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Lyapounov exponent of the one dimensional Anderson model :
weak disorder expansions
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Résumé. 2014 Nous présentons une méthode qui donne le développement de faible désordre (03BB ~ 0) de l’exposant de
Lyapounov 03B3(E) d’une équation de Schrödinger à une dimension 03C8n+1 + 03C8n-1 + 03BBVn 03C8n = E03C8n avec un poten-
tiel aléatoire Vn. Près du bord de bande du système pur (E ~ 2), le développement de 03B3(E) est non analytique et
nous montrons que 03B3(E) ~ 03BB2/3 pour 03BB ~ 0. Au centre de bande (E ~ 0) nous retrouvons l’anomalie qui a déjà
été expliquée par Kappus et Wegner. Nous trouvons une autre anomalie £ l’énergie E = 2 cos (03C0/3) et nous pen-
sons que des anomalies du même type se produisent pour toutes les énergies E = 2 cos (03C003B1) où 03B1 est rationnel.

Abstract. 2014 We describe a method which gives the weak disorder expansion (03BB ~ 0) of the Lyapounov exponent
03B3(E) of a discretized one-dimensional Schrödinger equation 03C8n+1 + 03C8n-1 + 03BBVn03C8n = E03C8n with a random poten-
tial Vn. Near the band edge of the pure system (E ~ 2), the weak disorder expansion of y(E) is non analytic and
we show that 03B3(E) ~ 03BB2/3 when 03BB ~ 0. At the band centre (E ~ 0), we recover the anomaly which has already
been explained by Kappus and Wegner. We find another anomaly at the energy E = 2 cos (03C0/3) and we believe
that similar anomalies should occur at all energies E = 2 cos (03B103C0) with 03B1 rational.
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1. Introduction.

Products of random matrices appear very often in
the study of disordered systems, in particular in the
one-dimensional situations [1-5]. Usually, the first

quantity that one would like to calculate is the Lya-
pounov exponent associated with a given product
of random matrices. Several physical quantities can
be deduced from the knowledge of the Lyapounov
exponent : in a localization problem [6-7], the Thou-
less formula [8] relates directly the Lyapounov expo-
nent to the density of states ; for the Ising chain in a
random field [9-10], the Lyapounov exponent is

nothing but the free energy.
Unfortunately, there does not exist any general

method of calculating analytically the Lyapounov
exponent of a given product of random matrices.
In general, one can only calculate this Lyapounov
exponent numerically or one has to expand around
a well understood situation (product of random com-
muting matrices [9], weak disorder expansions [11],
large coupling expansions [12]). It is therefore interest-
ing to have available expansion methods which are as
simple as possible.

In the present paper, we shall give a way of deriving
the weak disorder expansion (Â. -+ 0) of the Lya-
pounov exponent y(e associated with the follow-

ing product of random matrices

where the V n are randomly distributed according to
a given probability distribution p(V) and the energy
E is a fixed parameter. We shall limit ourselves to
the case where the average potential Yn&#x3E; = 0
since one can always incorporate this average in the
energy E.
The product of random matrices (1) appears in

several situations : first, if one considers the dis-
cretized Schrodinger equation in one dimension with
a random potential AV,n on the site n, the wave func-
tion Ý1n obeys the following equation

One can easily relate (2) to (1) by considering the two-
component vectors Un defined by

and by noticing that the product (1) relates UN
to Uo.
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The product (1) appears also in the calculation of
the Lyapounov exponent of some dynamical sys-
tems [13] like the stadion or the diamond which are
integrable systems for e = 0 and have mixing pro-
perties for E = 0.

In section 2, we shall first recall briefly a weak disor-
der expansion which was already presented in a

previous work done in collaboration with C. Itzyk-
son [11]. We shall explain why this expansion holds
for all complex values of E except the interval [- 2,
2] and show why it breaks down in the neighbourhood
of the band edge E -&#x3E; 2 of the pure system. To des-
cribe correctly the region near of E = 2, we shall
develop in section 3 an appropriate method and find
explicit formulae for the density of states and the
localization length. We shall recover several singu-
lar behaviours which had already been found in the
neighbourhood of the band edge for continuous

Schrodinger equations in a random potential [14, 5].
In section 4, we describe a method of finding the

weak disorder expansion of y(E) which should be
in principle valid in the neighbourhood of any energy
E = 2 cos (na) with a rational. In section 5, we
shall apply this method to the case of the band centre
(a = 2) where we shall recover the anomaly explain-
ed by Kappus and Wegner [ 15]. The À,2 term in the
Lyapounov exponent is different from that determin-
ed from the naive weak disorder expansion. In sec-
tion 6, we shall consider the case E = I (i.e. a = n/3)
where we shall find a very similar anomaly at order À,4.
This anomaly has also been discussed recently by
Lambert [18, 19].

2. Weak disorder expansion.

Let us start from the Schrodinger equation (2).
If we define R. by

the Lyapounov exponent y(E) is given by

Clearly, from (2) and (4), one finds that the Rn obey
the following recursion relation

Since the vector Un was a two component vector, R.
is a way of measuring the direction of the vector Un.

If we fix any complex value of the energy E, the
Rn will be complex numbers. In equation (5) there
is no ambiguity in defining the real part of y since
all the definitions of the logarithm give the same ans-
wer. On the contrary, to define the imaginary part of y,
we have to choose a definition of the logarithm. This

can be done very easily by noticing that if E and J?.
have a positive imaginary part, then Rn + i obtained
from (6) has also a positive imaginary part. Therefore,
if E and Ro have positive imaginary parts, we are sure
that all the Rn have also a positive imaginary part
So we can choose the logarithm of Rn to have an
imaginary part between 0 and n when the imaginary
part of E is positive and between and 0 if

Im (E)  0

As usual, for real values of the energy E, one can
always add an infinitesimal imaginary part iE to E
and the imaginary part of y in the limit 8 -&#x3E; 0 depends
on the sign of s.
For real values of E, all the Rn are real. If we choose 8

to be positive, this means that we decide that the

imaginary part of log Rn is n for all the negative R,,.
We see that for real values of E (E + iE in the limit
e -&#x3E; 0 + ), the imaginary part of the y is just n times the
density of negative Rn, i.e. the density of nodes of the
wave function (see Eq. (4)). So it is clear that this

imaginary part is equal to n times the integrated
density of states.

Let us now recall a simple method for deriving the
weak disorder expansion of y [11]. For convenience,
let us take a value of the energy E which does not

belong to the spectrum of the pure system

We can choose any complex value for E or any real E
with I E &#x3E; 2. Let us write Rn in the following way :

where A, B,,, Cn, ... do not depend on A. If we substitute
this expansion into equation (6) and if we equate the
two sides of the equation order by order in A, we find
recursion relations for A, Bn, C., Dn, ...

It is not necessary to consider the dependence of A
on n because for A = 0, all the Rn are equal to the
root A of equation (9) which has the largest modulus.
(The two roots have different modulus because of
condition (7).) The expansion of the Lyapounov
exponent is then given by :
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As explained in reference [11], it is easy to calculate
the averages  B &#x3E;,  C &#x3E;,  D &#x3E;, ... To do so, we

have to notice that Bn, C,,,... are functions of all the
Yi for i  n but do not depend on the Vi for I a n.
This means that averages like  BnP V" n &#x3E; can be

replaced by ( BP &#x3E;  V" &#x3E;. Using the fact that the

averages of  B &#x3E;,  C &#x3E;,  D &#x3E;, etc... do not depend
on n, one gets the following result

The term linear in A is not present because we have
assumed that V &#x3E; = 0. The expression (13) was
already presented in reference [11] with a slightly
different notation (one has to replace (A - 1)2 zn by
- AVn in Eqs. (17) and (20) of reference [11]).
As we mentioned above, the Rn measure the direc-

tions of the vectors Un. For A = 0 and when condi-
tion (7) is fulfilled, the matrices (1) have 2 eigenvalues
with different modulus. In the limit n -&#x3E; oo, the
vectors Un become parallel to the eigenvector U
which has the largest eigenvalue (in modulus). The
meaning of the expansions (8) and (13) is that for small
A, the vectors U_have only small fluctuations around
the direction of U.

It is clear that, if for A = 0 the two eigenvalues have
the same modulus or if they are equal, then the vec-
tors Un have no reason to become parallel to a well
defined direction. Therefore, for small A, we can no
longer _consider that the Un have small fluctuations
around a direction U. In that case the expansion (13)
will not be valid. This can be seen in the expression (13)
where one sees that if E - 2, i.e. A -+ 1, then each
term in the expansion diverges.

It is interesting to notice that by looking at the
expansion (13) of y, one can guess its range of validity.
If we want to approach the point E = 2, one finds
that as long as E - 2 is large compared with À.4/3,
the first term (the term log A) in the expansion (13)
is dominant. On the other hand for (E - 2)/A’I’
finite, the first term (log A), the second term (which
contains V2 » and the fifth term (which contains
 V2 &#x3E;2) of the expansion (13) become of the same
order. If we define x by

Then

And one finds that for large x, the expression (13)
gives us

So we see that for A -&#x3E; 1 (i.e. E -&#x3E; 2), the expansion
(13) becomes singular and the À2/3 can already be
found We should notice that A - ± i, i.e. at the
band centre E = 0, is also a point where the expan-
sion (13) breaks down because the fifth term diverges.
The correct study of this band centre was done by
Kappus and Wegner [15] and will be discussed in
section 5. One would expect that, if the expansion (13)
was pushed further, denominators like A 6 - 1,
A 8 - 1, A 10 - 1,... would appear at higher orders
and therefore that the expansion (13) would break
down in the neighbourhood of any energy E = 2 cos 7ra
with a rational.

3. The neighbourhood of the band edge.

One can always formulate the problem of calculating
the Lyapounov exponent y as finding a stationary
probability distribution for the Rn. This distribution,
that we shall denote P(A E, A) depends in principle
on jR, on the energy E, on the parameter A and of
course on the whole distribution p(Y) of the random
potential Yn. P(R, E, A) obeys the following integral
equation :

which can be rewritten as

Of course, if we were able to find the complete
solution P(R, E, A) of this integral equation, the

Lyapounov exponent y would be easy to obtain by
writing 

In the following, we shall restrict ourselves to real
energies. For real energies E, all the Rn are real. Since
for positive R, one has log R = log I R I and for

negative R we choose log R = log I R I + in, the
real part Re y and the imaginary part Im y of y are
given by
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From (21), one sees that the density of states p(E)
is just

since Im y counts the number of nodes of the wave
function.
One does not know how to solve (18) for an arbi-

trary distribution p(V). What makes the calculations
possible in the limit E - 2 and Â -&#x3E; 0 is that P(R, E, A)
takes a scaling form

i.e. the function P which is a function of 3 variables
becomes a function of 2 variables only.
One could have guessed this form because in sec-

tion 2 we saw that when (E - 2)/À4/3 becomes finite,
several terms of the expansion (13) start to contri-
bute and one has log R - log A N A211 for this

range of values of E.
However the best justification of (23) is that by

looking for a solution of the form (23), we can solve
equation (18) to leading order in /L To see that let
us make the following change of variables

and let us define H(x, t, A) by

The integral equation (18) becomes

If we expand the right hand side of (27) in powers of A, we get :

a E2

where H, H’, , H" , H "’ , H "" mean respectively H(t, x, A ), 7- H(t, x, 5.), 2 H(t, x, 5.), etc...
ot Gt

If is easy to perform in (28) the average over V and one gets using the fact that Ap(V) Y dV = 0

One expects that the solution of (29) can be expanded in the following way :

One sees that if we keep the leading order in A of equation (29) (i.e. the order A,213), the function Ho has to
obey the following differential equation

The general solution of the differential equation (31) is easy to obtain by noticing that (31) can be rewritten
as
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and the general solution of (32) is

Since HO(t) is a probability distribution, it should be integrable and therefore the constant C1 has to vanish

We can now find the expression of Re y using (20), (25), (26) and (33) :

which becomes after simplification

where X is defined by

Similarly one finds for Im y :

which becomes after simplification

Formulae (36) and (39) give us the Lyapounov exponent y in the neighbourhood of the band edge E = 2. The
real part Re y is just the inverse localization length whereas the density of states p(E) is given by (22) :
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If we choose E = 2, i.e. X = 0, the integrals in (36) and (39) can be expressed in terms of T functions :

One should notice-that expressions (36) and (40) are very similar to those found in the continuous case [14, 5,17].
For X - + oo, one can estimate (36) by the saddle point method and one recovers (16). Similarly, for

X -&#x3E; - oo, the combination of (36), (39) and of the steepest descent method gives (16).

4. Expansion near an energy E = 2 cos na with a rational

Let us now describe a method of deriving the weak disorder expansion of y which should work at all the energies
E = 2’cos na

with a rational.
As in section 3, our starting point is the integral equation (18) and we shall use (20) and (21 ) to calculate y.
Like Kappus and Wegner [15], we make the following change of variables

and we define G(Q) by

When R goes from - oo to + 00, qJ goes from 0 to 7t. The integral equation (18) becomes an integral equation for
G’(q)

where cp’ is a function of cp, E and V given by

Since (47) is equivalent to

From formula (47), one can check that

and using this identity, one can show that for any function G, one has

For A = 0, one has ql = cp - nag and therefore

For A = 0,
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From (50) and (51), it follows that

The integral equation (46) can therefore be rewritten as

Our task is to find the solution G(cp) of (54) which is a periodic function of Q :

Since equation (54) is completely equivalent to the integral equation (18), we have no hope to solve it in general.
However, one can expand (54) in powers of A and look for a solution G((p) that we expand also in A

Our method consists in finding the solution G(T) of (54) perturbatively in A.
When we expand equation (54) up to a given power of A, the main problem is that we get a differential equa-

tion which is non local since it relates the function G at the points Q and cp - na. The simplification which
occurs for a rational

is that one can iterate (54) s times and get

So for a rational, one can obtain a local equation.
One may be interested by a whole neighbourhood of an energy 2 cos na with a rational. If one consider

an energy E’ of the form

by definition of x, then the equation (54) is replaced by

In the appendix we give a useful expression of the expansion of (60) up to the power Â.4.
Once G is known up to a given power of A, one can obtain the Lyapounov exponent formula by

and

as one can see from (20), (21 ) and (44).
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We shall see that (61) and (62) can be transformed to shorten the calculations. For example (61) can be
rewritten as

and since G(cp -,- ca) - G(T) starts like Â,2, one needs to know G(T) up to order An-2 if one wants the expansion
of Re y up to order Â,n.

In the next sections, we shall consider explicitly the cases a = 1 and a = 1.2 3 

5. The band centre.

We shall now see how the method presented in the previous section can be applied to the case a = 1.
For a given energy E’,

we are going to look for a solution of (60) of the form (56)

Using the expression of (60) given in the appendix, we get a hierarchy of equations for Go, Gl, G2, ...

One sees clearly that equation (65) or (66) are not sufficient to determine the functions Go and G1. However since

G(T) is a periodic function of period n, this means that G2 ( (P +2) = G2 p - and therefore equations (67)( 2) ( 2)
and (65) give

So (68) gives us a differential equation which will determine Go (lp). The idea followed to obtain (68) is exactly
the same as the one which led to (60). Although (68) is a second order differential equation, the fact that Go is
a periodic function (see (65)) determines Go uniquely. For example, when x*is small, one can expand the general
solution of (68). One finds for x  1 :
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There are 2 arbitrary constants C and C1 because (68) was a second order differential equation. However to
satisfy the condition that G(q) is periodic, C1 in (69) has to be zero

Similarly one can see easily that (68) determines Go uniquely for x &#x3E; 1 :

We were only able to find explicitly Go(cp) for x  1 or x &#x3E; 1. For finite x, one can solve numerically the diffe- ’
rential equation (68).

Let us now obtain the expression of y up to order A’ in terms of Go(cp). From (63), we see that

From (65), (66) and (67), one finds that

which becomes after a short calculation (which uses (67))

Using (62), we can obtain the imaginary part Im y

The using (65), (66) and (67), one finds that the expansion of Im y up to the order Â. 2 is just

For any value of x, one has to find first the periodic solution of the differential equation (68) and then Re y
and Im y are given by (74) and (76).
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For x  1, we have in (69) the expression for G o( cp). In that case we get

For x &#x3E;&#x3E; 1, we get from (7 1)

All our results (77) and (78) are in complete agreement with those of Kappus and Wegner [15] after an appro-
priate change of notation. As they did, we can compare these results with the order A’ of the expansion (13)
(which is known to be incorrect in the limit E -+ 0)

One shoult notice that (79) is just what one gets if in (74) and (76) we had replaced Go by a constant, i.e. we had
believed that the solution Go of (65) is a constant and not a periodic function. In principle one should be able to
calculate G1 (cp), G2(cp)... and to obtain higher orders in the A expansions of y.

6. The energy E = 1.

We want now to apply the method described in sec-

tion 4 to the case a = 3 . We have again to find
perturbatively in A the solution G((p) of (60) :

for an energy E’

As in section 5, the equation (60) gives us a hierarchy
of equations for Go, G1, G2, ... when we equate the
two sides of the equation order by order in A

The next order (order Å. 2) determines the function Go
and gives also an equation for G2((P)’

It implies that the second derivative of Go should
vanish and therefore that Go is constant because of
(81)

and then G2 has to satisfy.
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The next order (À. 3) gives an equation for G 1 (lp)

These equations can be easily solved :

and

where W(q» is a periodic function of Period ) : .3 
W(q» = W(Q + -) which cannot be determined from3
(84) but should be determined from further equations
in the hierarchy. We shall not determine it because
it will not be used later.

Let us now calculate the real part and the imaginary part of y. Re y can be written as

which can be written up to order Â,4 using the expression given in the appendix and a few integrations by parts

Using the expressions (83), (86) and (87), we find

Similarly by writting Im y in the following way

and by using the expression given in the appendix, one gets :
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Formulae (89) and (90) give our final results for the neighbourhood of the energy E = 1. We see in (89) the pre-
sence of a term which contains V 3 &#x3E; whereas in the expansion (13) no term contains  V 3 &#x3E; at the order Â,4.
This term is an anomaly of the same nature as the one discussed in section 5.

We see also in (90) that the term which contains  V 3 &#x3E; depends on ( V 2 &#x3E; whereas such a term does not
appear in (13) at order Â,3.

In this section, we have seen that in the neighbourhood of E = 1, one can find an anomaly very similar to
the one which occurs in the neighbourhood of E = 0. Such an anomaly at E = 1 has been noticed in numerical
work by Pichard [16] and the analytic work of Lambert [18].

As in the section 5, we notice that the anomaly is due to the fact that G 1 (q ) is a periodic function of period 33
If we had believed from (82) that G 1 (lp ) was a constant, then, we would not have found the anomaly.

7. Conclusion.

In this paper we have described several kinds of weak disorder expansions of the Lyapounov exponent y : the
expansion of section 2 is valid outside the spectrum of the pure system, the expansion of section 3 is valid in the
neighbourhood of the band edge and the expansion of section 4 should be valid in the neighbourhood of the
energies of the form E = 2 cos na with a rational.

In section 5 and 6 we have applied the method described in section 4 to the cases a = 2 and a = 1. We
think that it is interesting to notice that the band centre anomaly a = 1 has a counterpart for a = 1. We
effect should occur for all rational a = r/s although the power of A at which it can be seen will increase with
s [18].

We believe that the origin of these anomalies is the fact that the function G(g) contains a periodic function

of period na. It would be interesting to generalise the results for a = 1 and 1 to other rationals. In doing so, we2 3 
think that the method presented in section 4 constitutes a good starting point.

Also we think that is should be interesting to extend the results presented here to quasiperiodic situations.
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Appendix.
We give an expression of the expansion of (60) up to the power Â, 4
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