
luvHarris: A Practical Corner Detector for Event-cameras

Arren Glover, Member, IEEE, Aiko Dinale, Leandro De Souza Rosa, Simeon Bamford,
and Chiara Bartolozzi, Member, IEEE

Abstract—There have been a number of corner detection methods proposed for event cameras in the last years, since event-driven
computer vision has become more accessible. Current state-of-the-art have either unsatisfactory accuracy or real-time performance
when considered for practical use, for example when a camera is randomly moved in an unconstrained environment. In this paper, we
present yet another method to perform corner detection, dubbed look-up event-Harris (luvHarris), that employs the Harris algorithm for
high accuracy but manages an improved event throughput. Our method has two major contributions, 1. a novel “threshold ordinal
event-surface” that removes certain tuning parameters and is well suited for Harris operations, and 2. an implementation of the Harris
algorithm such that the computational load per event is minimised and computational heavy convolutions are performed only
‘as-fast-as-possible’, i.e. only as computational resources are available. The result is a practical, real-time, and robust corner detector
that runs more than 2.6× the speed of current state-of-the-art; a necessity when using high-resolution event-camera in real-time. We
explain the considerations taken for the approach, compare the algorithm to current state-of-the-art in terms of computational
performance and detection accuracy, and discuss the validity of the proposed approach for event cameras.

Index Terms—event-driven vision, robotic-vision, event-camera, corner-detection, real-time
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1 INTRODUCTION

CORNER detection is used for motion estimation and fea-
ture point identification among other machine vision

tasks [1]. In general, corners can be used as informative
features that are consistently identifiable over time. For mo-
tion estimation, the presence of the two intersecting edges
that define a corner disambiguates the unobservable motion
in the direction parallel to a single edges orientation, i.e. it
solves the aperture problem.

Several proposed corner detection methods for event-
cameras investigate interesting ideas for event processing,
but which we find are insufficient for actual use in a
complete visual pipeline. However, event-cameras are still
a promising technology for the task as they produce a low-
latency, sparse visual signal and have the potential to enable
high-frequency, reduced computation, visual algorithms in
a wide range of applications. An event-camera achieves
these advantages as it has independent, asynchronously
firing pixels, rather than a global or rolling shutter. When
a change in the light intensity is detected, each individual
pixel outputs an event encoding the pixel position, and the
direction of the gradient of the change. As such, further de-
velopment of corner detection algorithms for event-cameras
is worthwhile.

Event-driven corner detectors have been used in mo-
tion estimation pipelines [2], [3], and a number of corner
detection solutions have been proposed [4], [5], [6], [7],
[8]. eHarris [4] employs the accurate Harris algorithm but
is too computationally heavy for on-line use, especially
with high-resolution event-cameras. FAST [5] and ARC [6]
aim to reduce the computational requirements, but sacrifice
accuracy to do so. While their event-throughput improves,
they may still fail to obtain real-time performance when
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using the latest generation, high resolution event-cameras.

In this paper, we present yet another method for per-
forming corner detection with event-cameras, that we dub
luvHarris for look-up event-Harris. Its focus is to produce
both a real-time, robust and accurate corner detector based
on the Harris algorithm [9]. To do so, luvHarris decouples
the event throughput from the heavy computation of the
Harris algorithm. Only a small (non-corner-related) com-
putation is performed per event, and the result is event
throughput of 8.6 M events/s (2.6× improvement over
the state-of-the-art). Other detectors, while light-weight,
perform a full corner detection for each and every event.
We instead take advantage of OpenCV [10], but do so
with a hybrid method that sits somewhere between fully
asynchronous and batch processing, but still manage to
maintain an asynchronous event-driven input and output,
and discuss why this is a valid solution particularly for
corner detection.

Experiments and algorithms in this paper expressly fo-
cus on corner detection only, instead of a combination of
detection and tracking. Improvements to the underlying de-
tection algorithm will always improve downstream tracking
algorithms and therefore we believe evaluation of detection
and tracking should be performed independently.

This paper has two main algorithm development contri-
butions: 1. a novel event-surface that is compatible with the
Harris algorithm, and 2. a look-up pipeline that enables the
event-stream to be always processed asynchronously as it
is decoupled from the corner detection pipeline, which is
instead only processed as-fast-as-possible given the avail-
able computational power. Additionally, this paper explains
reasons for failure of other detectors, from an accuracy
and event-throughput perspective, and adds to the discus-
sion around the balance between event-driven and batch-
processing that enables practical on-line vision algorithms
for event-driven cameras.
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2 BACKGROUND

The event-based adaptation of the Harris algorithm, eHar-
ris [4], became the benchmark early on as it was simple,
based on a known method, and open-source code was
available. The algorithm created a binary surface indicating
the occurrence of an event in the recent past, over which
the Harris score was calculated. The algorithm was event-by-
event in that for each incoming event, the surface was incre-
mentally updated, and the Harris response was computed
only locally around the position on the surface at which
the event occurred. The Harris response is dependent on
the Eigenvalues of the image derivative, in a square patch
around the event position:

• The partial per-pixel derivatives, Ix = ∂
∂x and Iy =

∂
∂y , are calculated using the Sobel operator.

• The mean-square derivatives of the patch, Gxx =
Ix × Ix, Gxy = Ix × Iy , and Gyy = Iy × Iy , are
calculated by element-wise multiplication through a
box filter.

• The Harris response is related to the Eigenvalues of

the matrix M =

[
Gxx Gxy

Gxy Gyy

]
, and is calculated as

R = det(M) − 0.04 · tr(M)2, where det() and tr()
are the determinant and trace, respectively.

An event is classified as a corner-event if the Harris response
is above a threshold TR.

The accuracy of corner classification using the eHarris
method was comparable to a ‘frame-based’ ground-truth,
however the processing speed was sub-par [5], [6] for high-
rate event-streams. eHarris was developed for the first gen-
eration DVS [11] (128×128 resolution), but the reported real-
time operation for a data stream of 160k events/s cannot
handle higher resolution sensors (e.g. the qVGA ATIS [12]
or DAVIS [13]) that were becoming the standard. Nowadays
HD event-cameras are also available.

The subsequent FAST [5] and ARC [6] algorithms were
proposed to provide a solution for higher-resolution event-
cameras, and do so by moving away from traditional image
processing techniques, towards techniques that are highly
compatible with the asynchronous, fine temporal resolu-
tion of event-cameras. Indeed, these techniques reported
throughput an order of magnitude higher than eHarris,
greatly increasing the conditions in which real-time pro-
cessing is maintained. FAST reported comparable corner
detection accuracy to eHarris [5], while ARC classified more
events as corners (including more false positives) which
were then filtered with a downstream, off-line, corner track-
ing algorithm to produce robust corner tracks [6].

The FAST and ARC algorithms are arc-based detection
methods that identify corners by classifying the spatio-
temporal pattern on a surface of active events (SAE):

SAE : (x, y) 7→ t (1)

where t is the event timestamp. A continuous arc of recent
timestamps which covers an approximate 90 degree angle
results in a classified corner, while broken arcs, or arcs that
cover an angle close to 180 degrees can be rejected.

(a)

(b)

(c)

Fig. 1: Examples of false positive ARC corner detections:
outlined events (left) are wrongly selected as corners but
given their position in the image are clearly not corners.
The brightness of the pixel in the SAE (right) corresponds
to the time value of the surface (black being older events)
and the white lines correspond to the final arc selection.
Purple pixels indicate only values used for an arc-based
corner detector. (a) occurs as two edges are close together,
(b) occurs due to a single random event off the edge, and (c)
occurs in clutter in which an arc is found by chance. Using
all points in the local time surface (not only purple) gives
more information to determine there is no corner.

2.1 Issues with arc-based detection

Arc-based detections use only a circle of events around the
corner candidate to determine the corner from the spatio-
temporal pattern. They use less information (less pixels)
to determine corner patterns, compared to Harris, and are
therefore more susceptible to noise in those pixels. Fig. 1
shows several examples of incorrect corner detections of
an arc-based method, which, when considering the entire
patch, are obviously not patterns of data that correspond to
corners.

Typically it is an unexpected SAE value (i.e. timestamp)
that occurs in-front of the edge of the current event, that
causes an incorrect positive classification:



• An object that has two straight parallel edges close
to each other can create an interference, in which the
pixels of the first edge are counted within the arc, see
Fig. 1a. In this case the active pixel can be incorrectly
classified as a 270 degree corner.

• Jitter-like motion that causes the edge to move back
on itself multiple times can produce an SAE that
has the characteristics similar to that of two parallel
edges as above.

• In reality, edge-gradients are non-discrete, resulting
in a single edge producing multiple events at the
same location over a short period of time. These
secondary events occur after the leading edge and
result in an SAE similar to Fig. 1a. Filters can be used
to remove secondary events [6] but should be tuned
to the temporal dynamics of the application, which
isn’t always a robust solution.

• Noise can manifest in the event-stream as randomly
firing pixels. A random event nearby a moving edge
will trigger a corner detection as the pixel becomes
one of the end-points of the arc, see Fig. 1b. Filters
can also be used to reduce the frequency of random
events.

• Clutter, or highly textured patches can also satisfy the
corner detection logic by chance, see Fig. 1c, despite
no clear corner pattern in the local patch.

Some of the above sources of incorrect detections are
directly addressed in the ARC algorithm by applying a pre-
processing step to the event stream [6]. The pre-processing
consists of an event filter that behaves as an artificial refrac-
tory period. The authors suggest a 50 ms artificial refractory
period, however such a large filter period also removed
large portions of useful signal, in which corners were not
detected. In this case, the maximum firing rate corresponds
to a 20 Hz repeating signal, in which case a RGB camera may
be preferable. Instead, a 5 ms refractory period seemed suit-
able for typical signals from a hand-held, or robot-mounted,
camera. However, more false positives were observed with
the lower value. The requirement of such a pre-processing
imposes restrictions on the use-cases of the ARC algorithm.

The FAST algorithm also addresses some of the sources
of incorrect detections as it excludes 270 degree corners in
the classification stage [5]. FAST does not require a pre-
processing stage, but therefore also cannot detect certain
corner patterns (i.e. those produced by 270 degree corners)
that are true corners.

2.2 Considerations for Applying the Harris algorithm to
event-data
The dense computation of spatial derivatives required by
Harris has the downside of a higher processing requirement.
Reducing the load of the Harris pipeline has been suggested
by using FAST as a candidate detector, and applying Harris
only to positive candidates [7]. We instead take a different
approach: to enable a real-time Harris-based detector by
exploiting the principles of the algorithm.

Original Harris corner detection is applied over an im-
age, in which pixel values are typically bound between 0
and 255. The magnitude of a corner score, R, is proportional
to the difference, d, between the high and low values in a

patch. To fix a classification threshold, TR, d values asso-
ciated to corners must be consistent over the entire image
and over time. In the event domain, an SAE is an obvious
choice to represent amalgamated data, however it does not
produce a consistent d. High values will correspond to the
current clock-tick, while low values will be equal to the
time in the past when the pixel last fired, which could
be on the order of milliseconds, or minutes; it is therefore
difficult to fix a value for TR. For this reason, the binary
image used by original eHarris [4] was not a simplistic,
naive implementation, but rather a calculated decision to
for consistent d values. However, the particular solution was
dependent on a parameter that defined the typical texture
found in the scene (i.e. using only the most recent e.g. 1000
pixels).

Secondly, as a corner is defined by relative values be-
tween neighbouring pixels, computation can be saved by re-
using the convolution results between neighbouring convo-
lutions. As such, the convolution computation, Pc, required
for two neighbouring pixels is not simply Pc1 + Pc2, but
Pc1 + (1 − o)Pc2, where o is the proportion of overlap
between the two regions. I.e. computing all spatial convolu-
tions simultaneously across an image is faster than comput-
ing the convolution independently for each pixel. Perform-
ing Harris event-by-event throws away the intermediate
calculations that can instead be re-used for neighbouring
convolutions.

An interesting alternative approach to apply this princi-
ple to event-cameras, is to calculate gradient convolutions
incrementally as in [14], or a training a neural network to
estimate gradients from event volumes [15]. However, [14]
uses a fixed decay parameter limiting use for variance in
scene dynamics, and [15] uses a fixed number of events
in an input volume, limiting use in scenes with different
amounts of texture. Both methods also involve a batch
operation sequentially in the event pipeline removing the
asynchronous, and low-latency properties of the system.
However, an interesting insight from both studies is the
implication that corner detection is solved using a Harris
algorithm, as long as the input is well formed. Such an
insight highlights the importance of creating the underlying
representation correctly.

Considering the above, luvHarris has been designed
with the following principles:

• A full patch of the surface gives more accurate cor-
ner classification than an arc, therefore the Harris
method is chosen.

• The surface over which Harris is applied needs to
have consistent maximum and minimum values to
enable a fixed classification threshold to be used and,
for robustness, should avoid arbitrary parameters
(i.e. a temporal window).

• A corner is a spatial pattern, therefore spatial convo-
lutions (or other pattern matching) is required. Re-
dundant processing can be avoided by re-using con-
volutions results for corner classification of neigh-
bouring pixels.



3 LOOK-UP EVENT-HARRIS

The proposed luvHarris is comprised of two parts:

• An event-by-event update of a threshold-ordinal sur-
face (TOS). The TOS is designed to accumulate visual
data so it is compatible with the Harris corner detec-
tion algorithm, and does so without the need for an
arbitrary temporal parameter.

• An as-fast-as-possible computation of a Harris-score
look-up-table, L: when an instance of Harris compu-
tation is finished, a new one begins, independently
from the number of events that need to be processed.

Our goal is to implement an on-line system in which
events are streamed live from a camera, and the processing
of corners must be real-time, for as high-as-possible event-
rate. Events are streamed into the processing module, and
events tagged as corners (and not-corners) are streamed out;
hence the asynchronous nature of events is fully maintained
in luvHarris. An overview of the main algorithm compo-
nents are illustrated in Fig. 2, and each block is explained
below.

3.1 Event-by-event computation: Threshold-ordinal
Surface

The event-by-event computation is fully asynchronous
and is comprised of two parts: 1. the update to the TOS, and
2. the assignment of the corner score.

The TOS, visualised in Fig. 3, provides a coherent and
bound spatial representation of the asynchronous events,
partially maintaining the information about their temporal
order and attempts to capture the most up-to-date position
of edges in the scene. The TOS is defined as:

TOS : (x, y) ∈ 0 ∪ [(255− TTOS)→ 255] (2)

and for any input event vi = 〈x, y, t〉, the full processing
to update the TOS and assign the corner classification vc is
defined in Algorithm 1, where kTOS is a local region half-
size, TTOS is a threshold, TR is the Harris score threshold,
and L is the 2D look-up table explained in Section 3.2.

The parameter kTOS defines the local region size and
the same value is used for the Harris detection region. The
appropriate selection of kTOS comes from the relative size
of objects and the camera resolution.

The parameter TTOS defines the approximate desired
number of non-zero TOS values in any region of size
2kTOS + 1. As the TOS value is set to 255 for new events,
and new neighbouring events subtract 1 from the entire
region, once a TOS values reaches 255− kTOS setting it to 0

Algorithm 1 Event-by-event computation (q1)

Require: v = 〈x, y, t〉, TOS
for x = vx − kTOS : vx + kTOS

for y = vy − kTOS : vy + kTOS

TOSxy ← TOSxy − 1
if TOSxy < 255− TTOS

TOSxy ← 0
TOSvxvy ← 255
vc ← Lxy > TR

Fig. 2: The flow of data through the system. Algorithm 1
is completely asynchronous and performed event-by-event,
assigning corner labels to each event. Algorithm 2 is de-
coupled from the processing schedule of Algorithm 1 and
provides an up-to-date 2D look-up table of corner scores
for each pixel, as often as possible based on the hardware.
The algorithms can be computed simultaneously if multiple
cores are available. If only a single core is available, luvHar-
ris can be run switching between algorithms sequentially;
in this case Algorithm 1 must be computed for all ‘already-
produced’ but unprocessed events.

achieves this desired number (under ideal conditions). The
appropriate selection of TTOS for corner detection is made
to form an edge of 2 pixels thick and TTOS = 2·(2kTOS+1).
For a typical patch size of 7× 7 (kTOS = 3), TTOS will take
the value of 14, which corresponds to a line of 7 pixels, 2
pixels thick, for a perfect clean edge passing through the
region.

The TOS is somewhat similar to the Speed Invariant
Time Surface [8] (SITS), in which it was concluded that the
ordinal method (the surface value corresponds to the order
of event arrival) promoted speed invariant representations
suitable for corner detection. To apply the considerations
presented in Section 2.2, the following differences are im-
plemented:

• The TOS has an unused range between 0 and
255− TTOS which increases the signal-to-noise ratio
of gradients for the Harris algorithm. Instead, the
SITS has a range 0→ (2r+1)2 with r ≡ kTOS . In this
case, gradient slopes can be of the same magnitude
as noise.

• Under good conditions the value of the TOS is forced
to return to 0 after an edge has passed, due to the
threshold TTOS . The SITS is more likely to have some
unknown value after an edge has passed. Therefore
the SITS can result in inconsistent gradient calcula-
tions depending on the history of the SITS at that
location.

• Concerning the specifics of implementation: the TOS
reduces the values of all values in the local region
to calculate the true ordinal value, while the SITS
only reduces values which are larger than that of the
current active pixel location.



(a)

(b) (c)

Fig. 3: Examples of the threshold-ordinal surface (a) update
patch, and (b-c) the full surface visualised as an image. (a)
is produced with kTOS = 3 leading to TTOS = 241, below
which all values are set to 0. The brightness of each pixel
represents the value in the TOS. (b) and (c) show that strong
edges and corners are present in the visual signal, while
blank regions are either zero (black), or filled with random
noise, neither of which produce a strong corner response.

3.2 As-fast-as-possible computation: Harris Look-up

The TOS can be used at any given point in time as an ‘im-
age’, with values between 0 and 255, on which to perform
the Harris calculation using the cv::cornerHarris func-
tion from OpenCV [10]. The output of cv::cornerHarris
is a 2D array which is directly used to populate the 2D look-
up-table, L, such that the value at each entry is the Harris
score.

Instead of applying a threshold to the output of
cv::cornerHarris and searching the array for pixels that
satisfy the threshold, in luvHarris L is directly populated
from this output. L is queried sparsely and asynchronously
by the event-stream and the threshold TR is therefore also
applied sparsely. If Lxy > TR then the event is tagged as a
corner.

One key aspect of luvHarris is that the data flow of
events is completely decoupled from the generation of L:
the TOS is updated asynchronously event-by-event, and L
is computed over the most up-to-date TOS as frequently as
computation allows. As L cannot be feasibly generated for
each single event, a single instance of L is used for multiple
events. The value terr = Lt − vt, describes the temporal
error between the time of an event, vt, and the time in

Algorithm 2 As-fast-as-possible computation (q2)

L← cv::cornerHarris(TOS)

which L was generated, Lt; the likelihood of event mis-
classification increases with terr. However, the relationship
is not linear, and there exists a reasonable period in which
terr results in little to zero change in the Harris score Lxy .
If a corner completely passes through a patch (i.e. defined
by kTOS) between updates of L, that corner will be ‘missed’
by the algorithm, however due to the nature of Harris the
algorithm has several pixels of tolerance.

3.3 Throughput Limitations

Real-time processing is achieved despite a variable number
of input events, as the processing for each event (TOS) is
decoupled from heavy algorithm processing (Harris). The
total processing, P , of an event-based algorithm is:

P = q1V + q2W (3)

where q1 is the number of computations required per-event,
V is the total number of events, and q2 is the number of
computations performed for, W , non-event-based processes.
If P > Pmax, where Pmax is the maximum number of
operations capable by the CPU in the period in question,
then the algorithm does not operate in real-time.

All previous state-of-the-art corner detection methods
perform all corner detection calculations encapsulated by q1,
and there are no non-event-based computations, i.e. q2 = 0.
Therefore the total computational requirements are directly
proportional to the number of events that are generated
by the camera. In general, fully event-by-event algorithms
suffer a reduced event throughput as the algorithm com-
plexity increases (given a fixed Pmax). While FAST and
ARC are computationally light algorithms, their maximum
event throughput (2.0M, and 3.3M events/s respectively
after filtering) are less than next-generation event-cameras
(typically over 4M events/s after filtering).

The general contribution of luvHarris to event-driven
algorithms is to shift processing from q1 to q2, to minimise
the computational requirements dependent on the event-
rate without completely removing q1 (which would result
in fully batch-based computation). For luvHarris, q1 cor-
responds to updating the TOS and a look-up of a single
pixel value in L, for each event, while q2 encapsulates the
Harris computation, which is independent from the number
of events that must be processed.

luvHarris also lends itself well to parallel operation: as
Algorithm 1 and Algorithm 2 are completely decoupled,
they can be simultaneously processed on separate CPU
cores, as illustrated in Fig. 2. However, on a single-core
CPU real-time operation can still be achieved by running
the Algorithms sequentially. Algorithm 1 must process all
events already produced and queued by the camera, after
which Algorithm 2 is performed once before switching back
to Algorithm 1. As the event-rate increases, the number of
events that must be processed in a single ‘batch’ increases
and corner misclassification can occur as more events are
associated with a single L, however the overall algorithm
latency is minimised1.

1. under the assumption the CPU is powerful enough to process
Algorithm 1 for each and every event, otherwise luvHarris will not
achieve real-time performance.



4 EXPERIMENTS AND RESULTS
The luvHarris algorithm is compared to eHarris, FAST and
ARC algorithms in terms of real-time operation and corner
detection accuracy. The shapes_6dof, poster_6dof,
boxes_6dof, and dynamic_6dof datasets [16] are used,
as in [5], [6]2. The boxes_6dof and poster_6dof datasets
were trimmed due to technical limitations loading the full
dataset into memory. Additionally we perform on-line ex-
periments with an ATIS (480× 360 resolution) camera run-
ning all algorithms live simultaneously, with a raw event-
rate of over 10M events/s, which becomes approximately
4M events/s if the event-filter is applied.

Computation is performed on an Intel Core i7-9750H
CPU @ 2.60GHz × 12. kTOS was set to 3, with an ap-
proximate region size equal to FAST and ARC, which use
two rings of radius 3 and 4 as in their respective publica-
tions. eHarris was implemented using the spatially-adaptive
method proposed in [5] using an identical region size and
choosing TTOS recent events, such that the underlying rep-
resentation was somewhat similar to luvHarris. The openCV
cv::cornerHarris method was computed for the local
patch event-by-event.

Algorithms are implemented ignoring the event polarity
and considering a single event-stream. Such an implemen-
tation varies from some original implementations, in which
polarities are computed separately. Such a choice may result
in slight variation of results, however the relevance of
results is not expected to be impacted, and all algorithms
are computed similarly such that the comparison between
algorithms should remain valid.

The full results are also shown as a video3.
A filtered set of each dataset was also produced that

removed events that occur consecutively at the same pixel
location in a short time-window (i.e. artificial refractory
period), or that are not correlated to their neighbours (i.e.
salt-and-pepper noise) (as explained in [6]). Results indicate
if the filtered or non-filtered data was used for the experiment.
We consider that the event-filter reduces the event-rate of
the dataset, rather than improving the algorithm through-
put. All algorithm comparisons are performed equally for
all algorithms regarding the use of the filters, therefore
while luvHarris does not explicitly need filtering, when
appropriate it is also tested using the filtered datasets to
give a valid comparison.

4.1 Event Throughput
Table. 1 shows the maximum event-throughput measured
for all algorithms by operating the algorithms at their limits.
We verify that our implementations of the state-of-the-
art algorithms are computationally on-par with available
implementations as the values agree with those presented
in [5], [6] accounting for some variation in the exact im-
plementation and the hardware used. Our metric considers
the event-throughput of the algorithms themselves, inde-
pendently of any filtering steps, which could be used on
all algorithms identically, or reading events from communi-
cation pipelines. The luvHarris method has an approximate

2. In our case we used only the 6-DoF datasets as the literature has
shown them to be the most challenging

3. https://zenodo.org/record/4739290

Measured (M event/s) Reported (M events/s)
eHarris 0.16 0.14

FAST 1.98 1.67
ARC 3.27 7.52*

luvHarris 8.59 -

TABLE 1: Maximum event throughput measured compared
to that reported in the literature [6]. Inconsistencies arise
from the exact method of measurement and hardware used,
however we report general agreement. *ARC throughput
reported in the literature considered the throughput of the
event-filter and detection algorithm together. Instead we
consider the filter as a reduction on the dataset event-
rate. Therefore we measure the maximum throughput of
the detection component of the algorithm, independently
if the filter is used or not. The discrepancy comes from the
way the measurement is expressed rather than an algorithm
difference.

2.6× speed improvement over the next best ARC algorithm.
Increasing the kTOS parameter will decrease the event-
throughput of the luvHarris algorithm.

Instantaneous delay should arise when, at any point in
time, the event-rate of the camera exceeds the maximum
event-throughput listed in Table 1. Delay was measured
during operation by calculating the difference between the
timestamp of the most recent event in a current event
packet, and the amount of time passed since beginning
the experiment. Both the experiments that use datasets and
those with a real camera were performed identically, in an
on-line fashion: by directly connecting the camera or stream-
ing the datasets with precise timing to the corner detection
modules. The major difference to typical off-line processing
is that in our experiments events cannot be processed if
they have not yet been produced. The algorithms cannot
compensate high-throughput periods by also processing
low-throughput periods and taking the average.

Fig. 4 quantitatively analyses the real-time performance
of all algorithms for each dataset. The eHarris implementa-
tion has the highest delay accumulation, and is non-real-
time for all datasets. FAST achieves real-time for some
datasets, but not for high-texture datasets during periods
of fast motion, e.g. the second half of the poster_6dof,
as indicated by a non-zero delay. Both ARC and luvHar-
ris managed to maintain real-time for all instances in all
datasets. The delay results achieved completely agree with
the real-time assessment in [17] and the expected through-
put reported in Table 1.

The ARC algorithm experienced some algorithm delay
when the on-line experiment reached approximately 3M
events/s (see Fig. 4e). The value is slightly lower than
reported in Table 1 as the measured delay additionally
incorporates overheads from the refractory period filter,
communications and reading of events. The luvHarris algo-
rithm also experienced small instantaneous delays, which
can arise from thread scheduling policies in a non-real-
time kernel, and synchronisation between reading events
simultaneously for all processing modules as well as the
points mentioned for the ARC algorithm. The delay of
luvHarris is several orders of magnitude smaller than the
other algorithms, given the log scale of the delay axis.

https://zenodo.org/record/4739290


(a) boxes_6dof

(b) dynamic_6dof

(c) poster_6dof

(d) shapes_6dof

(e) live with ATIS gen3

Fig. 4: Computed algorithm delay when streaming the
noise-filtered datasets into the algorithm module. Any value
above zero implies the algorithm is not running real-time.
eHarris is not practically possible to run on-line with the
Gen3 ATIS and is not present in (e). In (a)-(d) both luvHarris
and ARC overlap and exist on the same line (best viewed in
colour).

4.2 Corner Accuracy

Ground-truth: corners4 were computed for all
datasets by first creating a high temporal resolution in-
tensity image video using the e2vid [18] algorithm. The
ground-truth corner score was then assigned to each event
using the output of the OpenCV cornerHarris method
applied to the temporally closest frame. The Harris algo-
rithm is a widely accepted baseline in the field of computer
vision. Finally, a threshold was applied to the scores to result
in the set of true corner events, with an assumption that the
20% highest scoring of all events in a dataset were corner
events. Intensity frames were generated every 1000-3000
events depending on the texture in the dataset. For example,
boxes_6dof has more texture than shapes_6dof and
requires a larger batch size for e2vid, but the percentage
of corners in a scene is assumed to remain constant between
datasets for all experiments. From a qualitative assessment,
any error from processing the ground-truth in batches was
insignificant compared to other possible sources of error,
such as artefacts in the frame reconstruction. Fig. 5a shows
an example e2vid frame for each dataset, as well as the
slice of events associated with the single frame, indicating
those classified as corners by the original Harris algorithm
running on the reconstructed frames.

The assumption of 20% corners is not perfect as shapes
with different angle compositions will have different per-
centage of corners. However neither could a fixed ground-
truth threshold be used across all datasets as the average
image intensity was not consistent across datasets, i.e. the
output of e2vid was not always consistent. The fixed per-
centage was therefore chosen rather than arbitrarily setting
individual ground-truth thresholds for each dataset. The
datasets were afterwards verified qualitatively, to ensure
the generated ground-truth was valid, as can be confidently
seen in Fig. 5a.

Precision-recall: plots show algorithm accuracy as
each algorithm’s corner decision parameter is varied. For
example, an algorithm with a high threshold will result
in only a few corners (low recall), but should have less
false positive5 detections (high precision). The precision-
recall metric allows a better comparison between algorithms
which use different parameters for the corner decision. FAST
and ARC algorithms use the arc length for the decision
parameter; as the inclusion angle is swept from strictly 90◦

to anything in a 180◦ arc the algorithm goes from high-
precision to high-recall. Instead, eHarris and luvHarris use
the corner score from the Harris equation.

Fig. 5b shows that in almost all cases the FAST algorithm
results in the lowest performance as it, compared to eHarris,
trades off accuracy for faster computation [5]. FAST also has
no mechanism for 270◦ corners such that it misses possible
detections. In many datasets, the ARC algorithm achieves
an accuracy on-par with eHarris. As both are able to detect
270◦ corners it further supports the hypothesis of such a
problem with FAST.

4. used as the basis for analysis, we acknowledge the method is not
infallible. The task of deciding which events are corners will always be
somewhat ambiguous.

5. a false positive occurs when the algorithm classifies the event as a
corner but is not a corner according to the ground-truth



(a) The image is the output of e2vid [18] network. Blue pixels indicate events associated with the particular frame for
assigning ground-truth corner scores, with green pixels indicating positive corner labels.

(b) Precision-recall for each of the above datasets without applying filtering.

(c) Precision-recall for each of the above datasets with applying the filtering as in [6].

Fig. 5: Examples and detection accuracy results for the (left to right) boxes_6dof, dynamic_6dof, poster_6dof, and
shapes_6dof datasets [16]. Legend boxes indicate the percentage improvement over the eHarris baseline for 50% recall.
A perfect detection algorithm has a 1.0 precision and a 1.0 recall, and therefore good algorithms should push towards the
top right corner of the results plots.

The comparison of non-filtered (Fig. 5c) and filtered ARC
(Fig. 5b), especially for the shapes_6dof dataset, shows
the necessity of the filter for the algorithm. Additionally
the Harris-based algorithms also experience an accuracy im-
provement, using the filtered dataset. The spatially-adaptive
region of eHarris and the TOS of luvHarris become cleaner
with the filtered event input giving rise to more consis-
tent gradients. However, the filter is not necessary for the
algorithms, which allows for more flexibilty of use. The
superior accuracy of the Harris-based algorithms is clear on
the shapes_6dof dataset, given the reasons explained in
Section 2.1.

The luvHarris algorithm improves the accuracy of corner
detection over eHarris, substantially in most datasets.

Further analysis: the algorithm precision was com-
pared at the 50% recall mark. That is, the decision threshold
was tuned to detect 50% of the ground-truth corner events
for all algorithms, and the number of correct corners were
compared. The legend boxes in Fig. 5b and Fig. 5c indicate
the percentage improvement over the eHarris algorithm. In
all cases, luvHarris shows the biggest precision improve-
ment, up to a 40%.

At the 50% recall mark, all algorithms produce a cor-
ner recall that is constant compared to the event-rate of
the dataset. Such a result is expected for event-by-event
algorithms as each event is processed identically, but can

affect luvHarris as updates of L are not performed for
each and every event. The update rate of Algorithm 2
was approximately 1 kHz and was sufficient for consistent
recall on the shapes_6dof dataset, as shown in Fig. 6. For
the dynamic_6dof The eHarris and luvHarris algorithms
showed slight upwards trends for recall at faster event-rates
which would require further investigation to understand the
particular cause.

Computationally the SITS and TOS surface require al-
most identical computations, and are therefore exchange-
able in a real-time system. Fig. 7 shows a comparison of
luvHarris and eHarris, in terms of accuracy, when using
different surface types. , the results indicate:

• The SITS surface is tolerant to the raw event-stream
as the event-filter only marginally improved the per-
formance, i.e. comparing SITS curves between Fig. 7a
and Fig. 7b.

• The TOS filter performs significantly better in con-
junction with the event-filter.

• The TOS surface with the event-filter behaves very
similarly to the spatially-adaptive surface as seen by
the overlapping eHarris curves in Fig. 7b, i.e. the
TOS keeps the most recent kTOS pixels in any image
patch. The TOS surface is cheaper to compute than
the spatially-adaptive method.

• The best performance is achieved with the TOS and



(a) shapes_6dof

(b) dynamic_6dof

Fig. 6: Recall rates compared to event-rate for the (a)
shapes_6dof and (b) dynamic_6dof datasets. A thresh-
old that produced closest to 50% recall was selected for
each algorithm (but not possible to achieve exactly). The
measured update rate of luvHarris Algorithm 2 was approx-
imately 1 kHz. while other algorithms are event-by-event.

luvHarris with the event-filter.
• luvHarris performs significantly better than eHarris

independently of the underlying surface used.

4.3 Qualitative corner quality

Fig. 8 and 9 show corner traces for the shapes_6dof and
boxes_6dof datasets respectively, at a fixed synchronised
point in time. Fig. 10 shows multiple stills of the live ex-
periment, which is specifically not synchronised to indicate
not only the corner quality, but the delays in the algorithm
when operating live, under high event-rate conditions.

In simple scenes, e.g. Fig. 8 and Fig. 10a, all algorithms
are selective to corners, which validates a correct implemen-
tation of the algorithms. However, in cluttered scenes the se-
lectivity of all algorithms to corners is questionable. Fig. 10b
shows that FAST misses many corners, and Fig. 10c shows
that, as expected, ARC produces many false positives, given
it is designed to favour false positives, over missed detec-
tions [6], such that finally tracking can filter out the false
positive detections. However, in Fig. 9 both ARC and FAST
produce noisy responses such that it is hard to discern any
consistent corner traces that could be tracked well. Instead,
luvHarris provides consistent selective detections over time,
in addition to some noisy detections.

(a) Non-filtered events

(b) Filtered Events

Fig. 7: A comparison of Harris method (eHarris, luvHar-
ris) and surface methods (SITS, TOS, Spatially-Adaptive)
for corner accuracy on the shapes_6dof dataset. The
Spatially-Adaptive surface is incompatible with luvHarris.

(a) ARC (b) eHarris

(c) luvHarris (d) FAST

Fig. 8: Synchronised qualitative corner trails over a 100 ms
window for the shapes_6dof dataset. (b, c) Harris based
algorithms produce consistent, wider trails, while (a, d) arc-
based algorithms are more affected by missed corner events,
and falsely classifying edges as corners.



(a) ARC (b) eHarris

(c) luvHarris (d) FAST

Fig. 9: Synchronised qualitative corner trails over a 100 ms
window for the boxes_6dof dataset. In cluttered condi-
tions exactly what is a “corner” is more ambiguous, how-
ever it is clear that (c) luvHarris detects somewhat consistent
trails, while (a) ARC and (d) FAST do not.

5 DISCUSSION

Useability: from practical assessment of the previous
state-of-the-art with live camera data, it was clear that the
arc-based methods simply did not produce strong and con-
sistent corner detections, which is shown in the qualitative
results. Notably, ARC produced too many false positives
for useful results, and it is arguable whether a further
corner tracking layer would function well. Indeed, ARC
was designed in conjunction with a corner tracker, but we
argue that better underlying detections will always also
produce better tracking. Instead, the low event-throughput
of eHarris made it unsuitable for higher-resolution cam-
eras. Quantitatively, luvHarris improved over the state-of-
the-art in both accuracy and event-throughput, but more
importantly, the qualitative output shows consistent trails of
corners that should be more easily tracked for future motion
estimation tasks.

Achieving real-time for the HVGA resolution is an
improvement over previous state-of-the-art, however the
maximum event-rate of luvHarris might still be less than
satisfactory for even higher resolution cameras. Considering
our results, it may actually be impossible to perform event-
by-event computation for such cameras without specific
neuromorphic hardware.

Comparison to literature: a recent comparison of
event-based corner detectors [17] similarly concludes that
ARC was the only real-time detector on the RPG datasets,
but did not test higher-resolution event-cameras such as the
ATIS generation 3. Unfortunately, they only present true
positive rate as an accuracy metric, which does not give
a full understanding of the performance as the precision-
recall curves. Instead, [6] presented both true and false
positive rates, and similarly indicate that more than 50%
precision is not expected for event-based algorithms on RPG
datasets. Previous literature stating true and false positive

(a) [@12s, 3M events/s]

(b) [@21s, 5M events/s]

(c) [@28s, 8M events/s]

Fig. 10: An un-synchronised qualitative visualisation over
a 100 ms compute time of luvHarris, ARC, and FAST
run on-line simultaneously and delay accumulated by the
algorithm is stated. All algorithms are selective to corners
in simple scenes, but in complex scenes ARC and FAST
produce more false positives and less consistent detections
over time compared with luvHarris. eHarris was not run for
the on-line experiment as it was too computationally heavy.
The result is best seen in video format.

https://zenodo.org/record/4739290


rates are selecting a single point along the precision-recall
curve to display as a result. We instead propose that the
full curve gives a better overall picture of the true algorithm
accuracy. The exact value is, however, highly-dependent on
thresholds used to classify ground-truth.

The result that luvHarris outperformed eHarris on ac-
curacy, when using identical surface methods was surpris-
ing. It could be assumed that the two outputs would be
identical. Our hypothesis is that testing for corners at an
event-level temporal resolution could introduce noise in the
corner spatial pattern, which is smoothed by processing at
the lower rate of Algorithm 2. Alternatively, convolutional
edge cases when computing over the image patch may
affect the eHarris computation, which does not occur when
computing over then entire image as in luvHarris.

Dataset validity: from our results, the RPG
boxes_6dof and poster_6dof are questionable datasets
to use for quantitative comparison of corner detection. The
flat precision-recall curves obtained indicate the algorithms
are not performing much better than chance - however it
can be seen that on shapes_6dof the algorithms are indeed
selective to corners. Such a result could indicate an incorrect
ground-truth, but we suggest the datasets are too cluttered
to be easily used to measure performance. For example,
it does not matter exactly what an algorithm decides is a
‘corner’ as long as it consistently selects the same position
over time. In such cluttered datasets, it is hard to determine
precisely a ground-truth of corner and not-corner. Metrics
that require a tracking layer as presented in [17] may be
better for these datasets. Indeed, the results should also
be slightly biased towards the luvHarris on these datasets
as the ground-truth also uses the cv::cornerHarris
method. The same ‘type’ of corners may be selected de-
spite the very different images used for ground-truth and
luvHarris. While we suggest the quantitative results are
questionable, identifying consistent detections over-time in
these datasets is still important, as we show in Fig. 9.

Known issues: event-by-event algorithms are more
computationally efficient (use less resources for the same
result) than luvHarris for low-rate event-streams. In such
situations, the computation over the full retina results in
redundant computation, as opposed to only processing
change events. However, it could also be possible to further
improve luvHarris and dynamically throttle Algorithm 2
during periods of little motion.

The TOS is still defined by a parameter, TTOS . However,
TTOS is defined by the application rather than external con-
ditions (e.g. object speed). In this case, we set TTOS to give a
clear edge that promotes corner detection. The SITS instead
of the TOS could be a reasonable choice as its performance
didn’t degrade using the raw event-stream (no event-filter).
Removing the event-filter removes several parameters that
must be tuned to the application and conditions. For maxi-
mum accuracy, the TOS and event-filter should be used.

Event-by-event v.s. batch: an ongoing discussion oc-
curs around the validity of batch computation for event-
based cameras. The evidence in this study suggests that,
for CPU processing of high-resolution cameras, only very
limited processing can be performed for every single event.
Indeed, the bottle-neck of luvHarris was still the event-
by-event TOS update per event, rather than the rate of

cv::cornerHarris over the full retina. We therefore pro-
pose that the hybrid concept presented in this paper offers a
good compromise between the two - complex algorithmic
computations are performed in batch, while the event-
stream is still read and output asynchronously. The events
flow in and out just as in any fully event-by-event algorithm.
On dedicated neuromorphic hardware fully event-by-event
algorithms can still be realised.

6 CONCLUSION
We have presented a practical corner detector for event-
based camera specifically addressing problems with limits
on event-throughput and detector accuracy. Accuracy is im-
proved by using the Harris algorithm; compared to the arc-
based methods it uses more information to give a consistent
result. The consistent corner trails even in cluttered con-
ditions indicate the luvHarris algorithm will also produce
consistent motion estimation when tracking corners over
time.

Compared to previous event-driven Harris implementa-
tions, we use the proposed threshold-ordinal-surface which
eliminates the need for a temporal parameter, and has a
simple update methodology. The contribution of the TOS
also extends beyond the corner detection algorithm, and the
surface could also be used in other applications. The full lu-
vHarris algorithm is simple and can be implemented in very
few lines of code, and builds on open-source, optimised,
libraries.

Event-throughput for high-resolution cameras of multi-
ple million events/s was achieved in real-time by decou-
pling the heavy Harris calculations from the event-stream.
Instead, the only calculations that were done event-by-event
was the update of the TOS and a simple look-up of the best
effort Harris score. The concept of decoupling event streams
from the complex algorithm component is a valuable in-
sight that sits somewhere between fully asynchronous and
batch-based processing and can be applied to other event-
driven vision algorithms; to enable real-time event-based
algorithms, possibly an approach using look-up table events
(luv) is all you need.
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