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Abstract

Vision-and-language reasoning requires an un-

derstanding of visual concepts, language se-

mantics, and, most importantly, the align-

ment and relationships between these two

modalities. We thus propose the LXMERT

(Learning Cross-Modality Encoder Represen-

tations from Transformers) framework to learn

these vision-and-language connections. In

LXMERT, we build a large-scale Transformer

model that consists of three encoders: an ob-

ject relationship encoder, a language encoder,

and a cross-modality encoder. Next, to en-

dow our model with the capability of con-

necting vision and language semantics, we

pre-train the model with large amounts of

image-and-sentence pairs, via five diverse rep-

resentative pre-training tasks: masked lan-

guage modeling, masked object prediction

(feature regression and label classification),

cross-modality matching, and image ques-

tion answering. These tasks help in learn-

ing both intra-modality and cross-modality re-

lationships. After fine-tuning from our pre-

trained parameters, our model achieves the

state-of-the-art results on two visual ques-

tion answering datasets (i.e., VQA and GQA).

We also show the generalizability of our pre-

trained cross-modality model by adapting it to

a challenging visual-reasoning task, NLVR2,

and improve the previous best result by 22%
absolute (54% to 76%). Lastly, we demon-

strate detailed ablation studies to prove that

both our novel model components and pre-

training strategies significantly contribute to

our strong results.1

1 Introduction

Vision-and-language reasoning requires the un-

derstanding of visual contents, language seman-

tics, and cross-modal alignments and relation-

1Published at EMNLP 2019. Code and pre-trained mod-
els publicly available at: https://github.com/airsplay/lxmert

ships. There has been substantial past works in

separately developing backbone models with bet-

ter representations for the single modalities of vi-

sion and of language. For visual-content under-

standing, people have developed several backbone

models (Simonyan and Zisserman, 2014; Szegedy

et al., 2015; He et al., 2016) and shown their ef-

fectiveness on large vision datasets (Deng et al.,

2009; Lin et al., 2014; Krishna et al., 2017). Pi-

oneering works (Girshick et al., 2014; Xu et al.,

2015) also show the generalizability of these pre-

trained (especially on ImageNet) backbone mod-

els by fine-tuning them on different tasks. In terms

of language understanding, last year, we witnessed

strong progress towards building a universal back-

bone model with large-scale contextualized lan-

guage model pre-training (Peters et al., 2018; Rad-

ford et al., 2018; Devlin et al., 2019), which

has improved performances on various tasks (Ra-

jpurkar et al., 2016; Wang et al., 2018) to sig-

nificant levels. Despite these influential single-

modality works, large-scale pretraining and fine-

tuning studies for the modality-pair of vision and

language are still under-developed.

Therefore, we present one of the first works in

building a pre-trained vision-and-language cross-

modality framework and show its strong perfor-

mance on several datasets. We name this frame-

work “LXMERT: Learning Cross-Modality En-

coder Representations from Transformers” (pro-

nounced: ‘leksmert’). This framework is mod-

eled after recent BERT-style innovations while

further adapted to useful cross-modality scenar-

ios. Our new cross-modality model focuses on

learning vision-and-language interactions, espe-

cially for representations of a single image and its

descriptive sentence. It consists of three Trans-

former (Vaswani et al., 2017) encoders: an object

relationship encoder, a language encoder, and a

cross-modality encoder. In order to better learn

https://github.com/airsplay/lxmert


5101

the cross-modal alignments between vision and

language, we next pre-train our model with five

diverse representative tasks: (1) masked cross-

modality language modeling, (2) masked object

prediction via RoI-feature regression, (3) masked

object prediction via detected-label classification,

(4) cross-modality matching, and (5) image ques-

tion answering. Different from single-modality

pre-training (e.g., masked LM in BERT), this

multi-modality pre-training allows our model to

infer masked features either from the visible ele-

ments in the same modality, or from aligned com-

ponents in the other modality. In this way, it helps

build both intra-modality and cross-modality rela-

tionships.

Empirically, we first evaluate LXMERT on

two popular visual question-answering datasets,

VQA (Antol et al., 2015) and GQA (Hudson and

Manning, 2019). Our model outperforms previ-

ous works in all question categories (e.g., Binary,

Number, Open) and achieves state-of-the-art re-

sults in terms of overall accuracy. Further, to show

the generalizability of our pre-trained model, we

fine-tune LXMERT on a challenging visual rea-

soning task, Natural Language for Visual Reason-

ing for Real (NLVR2) (Suhr et al., 2019), where

we do not use the natural images in their dataset

for our pre-training, but fine-tune and evaluate

on these challenging, real-world images. In this

setup, we achieve a large improvement of 22% ab-

solute in accuracy (54% to 76%, i.e., 48% relative

error reduction) and 30% absolute in consistency

(12% to 42%, i.e., 34% relative error reduction).

Lastly, we conduct several analysis and ablation

studies to prove the effectiveness of our model

components and diverse pre-training tasks by re-

moving them or comparing them with their alter-

native options. Especially, we use several ways to

take the existing BERT model and its variants, and

show their ineffectiveness in vision-and-language

tasks, which overall proves the need of our new

cross-modality pre-training framework.

2 Model Architecture

We build our cross-modality model with self-

attention and cross-attention layers following the

recent progress in designing natural language pro-

cessing models (e.g., transformers (Vaswani et al.,

2017)). As shown in Fig. 1, our model takes two

inputs: an image and its related sentence (e.g., a

caption or a question). Each image is represented

as a sequence of objects, and each sentence is rep-

resented as a sequence of words. Via careful de-

sign and combination of these self-attention and

cross-attention layers, our model is able to gen-

erate language representations, image representa-

tions, and cross-modality representations from the

inputs. Next, we describe the components of this

model in detail.

2.1 Input Embeddings

The input embedding layers in LXMERT con-

vert the inputs (i.e., an image and a sentence)

into two sequences of features: word-level sen-

tence embeddings and object-level image embed-

dings. These embedding features will be further

processed by the latter encoding layers.

Word-Level Sentence Embeddings A sentence

is first split into words {w1, . . . , wn} with length

of n by the same WordPiece tokenizer (Wu et al.,

2016) in Devlin et al. (2019). Next, as shown in

Fig. 1, the word wi and its index i (wi’s absolute

position in the sentence) are projected to vectors

by embedding sub-layers, and then added to the

index-aware word embeddings:

ŵi = WordEmbed (wi)

ûi = IdxEmbed (i)

hi = LayerNorm (ŵi + ûi)

Object-Level Image Embeddings Instead of

using the feature map output by a convolutional

neural network, we follow Anderson et al. (2018)

in taking the features of detected objects as the em-

beddings of images. Specifically, the object detec-

tor detects m objects {o1, . . . , om} from the im-

age (denoted by bounding boxes on the image in

Fig. 1). Each object oj is represented by its po-

sition feature (i.e., bounding box coordinates) pj
and its 2048-dimensional region-of-interest (RoI)

feature fj . Instead of directly using the RoI feature

fj without considering its position pj in Anderson

et al. (2018), we learn a position-aware embedding

vj by adding outputs of 2 fully-connected layers:

f̂j = LayerNorm (WFfj + bF)

p̂j = LayerNorm (WPpj + bP)

vj =
(

f̂j + p̂j

)

/2 (1)

In addition to providing spatial information in vi-

sual reasoning, the inclusion of positional infor-

mation is necessary for our masked object pre-

diction pre-training task (described in Sec. 3.1.2).
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Figure 1: The LXMERT model for learning vision-and-language cross-modality representations. ‘Self’ and

‘Cross’ are abbreviations for self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes

a feed-forward sub-layer.

Since the image embedding layer and the follow-

ing attention layers are agnostic to the absolute in-

dices of their inputs, the order of the object is not

specified. Lastly, in Equation 1, the layer normal-

ization is applied to the projected features before

summation so as to balance the energy of the two

different types of features.

2.2 Encoders

We build our encoders, i.e., the language encoder,

the object-relationship encoder, and the cross-

modality encoder, mostly on the basis of two kinds

of attention layers: self-attention layers and cross-

attention layers. We first review the definition and

notations of attention layers and then discuss how

they form our encoders.

Background: Attention Layers Attention lay-

ers (Bahdanau et al., 2014; Xu et al., 2015) aim to

retrieve information from a set of context vectors

{yj} related to a query vector x. An attention layer

first calculates the matching score aj between the

query vector x and each context vector yj . Scores

are then normalized by softmax:

aj = score(x, yj)

αj = exp(aj)/
∑

k
exp(ak)

The output of an attention layer is the weighted

sum of the context vectors w.r.t. the softmax-

normalized score: AttX→Y (x, {yj}) =
∑

j αjyj .
An attention layer is called self-attention when the

query vector x is in the set of context vectors {yj}.

Specifically, we use the multi-head attention fol-

lowing Transformer (Vaswani et al., 2017).

Single-Modality Encoders After the embed-

ding layers, we first apply two transformer en-

coders (Vaswani et al., 2017), i.e., a language en-

coder and an object-relationship encoder, and

each of them only focuses on a single modal-

ity (i.e., language or vision). Different from

BERT (Devlin et al., 2019), which applies the

transformer encoder only to language inputs, we

apply it to vision inputs as well (and to cross-

modality inputs as described later below). Each

layer (left dashed blocks in Fig. 1) in a single-

modality encoder contains a self-attention (‘Self’)

sub-layer and a feed-forward (‘FF’) sub-layer,

where the feed-forward sub-layer is further com-

posed of two fully-connected sub-layers. We take

NL and NR layers in the language encoder and the

object-relationship encoder, respectively. We add

a residual connection and layer normalization (an-

notated by the ‘+’ sign in Fig. 1) after each sub-

layer as in Vaswani et al. (2017).

Cross-Modality Encoder Each cross-modality

layer (the right dashed block in Fig. 1) in the cross-

modality encoder consists of two self-attention

sub-layers, one bi-directional cross-attention sub-

layer, and two feed-forward sub-layers. We stack

(i.e., using the output of k-th layer as the input

of (k+1)-th layer) NX these cross-modality lay-

ers in our encoder implementation. Inside the k-th

layer, the bi-directional cross-attention sub-layer

(‘Cross’) is first applied, which contains two uni-

directional cross-attention sub-layers: one from

language to vision and one from vision to lan-

guage. The query and context vectors are the out-

puts of the (k-1)-th layer (i.e., language features

{hk−1

i } and vision features {vk−1

j }):

ĥki = CrossAttL→R

(

hk−1

i ,{vk−1

1
, . . . , vk−1

m }
)

v̂kj = CrossAttR→L

(

vk−1

j ,{hk−1

1
, . . . , hk−1

n }
)
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Figure 2: Pre-training in LXMERT. The object RoI features and word tokens are masked. Our five pre-training

tasks learn the feature representations based on these masked inputs. Special tokens are in brackets and classifica-

tion labels are in braces.

The cross-attention sub-layer is used to exchange

the information and align the entities between

the two modalities in order to learn joint cross-

modality representations. For further building in-

ternal connections, the self-attention sub-layers

(‘Self’) are then applied to the output of the cross-

attention sub-layer:

h̃ki = SelfAttL→L

(

ĥki , {ĥ
k
1, . . . , ĥ

k
n}

)

ṽkj = SelfAttR→R

(

v̂kj , {v̂
k
1 , . . . , v̂

k
m}

)

Lastly, the k-th layer output {hki } and {vkj } are

produced by feed-forward sub-layers (‘FF’) on top

of {ĥki } and {v̂kj }. We also add a residual connec-

tion and layer normalization after each sub-layer,

similar to the single-modality encoders.

2.3 Output Representations

As shown in the right-most part of Fig. 1, our

LXMERT cross-modality model has three outputs

for language, vision, and cross-modality, respec-

tively. The language and vision outputs are the

feature sequences generated by the cross-modality

encoder. For the cross-modality output, follow-

ing the practice in Devlin et al. (2019), we ap-

pend a special token [CLS] (denoted as the top

yellow block in the bottom branch of Fig. 1) before

the sentence words, and the corresponding feature

vector of this special token in language feature se-

quences is used as the cross-modality output.

3 Pre-Training Strategies

In order to learn a better initialization which un-

derstands connections between vision and lan-

guage, we pre-train our model with different

modality pre-training tasks on a large aggregated

dataset.

3.1 Pre-Training Tasks

3.1.1 Language Task: Masked

Cross-Modality LM

On the language side, we take the masked cross-

modality language model (LM) task. As shown

in the bottom branch of Fig. 2, the task setup

is almost same to BERT (Devlin et al., 2019):

words are randomly masked with a probabil-

ity of 0.15 and the model is asked to predict

these masked words. In addition to BERT where

masked words are predicted from the non-masked

words in the language modality, LXMERT, with

its cross-modality model architecture, could pre-

dict masked words from the vision modality as

well, so as to resolve ambiguity. For example, as

shown in Fig. 2, it is hard to determine the masked

word ‘carrot’ from its language context but the

word choice is clear if the visual information is

considered. Hence, it helps building connections

from the vision modality to the language modality,

and we refer to this task as masked cross-modality

LM to emphasize this difference. We also show

that loading BERT parameters into LXMERT will

do harm to the pre-training procedure in Sec. 5.1

since BERT can perform relatively well in the

language modality without learning these cross-

modality connections.

3.1.2 Vision Task: Masked Object Prediction

As shown in the top branch of Fig. 2, we pre-

train the vision side by randomly masking ob-

jects (i.e., masking RoI features with zeros) with

a probability of 0.15 and asking the model to pre-

dict proprieties of these masked objects. Similar

to the language task (i.e., masked cross-modality

LM), the model can infer the masked objects ei-

ther from visible objects or from the language

modality. Inferring the objects from the vision
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Image Split Images
Sentences (or Questions)

COCO-Cap VG-Cap VQA GQA VG-QA All

MS COCO - VG 72K 361K - 387K - - 0.75M

MS COCO ∩ VG 51K 256K 2.54M 271K 515K 724K 4.30M

VG - MS COCO 57K - 2.85M - 556K 718K 4.13M

All 180K 617K 5.39M 658K 1.07M 1.44M 9.18M

Table 1: Amount of data for pre-training. Each image has multiple sentences/questions. ‘Cap’ is caption. ‘VG’ is

Visual Genome. Since MS COCO and VG share 51K images, we list it separately to ensure disjoint image splits.

side helps learn the object relationships, and infer-

ring from the language side helps learn the cross-

modality alignments. Therefore, we perform two

sub-tasks: RoI-Feature Regression regresses the

object RoI feature fj with L2 loss, and Detected-

Label Classification learns the labels of masked

objects with cross-entropy loss. In the ‘Detected-

Label Classification’ sub-task, although most of

our pre-training images have object-level anno-

tations, the ground truth labels of the annotated

objects are inconsistent in different datasets (e.g.,

different number of label classes). For these rea-

sons, we take detected labels output by Faster R-

CNN (Ren et al., 2015). Although detected labels

are noisy, experimental results show that these la-

bels contribute to pre-training in Sec. 5.3.

3.1.3 Cross-Modality Tasks

As shown in the middle-rightmost part of Fig. 2,

to learn a strong cross-modality representation, we

pre-train the LXMERT model with 2 tasks that ex-

plicitly need both language and vision modalities.

Cross-Modality Matching For each sentence,

with a probability of 0.5, we replace it with a mis-

matched2 sentence. Then, we train a classifier to

predict whether an image and a sentence match

each other. This task is similar to ‘Next Sentence

Prediction’ in BERT (Devlin et al., 2019).

Image Question Answering (QA) In order to

enlarge the pre-training dataset (see details in

Sec. 3.2), around 1/3 sentences in the pre-training

data are questions about the images. We ask

the model to predict the answer to these image-

related questions when the image and the ques-

tion are matched (i.e., not randomly replaced in

the cross-modality matching task). We show that

2 We take a sentence from another image as the mis-
matched sentence. Although the sentence and the image still
have chance to match each other, this probability is very low.

pre-training with this image QA leads to a better

cross-modality representation in Sec. 5.2.

3.2 Pre-Training Data

As shown in Table. 1, we aggregate pre-training

data from five vision-and-language datasets whose

images come from MS COCO (Lin et al., 2014)

or Visual Genome (Krishna et al., 2017). Be-

sides the two original captioning datasets, we also

aggregate three large image question answering

(image QA) datasets: VQA v2.0 (Antol et al.,

2015), GQA balanced version (Hudson and Man-

ning, 2019), and VG-QA (Zhu et al., 2016). We

only collect train and dev splits in each dataset to

avoid seeing any test data in pre-training. We con-

duct minimal pre-processing on the five datasets to

create aligned image-and-sentence pairs. For each

image question answering dataset, we take ques-

tions as sentences from the image-and-sentence

data pairs and take answers as labels in the im-

age QA pre-training task (described in Sec. 3.1.3).

This provides us with a large aligned vision-and-

language dataset of 9.18M image-and-sentence

pairs on 180K distinct images. In terms of tokens,

the pre-training data contain around 100M words

and 6.5M image objects.

3.3 Pre-Training Procedure

We pre-train our LXMERT model on the large ag-

gregated dataset (discussed in Sec. 3.2) via the pre-

training tasks (Sec. 3.1). The details about the data

splits are in the Appendix. The input sentences are

split by the WordPiece tokenizer (Wu et al., 2016)

provided in BERT (Devlin et al., 2019). The ob-

jects are detected by Faster R-CNN (Ren et al.,

2015) which is pre-trained on Visual Genome

(provided by Anderson et al. (2018)). We do not

fine-tune the Faster R-CNN detector and freeze

it as a feature extractor. Different from detect-

ing variable numbers of objects in Anderson et al.

(2018), we consistently keep 36 objects for each
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Method
VQA GQA NLVR2

Binary Number Other Accu Binary Open Accu Cons Accu

Human - - - - 91.2 87.4 89.3 - 96.3

Image Only - - - - 36.1 1.74 17.8 7.40 51.9

Language Only 66.8 31.8 27.6 44.3 61.9 22.7 41.1 4.20 51.1

State-of-the-Art 85.8 53.7 60.7 70.4 76.0 40.4 57.1 12.0 53.5

LXMERT 88.2 54.2 63.1 72.5 77.8 45.0 60.3 42.1 76.2

Table 2: Test-set results. VQA/GQA results are reported on the ‘test-standard’ splits and NLVR2 results are

reported on the unreleased test set (‘Test-U’). The highest method results are in bold. Our LXMERT framework

outperforms previous (comparable) state-of-the-art methods on all three datasets w.r.t. all metrics.

image to maximize the pre-training compute uti-

lization by avoiding padding. For the model archi-

tecture, we set the numbers of layers NL, NX, and

NR to 9, 5, and 5 respectively.3 More layers are

used in the language encoder to balance the visual

features extracted from 101-layer Faster R-CNN.

The hidden size 768 is the same as BERTBASE. We

pre-train all parameters in encoders and embed-

ding layers from scratch (i.e., model parameters

are randomly initialized or set to zero). We also

show results of loading pre-trained BERT parame-

ters in Sec. 5.1. LXMERT is pre-trained with mul-

tiple pre-training tasks and hence multiple losses

are involved. We add these losses with equal

weights. For the image QA pre-training tasks, we

create a joint answer table with 9500 answer can-

didates which roughly cover 90% questions in all

three image QA datasets.

We take Adam (Kingma and Ba, 2014) as

the optimizer with a linear-decayed learning-rate

schedule (Devlin et al., 2019) and a peak learn-

ing rate at 1e − 4. We train the model for 20
epochs (i.e., roughly 670K4 optimization steps)

with a batch size of 256. We only pre-train with

image QA task (see Sec. 3.1.3) for the last 10
epochs, because this task converges faster and em-

pirically needs a smaller learning rate. The whole

pre-training process takes 10 days on 4 Titan Xp.

Fine-tuning Fine-tuning is fast and robust. We

only perform necessary modification to our model

with respect to different tasks (details in Sec. 4.2).

We use a learning rate of 1e− 5 or 5e− 5, a batch

size of 32, and fine-tune the model from our pre-

3If we count a single modality layer as one half cross-
modality layer, the equivalent number of cross-modality lay-
ers is (9 + 5)/2 + 5 = 12, which is same as the number of
layers in BERTBASE.

4For comparison, ResNet on ImageNet classification
takes 600K steps and BERT takes 1000K steps.

trained parameters for 4 epochs.

4 Experimental Setup and Results

In this section, we first introduce the datasets that

are used to evaluate our LXMERT framework and

empirically compare our single-model results with

previous best results.

4.1 Evaluated Datasets

We use three datasets for evaluating our LXMERT

framework: VQA v2.0 dataset (Goyal et al.,

2017), GQA (Hudson and Manning, 2019), and

NLVR2. See details in Appendix.

4.2 Implementation Details

On VQA and GQA, we fine-tune our model from

the pre-trained snapshot without data augmenta-

tion (analysis in Sec. 5.2). When training GQA,

we only take raw questions and raw images as in-

puts and do not use other supervisions (e.g., func-

tional programs and scene graphs). Since each da-

tum in NLVR2 has two natural images img0, img1
and one language statement s, we use LXMERT

to encode the two image-statement pairs (img0, s)
and (img1, s), then train a classifier based on the

concatenation of the two cross-modality outputs.

More details in Appendix.

4.3 Empirical Comparison Results

We compare our single-model results with pre-

vious best published results on VQA/GQA test-

standard sets and NLVR2 public test set. Be-

sides previous state-of-the-art (SotA) methods, we

also show the human performance and image-

only/language-only results when available.

VQA The SotA result is BAN+Counter in Kim

et al. (2018), which achieves the best accuracy

among other recent works: MFH (Yu et al.,
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2018), Pythia (Jiang et al., 2018), DFAF (Gao

et al., 2019a), and Cycle-Consistency (Shah et al.,

2019).5 LXMERT improves the SotA over-

all accuracy (‘Accu’ in Table 2) by 2.1% and

has 2.4% improvement on the ‘Binary’/‘Other’

question sub-categories. Although LXMERT

does not explicitly take a counting module as in

BAN+Counter, our result on the counting-related

questions (‘Number’) is still equal or better.6

GQA The GQA (Hudson and Manning, 2019)

SotA result is taken from BAN (Kim et al., 2018)

on the public leaderbaord. Our 3.2% accuracy

gain over the SotA GQA method is higher than

VQA, possibly because GQA requires more vi-

sual reasoning. Thus our framework, with novel

encoders and cross-modality pre-training, is suit-

able and achieves a 4.6% improvement on open-

domain questions (‘Open’ in Table 2).7

NLVR2 NLVR2 (Suhr et al., 2019) is a chal-

lenging visual reasoning dataset where some ex-

isting approaches (Hu et al., 2017; Perez et al.,

2018) fail, and the SotA method is ‘MaxEnt’ in

Suhr et al. (2019). The failure of existing meth-

ods (and our model w/o pre-training in Sec. 5.1)

indicates that the connection between vision and

language may not be end-to-end learned in a

complex vision-and-language task without large-

scale pre-training. However, with our novel pre-

training strategies in building the cross-modality

connections, we significantly improve the accu-

racy (‘Accu’ of 76.2% on unreleased test set ‘Test-

U’, in Table 2) by 22%. Another evaluation met-

ric consistency measures the proportion of unique

sentences for which all related image pairs8 are

correctly predicted. Our LXMERT model im-

proves consistency (‘Cons’) to 42.1% (i.e., by 3.5
times).9

5 These are state-of-the-art methods at the time of our
EMNLP May 21, 2019 submission deadline. Since then,
there have been some recently updated papers such as
MCAN (Yu et al., 2019b), MUAN (Yu et al., 2019a), and
MLI (Gao et al., 2019b). MCAN (VQA challenge ver-
sion) uses stronger mixture of detection features and achieves
72.8% on VQA 2.0 test-standard. MUAN achieves 71.1%
(compared to our 72.5%).

6Our result on VQA v2.0 ‘test-dev’ is 72.4%.
7Our result on GQA ‘test-dev’ is 60.0%.
8Each statement in NLVR2 is related to multiple image

pairs in order to balance the dataset answer distribution.
9These are the unreleased test set (‘Test-U’) results. On

the public test set (‘Test-P’), LXMERT achieves 74.5% Accu
and 39.7% Cons.

Method VQA GQA NLVR2

LSTM + BUTD 63.1 50.0 52.6

BERT + BUTD 62.8 52.1 51.9

BERT + 1 CrossAtt 64.6 55.5 52.4

BERT + 2 CrossAtt 65.8 56.1 50.9

BERT + 3 CrossAtt 66.4 56.6 50.9

BERT + 4 CrossAtt 66.4 56.0 50.9

BERT + 5 CrossAtt 66.5 56.3 50.9

Train + BERT 65.5 56.2 50.9

Train + scratch 65.1 50.0 50.9

Pre-train + BERT 68.8 58.3 70.1

Pre-train + scratch 69.9 60.0 74.9

Table 3: Dev-set accuracy of using BERT.

5 Analysis

In this section, we analyze our LXMERT

framework by comparing it with some alter-

native choices or by excluding certain model

components/pre-training strategies.

5.1 BERT versus LXMERT

BERT (Devlin et al., 2019) is a pre-trained lan-

guage encoder which improves several language

tasks. As shown in Table 3, we discuss sev-

eral ways to incorporate a BERTBASE pre-trained

model for vision-language tasks and empirically

compare it with our LXMERT approach. Al-

though our full model achieves accuracy of 74.9%
on NLVR2, all results without LXMERT pre-

training is around 22% absolute lower.

BERT+BUTD Bottom-Up and Top-Down

(BUTD) attention (Anderson et al., 2018) method

encodes questions with GRU (Chung et al.,

2015), then attends to object RoI features {fj} to

predict the answer. We apply BERT to BUTD by

replacing its GRU language encoder with BERT.

As shown in the first block of Table. 3, results of

BERT encoder is comparable to LSTM encoder.

BERT+CrossAtt Since BUTD only takes the

raw RoI features {fj} without considering the ob-

ject positions {pj} and object relationships, we

enhance BERT+BUTD with our novel position-

aware object embedding (in Sec. 2.1) and cross-

modality layers (in Sec. 2.2). As shown in the

second block of Table 3, the result of 1 cross-

modality layer is better than BUTD, while stack-

ing more cross-modality layers further improves

it. However, without our cross-modality pre-
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Method VQA GQA NLVR2

1. P20 + DA 68.0 58.1 -

2. P20 + FT 68.9 58.2 72.4

3. P10+QA10 + DA 69.1 59.2 -

4. P10+QA10 + FT 69.9 60.0 74.9

Table 4: Dev-set accuracy showing the importance

of the image-QA pre-training task. P10 means pre-

training without the image-QA loss for 10 epochs while

QA10 means pre-training with the image-QA loss. DA

and FT mean fine-tuning with and without Data Aug-

mentation, resp.

training (BERT is language-only pre-trained), re-

sults become stationary after adding 3 cross-

attention layers and have a 3.4% gap to our full

LXMERT framework (the last bold row in Ta-

ble 3).

BERT+LXMERT We also try loading BERT

parameters10 into LXMERT, and use it in model

training (i.e., without LXMERT pre-training) or

in pre-training. We show results in the last block

of Table. 3. Compared to the ‘from scratch’ (i.e.,

model parameters are randomly initialized) ap-

proach, BERT improves the fine-tuning results but

it shows weaker results than our full model. Em-

pirically, pre-training LXMERT initialized with

BERT parameters has lower (i.e., better) pre-

training loss for the first 3 pre-training epochs

but was then caught up by our ‘from scratch’ ap-

proach. A possible reason is that BERT is already

pre-trained with single-modality masked language

model, and thus could do well based only on the

language modality without considering the con-

nection to the vision modality (as discussed in

Sec. 3.1.1).

5.2 Effect of the Image QA Pre-training Task

We show the importance of image QA pre-training

task (introduced in Sec. 3.1.3) by excluding it or

comparing it with its alternative: data augmenta-

tion.

Pre-training w/ or w/o Image QA To fairly

compare with our original pre-training procedure

(10 epochs w/o QA + 10 epochs w/ QA, details in

Sec. 3.3) , we pre-train LXMERT model without

image QA task for 20 epochs. As shown in Ta-

10 Since our language encoder is same as BERTBASE, ex-
cept the number of layers (i.e., LXMERT has 9 layers and
BERT has 12 layers), we load the top 9 BERT-layer parame-
ters into the LXMERT language encoder.

Method VQA GQA NLVR2

1. No Vision Tasks 66.3 57.1 50.9

2. Feat 69.2 59.5 72.9

3. Label 69.5 59.3 73.5

4. Feat + Label 69.9 60.0 74.9

Table 5: Dev-set accuracy of different vision pre-

training tasks. ‘Feat’ is RoI-feature regression; ‘Label’

is detected-label classification.

ble 4 rows 2 and 4, pre-training with QA loss im-

proves the result on all three datasets. The 2.1%
improvement on NLVR2 shows the stronger rep-

resentations learned with image-QA pre-training,

since all data (images and statements) in NLVR2

are not used in pre-training.

Pre-training versus Data Augmentation Data

augmentation (DA) is a technique which is used

in several VQA implementations (Anderson et al.,

2018; Kim et al., 2018; Jiang et al., 2018). It

increases the amount of training data by adding

questions from other image QA datasets. Our

LXMERT framework instead uses multiple QA

datasets in pre-training and is fine-tuned only on

one specific dataset. Since the overall amounts of

data used in pre-training and DA are similar, we

thus can fairly compare these two strategies, and

results show that our QA pre-training approach

outperforms DA. We first exclude the QA task in

our pre-training and show the results of DA fine-

tuning. As shown in Table. 4 row 1, DA fine-

tuning decreases the results compared to non-DA

fine-tuning in row 2. Next, we use DA after QA-

pre-training (row 3) and DA also drops the results.

5.3 Effect of Vision Pre-training tasks

We analyze the effect of different vision pre-

training tasks in Table 5. Without any vision tasks

in pre-training (i.e., only using the language and

cross-modality pre-training tasks), the results (row

1 of Table 5) are similar to BERT+3 CrossAtt in

Table 3. The two visual pre-training tasks (i.e.,

RoI-feature regression and detected-label classifi-

cation) could get reasonable results (row 2 and row

3) on their own, and jointly pre-training with these

two tasks achieves the highest results (row 4).

6 Related Work

Model Architecture: Our model is closely related

to three ideas: bi-directional attention, Trans-

former, and BUTD. Lu et al. (2016) applies bi-
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directional attention to the vision-and-language

tasks while its concurrent work BiDAF (Seo et al.,

2017) adds modeling layers in solving reading

comprehension. Transformer (Vaswani et al.,

2017) is first used in machine translation, we

utilize it as our single-modality encoders and

design our cross-modality encoder based on it.

BUTD (Anderson et al., 2018) embeds images

with the object RoI features, we extend it with ob-

ject positional embeddings and object relationship

encoders.

Pre-training: After ELMo (Peters et al., 2018),

GPT (Radford et al., 2018), and BERT (Devlin

et al., 2019) show improvements in language un-

derstanding tasks with large-scale pre-trained lan-

guage model, progress has been made towards the

cross-modality pre-training. XLM (Lample and

Conneau, 2019) learns the joint cross-lingual rep-

resentations by leveraging the monolingual data

and parallel data. VideoBert (Sun et al., 2019)

takes masked LM on the concatenation of lan-

guage words and visual tokens, where the visual

tokens are converted from video frames by vec-

tor quantization. However, these methods are still

based on a single transformer encoder and BERT-

stype token-based pre-training, thus we develop

a new model architecture and novel pre-training

tasks to satisfy the need of cross-modality tasks.

Recent works since our EMNLP submission:

This version of our paper (and all current results)

was submitted to EMNLP11 and was used to par-

ticipate in the VQA and GQA challenges in May

2019. Since our EMNLP submission, a few other

useful preprints have recently been released (in

August) on similar cross-modality pre-training di-

rections: ViLBERT (Lu et al., 2019) and Visual-

BERT (Li et al., 2019). Our LXMERT methods

differs from them in multiple ways: we use a more

detailed, multi-component design for the cross-

modality model (i.e., with an object-relationship

encoder and cross-modality layers) and we em-

ploy additional, useful pre-training tasks (i.e., RoI-

feature regression and image question answering).

These differences result in the current best perfor-

mance (on overlapping reported tasks): a margin

of 1.5% accuracy on VQA 2.0 and a margin of

9% accuracy on NLVR2 (and 15% in consistency).

LXMERT is also the only method which ranks in

the top-3 on both the VQA and GQA challenges

11EMNLP deadline was on May 21, 2019, and the standard
ACL/EMNLP arxiv ban rule was in place till the notification
date of August 12, 2019.

among more than 90 teams. We provide a detailed

analysis to show how these additional pre-training

tasks contribute to the fine-tuning performance in

Sec. 5.2 and Sec. 5.3.

7 Conclusion

We presented a cross-modality framework,

LXMERT, for learning the connections between

vision and language. We build the model based

on Transfermer encoders and our novel cross-

modality encoder. This model is then pre-trained

with diverse pre-training tasks on a large-scale

dataset of image-and-sentence pairs. Empirically,

we show state-of-the-art results on two image

QA datasets (i.e., VQA and GQA) and show the

model generalizability with a 22% improvement

on the challenging visual reasoning dataset of

NLVR2. We also show the effectiveness of several

model components and training methods via

detailed analysis and ablation studies.
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Appendix

A Evaluated Datasets Description

We use three datasets for evaluating our LXMERT

framework.

VQA The goal of visual question answering

(VQA) (Antol et al., 2015) is to answer a natu-

ral language question related to an image. We take

VQA v2.0 dataset (Goyal et al., 2017) which re-

duces the answer bias compared to VQA v1.0. The

dataset contains an average of 5.4 questions per

image and the total amount of questions is 1.1M.

GQA The task of GQA (Hudson and Manning,

2019) is same as VQA (i.e., answer single-image

related questions), but GQA requires more reason-

ing skills (e.g., spatial understanding and multi-

step inference). 22M questions in the dataset are

generated from ground truth image scene graph to

explicitly control the question quality.

NLVR2 Since the previous two datasets are used

in pre-training for increasing the amount of pre-

training data to a certain scale, we evaluate our

LXMERT framework on another challenging vi-

sual reasoning dataset NLVR2 where all the sen-

tences and images are not covered in pre-training.

Each datum in NLVR2 contains two related nat-

ural images and one natural language statement.

The task is to predict whether the statement cor-

rectly describes these two images or not. NLVR2

has 86K, 7K, 7K data in training, development,

and test sets, respectively.
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B Details of NLVR2 Fine-tuning

Each datum in NLVR2 consists of a two-image

pair (img0, img1), one statement s, and a ground

truth label y∗ indicating whether the statement cor-

rectly describe the two images. The task is to pre-

dict the label y given the images and the statement.

To use our LXMERT model on NLVR2, we

concatenate the cross-modality representations of

the two images and then build the classifier with

GeLU activation(Hendrycks and Gimpel, 2016).

Suppose that LXMERT(img , sent) is the single-

vector cross-modality representation, the pre-

dicted probability is:

x0 = LXMERT(img0, s)

x1 = LXMERT(img1, s)

z0 = W0[x0;x1] + b0

z1 = LayerNorm
(

GeLU(z0)
)

prob = σ(W1z
1 + b1)

where σ is sigmoid function. The model is op-

timized by maximizing the log-likelihood, which

is equivalent to minimize the binary cross entropy

loss:

L = -y∗ log prob − (1− y∗) log(1− prob)

C Training, Validation, and Testing

Splits

We carefully split each dataset to ensure that

all testing images are not involved in any pre-

training or fine-tuning steps. Our data splits for

each dataset and reproducible code are available

at https://github.com/airsplay/lxmert.

LXMERT Pre-Traininig Since MS COCO has

a relative large validation set, we sample a set

of 5k images from the MS COCO validation set

as the mini-validation (minival) set. The rest of

the images in training and validation sets (i.e.,

COCO training images, COCO validation images

besides minival, and all the other images in Visual

Genome) are used in pre-training. Although the

captions and questions of the MS COCO test sets

are available, we exclude all of them to make sure

that testing images are not seen in pre-training.

Fine-tuning For training and validating VQA

v2.0, we take the same split convention as in our

LXMERT pre-training. The data related to im-

ages in LXMERT mini-validation set is used to

validate model performance and the rest of the

data in train+val are used in fine-tuning. We test

our model on the VQA v2.0 ‘test-dev’ and ‘test-

standard’ splits. For GQA fine-tuning, we follow

the suggestions in official GQA guidelines12 to

take testdev as our validation set and fine-tune our

model on the joint train + validation sets. We test

our GQA model on GQA ‘test-standard’ split. The

images in NLVR2 are not from either MS COCO

or Visual Genome, we thus keep using the original

split: fine-tune on train split, validate the model

choice on val split, and test on the public (‘Test-

P’) and unreleased (‘Test-U’) test splits.

D Training Details of ‘BERT versus

LXMERT’

When training with BERT only, we train each

experiments for 20 epochs with a batch size

64/128 since it was not pre-trained on these cross-

modality datasets. The learning rate is set to 1e−4
instead of 5e− 5.

12 https://cs.stanford.edu/people/dorarad/gqa/evaluate.html

https://github.com/airsplay/lxmert
https://cs.stanford.edu/people/dorarad/gqa/evaluate.html

