inflammatory response and scavenging reactive oxygen radicals

[151,152]. In a colon carcinogenesis model induced by 1, 2-dimethyl hydrazine (DMH),

luteolin (0.1, 0.2, or 0.3 mg/kg body weight/daily p.o.) significantly reduced colon cancer

incidence when it was administered at either the initiation or post-initiation stages [153]. The

results demonstrate that luteolin exerts chemopreventive and anticarcinogenic effects, in

association with its antiperoxidative and antioxidant effects, against colon cancer [153].

Epidemiological studies suggest that dietary intake of flavonoids is inversely associated with

risk of lung, prostate, stomach, and breast cancer in humans [4,154,155]. However, there are

few epidemiological reports designed to study the role of luteolin in cancer prevention. A recent

population study on the association between intake of dietary flavonoids and incidence of

epithelial ovarian cancer among 66,940 women showed a significant (34%) decrease in cancer

incidence for the highest versus lowest luteolin intake (RR = 0.66, 95% CI = 0.49−0.91; p-

trend = 0.01) [11]. The data suggest that dietary intake of luteolin may reduce ovarian cancer

risk, although additional prospective studies are needed [11]. Dietary intake of flavonols and

flavones was found to be inversely associated with the risk of lung cancer [3,156]. However,

because of many confounding factors, luetolin's preventive potential for lung cancer still

remains unclear [156,157]. It should be noted that mixed bioactive compounds, such as

different flavonoids that exist in foods, may impact each others’ biological effects. Lifestyle

differences of the subjects in a study may interfere with the results. Furthermore, variations in

epidemiological studies, including differences in questionnaire design, databases for flavonoid

content in foods, and methods for data analysis, may substantially vary the outcomes of

different studies. Thus, caution should be exercised when interpreting epidemiological study

results [4]. Nevertheless, further prospective animal and human studies are warranted to verify

luteolin's cancer prevention properties.

CONCLUSIONS AND PERSPECTIVES

Documented results suggest that luteolin has a variety of beneficial properties, including those

as an anti-inflammatory and anticancer agent. The mechanisms underlying these properties

have not been fully understood but are attributed partly to luteolin's redox- and estrogen-

regulating properties. It is interesting and important to determine the mechanism for luteolin's

selective cytotoxicity in cancerous but not normal cells. It is apparent that distinct mechanisms
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for modulating cellular signaling pathways exist in normal cells and in malignant cancer cells.

For example, luteolin suppresses JNK in macrophages while it activates this kinase in cancer

cells [31,57,109]. Also, luteolin suppresses NF-κB through inhibiting IKK activation during

inflammation in epithelial cells and macrophages [51,56,158]. However, in cancer cells

suppression of NF-κB by luteolin is apparently a nuclear event [31,109]. It remains to be

determined whether the distinct mechanisms are due to differences in cell contexts. Because

luteolin inhibits NF-κB in lung cancer cells and is associated with its pro-oxidant effect [31],

it will be interesting to determine if the distinct mechanisms in NF-κB suppression are

dependent on the redox status of the cell or the redox-regulating function of luteolin.

Understanding the mechanisms will undoubtedly facilitate the use of luteolin in cancer

prevention and therapy. Finally, although it is relatively safe, luteolin (2% in chow diet) was

found to worsen chemically induced colitis in mice [159]. Further studies are needed to address

the safety issues of luteolin with doses effective for cancer prevention and therapy in humans.
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ABBREVIATIONS

•OH, hydroxyl radical (•OH)
1O2, singlet oxygen
1SO2, singlet oxygen

BID, Bcl-2-interacting domain

CAT, catalase

CDK, cyclin-dependent kinase

CKI, CDK inhibitors

CYP, cytochrome P450

DMBA, 7,12-dimethylbenz[a]anthracene

DMH, 1, 2-dimethyl hydrazine

DR5, death receptor 5

EGF, epidermal growth factor

EGFR, epidermal growth factor receptor

ER, estrogen receptor

FAK, focal adhesion kinase

FGF, fibroblast growth factor

GR, glutathione reductase

GSH, glutathione

GST, glutathione-S-transferase

H2O2, hydrogen peroxide

HIF-1α, hypoxia-inducible factor-1α
IGF, insulin-like growth factor

ICAM-1, intercellular adhesion molecule-1

IKK, IκB kinase

IL, interleukin

LPS, lipopolysaccharide

LOO•, lipid peroxyl radical

MAPK, mitogen-activated protein kinase

MMP, matrix metalloproteases

MnSOD, manganese superoxide dismutase

NADH, nicotinamide-adenine hydrogen
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NF-κB, nuclear factor kappa B

O2
•−, superoxide

PDGF, platelet-derived growth factor

PI3K, phosphatidylinositol 3′-kinase

PKC, protein kinase C

PTK, protein tyrosine kinase

ROS, Reactive oxygen species

RNS, reactive nitrogen species

SOD, superoxide dismutase

TLR-4, Toll-like receptor-4

TNFα, tumor necrosis factor alpha

TRAIL, TNF-related apoptosis-inducing ligand

TPA, 12-tetradecanoylphorbol 13-acetate

VEGF, vascular endothelial growth factor

XIAP, X-linked inhibitor of apoptosis protein
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Fig. 1.

Structure of luteolin.
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Fig. 2. Apoptosis pathways and the points targeted by luteolin

The extrinsic apoptosis pathway is mediated by death receptors, resulting in sequential

activation of initiator caspase 8 and executor caspases 3 and 7. The intrinsic apoptosis pathway

is initiated by lose of mitochondrial potential, which leads to release of cytochrome c.

Cytochrome c binds to APAF-1 and procaspase 9, resulting in activation of initiator caspase 9

and downstream executor caspases. Cleavage of Bid by caspase 8 establishes a crosstalk

between the extrinsic and intrinsic apoptosis pathways. Luteolin triggers apoptotic cell death

through potentiation of both apoptosis pathways and suppression of cell survival pathways.

The points targeted by luteolin in the apoptosis pathways are highlighted with numbers in filled

circles.
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