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Lüttinger Liquid Theory as a Model of the Gigahertz
Electrical Properties of Carbon Nanotubes

P. J. Burke

Abstract—We present a technique to directly excite Lüttinger
liquid collective modes in carbon nanotubes at gigahertz frequen-
cies. By modeling the nanotube as a nano-transmission line with
distributed kinetic and magnetic inductance as well as distributed
quantum and electrostatic capacitance, we calculate the complex
frequency-dependent impedance for a variety of measurement ge-
ometries. Exciting voltage waves on the nano-transmission line is
equivalent to directly exciting the yet-to-be observed one-dimen-
sional plasmons, the low energy excitation of a Lüttinger liquid.
Our technique has already been applied to two-dimensional plas-
mons and should work well for one-dimensional plasmons. Tubes
of length 100 microns must be grown for gigahertz resonance fre-
quencies. Ohmic contact is not necessary with our technique; ca-
pacitive contacts can work. Our modeling has applications in po-
tentially Terahertz nanotube transistors and RF nanospintronics.

Index Terms—Nanoelectronics, nanotechnology, nanotube,
nanowire, spintronics.

I. INTRODUCTION

ONE OF THE MOST fundamental unsolved questions in
modern condensed matter physics is: What is the ground

state of a set interacting electrons, and what are the low-lying
excitations? By far the most successful theoretical treatment of
interactions is Landau’s theory of Fermi liquids, which posits
that the low-lying excitations of a Fermi liquid are not in fact
electrons, but “quasi-particles” which, to good approximation,
are noninteracting. The reason that the quasi-particles can be
treated as noninteracting is that the inverse quantum lifetime of
a quasi-particle is generally less than its energy, so that the con-
cept of an independent quasi-particle is well defined. Landau’s
Fermi liquid theory has served physicists well in two and three
dimensions for many decades. Unfortunately, it has long been
known that Landau’s Fermi liquid theory breaks down in one-di-
mensional (1-D) systems [1], such as those formed in single-
walled carbon nanotubes (SWNTs) [2].

To deal with this problem, Tomonaga [3], and later Lüttinger
[4], described a simplified model for interacting electrons in
one dimension, which was exactly solvable. The method used
was that of bosonization [5], [6]. The boson variables describe
collective excitations in the electron gas, called1-D plasmons.
Later, Haldane [7] argued that the bosonization description was
generically valid for the low energy excitations of a 1-D system
of interacting electrons, coining the term the “Lüttinger liquid.”
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In this model, the creation of an electron is equivalent to exciting
an infinite number of 1-D plasmons. Much theoretical work [1]
has gone into calculating the experimental consequences of the
non-Fermi liquid behavior of 1-D systems. The main experi-
mental consequences calculated and observed [8] to date are
the power-law dependence of conductivity on temperature and
the power-law dependence of tunneling current on bias voltage,
when the contact of three-dimensional (3-D) macroscopic leads
to the 1-D system is through high resistance tunnel barriers. The
power-law exponent is generally characterized by a dimension-
less parameter “.” For noninteracting electrons, , while
for interacting electrons, . To date, the experimental evi-
dence for the theory that the low-lying excitations of interacting
electrons in one dimension are collective plasmon oscillations,
while significant, is somewhat indirect.

It is the purpose of this paper to describe a technique that
can be used to directly excite the 1-D plasmons using a mi-
crowave signal generator. (Similar proposals have appeared in
the literature already [9]–[11].) This technique was recently ap-
plied to measure collective oscillations (plasmons) in a two-di-
mensional (2-D) electron gas, including measurements of the
2-D plasmon velocity, as well as the temperature and disorder
dependent damping [12]. Our goal in this paper is to describe
a technique to extend these measurements to one-dimensional
systems, and to discuss a method to directly measure the 1-D
plasmon velocity, and hence “” in a Lüttinger liquid. In order to
discuss this technique, one of our goals in this paper is to provide
an effective circuit model for the effective electrical [dc to giga-
hertz to terahertz] properties 1-D interacting electron systems.
While we restrict our attention to metallic SWNTs, the general
approach can be used to describe semiconducting carbon nan-
otubes, multiwalled carbon nanotubes, quantum wires in GaAs
heterostructures [13], and any other system of 1-D interacting
electrons.

In our recent 2-D plasmon work, we suggested a trans-
mission-line effective circuit model to relate our electrical
impedance measurements to the properties of the 2-D plasmon
collective excitation [12], [14]–[16]. There, we measured
the kinetic inductance of a 2-D electron gas, as well as its
distributed electrostatic capacitance to a metallic “gate” by
directly exciting it with a microwave voltage. The distributed
capacitance and inductance form a transmission line, which is
an electrical engineer’s view of a 2-D plasmon.

Since then, the transmission-line description has been dis-
cussed in the context of both single-walled [17] and multiwalled
[18], [19] carbon nanotubes. In [17], by considering the La-
grangian of a 1-D electron gas (1-DEG), an expression for the
distributedquantum capacitance (which was not important in
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our 2-D experiments) as well as thedistributedkinetic induc-
tance of a SWNT is derived. (In [20] and [21], the concept
of a lumped (as opposed to distributed) quantum capacitance
and quantum/kinetic inductance is introduced.) In [18], [19] the
tunnel conductance at high voltages is related to electrical pa-
rameters (the characteristic impedance) of the transmission line
in a multiwalled nanotube. In both of these discussions, the dis-
tributed inductance and capacitance per unit length form a trans-
mission line, which is again an electrical engineer’s description
of a 1-D plasmon. It is the goal of this manuscript to describe
how we can excite 1-D plasmons directly with a microwave
voltage, calculate the expected results for a variety of possible
measurement geometries (including capacitive as well as tun-
neling electrical contacts), and discuss how our technique can
be used to directly measure the Lüttinger liquid parameter “.”

We proceed as follows. First, we rederive the results of ref-
erence [17] for a spinless 1-D quantum wire, by calculating the
kinetic inductance, electrostatic capacitance, and quantum ca-
pacitance per unit length. We extend the results of [17] by con-
sidering the magnetic inductance per unit length, as well as the
characteristic impedance. We then proceed to discuss spin-1/2
electrons in an SWNT, and derive four coupled equations for
the voltages on each of the four quantum channels in an SWNT,
following [19]. We diagonalize these equations of motion and
solve for the spin/charge modes. These results are not meant
to be rigorous many-body calculations, but a way to translate
theoretical ideas about interacting electrons in one dimension
into measurable predictions. For more rigorous discussions, the
reader is referred to [9]–[11] and [20]–[23].

In Section II of this paper, we proceed to discuss our
technique to directly excite these 1-D plasmons by setting
up standing-wave resonances in SWNTs of finite length,
as we did in the 2-D plasmon case. We calculate explicitly
measurable electronic properties of 1-D plasmons that are
amenable to the measurement technique we developed for 2-D
plasmons, including the nanotube dynamical impedance (real
and imaginary) as a function of frequency, as well as the 1-D
plasmon damping, wave velocity, and Lüttinger “” factor. We
discuss what experimental parameters are needed to perform
our experiment, and also how the low (sub-GHz) frequency
properties of nanotubes may be used to give some insight
into the 1-D plasmon. Finally, we discuss possible practical
consequences [24] of the results in nanotube electronic and
micro/nano-mechanical high-frequency circuits. Our measure-
ment technique could provide direct evidence for collective
mode behavior of interacting electrons in one dimension, the
“Lüttinger liquid.”

II. CIRCUIT MODEL FOR SPINLESSELECTRONS IN A

ONE-CHANNEL QUANTUM WIRE

The dc circuit model for a one-channel quantum wire of non-
interacting electrons is well known from the Landauer–Büttiker
formalism of conduction in quantum systems. The dc conduc-
tance is simply given by . If the spin degree of freedom is
accounted for, there are two “channels” in a quantum wire: spin
up and spin down, both in parallel. We postpone our discussion
of spin until the next section, and assume for the moment the

Fig. 1. Circuit diagram for 1-D system of spinless electrons. Symbols are
defined per unit length.

Fig. 2. Geometry of nanotube in presence of a ground plane.

electrons are spinless. At ac, the circuit model is not well estab-
lished experimentally. However, theoretically it is believed to be
equivalent to a transmission line, with a distributed “quantum”
capacitance and kinetic inductance per unit length. It is gener-
ally believed [1] that the effect of electron-electron interactions
can be included in the transmission line circuit analogy as an
electrostatic capacitance. Furthermore, there will also be a mag-
netic inductance.

The effective circuit diagram we are proposing is shown in
Fig. 1. Below, we will discuss each of the four contributions to
the total circuit, and then discuss some of its general properties,
such as the wave velocity and characteristic impedance. We will
restrict ourselves to the case of a wire over a “ground plane” for
the sake of simplicity. If there is no ground plane, the parameter
“ ” (the distance from the wire to the ground plane) should be
replace by the length of the 1-D wire itself. The geometry we
consider is shown in Fig. 2.

A. Magnetic Inductance

In the presence of a ground plane, the magnetic inductance
per unit length is given by [25]

(1)

where is the nanotube diameter andis the distance to the
“ground plane.” The approximation is good to within 1% for

. This is calculated using the standard technique of set-
ting the inductive energy equal to the stored magnetic energy

(2)

and using the relationship betweenand in the geometry of
interest, in this case a wire on top of a ground plane. For a typical
experimental situation, the nanotube is on top of an insulating
(typically oxide) substrate, with a conducting medium below.
(The finite conductivity of the conducting medium will be dis-
cussed below.) A typical oxide thickness is between 100and
1 , whereas a typical nanotube radius is 1 nm. Because the



BURKE: LÜTTINGER LIQUID THEORY AS A MODEL OF THE GHz ELECTRICAL PROPERTIES OF CARBON NANOTUBES 131

numerical value of is only logarithmically sensitive to the
ratio of , we can estimate it within a factor of three as

m (3)

We use m for our length units because modern growth pro-
cesses produce nanotubes with lengths of order micrometers and
not (as of yet) meters.

B. Kinetic Inductance

In order to calculate the kinetic inductance per unit length, we
follow [17] and calculate the kinetic energy per unit length and
equate that with the energy of the kinetic inductance.
The kinetic energy per unit length in a 1-D wire is the sum of
the kinetic energies of the left-movers and right-movers. If there
is a net current in the wire, then there are more left-movers than
right-movers, say. If the Fermi level of the left-movers is raised
by 2, and the Fermi-level of the right-movers is decreased
by the same amount, then the current in the 1-D wire is

. The net increase in energy of the system is the excess
number of electrons 2 in the left versus right
moving states times the energy added per electron 2. Here

is the single particle energy level spacing, which is related to
the Fermi velocity through . Thus, the excess
kinetic energy is given by . By equating this energy
with the energy, we have the following expression for
the kinetic energy per unit length:

(4)

The Fermi velocity for graphene and also carbon nanotubes is
usually taken as , so that numerically

nH m (5)

It is interesting to compare the magnitude of the kinetic induc-
tance to the magnetic inductance. From (1) and (4), we have

(6)

where is the fine structure constant. Thus, in 1-D
systems, the kinetic inductance will always dominate. This is
an important point for engineering nano-electronics: In engi-
neering macroscopic circuits, long thin wires are usually con-
sidered to have relatively large (magnetic) inductances. In the
case of nano-wires, the magnetic inductance is not that impor-
tant; it is the kinetic inductance that dominates.

C. Electrostatic Capacitance

The electrostatic capacitance between a wire and a ground
plane as shown in Fig. 2 is given by [25]

(7)

where again the approximation is good to within 1% for .
This can be approximated numerically as

aF m (8)

This is calculated using the standard technique of setting the
capacitive energy equal to the stored electrostatic energy

(9)

and using the relationship betweenand in the geometry of
interest, in this case a wire on top of a ground plane. The term
“electrostatic” comes from the approximation that we make in
calculating the capacitance using (9), which is done using the
relationship between a static charge and a static electric field.
However, the electrostatic capacitance can of course be used
when considering time-varying fields, voltages, currents, and
charges, as we will do below.

D. Quantum Capacitance

In a classical electron gas (in a box in one, two, or three di-
mensions), to add an extra electron costs no energy. (One can
add the electron with any arbitrary energy to the system.) In a
quantum electron gas (in a box in one, two, or three dimensions),
due to the Pauli exclusion principle it is not possible to add an
electron with energy less than the Fermi energy. One must
add an electron at an available quantum state above. In a
1-D system of length , the spacing between quantum states is
given by

(10)

where is the length of the system, and we have assumed a
linear dispersion curve appropriate for carbon nanotubes. By
equating this energy cost with an effective quantum capacitance
[11], [17], [18] with energy given by

(11)

one arrives at the following expression for the (quantum) capac-
itance per unit length:

(12)

which comes out to be numerically

aF m (13)

The ratio of the electrostatic to the quantum capacitance is then
given by

(14)

Thus, when considering the capacitive behavior of nano-elec-
tronic circuit elements, both the quantum capacitance and the
electrostatic capacitance must be considered.

E. Wave Velocity

For a distributed inductance and capacitance per unit length,
a technique used by theorists is to write down the Lagrangian
(kinetic minus potential energy), and then to use the Euler–La-
grange equations to derive an equation of motion which, in this
case, ends up being a wave equation. However, a much simpler
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(if somewhat less rigorous) approach is simply to use a result
known by RF engineers for many decades, namely, that the wave
velocity of a circuit with distributed inductance and capacitance
is given by

(15)

If we consider only the magnetic inductance (neglecting the
kinetic inductance) and if we also consider only the electro-
static capacitance (neglecting the quantum capacitance), then
the wave velocity would simply by the speed of light

(16)

A full solution to the collective mode of a carbon nanotube
should include both the kinetic inductance as well as the mag-
netic inductance, which we write as

(17)

as well as both the quantum capacitance and the electrostatic
capacitance, which we write as

(18)

In our recent work [12] on a two-dimensional electron gas
system (in the presence of a ground plane), we found that the
kinetic inductance dominates , and that the geometric
capacitance dominates , so that the collective mode
velocity in two dimensions is given by

(19)

However, as our estimates above show, for a 1-D quantum
system such as a nanotube, the quantum capacitance is pre-
dicted to dominate , so that in one dimension we have the
approximation that

(20)

One method of including the effect of electron–electron interac-
tions in the context of the above discussion is simply to include
the electrostatic capacitance as well as the quantum capacitance,
so that the wave velocity is not quite exactly equal to the Fermi
velocity

(21)
The ratio of the plasmon velocity in the presence of interactions
to the plasmon velocity in the absence of interactions has a spe-
cial significance, and it is given in this simple model by

(22)

(We use the subscript spinless to differentiate from a
different g which we define below.) This immediately suggests
a technique to search for Lüttinger liquid behavior in order
to measure , namely, to measure the wave velocity.
According to these calculations, the measured wave velocity
should differ from the Fermi velocity by a large factor, of order
unity. (If the distance to the ground plane becomes larger than
the tube length such as in some free-standing carbon nanotubes
[26], another formula for the capacitance has to be used, which
involves replacing h with the length of the 1-D wire.) Finally,
we note that the full solution to the wave velocity is given by

(23)

With this, the factor should read

(24)

To our knowledge this full function has not been discussed in
the literature. We speculate that should be redefined as
in (24) to include this term, which is equivalent to adding the
magnetic energy term to the Hamiltonian.

The definition of in a quantum wire when the spin degree
of freedom is taken into account will be discussed in further
detail below. For now, we would like to address the question
which naturally arises in the context of this discussion, how
to observe these collective excitations? One technique, which
we propose here, is to measure the wave velocity in the fre-
quency or time domain. To date these collective excitations have
been observed by one other experimental technique, namely,
that of tunneling. Using a further set of calculations [1], it can
be shown that the tunneling density of states is modified, which
gives rise to testable predictions to experimental tunnelingI–Vs.
For the case of theI–V curve of a single tunnel-contacted nan-
otube, the model is that there is a 3-D–1-D tunneling interface
of sorts as the “ohmic contact” of one end of the tube, and a
1-D–3-D tunneling interface at the other “ohmic contact.” Ex-
periments have observed [8] power-law behavior that is con-
sistent with the tunneling predictions, namely ,
where or 8, depending
on whether the contact is at the end or in the bulk of the tube.
In the 3-D–1-D tunneling case, an electron tunnels into the 1-D
system, which simultaneously excites an infinite number of 1-D
plasmons. In reference [8], experimentally observed values of
vary between 0.33–0.38 for end-tunneling, and 0.5–0.7 for bulk
tunneling, giving values of between 0.26–0.33. A recent paper
[13] also measured tunneling from one 1-D quantum wire in
GaAs to another 1-D quantum wire in GaAs. There, they found

. Both of these approaches are interesting and signifi-
cant.

In this manuscript we would like to present a different and
complementary method to measure these collective excitations
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directly, by exciting them with a microwave (GHz) voltage. In
particular, we would like to measure the wave velocity under a
variety of conditions, including different distances from the nan-
otube to the ground plane, to see how the electromagnetic en-
vironment effects the properties of collective excitations in 1-D
quantum systems. An additional capability of the technique de-
scribed below would be to measure the 1-D plasmon damping,
including dependence on temperature and disorder. This high-
frequency measurement may also have direct applications in de-
termining the switching speed of a variety of nanotube based
electronic devices.

F. Characteristic Impedance

Another property of interest of the transmission line is the
characteristic impedance, defined as the ratio of the ac voltage
to the ac current. This is especially important for measurement
purposes. In the circuit model presented above, for a right-going
plasmon wave, the ratio of the ac voltage to the ac current is
independent of position, and is given by

(25)

As we did for the wave velocity, we have to consider the
magnetic and kinetic inductance, as well as the electrostatic
and quantum capacitance. Upon considering the magnetic and
electrostatic inductance only, one recovers the characteristic
impedance of free space

(26)

On the other hand, if one considers only the quantum ca-
pacitance and only the kinetic inductance, the characteristic
impedance turns out to be the resistance quantum

(27)

Now, if one considers the kinetic inductance and both com-
ponents of the capacitance (electrostatic + quantum), then one
finds

(28)

where we have inserted the definition of . This immedi-
ately suggests a second method of measuringat GHz frequen-
cies, by measuring the characteristic impedance of the transmis-
sion line. We discuss the geometries of interest in detail in a later
section. For now we would like to comment that, even though
the characteristic impedance measurement at high frequencies
of high resistances is challenging, the predicted variation of the
characteristic impedance from the noninteracting is large,
of order 100%.

To be complete, we must include the magnetic inductance as
well, yielding the full solution to the characteristic impedance

(29)

G. Intrinsic Damping Mechanisms?

An important question to consider is the damping of the 1-D
plasma waves. Currently, very little is known theoretically or
experimentally about the dampingmechanisms. In the absence
of such knowledge, we proceed phenomenologically in the fol-
lowing section. We model the damping as distributed resistance
along the length of the tube. (This model of damping of 2-D
plasmons we recently measured was successful in describing
our experimental results, using the dc resistance to estimate the
ac damping coefficient.) Unfortunately, to date, even the dc re-
sistance of metallic nanotubes is not well quantified. Whatis
known is that the scattering length at low temperatures is at least
1 m, and possibly more. This is known from recent experi-
ments where the tube length of 1m gave close to the Lan-
dauer–Büttiker theoretical resistance for the dc measurement,
indicating ballistic (scatter free) transport over the length of the
entire tube [27]. We state this clearly in an equation for the mean
free path

m (30)

Now, for dynamical measurements one is usually concerned
with the scattering rate, not length, so if we assume the rela-
tionship:

(31)

then we have

ps (32)

A separate recent measurement [28] of the millimeter-wave con-
ductivity of mats of single-walled nanotubes gave a scattering
time of 4 ps at room temperature, but it is unclear how that re-
lates to the scattering time of individual nanotubes. The condi-
tion that must prevail for resonant geometries (see below) is that

must be greater than one. This implies the condition

(33)

For a 4-ps scattering time, this means the resonant frequency of
any cavity must be greater than 40 GHz. However, we still do
not have any data on how much greater the mean free path is
than 1 and, hence, the condition could be satisfied
at frequencies below 1 GHz. (In fact an ac measurement of the
impedance of a single nanotube could give more quantitative
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information about the mean-free-path as well as the damping
coefficient of 1-D plasmons.) We speculate that nanotubes with
scattering times satisfying at frequencies below 1 GHz
could be grown if they do not already exist; this would corre-
spond to a mean free path of order 100m. We discuss the ex-
perimental consequences of this issue in the next section in more
detail.

H. Damping From an External Circuit or Ground Plane

Another important damping mechanism is if the ground plane
is not a perfect conductor. For a superconducting ground plane,
the approximation of a perfect conductor is a good one. We
discuss now two other cases of interest, that of a metallic film
ground plane, and that of a doped semiconducting ground plane.

A typical deposited metal film will have a thickness of order
0.1 , which is much less than the skin depth at GHz frequen-
cies. Hence, it can be treated as having a certain sheet resistance,
which is typically of order 1 per square at room tempera-
ture, although it might be substantially less at cryogenic tem-
peratures. For the effective width of order a nanotube width that
participates in the “grounding,” this would give rise to a resis-
tance per length of the ground plane of order 1 k m, which
could be a significant source of damping, even if there is no scat-
tering whatsoever within the nanotube itself. Plasma waves of
frequencies below 2 10 GHz would be se-
verely damped. If, instead of a thin film, a bulk metal is used,
then the skin depth must be considered. In that case, the resis-
tance per square must be replaced by , where is the
bulk resistivity and the skin depth, which is typically 1m
at 1 GHz in copper at room temperature. Thus, by increasing
the thickness of the metallic ground plane to 1m, one can de-
crease the damping coefficient of the plasmons. However, going
any thicker than the skin depth does not help. (Interestingly, the
exact same principle applies to gold plating the conductors of
coaxial cables: it is not necessary and certainly not economical
to use bulk gold at RF frequencies for the cable material.) For
a 1- m-thick metal ground plane, then, the effective resistance
per length that must be added to the transmission line circuit of
the 1-D wire can be of order 100 m, which is small but not
insignificant.

For a doped-semiconductor ground plane, a typical bulk re-
sistivity for an n-type doped Si wafer is 10 cm. For this
resistivity, the skin depth is of order 1 mm at 1 GHz, so that
the effective resistance per square of the ground is given by
10 cm mm per square. This would give a resis-
tance per unit length of order 100 k m, which is a severe
damping, much worse than any scattering in the nanotube itself.
In this case, any plasmons with frequency below 1 THz would
be heavily damped. However, when the skin depth is that large,
corresponding to a distributed resistance in the “ground” plane
that continues all the way down to 1 mm below the nanotube, the
above calculations for the characteristic impedance and wave
velocity (which implicitly assumed that the tube length was
much larger than the distance to the ground plane) would have
to be revised. We suspect that further numerical modeling is
necessary to fully and quantitatively understand the interaction
at GHz to THz frequencies between a nanotube and a doped

semiconducting gate, and its effect on damping of 1-D Lüttinger
liquid plasmons.

The important point here is that, even if there is no scattering
whatsoever in the nanotube itself, there may still be damping of
the plasmon mode due to the electromagnetic coupling to the
resistive ground plane.

One final possible loss mechanism is radiation into free
space. This was implicitly neglected in calculating the capaci-
tance using the electrostatic method [25]. The nano-tube can
function as a nano-antenna, but since the wavelength of the
radiation at GHz frequencies is of order cm, and the tube length
is of order , it will not be a very efficient nano-antenna, so
that radiation losses are not likely to be significant.

III. CIRCUIT MODEL FORMETALLIC SINGLE-WALL CARBON

NANOTUBE

A carbon nanotube, because of its band structure, has two
propagating channels, which we label as channeland channel

[2]. In addition, the electrons can be spin up or spin down.
Hence, there are four channels in the Landauer–Büttiker for-
malism language. In this section, we discuss an effective high-
frequency circuit model which includes the contributions of all
four channels, and makes the spin-charge separation (the hall-
mark of a Lüttinger liquid) clear and intuitive.

A. DC Spin-Charge Separation

For pedagogical reasons, let us first consider noninteracting
spin 1/2 electrons in a single-mode quantum wire at dc. The
current can be carried by either spin up or spin down electrons.
Usually, when we measure the conductance of such a wire, the
electrical contacts on both ends of the wire are to both the spin
up and spin down channel simultaneously, so that the effective
circuit model is two quantum channels in parallel. However, if
we could inject current in one direction in the spin up channel,
and extract current in the spin down channel, then the net elec-
trical current (thechargecurrent) would be zero. However, there
would be aspin current. This clearly illustrates the separation
of spin-charge currents in a 1-D wire at dc. Below, we con-
sider the generalization to the ac case, and we consider a case
where there are two modes for each spin orientation, correct for
a carbon nanotube. We will neglect the magnetic inductance in
what follows. Our approaches parallels that of reference [19],
which in turn parallels that of reference [29]. We go further than
these references, though, in diagonalizing and calculating the
impedance matrix, and relating this to themeasurableeffective
circuit impedance of a 1-D plasmon.

B. Noninteracting Circuit Model for Metallic Single-Wall
Carbon Nanotube

The noninteracting ac circuit model of a single-walled
carbon nanotube is fairly straightforward: We simply have four
quantum channels in parallel each with its own kinetic induc-
tance and quantum capacitance per unit length. (Neglecting
the electrostatic capacitance is equivalent to neglecting the
electron-electron interactions.) All of the above calculations
would apply to that system, accept that there are four transmis-
sion lines in parallel. The ends of all four transmission lines
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Fig. 3. Circuit model for noninteracting electrons in a single-walled carbon
nanotube. Each channel (transmission line) is independent of the others.

Fig. 4. AC circuit model forinteractingelectrons in a carbon nanotube.

are usually contacted simultaneously by electrical contacts to
SWNTs. (Injecting spin-polarized current into only the spin up
channels is another exciting possibility which we will explore
in a future publication.) We draw in Fig. 3 the effective circuit
diagram in this case.

C. Interacting Circuit Model for Metallic Single-Wall Carbon
Nanotube

At this point, we have to take into account the elec-
tron–electron interaction. Apparently this can be done in a
phenomenological way by using the electrostatic capacitance
[30]. The coulomb energy per unit length is given by

(34)

where is the charge per unit length in theth mode. The cir-
cuit diagram of Fig. 4 takes this charging energy into account
correctly, and is the central result of this paper.

At this point, we have a coupling between the four modes,
which is immediately obvious in the circuit diagram in Fig. 4.
Before we consider the formal mathematics, let us think about
physically meaningful measurements. As in the dc case, if we
apply an ac voltage to the nanotube, we are exciting all four
channels simultaneously. (This is assuming the incoming cur-
rent is not spin polarized, another exciting possibility we will not
consider in this manuscript [31].) Therefore, at one end of the
nanotube (the ground end) all four channels have zero voltage.
At the other end of the nanotube (the “hot” end), all four chan-
nels have the same voltage, for example. By inspection of
the circuit diagram, the voltage along the nanotube will be the
same for all four channels. This is actually a normal mode of the

coupled system, namely exciting all channels equally. It should
also be obvious from inspecting the circuit diagram that there
is no spin current in this case: as many spin up electrons move
from right to left as spin down. As we will show below, there
are three other normal modes which do not carry net current.
Since they do not have net current flowing and they are called
neutral modes. They do carry spin currents, though. Hence, the
separation between spin and charge currents, which is one of the
hallmarks of a Lüttinger liquid.

In the Appendix, we carry out this procedure mathematically,
explicitly finding three spin modes (differential modes) and one
charge mode (common mode) from the circuit diagram shown
in Fig. 4. The charge mode is the common mode excitation of
all four transmission lines in Fig. 4 We show in the Appendix
that the charge-mode velocity is given by

(35)

where the last equality serves to define g for a SWNT. This re-
sult is not new [1], but the derivation based on our circuit model
is. This derivation also provides a very clear and intuitive ex-
planation of the spin-charge separation in a 1-D wire, which we
discuss in Section III-D. We also show in the Appendix that the
charge-mode characteristic impedance is given by

(36)

We also show in the appendix that the velocity of the three spin
modes (which we there call the differential modes) is given by

(37)

Thus, the spin modes and charge modes move at different veloc-
ities. We discuss the experimental consequences in Section IV.

D. AC Spin-Charge Separation: An Intuitive Explanation

Based on our transmission line description of a 1-D wire,
we now give a simple description of the spin-charge separa-
tion of the ac excitations in a Lüttinger liquid. Thecharge mode
corresponds to ac currents which flow simultaneously through
spin-up and spin-down channels in the same direction. As a con-
sequence, there is a local (dynamical) charging/discharging of
the nanotube, and the electrostatic capacitance to the ground
plane (as well as the quantum capacitance) is involved. Together
with the distributed kinetic inductance, this gives the wave ve-
locity of (35).

In contrast, the spin mode corresponds to ac spin up currents
flowing in one direction, and ac spin down currents flowing
in the oppositedirection, i.e., out of phase by 180. Since the
spin-up and spin-down currents are always equal in magnitude
but flowing in opposite directions, there is never any net charge
buildup at any position along the nanotube. Thus, the electro-
static capacitance to the nearby gate is never charged up when
the spin mode is excited, and is not relevant at all to the spin
mode. For this reason, the spin mode is also referred to as the
neutral mode. Of course, the distributed quantum capacitance
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and the distributed kinetic inductance still are important, so that
the spin mode is still an effective transmission line (i.e., the ac
excitations are wavelike).

Since the electrostatic capacitance for the spin mode does
not matter, thewave velocity(which is determined by the dis-
tributed inductance per unit length and the total capacitance per
unit length) is different than the charge mode. The distributed
capacitance per unit length for the charge mode consists of both
the quantumandelectrostatic capacitance, whereas for the spin
mode it consists of only the quantum capacitance. The spin
mode velocityis the Fermi velocity, and the charge mode ve-
locity is times the Fermi velocity.

IV. M EASUREMENTTECHNIQUE

In this section, we consider various methods of exciting
the common mode (charged) Lüttinger liquid plasmon with
an ac voltage. In order to describe this, let us first consider
measurements of the dc conductance of a single walled carbon
nanotube. In the experiments performed to date, current flows
through all four channels. In the case of tubes which approach

of conductance, i.e., where the macroscopic “lead”
contacts all four channels, the current is equally distributed
among all four channels. This is equivalent to exciting only
the common-mode current, and the common-mode voltage as
well. We would like to describe below a set of experiments
where we contact all four channels simultaneously with anac
(microwave) voltage. This finite-frequency measurement will
excite only the common-mode (charged) Lüttinger liquid 1-D
plasmon. (In a future publication, we will discuss the possibility
of driving microwave spin polarized current to excite the spin
modes of the Lüttinger liquid.) Since there is a finite frequency,
there will also be a wave vector introduced. If we measure the
frequency dependent impedance of the nanotube, we should be
able to determine the frequency at which there are one, two,
three, etc., standing waves in the tube and, hence, measure the
dispersion curve and wave velocity of the 1-D plasmon. From
(35), this will allow a direct measurement of the parameter.

In the appendix, we derived a set of differential equations de-
scribing the current and voltage for all four modes in a Lüttinger
liquid (three neutral spin waves and one charge wave). Now, we
would like to consider only the charged mode, and calculate the
effective, frequency-dependent impedance that one would ex-
pect for a carbon nanotube at microwave frequencies.

At this point, we have two options. First, we can continue
to work with the circuit diagram in Fig. 4, and apply the ap-
propriate boundary conditions for the measurement geometries
that we will consider below. This has the advantage that all four
channels are still present in our effective circuit model, but it is
somewhat complicated. However, for the boundary conditions
this is actually a simpler option, as we will see.

Option two is to use the fact that we are considering only
exciting the common mode in this paper, and to replace Fig. 4
with an “effective” circuit diagram consisting of asingletrans-
mission line with rescaled inductance and capacitance per unit
length. This is indicated in Fig. 5, where the effective induc-
tance per unit length is now 4, and the effective capaci-
tance per unit length is given by 4 . The wave

Fig. 5. Charge mode (“common mode”) effective circuit diagram.

velocity of this “effective” circuit model is the same as the wave
velocity of the common mode [given by (35)]. The characteristic
impedance of this effective circuit model is 1/4 of the character-
istic impedance of the common mode [given by (36)], which
is due to the following. When we excite the common mode
voltage, all four voltages are equal, so
that the common-mode voltage is four times larger than
the measured voltage by the external circuit, since

as given in (60). (The common-mode
current is the same as the measured current.) The advantage of
using the circuit diagram proposed in Fig. 5 is that we only have
to deal withonetransmission line. The disadvantage is that the
effective boundary conditions for the geometries we consider
below are not obvious and require careful consideration. In the
following sections we will use both descriptions, according to
convenience and relevance to the particular boundary conditions
under consideration.

We proceed in this section as follows. We first consider an
“ohmically” contacted nanotube, by which we mean tubes with
dc electrical contacts with perfect transparency which have

of conductance. Of course, this is a linearized model of
the dc resistance, which can have a significant nonlinear cur-
rent–voltage relationship. It is beyond the scope of this paper to
include nonlinear resistances in the effective circuit impedance.
After considering “ohmically” contacted nanotubes, which are
not trivial to achieve technologically, we consider a capacitively
contacted nanotube which does not require dc contact. Such
a measurement geometry should be much easier to achieve,
since in essence it only requires evaporating a metal lead
onto a nanotube, perhaps on top of a thin insulating barrier.
A discussion of the measurement geometries requires careful
consideration of the boundary conditions for the 1-D plasmons,
which we treat below.

A. Ohmic Contacted Measurement

We begin by considering the simplest measurement geom-
etry, that of an “ohmically” contacted single wall nanotube
with perfect transparency at both ends. The dc conductance is
just , since there are two channels and two spin orienta-
tions per channel. Tubes with dc resistance approaching this
value have recently been fabricated [27]. For ac (dynamical)
impedance measurements, we really do not know where to put
the contact resistance in the ac circuit diagram. Experimen-
tally, the high-frequency conductivity of nano-scale systems
is an unexplored regime of mesoscopic physics; there have
been few experiments [12], [32]–[35]. We speculate that the
impedance can be modeled as a “contact” resistance, which is
discussed more rigorously in reference [11], [36]. Following
reference [11], we model the contact resistance as split into
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Fig. 6. Circuit diagram for an SWNT with dc electrical contacts at both ends.

Fig. 7. Effectivecircuit diagram for an SWNT with dc electrical contacts at both ends.

a contact resistance (“charge relaxation resistance” [37]) on
eachside of the wire, so that each side has 1/2 of the total dc
resistance. To be explicitly clear, we draw in Fig. 6 the circuit
diagram we are proposing. At dc, each of the four channels has

2 of total contact resistance. Since there
are four quantum channels in parallel, the total resistance is
given by , the Landauer–Büttiker expected value.

Now, it is possible to define an effective circuit diagram along
the lines of Fig. 4. We show in Fig. 7 the effective circuit which
is the “Norton equivalent” circuit to Fig. 6. The values for the
contact resistance are shown as each. It is obvious from
the circuit diagram that the dc resistance is equal to , so
that our model is correct in the dc limit.

B. Ad Hoc, Phenomenological Damping Model

Before we continue, there is one more issue that needs to be
discussed. That is the issue of damping along the length of the
tube. We again speculate that the dc resistance per unit length
gives information about the distributed damping of the 1-D plas-
mons. We model this as a distributed resistance per unit length

. We must again be careful about the factor of four when we
define this parameter. In our nomenclature, we defineas the
dc resistance per unit length of all four channels in parallel. Of
course, according to the scaling theory of localization [38], the
resistance of a 1-D system is expected to scale exponentially

with length on the length scale of the localization length. How-
ever, it is known experimentally that the localization length is
greater than a few micrometers, but it is not known how long
the localization length really is. Our simplified model of a resis-
tance per unit length violates the expected (but never observed)
exponential scaling of the resistance with length in one dimen-
sion, but makes the problem tractable. According to our defi-
nition of as the resistance per length of all four channels in
parallel, we must insert a distributed resistance of 4into each
of the channels in Fig. 6, or, equivalently, we must insert a re-
sistance per unit length of in the effective circuit diagram
Fig. 7. Our discussion of damping in Section II-G is consistent
with this definition. We will consider various numerical values
of below.

C. Impedance Calculations With Ohmic Contacts

At this point, we are in a position to calculate the (complex,
frequency dependent) ratio of the ac voltage to the ac current
entering the left end of the nanotube, theimpedance. We do
this by “mapping” the problem on to well-known problems in
transmission line theory [39]. We proceed in two steps: First,
we consider the impedance without the contact resistance on
the left hand side. In other words, we calculate the impedance
from point 1 in Fig. 7 to ground. This is equal to the impedance
from point 1 to point 2 in Fig. 7, which is equivalent to the input
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impedance of a (possibly lossy) transmission line with charac-
teristic impedance , which is “terminated” by a “load”
impedance which in this case is simply the contact resis-
tance, i.e. . This is a standard result in
microwave theory, which we repeat here for convenience

(38)

where is the length of the tube, andis the propagation con-
stant of the 1-D plasmon, given by

(39)

and where we have to defined as

(40)

and where we have defined a new symbol(the reflection
coefficient of the plasmon wave off of the right end of load
impedance “terminating” the nanotube) as

(41)

The effective inductance per unit length is

(42)

and the effective capacitance per unit length is

(43)

as we have already indicated in Fig. 7. In the high frequency
limit ( ), is just the wave vector, i.e.

(44)

(45)

For the circuit model where we terminate the end of the trans-
mission line with a contact impedance equal to half the total dc
resistance, we assume that each of the four transmission lines
has a resistance at each end equal to . Therefore, by the
definition of the common mode transmission line parameters,
we need to use a load impedance of 8 in (41) in
order to implement the model discussed in the first paragraph
of this section.

In the second step of the calculation, we note that the total
impedance is just the contact resistance of the left-hand side
of the nanotube plus the input impedance of (38). If we take
the contact resistance on each side to be half of the total dc
resistance (i.e., 8 ), then we have the desired
result

(46)

This is a clear prediction that can be experimentally measured.
While it may seem like a complicated result, it is actually quite

elegant. What is more, we recently verified experimentally the
2-D analog of (46) in [12].

Before we turn to a numerical evaluation of (46), let us con-
sider qualitatively the expected frequency-dependent behavior.
At low frequencies, we should recover the dc limit of a real
impedance of . This can indeed be shown to be the case,
by taking the limit of (46). As the frequency is in-
creased (assuming the damping is not too severe, see below),
there will be resonant peaks in as a function of fre-
quency, corresponding to first, second, third, etc., harmonic of
the fundamental wave vector set by the finite length of the tube.
Applying this high-frequency voltage woulddirectly excite the
1-D Lüttinger liquid low-energy excitations (the 1-D plasmons).
The locations of these peaks in frequency space can be used to
determine the wave velocity of this mode and, hence,.

D. Numerical Evaluation of Impedance Versus Frequency

At this point, the best way to proceed is to evaluate (46) nu-
merically for some possibly typical cases, which leads into the
discussion of the numerical value of the distributed resistance

which (in addition to the contact resistance) causes damping.
This discussion must be somewhat speculative, since the 1-D
plasmon damping has never been measured, in fact the 1-D
plasmon itself has not yet been directly observed. Currently very
little is known about possible mechanisms. Our model of a dis-
tributed resistance per unit length gives rise to an exponential
decay in a propagating 1-D plasmon wave, with a decay length
given by

(47)

(We implicitly assume the limit in (47). The more
general case will be discussed below.) Before we discuss es-
timates for the numerical value of , we discuss what effect
it would have on the plasmon resonance discussed above. As
microwave engineers intuitively know, when the length of the
transmission line (in this case nanotube) is much longer that
the decay length , there is no resonant behavior to the
transmission line, and the input impedance becomes the char-
acteristic impedance of the transmission line, independent
of the “load” impedance. Physically, this is because the wave
that propagates toward the load gets essentially completely at-
tenuated before it reaches the load. On the other hand, if the
transmission line is shorter than the decay length , then
the impedance becomes resonant as in the case we discussed
above, with some damping, hence, finite.

In the absence of either theory or data, we conjecture that the
decay length scale for 1-D Lüttinger liquid plasmons must be
at least as long as the mean free path determined from dc trans-
port measurements. Since the mean free path is known to be at
least 1 m long, the resistance per length is less than 25 k/ m
[using (47)]. Another technique to estimate an upper limit on
is to use data from recent STM experiments [40] which mea-
sure the voltage drop along the length of the tube forsemicon-
ductingtubes. There, the resistance per unit length is found to be
9 k / m. (Presumably, metallic tubes have an even lower resis-
tance per unit length.) In this (presumably worst case) scenario,
the damping length would be equal to roughly 3m. We
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Fig. 8. Predicted nanotube dynamical impedance for ohmic contact, for two
different values of g. We assumel = 100�m.

consider below two important cases in turn: first, where the tube
length is less than , hence, resonator , and second
in the “overdamped” limit where the tube length is greater than

, hence, resonator .
For the case of tube lengths less than the decay length, we

discuss nanotubes of length 100m. Recent progress on CVD
growth [26] has made such long SWNTs possible. With such a
long length, the resonance frequencies will be in the gigahertz
(GHz) range, where experiments are feasible. In the THz fre-
quency range, it should also be possible to measure frequency-
dependent properties [15], [16], which would be relevant for
tubes with lengths in them range. The technical challenges
in the THz range are not straightforward, though, and generally
more difficult than in the GHz range. Since we have had excel-
lent experimental success with measuring 2-D plasmons [12] in
the GHz range, that is where we focus our attention. However,
our predictions should also apply to THz resonance frequency
experiments.

We chose (optimistically) a resistance per unit length of 10
/ m, which is much less than the experimental upper limit of

10 k / m. In the case that the total resistance distributed along
the length of the nanotube (i.e. ) is less than the contact re-
sistance, the resistance of the contacts is the dominant damping
mechanism. This is the case for the parameters we have chosen.
We plot in Fig. 8 the predicted nanotube dynamical impedance,
for two different values of . The predicted value of is 0.25,
and we also plot the predicted value of for ,
which we achieve by numerically adjusting in our model.
It is clear from Fig. 8 that it is still possible to have factors
greater than 1, even when the contact resistance is much larger
than the distributed “channel” resistance. Thus, the contact re-
sistance causes damping but does not necessarily causeto be
less than 1. Hence, it is still possible to observe the features of
the Lüttinger liquid even in the presence of the contact resis-
tance.

In principle, it should be possible to build a measurement ap-
paratus that could measure this prediction. There are two main
technical challenges. First, the impedance is high, which is dif-
ficult for microwave experiments to resolve. This issue could
be solved by measuring many nanotubes of the same length in
parallel, although one would need to assume that each tube had
the same g factor, damping, etc. The second challenge is that

Fig. 9. Predicted nanotube dynamical impedance in overdamped case.

the macroscopic lead will have a finite capacitance to ground,
just by virtue of the fact that the lead is finite in size. This ca-
pacitance to ground in many conceivable geometries will pro-
vide a low-impedance path to ground in parallel with the high-
impedance nanotube, which will effectively short the nanotube
to ground. This second difficulty makes the “ohmically” con-
tacted geometry very difficult to realize experimentally. How-
ever, with sufficient effort it should be feasible.

An interesting prediction of our model is the frequency at
which the first resonance occurs. The real part of the impedance
peaks at a quarter wavelength. (It is a general result from mi-
crowave and RF engineering that the quarter wavelength struc-
tures transform open circuits to short circuits and vice versa.
This fact is used in many modern RF circuits.) The resonance
frequency can be written as

(48)

At this frequency, the imaginary part of the impedance crosses
zero. Therefore, if a measurement scheme can be devoiced to
measure the where the imaginary part of the ohmically con-
tacted nanotube impedance changes sign, this would be adirect
measurement of the Lüttinger liquid parameter g, sinceand

would be known. An additional interesting parameter is the
equation of the of the resonance. This can be estimated as

(49)

where is the total resistance of the nanotube.
We now consider the opposite case, that of an “overdamped”

1-D plasmon. We consider again a tube of length 100m, and
now we consider resistance per unit length of 1 k/ m. In this
case, there will be no resonant frequency behavior. We plot in
Fig. 9 the predicted real impedance [using (46)] for these pa-
rameters, assuming . There are two qualitative features
that we would like to discuss. First, at dc the real impedance is
simply the resistance per length times the length, i.e.,. As the
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Fig. 10. Predicted nanotube dynamical impedance for ohmic contact on one
end only for two different values of g.

frequency is increased, the impedance falls. The frequency scale
at which the impedance starts to change is given by the inverse
of the total capacitance ( ) times the total resistance. At very
high frequencies, the impedance becomes equal to the effective
characteristic impedance given in (40). The frequency at which
this occurs is given by the inverse of the effective “L/R” time
constant, which is the resistance per unit length divided by the
inductance per unit length. We note that in this high frequency
limit, the effective characteristic impedance ( ) given by
(40) is mostly real. Therefore, even in the overdamped case
where there is no resonant behavior, the transmission-line be-
havior of the nanotube becomes important at frequencies below
1 GHz.

E. Ohmic Contacted Resonance Measurement on One End

Another possible measurement setup would consist of
making electrical contact on one end only of the nanotube,
and letting the other end “float.” This would correspond to
cutting the wire to ground on the right-hand side of Fig. 7. At
dc, no current would flow so the impedance would be infinite.
However, at ac current could flow in and out of the end of the
tube (charging and discharging the capacitors), so it is still
meaningful to consider the dynamical impedance. In this case,
we can still use (46) to predict this dynamical impedance, with
a “load” impedance in equation (41) of infinity (corresponding
to an open circuit at the other end of the nanotube.) We plot in
Fig. 10 the predicted dynamical impedance in this case, where
we have again assumed a length of 100m, but where we use
a resistance per unit length of 100/ m. Resonant behavior
is still predicted, but now the first peak in the real impedance
occurs at half a wavelength.

F. Capacitively Contacted Measurement

The fabrication of electrical contacts to carbon nanotubes
with low resistance at dc is not a trivial challenge. Even if it
can be achieved, the “contact” resistance at ac may be different
than it is at dc for unknown physics reasons. An alternative ap-
proach would be to use capacitive contacts to the nanotube. In
the context of the above discussion, it should be clear that there
is already capacitive coupling between the ground plane and
the nanotube, so how can one achieve capacitive coupling to a
macroscopic lead?

One solution is simply to turn the problem upside down. We
envisage laying a carbon nanotube on aninsulatingsubstrate,
and then evaporating a metallic, macroscopic lead onto the top
of one end of the nanotube, and another macroscopic, metallic
lead onto the top of the other end of the nanotube. One lead
is connected to ground, and the other lead is connected to an
ac voltage source. The impedance from one lead to the other is
measured. This corresponds to measuring the impedance from
one lead to the nanotube plus the impedance from the nanotube
to the other lead. By the symmetry in the problem, we only need
to consider one of those impedances and multiply by two. The
effective circuit diagram we consider is shown in Fig. 11. The
physical geometry is indicated schematically in Fig. 12. This
capacitive coupling scheme is exactly the scheme we used for
capacitive coupling to 2-D plasmons; see [12, Fig. 2].

Now, let us consider the impedance from one lead to the nan-
otube. It should be obvious by now that the capacitive contact
cannot be treated as a lumped capacitance. Rather, the capac-
itance between the lead and the nanotube is distributed along
the length of the tube. We must also keep in mind that there
is a distributed kinetic inductance along the length of the tube.
This may seem like a difficult problem, but in fact we have al-
ready developed the mathematical machinery necessary to fully
solve this problem. The impedance from the macroscopic lead
to the nanotube is equal to the impedance from the nanotube to
the lead. Above, we calculated the impedance from a nanotube
to “ground.” In the case we are considering here we can use
the results of those calculations, only now instead of the nan-
otube coupled to a ground plane, it is coupled to a lead. Thus,
the impedance of the capacitive coupling to the nanotube is ex-
actly equal to the impedance calculated in (38), withequal
to infinity. Therefore, the impedance from one lead to another is
equal to twice the impedance of (38). We calculate this numer-
ically and plot the result in Fig. 13, for a tube length of 100m
under each lead, and a very short length of nanotube between the
leads. We use a resistance per length of 100/ m. The resonant
behavior is again clear. This technique may be conceptually the
most difficult to understand, but is in practice the simplest to
implement experimentally.

G. Quantum Electric Field Effects

In the above calculations the electromagnetic field is consid-
ered classical. However, at low (and even room [41]) temper-
atures the capacitive charging energy can be considered quan-
tized since can be much less than . Additionally,
the electromagnetic field must be considered quantum mechan-
ically (as photons) if the photon energy is greater than the
charging energy. This occurs as a typical energy of 0.5 K for
a 10-GHz photon. Therefore, if the discreteness of the photon
field is taken into account, a more sophisticated quantum treat-
ment of the nanotube dynamical impedance, which takes into
account processes such as photon assisted tunneling, will be
necessary. Such a treatment is beyond the scope of this paper.

H. RF Nano-Spintronics

Finally, we mention here briefly that a similar set of calcu-
lations can be performed [42] to predict the dynamicalspin



BURKE: LÜTTINGER LIQUID THEORY AS A MODEL OF THE GHz ELECTRICAL PROPERTIES OF CARBON NANOTUBES 141

Fig. 11. Circuit diagram for capacitively coupled nanotube.

Fig. 12. Geometry for capacitive contact. The spacing between the metal electrodes has been enlarged for clarity. No dc electrical contact to the nanotube is
implied in this picture, only capacitive coupling to the leads.

Fig. 13. Predicted nanotube dynamical impedance for capacitive contact on
one end for two different values of g.

impedanceof a SWNT. This could open up a new area of re-
search into RF spin-polarized transport in 1-D systems for ap-
plications in “nano-spintronics.”

V. CONCLUSIONS

We have considered the dynamical properties of
single-walled carbon nanotubes from a circuit point of
view. The 1-D plasmon should be observable using the same
experimental technique we developed for measurements of the
2-D plasmons. This measurement would be direct confirmation
of Lüttinger liquid behavior of a 1-D system of interacting
quantum particles. We have formulated our experimental tech-
nique and predictions in the frequency domain, but it should
also be possible to perform a time domain experiment using
similar principles to measure the wave velocity and damping.
Finally, the RF circuit models we have presented here provide

the foundation for our current research aimed at active nanotube
transistorswith switching speeds approaching the THz range.

APPENDIX

We now proceed mathematically to solve for the normal
modes. The charge per unit length of theth mode is related to
the voltages of the four other modes, which (upon inspection of
the circuit diagram in Fig. 4 we write as a matrix generalization
of CV

(50)

(This is equivalent to [19, eq. (24)].) We write this in vector
notation as

(51)

At this point, we can follow the derivation of the telegrapher
equations, using the matrix generalization. Kirchoff’s voltage
law gives

(52)



142 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 3, SEPTEMBER 2002

(This can be seen by considering the voltage just to the left and
just to the right of any of the inductors drawn in Fig. 4). In
the derivation of the telegrapher equations, Kirchoff’s current
law is usually used. It is easier in this case to use the continuity
equation, which in one dimension is given by

(53)

We now proceed to take the second time derivative of (51),
yielding

(54)

In sum,

(55)

Using the same methods it can be shown that

(56)

Thus, we have a set of four coupled wave equations for the
voltage and current on each line.

Finally, there exists a matrix relating and ,
the impedance matrix. This is discussed in [19] in this basis.
We do not consider the impedance matrix in this basis here, as
it is not relevant to the experimental setup we discuss below. In
contrast to [19], we will discuss the impedance in a different
basis, where it is diagonal.

Let us consider the voltage wave equation (55). If ,
then is diagonal, and the voltage wave (plasmon) in each
mode is independent of the others, all moving at the Fermi ve-
locity. If is nonzero, this is tantamount to saying there are
interactions, and the four modes are coupled. We need now to
diagonalize the equations of motion to find the normal modes.
If we want to consider solutions of the form

(57)

then we must find which values of will work solve the cou-
pled wave equations (55) and (56). In other words, we need to
find a set of vectors which diagonalizes the capacitance matrix.
Specifically, we must solve (on plugging the above (57) into the
voltage wave equation (55))

(58)

(This is equivalent to [19, eq. (27)], which, in turn, is equivalent
to [29, eq. (11)].)The eigenvectors are

(59)

We have labeled the eigenvectors for “common mode” and
– for differentials 1–3. The “common-mode” vector is

the fundamental charged excitation in a Lüttinger liquid. Below,
we discuss a method to excite these modes with a microwave
voltage. The other three are neutral, that is, they carry no net
(charge) current. (Since the other three are degenerate, it is pos-
sible to chose a different basis for the other three. A basis of
nonorthogonal degenerate eigenvectors was used in [19], but
we chose the orthogonal eigenvectors as in [43], [44], and [30].)
However, the differential modes do carryspincurrent. These are
the neutral and charged modes of a Lüttinger liquid. This is the
clear separation of spin and charge degrees of freedom which is
the hallmark of a Lüttinger liquid.

In the new basis, the capacitance matrix is diagonal. If we
write the voltages in the new basis as

(60)

and similarly for and , then the new capaci-
tance matrix is simply given by

(61)

or, in vector notation,

(62)

Additionally, in the new basis the following holds:

(63)
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and

(64)

In this new basis, the wave equation for the voltage is now di-
agonal, with new wave equations given by

1 4
(65)

(66)

with the equation for and the same as for D1. In vector
form

(67)

Similarly, one can show that

(68)

Now, the wave velocity for the differential modes is just the
Fermi velocity (using (66) above). However, the velocity for the
common mode, i.e., 1-D plasmon, is given by

(69)
This equation (which is not a new result [1]) definesfor an
SWNT. Now, let us consider solutions to the voltage and current
wave equations in the diagonal basis, in order to determine the
characteristic impedance. Since the wave equations are diagonal
(i.e., uncoupled), if we can excite the common mode, none of the
other modes will be excited.

The general solutions are of the form

(70)

and

(71)

Applying (63) to (71) for the current gives the following:

(72)

The ratio of the ac voltage to the ac current on the line is de-
fined as the “characteristic impedance, ” which can be seen from

comparing (72) to (70). Thus, for the common mode, the char-
acteristic impedance is given by

(73)

This is a very important number which will be used in the ex-
perimental techniques section to be discussed below. Our result
differs from [19, eq. (37)] because we are considering the ex-
citation of only the common mode, i.e., Lüttinger liquid charge
mode. Reference [19] considered the excitation of mode,
i.e., a superposition of charge and spin modes. Below we dis-
cuss how our method excites only the charge mode, and not the
spin mode, so that our calculation is more germane to our exper-
imental technique described below to directly excite Lüttinger
liquid collective modes.

Now, it is important to realize that what one measures is
not exactly for the common mode. The common mode
impedance is the sum of the voltages ( )
divided by the sum of the currents ( ).
The sum of the currents is what flows into an external circuit.
However, when coupled to an external circuit all of the voltages
are equal to the eternally measured voltage, so that the common
mode voltage is actually four times larger than the voltage
measured at the end of the tube by an external circuit. That is
why our (73) differs from [18, eq. (3)].

Finally, for the sake of completeness, it can be shown that
the following is the characteristic impedance of the other three
modes:

(74)

This describes the ratio of the voltage to the current when the
spin wave is excited.
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Corrections to “An RF Circuit Model for Carbon
Nanotubes”

P. J. Burke

In the above paper [1, eq. (14)], g should be replaced by g�1.
Thus, (14) should read

Zc;interacting =
LK

Ctotal
=

LK

CES
+
LK

CQ
= g�1 h

2e2
:

The last sentence in Section III should read: In [11], we show that
the circuit model of Fig. 1 is still valid as an effective circuit model for
the charged mode if LK is replaced by LK=4 and CQ is replaced by
4CQ.
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Corrections to “Luttinger Liquid Theory as a Model of the
Gigahertz Electrical Properties of Carbon Nanotubes”

P. J. Burke

In the above paper [1, p. 136], the equation appearing in the last line
in the left-hand-side column should have read (C�1

ES + (4CQ)
�1)�1.

In the above paper [1], (43) should have read as follows:

C
�1
e� = (4CQ)

�1 + C
�1
ES :

In the above paper [1], Figs. 5, 7, and 11 should have appeared as shown
below in Figs. 1–3.
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Fig. 1. Charge mode (“common mode”) effective circuit diagram.

Fig. 2. Effective circuit diagram for an SWNT with dc electrical contacts at both ends.

Fig. 3. Circuit diagram for capacitively coupled nanotube.
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