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Abstract: We propose a theory “à la Conley” for cone fields using a notion of relaxed
orbits based on cone enlargements, in the spirit of space time geometry. We work in
the setting of closed (or equivalently semi-continuous) cone fields with singularities.
This setting contains (for questions which are parametrization independent such as the
existence of Lyapounov functions) the case of continuous vector-fields on manifolds,
of differential inclusions, of Lorentzian metrics, and of continuous cone fields. We
generalize to this setting the equivalence between stable causality and the existence of
temporal functions. We also generalize the equivalence between global hyperbolicity
and the existence of a steep temporal function.

Résumé. On développe une théorie à la Conley pour les champs de cones, qui utilise
une notion d’orbites relaxées basée sur les élargissements de cones dans l’esprit de la
géométrie des espaces temps. On travaille dans le contexte des champs de cones fermés
(ou, ce qui est équivalent, semi-continus), avec des singularités. Ce contexte contient
(pour les questions indépendantes de la paramétrisation, comme l’existence de fonctions
de Lyapounov) le cas des champs de vecteurs continus, celui des inclusions différen-
tielles, des métriques Lorentziennes, et des champs de cones continus. On généralise à
ce contexte l’équivalence entre la causalité stable et l’existence d’une fonction tempo-
rale. On généralise aussi l’équivalence entre l’hyperbolicité globale et l’existence d’une
fonction temporale uniforme.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

The research leading to these results has received funding from the European Research Council under the
European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement 307062. Stefan
Suhr is supported by the SFB/TRR 191 ‘Symplectic Structures in Geometry, Algebra and Dynamics’, funded
by the DFG.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-018-3127-7&domain=pdf
http://orcid.org/0000-0001-7250-5604


468 P. Bernard, S. Suhr

1.1 Hyperbolic cone fields . . . . . . . . . . . . . . . . . . . . . . . . . 472
1.2 A Lemma of Sullivan . . . . . . . . . . . . . . . . . . . . . . . . . . 474
1.3 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
2.1 On cone fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
2.2 Clarke differential, causal and timelike curves . . . . . . . . . . . . . 479
2.3 Limit curve Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

3. Direct Lyapounov Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 482
4. Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

4.1 Local properties of trapping domains . . . . . . . . . . . . . . . . . . 484
4.2 De Rham smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.3 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 487

5. Existence of Lyapounov Functions . . . . . . . . . . . . . . . . . . . . . 489
5.1 Smooth trapping domains and Lyapounov functions . . . . . . . . . . 489
5.2 Conley theory for closed cone fields . . . . . . . . . . . . . . . . . . 490
5.3 More existence results of Lyapounov functions . . . . . . . . . . . . 492
5.4 Hyperbolic cone fields . . . . . . . . . . . . . . . . . . . . . . . . . 493

6. Final Remarks on the Stably Recurrent Set . . . . . . . . . . . . . . . . . 496
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Lyapounov functions play an important role in dynamical systems. Their existence is
related to basic dynamical behaviors such as stability and recurrence. The second aspect
was made precise by Conley, who showed an equivalence between the existence of
Lyapounov functions and the absence of chain recurrence. This result was extended by
Hurley, see [15,16], to non compact spaces. See also [25] for a different point of view
based on Mather–Fathi theory.

On the other hand the causality theory of space times studies (among other things)
time functions on Lorentzian manifold, see [22] for example. The existence of contin-
uous time functions for smooth stably causal space times was proved in [12,13]. The
condition of stable causality of space time is analogous to the absence of chain recurrence
in Conley’s theory. Still in the context of smooth space times, the equivalence between
stable causality and the existence of a smooth temporal function (a regular Lyapounov
function in the terminology of the present paper) was proved in [2]. Motivated by so-
lutions to the Einstein equations with low regularity the problem has been revisited in
[5,6,28] where continuous metrics are studied. The existence of smooth time functions
for continuous stably causal cone fields (hence in particular for continuous, stably causal,
Lorentzian metrics) was proved in [10,11] by methods inspired by weak KAM theory.

In the present paper, we propose a theory “à la Conley” for cone fields. Such a
program was already carried out in [23] in the case of Lorentzian metrics, but our
approach is different. We use a notion of relaxed orbits based on cone enlargements,
in the spirit of space time geometry. This notion has the advantage of not resting on
the choice of an auxiliary metric and it bypasses some technical difficulties related
to the non continuity of the length. It allows us to work without difficulty in the very
general setting of closed (or equivalently semi-continuous) cone fields with singularities.
This setting contains (for questions which are parametrization independent such as the
existence of Lyapounov functions) the case of continuous vector-fields on manifolds, of
differential inclusions, of Lorentzian metrics, and of continuous cone fields. We impose
a manifold structure on the phase space, and directly deal with smooth Lyapounov (or
time) functions. We generalize to this setting the equivalence between stable causality
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and the existence of temporal functions. We also prove that every globally hyperbolic
cone field admits a steep Lyapounov function (hence a Cauchy time function). The term
steep temporal function was introduced in [24], see Sect. 1.1 for the definition and a
discussion. We finally recover classical statements on the relation between Lyapounov
functions and asymptotic stability in their most general setting, as obtained in [8,30,31].
Since our original motivation was to prove the existence of steep temporal functions in
a generalized setting, we work with the usual convention of space time geometry and
consider Lyapounov functions which are non decreasing along orbits (here called causal
curves).

We thank the anonymous referees whose careful reading helped us writing a much
better second version of the paper. Just before sending this second version, we received
the preprint [21] of Minguzzi, where several of our results are recovered using more
traditional constructions.

1. Introduction

We work on a complete Riemannian manifold M .
A convex cone in the vector space E is a convex subset C ⊂ E such that t x ∈ C for

each t > 0 and x ∈ C . The convex cone C is called regular if it is not empty and it is
contained in an open half-space, or equivalently if there exists a linear form p on E such
that p · v > 0 for each v ∈ C . The full cone C = E will be called the singular cone. In
order to shorten expressions in the sequel, we make the following definition:

Definition 1.1. We say that � ⊂ E is an open cone if it is a convex cone which is open
as a subset of E .

We say the C ⊂ E is a closed cone if it is a convex cone which is either singular or
regular and if C ∪ {0} is a closed subset of E .

Note that the empty set is both an open and a closed (regular) cone. The empty set
will be referred to as degenerate. Note also that regular closed cones do not contain the
origin. Given � ⊂ E\{0}, we denote by �̂ the smallest closed cone containing �, and
call it the closed hull of �. Our definition of closed cones does not include the case of a
closed half space, so the closed hull of an open half space is the full space.

A cone field C on the manifold M is a subset of the tangent bundle T M such that
C(x) := TxM ∩ C is a convex cone for each x . We shall only use open and closed cone
fields:

Definition 1.2. We say that E ⊂ T M is an open cone field if it is a cone field which is
open as a subset of T M . Then E(x) is an open cone for each x .

We say the C ⊂ T M is a closed cone field if it is a cone field such that C ∪ T0M (the
zero section) is a closed subset of T M and such that C(x) is a closed cone for each x .

Given a closed cone field C, each point x ∈ M is of one and only one of the following
types:

• Regular, which means that C(x) is a regular cone, or
• singular, which means that C(x) = TxM , or
• degenerate, which means that C(x) is empty.

The domain of C is the set of non degenerate points. It is denoted by D(C). The
domain of a closed (or open) cone field is closed (or open). A cone field is called non
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degenerate if all points are non degenerate, i.e. if D(C) = M . The set of singular points
of a closed (or open) cone field is closed (or open).

As a first example of a closed cone field, we can associate to each continuous vector
field V on M the closed cone field CV such that CV (x) is the open half line directed
by V (x) if V (x) �= 0 and CV (x) = TxM if V (x) = 0. With our definitions (and this
example motivates them), the singular points of the cone field CV are the same as the
singular points of the vector field V .

It is easy to see that continuous cone fields as considered for example in [10] are
closed, hence our setting is more general. In particular, the cone field of future directed
causal vectors associated to a time oriented continuous Lorentzian metric is a closed
cone field.

The standard example of open cone field is the cone field of future directed timelike
vectors associated to a time oriented Lorentzian metric.

Given an immersion φ : N −→ M and a closed (or open) cone field C on M , the pull
back φ∗C := (Tφ)−1(C) is a closed (or open) cone field. Note that the pull back may
contain degenerate points even if C does not. This is one motivation to allow degenerate
points.

We say that the cone field C′ is wider than the cone field C if C ⊂ C′. We say that C′
is an enlargement of C (written C ≺ C′) if there exists an open cone field E and a closed
cone field D such that C ⊂ D ⊂ E ⊂ C′. An open enlargement of a closed cone field C
is just an open cone field wider than C.

Note that the intersection of a family of closed cone fields is a closed cone field.

Definition 1.3. Let E be a cone field. We denote by Ê the smallest closed cone field
containing E , we call it the closed hull of E .

Given an open cone field E , we say that the curve γ : I −→ M is E-timelike (or just
timelike) if it is piecewise smooth (we shall see later that this regularity can be relaxed)
and if γ̇ (t) ∈ E(γ (t)) for all t in I . At non smooth points, the inclusion is required to
hold for left and right differentials. The chronological future I+

E (x) of x is the set of
points y ∈ M such that there exists a non constant timelike curve γ : [0, T ] −→ M
satisfying γ (0) = x and γ (T ) = y. The chronological past I−

E (x) of x is the set of
points x ′ ∈ M such that x ∈ I+

E (x ′). Note that I−
E (x) = I+

−E (x). More generally, for

each subset A ⊂ M , we denote by I±
E (A) := ∪x∈AI±

E (x) the chronological future
and past of A. They are open subsets of M by Lemma 2.4. We have the inclusion
I+
E (y) ⊂ I+

E (x) if y ∈ I+
E (x).

Given a closed cone field C, we say that the curve γ : I −→ M is C-causal (or just
causal) if it is locally Lipschitz and if the inclusion γ̇ (t) ∈ C(γ (t)) ∪ T0M holds for
almost all t ∈ I . The causal future J +

C (x) of x is the set of points y ∈ M such that there
exists a (possibly constant) causal curve γ : [0, T ] −→ M satisfying γ (0) = x and
γ (T ) = y. The causal pastJ −

C (x) of x is the set of points x ′ ∈ M such that x ∈ J +
C (x ′).

More generally, for each subset A ⊂ M ,wedenote byJ ±
C (A) := ∪x∈AJ ±

C (x) the causal
future and past of A. We have the inclusion J +

C (y) ⊂ J +
C (x) if y ∈ J +

C (x).

Definition 1.4. Let C be a cone field on M . The function τ : M −→ R is called a
Lyapounov function for the cone field C if it is smooth, dτx · v � 0 for each (x, v) ∈ C,
and if, at each regular point x of τ (i.e. dτx �= 0), we have dτx ·v > 0 for each v ∈ C(x).

It could be useful (especially with an eye towards degenerations of Lorentzian met-
rics) to study Lyapounov functions for cone fields which are closed as subsets of T M
and contain half spaces. To a certain extent, this case can be done as follows : Assume
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thatD is a cone field that is closed as a subset of T M . Then the set� of points x ∈ M for
whichD(x) is a half space is closed. We can modifyD to the cone field C that is singular
on � and equal to D outside of �. This is a closed cone field in the sense of Definition
1.2 , and the Lyapounov functions forD are the same as the Lyapounov functions for C.

If τ is a Lyapounov function for the closed cone field C on M , and if φ : N −→ M
is an immersion, than τ ◦ φ is a Lyapounov function for φ∗C on N .

When C is the cone field associated to a vector field V , a Lyapounov function for C
is the same as a Lyapounov function for V .

Note that if the cone field is induced by a time orientable Lorentzian metric, a Lya-
pounov function without critical points is a temporal function for the Lorentzian metric.
In the same vein, time/temporal function were considered in [10] for continuous cone
fields.

Given a closed cone field C, we define
F+
C (x) := {x} ∪

⋂

E�C
I+
E (x)

where the intersection is taken on all open enlargements E of C. We callF+
C (x) the stable

future of x . A point x is said to be stably recurrent (for C) if, for each open enlargement
E of C, there exists a closed E-timelike curve passing through x . We denote by RC the
set of stably recurrent points. Let us state our first result, which will be proved in Sect. 5.

Theorem 1. Let C be a closed cone field.

(a) The setF+
C (x) is the set of points x ′ ∈ M such that τ(x ′) � τ(x) for each (smooth)

Lyapounov function τ (it is thus a closed set).
(b) The point x is stably recurrent if and only if all (smooth) Lyapounov functions τ

satisfy dτx = 0 (hence RC is closed).

Two points x and x ′ ofRC are called stably equivalent if x ′ ∈ F+
C (x) and x ∈ F+

C (x ′).
This is an equivalence relation onRC . The classes of this equivalence relation are called
stable classes. The following statement is also proved in Sect. 5.

Theorem 2. Let C be a closed cone field. There exists a (smooth) Lyapounov function τ

with the following properties:

(a) The function τ is regular at each point of D(C) − RC .
(b) Two points x and x ′ ofRC belong to the same stable class if and only if τ(x ′) =

τ(x).
(c) If x and x ′ are two points of M such that x ′ ∈ F+

C (x) and x �∈ F+
C (x ′), then

τ(x ′) > τ(x).

This implies that RC is a closed set, as well as the stable components.

We recover the classical fact that a closed cone field is stably causal (meaning that
there is no stably recurrent point ) if and only if it admits a smooth temporal function (in
our terminology, a Lyapounov function without critical points). This result has a long
history and several variants, see [26] for the state of the art in 2005. To our knowledge, the
most general known variant before the present paper is due to Fathi and Siconolfi in [10],
in the context of continuous cone fields (in this paper, the function that we call smooth
temporal functions are called smooth time functions). Our statement is more general,
since we allow closed (equivalently : semi-continuous) cone fields with singularities.
Our proof is entirely different.

Le us finish with a description of the stably recurrent set in terms of the relation F+
C

(the analogous characterization in the Lorenzian case is given in [14,19,29]):
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Proposition 1.5. Let C be a closed cone field. The point x ∈ M is stably recurrent if and
only if x is singular or there exists a point y �= x such that y ∈ F+

C (x) ∩ F−
C (x).

Proof. Let x be a stably recurrent point which is not singular. Since the set of singular
points is closed, we can choose a compact neighborhood K of x which has the property
that, for some open enlargement E0 of C, all E0-timelike loops contained in K are
constant. Let B be the boundary of K .

It follows from Theorem 1 that F±
C (x) = ∩E�CI±

E (x). Indeed, if y does not belong
to F+

C (x), then there exists a Lyapounov function τ such that τ(y) < τ(x). Then, the

open enlargement E := {dτ > 0} satisfies y �∈ I+
E (x) ⊂ {τ � τ(x)}.

For each enlargement E of C contained in E0, the closed setI+
E (x) ∩ I−

E (x) is not
empty, connected, and intersects K , but is not contained in K . Hence it intersects the
compact set B. We consider the family of non empty closed sets F(E) := B ∩ I+

E (x) ∩
I−
E (x) of B, parameterized by open enlargements E of C. This family has the finite

intersection property: any finite intersection of these sets is non-empty. By compactness
of B, we deduce that the intersection ∩E�CF(E) on all open enlargements of C is not
empty. This implies that B ∩ F+

C (x) ∩ F−
C (x) is not empty, hence that F+

C (x) ∩ F−
C (x)

contains a point different from x . �
We now present some more specific applications of our methods:

1.1. Hyperbolic cone fields. Following the terminology of space time geometry, we say
that the closed cone field C on M is globally hyperbolic if

(GH0) C is non degenerate.
(GH1) C is causal, i.e. all closed Lipschitz C-causal curves are constant, and that C does

not have singular points.
(GH2) The set JC(K , K ′) := J +

C (K ) ∩ J −
C (K ′) is compact for each compact sets K

and K ′.
We say that the closed cone field C is hyperbolic if it satisfies (GH1) and (GH2). We

stress that neither stable causality nor strong causality is assumed here, as it is e.g. in
[10] (it will be indirectly proved to be a consequence of hyperbolicity). In the classical
context of Lorentzian metrics, the definition was given in a weaker form where (GH2)
is replaced by

(GH3) The set JC(x, y) = J +
C (x) ∩ J −

C (y) is compact for each x and y in M .

Our definition is equivalent in the Lorentzian case, as follows from:

Proposition 1.6. If the closed cone field C is wider than a non degenerate open cone
field and satisfies (GH3), then it satisfies (GH2).

Proof. Our assumption is that there exist a non degenerate open cone field E ⊂ C. It
follows from Lemma 2.2 below that E contains a smooth vector field V (x). This vector
field can be assumed complete by reparameterization. We denote by φt its flow.

Let K and K ′ be two compact sets.We consider a sequence zn ∈ JC(K , K ′), i.e. there
exist xn ∈ K and yn ∈ K ′ with zn ∈ JC(xn, yn). We can assume that the sequences xn
and yn have limits x and y in K and K ′, respectively. For each t > 0, x ∈ I+

E (φ−t (x)) ⊂
J +
C (φ−t (x)) and y ∈ I−

E (φt (y)) ⊂ J −
C (φt (y)). Since I+

E (φ−t (x)) and I−
C (φt (y)) are
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open, xn ∈ I+
E (φ−t (x)) ⊂ J +

C (φ−t (x)) and yn ∈ I−
E (φt (y)) ⊂ J −

C (φt (y)) when n
is large enough, hence zn ∈ JC(φ−t (x), φt (y)), which is a compact set by (GH3). We
can thus assume by taking a subsequence that zn has a limit z which is contained in
JC(φ−t (x), φt (y)) for each t > 0. By (GH3), the set JC(φ−1(x), z) is compact and it
contains φ−t (x) for each t ∈]0, 1[, hence it contains x . This implies that z ∈ J +

C (x). We
prove similarly that z ∈ J −

C (y). �
The Lyapounov function τ is said to be steep if the inequality

dτx · v � |v|x
holds for each (x, v) ∈ C. If τ is a steep temporal function for the closed cone field C
then (GH1) obviously holds, and moreover τ ◦γ (I ) = R for each complete causal curve
γ : I �−→ M (seeDefinition 1.9). Indeed, such a curve has infinite length in both forward
and backward direction, and the steepness of τ then implies that limt−→inf I τ ◦γ = −∞
and limt−→sup I τ ◦ γ = +∞.

If the cone field is non degenerate, then all inextendible causal curves are complete,
see Corollary 2.15. If τ is a steep Lyapounov function, then τ ◦ γ (I ) = R for each
inextendible curve: steep Lyapounov functions are Cauchy time functions. All their
level sets are Cauchy hypersurfaces in the sense that every inextendible causal curve
intersects them exactly once.

The following statement extends a classical result (see [20,24]) to our more general
setting. It is proved in Sect. 5.4 where some other characterizations of global hyperbol-
icity are also given.

Theorem 3. The closed cone field C is hyperbolic if and only if it admits a (smooth)
Lyapounov function which is steep with respect to a complete Riemannian metric. Then,
the relations JC and FC are identical.

As a consequence, each globally hyperbolic cone field has a Cauchy temporal func-
tion.

Note that the definition of hyperbolicity does not involve the metric. We deduce that,
if C is hyperbolic and if g̃ is a (not necessarily complete) metric, then there exists a
Lyapounov function which is steep with respect to g̃. This follows from the theorem
applied to the complete metric g + g̃ (where g is a complete metric on M). However, a
temporal function which is steep with respect to a non complete metric is not necessarily
a Cauchy time function, even in the absence of degenerate points. The existence of such
a function does not necessarily imply hyperbolicity. As an example, consider a complete
Riemannian manifold (M, g), a globally hyperbolic cone field C, and a steep temporal
function τ . If N is the complement of a point in M , then (N , g) is not complete, τ is a
steep time function which is not Cauchy, and C is not hyperbolic.

Our notion of steep Lyapounov functions is similar to, but different from, the notion
of steep temporal function introduced in [24], see also [21], as the sharp criterion for
the isometric embeddability of space times into Minkowski space. There a function τ

on the space time (M, gL) is called steep if dτ · v ≥ √|gL(v, v)| for all future pointing
vectors (x, v) ∈ T M . Since we can choose a metric g such that g(v, v) ≥ |gL(v, v)|
on all tangent vectors, Theorem 3 implies the existence of a steep temporal functions in
the sense of [24] in globally hyperbolic space times. Conversely the existence of a steep
temporal functions in the sense of [24] does not imply global hyperbolicity.

The conclusion of Theorem3 is false if (GH2) is replaced by (GH3)without assuming
that C has non empty interior. Any vector field admitting non trivial recurrence provides
a counter-example. We have the following corollaries:
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Corollary 1.7. Each hyperbolic cone field admits a hyperbolic enlargement. Especially
globally hyperbolic cone fields have globally hyperbolic enlargements.

Proof. Let τ be a steep Lyapounov function. The closed cone field C is contained in
the closed cone field {(x, v) : x ∈ D(C) and dτx · v � |v|x }. Let F be a closed set
containing D(C) in its interior and disjoint from the critical set of τ . The closed cone
field

G := {(x, v) : x ∈ F and dτx · v � |v|x/2}
is thus an enlargement of C, and 2τ is a steep temporal function for it, hence it is
hyperbolic. If C is globally hyperbolic D(C) = M and therefore F = M . Then G is
globally hyperbolic. �

In particular, hyperbolicity implies stable causality and strong causality. The defini-
tion of strong causality is analogous to the one in Lorentzian geometry. More precisely,
a cone field C is strongly causal if every point has a neighborhood U such that the set
γ −1(U ) is connected set in the interval I for every causal curve γ : I → M .

Although the notion of steep temporal functions is less intrinsic than the notion of
Cauchy temporal function (it depends on the choice of an auxiliary metric), the above
proof shows that it is more tractable, compare [27].

The splitting theorem, see [1,2], also holds in our setting:

Corollary 1.8. Let (M, C) be globally hyperbolic. Then there exists a manifold N and
a diffeomorphism ψ : M −→ R × N whose first component is a steep time function on
M.

Proof. Let τ be a steep time function. We consider the vector field V (x) = ∇τ/|∇τ |2,
which has the property that dτx · V (x) = 1. Note that |dτx | � 1 hence |∇τx | � 1 hence
|V (x)| � 1. As a consequence, the flow ϕt of V is complete. Setting N = τ−1(0), the
map φ : (t, x) �−→ ϕt (x) is a diffeomorphism from R × N into M . For each point
x ∈ M , we have ϕ−τ(x)(x) ∈ N , hence x ∈ ϕτ(x)(N ). This implies that φ is onto, and
that the first component of the inverse ψ of φ is equal to τ . �

Aswas noticed in [4], ifM is moreover assumed contractible, it is then diffeomorphic
to a Euclidean space.

1.2. A Lemma of Sullivan. We start with the definition of complete causal curves, which
are the analogs in our setting of maximal solutions of vector fields.

Definition 1.9. The causal curve γ is called complete if it is defined on an open (possibly
unbounded) interval ]a, b[ and if the two following conditions hold:

(a) Either γ |[s,b[ has infinite length for each s ∈]a, b[ or limt−→b γ (t) is a singular
point of C (we say that γ is forward complete).

(b) Either γ |]a,s] has infinite length for each s ∈]a, b[ or limt−→a γ (t) is a singular
point of C (we say that γ is backward complete).

Although the notion of complete curve is expressed in terms of an auxiliary complete
metric g, it is not hard to see that it does not depend on g, as long as g is complete. We
have:
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Proposition 1.10. Let (M, C) be a closed cone field and let F ⊂ M be a closed set. Let
Z ⊂ F be the union of all complete causal curves contained in F. Then, there exists a
Lyapounov function τ for C on M which is regular on F − Z.

Proof. We consider the closed cone field CF which is equal to C on F and degenerate
outside of F . Each curve which is causal and complete for CF is causal and complete
for C. The proposition follows from Theorem 2 and the observation that R(CF ) ⊂ Z ,
which follows from Corollary 2.16 below, applied to CF . �

In the casewhere C is the cone field generated by a continuous vector field X , where F
is compact, and where Z is empty, we recover the following famous Lemma of Sullivan,
[32]:

If X is a continuous vector field on M, and if K is a compact set which does not contain
any full orbit of X, then there exists a Lyapounov function for X which is regular on K ,
i.e. dτx · X (x) > 0 for each x ∈ K.

The proof of Sullivan in [32] was based on the Hahn-Banach Theorem, a more
elementary proof was given in [17]. Proposition 1.10 extends this result to the non
compact case, and also to the case where some full orbits exist.

1.3. Asymptotic stability. We consider a closed cone field C. A compact set Y ⊂ M is
called asymptotically stable if, for each neighborhood U of Y , there exists a neighbor-
hood V ⊂ U of Y such that J +

C (V ) ⊂ U and if each forward complete causal curve
starting in V converges to Y (which means that the distance to Y converges to zero). If
Y = {y} is a point, then this requires that y be singular (or degenerate).

In our setting we can recover the following restatements of several known results
on converse Lyapounov theory for differential inclusions, see [8] for the case where
Y is a singular point, and [30,31] for the general case. Our setting in terms of cone
fields is parametrization-invariant, in contrast to the formulation in terms of differential
inclusions used in the papers mentioned before. Since both properties of being asymp-
totically stable and of admitting a Lyapounov function are parametrization invariant,
these settings are equivalent. Note that our sign convention for Lyapounov functions is
non standard: They increase along orbits.

Proposition 1.11. Let Y ⊂ M be a compact set and let C be a closed cone field which
is non degenerate in a neighborhood of Y . The following properties are equivalent:

1. Y is asymptotically stable.
2. J +

C (Y ) = Y and there exists a neighborhood U of Y such that each backward
complete causal curve γ contained in U is contained in Y .

3. F+
C (Y ) = Y and there exists a compact neighborhood U of Y such thatRC ∩U ⊂ Y .

4. There exists a Lyapounov function τ which is null on Y , regular on U − Y , and
negative on U − Y , where U is a neighborhood of Y .

Proof. 1 ⇒ 2. The asymptotic stability implies thatJ +
C (Y ) ⊂ U for each neighborhood

U of Y , hence J +
C (Y ) ⊂ Y . Let U0 be a compact neighborhood of Y which has the

property that all forward complete curves contained inU0 converge to Y . This implies in
particular that U0 − Y does not contain singular points. Let us suppose that there exists
a backward complete causal curve γ :] − T, 0] −→ U0 such that γ (0) does not belong
to Y . LetU1 be a compact neighborhood of Y which does not contain γ (0). There exists
an open neighborhood V1 of Y such that J +

C (V1) ⊂ U1, which implies that γ does not
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enter V1 on ] − T, 0]. Since U0 − V1 does not contain singular points of C, the curve γ

has infinite length, we parametrize it by arclength, γ : (−∞, 0] −→ M . By the Ascoli
Arzela Theorem, there exists a sequence tn −→ −∞ such that the curves t �−→ γ (t−tn)
converge, uniformly on compact intervals, to a Lipschitz curve η : R −→ U0 − V1.
By Proposition 2.14, the curve η is causal and forward complete. This implies that η

converges to Y , which is a contradiction since η(R) ⊂ U0 − V1.
2 ⇒ 3.LetU be the neighborhoodwith property 2, andW be a compact neighborhood

ofY contained inU . IfF+
C (Y )wasnot contained inW , then therewould exists a backward

complete causal curve contained inW but not in Y , by Corollary 2.17. This contradiction
implies that F+

C (Y ) ⊂ W , and, since this holds for each compact neighborhood W of
Y contained in U , that F+

C (Y ) ⊂ Y . The part of the statement concerning RC follows
immediately from Corollary 2.16.

3 ⇒ 4. It is a direct consequence of Proposition 5.8.
4 ⇒ 1 LetU be a compact neighborhood of Y such that τ is regular and negative on

U−Y . For each compact neighborhoodW of Y contained inU , we set a = max∂W τ (by
compactness, a < 0) and V := {x ∈ W, τ (x) � a/2}. We have J +

C (V ) ⊂ V ⊂ U . Let
γ : [0, T [−→ V be a complete causal curve parametrized by arclength. The function
τ ◦γ is non decreasing, hence it converges to b ∈ [a/2, 0]. We have to prove that b = 0.
The set V b := {x ∈ V, τ (x) � b} is compact. If b < 0, then τ is regular on V b, hence
there exists δ > 0 such that dτx · v � δ|v| for each (x, v) ∈ C, x ∈ V b. This implies
that τ ◦ γ (t) � τ ◦ γ (0) + δt , hence that T � (b − a)/δ is finite. The complete causal
curve γ has finite length, hence it converges to a limit x ∈ V b which is a singular point
of C hence a critical point of τ , a contradiction. �

2. Preliminaries

2.1. On cone fields. We state here useful results on cone fields.

Lemma 2.1. If C is a closed cone field and E an open cone field, then the set of points
x ∈ M such that C(x) ⊂ E(x) is open.

Proof. It is the projection on M of the open set E − C. �
A standard partition of the unity argument implies:

Lemma 2.2. Let E be an open cone field. Then there exists a smooth vector field V on
D(E) such that V (x) ∈ E(x) for each x ∈ D(E). Moreover, given (x, v) ∈ E , the vector
field V can be chosen such that V (x) = v. In particular, there exists a smooth curve
γ (t) : R −→ M which is E-timelike and such that (γ (0), γ̇ (0)) = (x, v).

Note that V (x) �= 0 at each regular point x of E . This implies that a non degenerate
open cone field on a manifold must admit singular points if the Euler characteristic is
not zero.

Lemma 2.3. Let E be a non degenerate open cone field. Then from each point x starts
a forward timelike curve of infinite length, and a backward timelike curve of infinite
length.

Proof. We consider a smooth vector field V (x) contained in E . We assume that V has
a complete flow (this can be achieved by multiplying V by a positive smooth function).
Let γ (t) : [0,∞) −→ M be the forward orbit of x under this flow. Either γ has infinite
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length, or it converges to a singular point of E . In the second case there exists a finite
time T > 0 such that γ (T ) is singular, since the singular set is open. We can then
extend the curve γ|[0,T ] by a small loop at γ (T ) contained in the singular set of E , and
obtain this way a timelike curve of infinite length starting at x . The backward case is
analogous. �

A smooth function τ defined near x is called a local Lyapounov function at x (for
the closed cone field C) if dτx �= 0 and dτx · v > 0 for each v ∈ C(x). This property
then holds in a neighborhood of x . Local Lyapounov functions at x exist if and only if
x is a not a singular point of C. The cone C(x) is the set of vectors v ∈ TxM such that
dτx · v > 0 for each local Lyapounov function τ at x . The set of vectors v ∈ TxM such
that dτx · v � 0 for each local Lyapounov function τ at x is C(x) ∪ {0}.

LetC be a closed cone and� � C be an open cone. Then there exists an open cone�′
such thatC ⊂ �′ ⊂ �̂′ ⊂ �. Given a diffeomorphismonto its imageφ : N −→ U ⊂ M
and a cone field C on M , we denote by φ∗C := (Tφ)−1(C) the preimage of the cone
field C, where Tφ is the tangent map (x, v) �−→ (φ(x), dφx ·v). Similarly we define the
forward image φ∗C := Tφ(C) of a cone field on N , this is a cone field on U = φ(N ).
We denote by Qs, s � 0 the standard open cone

Qs := {(y, z) ∈ R
d−1 × R : z > s|y|} ⊂ R

d .

In the following and later, we denote by Bd(r) the Euclidean open ball of radius r in
R
d , and also set Bd := Bd(1).

Lemma 2.4. Let E be an open cone field and let x0 be a point which is non degenerate
for E and regular for the closed hull Ê . There exists a chart φ : Bd−1×] − 1, 1[−→ M
at x0 such that

Q1 ⊂ φ∗E(y, z) ⊂ φ∗Ê(y, z) ⊂ Q0

for each (x, y) ∈ Bd−1×] − 1, 1[.
Proof. Let τ be a local Lyapounov function for Ê such that τ(x0) = 0. Let V be a vector
contained in E(x0) and ψ : M −→ R

d−1 be a smooth local map sending x0 to 0 and
such that the kernel of dψx0 is RV . For each a > 0, the map � := (aτ, ψ) is a local
diffeomorphism, such that d�x0 · V = (adτx0 · V, 0) and �∗Ê(0, 0) ⊂ Q0. If a > 0 is
small enough, we have Q1/2 ⊂ �∗Ê(0, 0). As a consequence, there exists s > 0 such
that

Q1 ⊂ �∗E ⊂ �∗Ê ⊂ Q0

on Bd−1(s)×] − s, s[. The inverse map φ of �/s then satisfies the conclusions of the
statement. �

The following classical observation will be useful.

Lemma 2.5. Let E be an open cone field. For each subset A of M, we have

I±
E ( Ā) = I±

E (A)

Proof. Let us consider a point y �∈ I+
E (A). Then the open set I−

E (y) is disjoint from A,
hence from Ā. We conclude that y �∈ I+

E ( Ā). �



478 P. Bernard, S. Suhr

In the sequel we will need the notion of sums of convex cones or cone fields. The
sum of a family of convex cones is defined as the convex envelop of their union. The
sum of cone fields is defined pointwise.

Lemma 2.6. The sum E = ∑
α Eα of an arbitrary family of open cone fields is an open

cone field.

Proof. Let (x, v) ∈ E . We can assume that M = R
d by working in a chart at x . The

vector v belongs to the convex closure of the union ∪αEα(x), hence it is a finite sum of
elements of this union: There exists a finite set J of indices such that v = ∑

i∈J vi with
vi ∈ Ei (x). Let Bi ⊂ Ei (x) be a compact neighborhood of vi in R

d . For each i ∈ J ,
there exists a neighborhood of x on which Bi ⊂ Ei (y). As a consequence, there exists a
neighborhoodU of x such that Bi ⊂ Ei (y) for each y ∈ U and each i ∈ J . We conclude
that U × (

∑
i Bi ) ⊂ E . �

Lemma 2.7. Let � be an open cone and let Ci be finitely many closed cones such that
Ci ⊂ �. Then there exists an open cone �′ such that

∑
Ci ⊂ �′ ⊂ �̂′ ⊂ �.

Proof. In the case where � = R
d , we can take �′ = �. Otherwise we can assume that

� ⊂ Q0 (the open upper half space). Each of the closed conesCi then satisfiesCi ⊂ Qsi
for some si > 0. We can take �′ = Qs with s = min si . �
Lemma 2.8. If E is an open enlargement of the closed cone field C, then there exists an
open cone field E ′ such that

C ⊂ E ′ ⊂ Ê ′ ⊂ E .

Proof. For each x0 ∈ M , there exists a chart φ : Bd−1×] − 1, 1[−→ M at x0 and
an open cone � ⊂ R

d such that φ∗C(y, z) ⊂ � ⊂ �̂ ⊂ φ∗E(y, z) for each (y, z) ∈
Bd−1×] − 1, 1[−→ M . We take a locally finite covering of M by open sets Ui which
are of the form φi (Bd−1(1/2)×] − 1/2, 1/2[) for such charts, and denote by �i the
corresponding open cones. We consider the open cone fields Ei which are equal to φ∗�i

on Ui and which are empty outside of Ui . The closed hull Êi is the cone field equal to
φ∗�̂i on Ūi and empty outside of Ūi . Then we consider the open cone field E ′ = ∑

i Ei .
For each x ∈ M , there exists i such that x ∈ Ui , hence C(x) ⊂ Ei (x) ⊂ E ′(x).

Let us now prove that Ê ′(x) ⊂ E(x) for each x ∈ M . Let J (x) be the finite set of
indices such that x belongs to the closure ofUi . For each i ∈ J (x), Êi (x) = �̂i ⊂ E(x).
Lemma 2.7 implies the existence of a convex open cone �′ ⊂ TxM such that

Êi (x) ⊂ �′ ⊂ �̂′ ⊂ E(x)

for each i ∈ J (x). We use a chart at x to identify the tangent spaces TyM with TxM for
y near x . The inclusion

Êi (y) ⊂ �′ ⊂ �̂′ ⊂ E(y)

holds for y in an open neighborhood V of x . Let us consider the closed cone field C′
which is equal to �̂′ on V and which is singular on M − V . We have Êi ⊂ C′ for each i ,
which implies that E ′ ⊂ C′, and then that Ê ′ ⊂ C′. Since C′(x) ⊂ E(x), we deduce that
Ê ′(x) ⊂ E(x). �



Lyapounov Functions of Closed Cone Fields 479

Lemma 2.9. There exists a sequence En of open cone fields which is strictly decreasing
to C, which means that Ên+1 ⊂ En for each n and that C = ∩En. Such a sequence has the
property that, for each open enlargement E of C and each compact set K ⊂ M, there
exists n such that En(x) ⊂ E(x) for each x ∈ K.

Proof. For each point (x, v) ∈ T M − (C ∪ T0M), there exists an open enlargement E
of C which is disjoint from a neighborhood U of (x, v). We can cover the complement
of C in T M by a sequence Ui of open sets such that, for each i , there exists an open
enlargement E ′

i of C disjoint from Ui . We define inductively the open cone field En as
an enlargement of C satisfying

Ên ⊂ E ′
n ∩ En−1.

It is obvious from the construction that C = ∩En . Finally, let K ⊂ M be compact and
E be an open enlargement of C. For each x ∈ K , there exists nx such that Ênx (x) ⊂
Enx−1(x) ⊂ E(x). Then the inclusion Ênx (y) ⊂ E(y) holds on an open neighborhood of
x . Using Lemma 2.8 we can cover K by finitely many such open sets, hence En(y) ⊂
E(y) for each y ∈ K when n is large enough. �

2.2. Clarke differential, causal and timelike curves. We will use the notion of Clarke
differential of curves and functions, see [7] for example.

The Clarke differential of a locally Lipschitz function f : R −→ R at a given point
x is the compact interval

∂ f (x) =
[

lim inf
y2→x,y1→x,y2>y1

f (y2) − f (y1)

y2 − y1
, lim sup
y2→x,y1→x,y2>y1

f (y2) − f (y1)

y2 − y1

]
.

The interval ∂ f (x) = [p−, p+] can be characterized in the following way: for p < p−,
the function t �−→ f (t) − pt is increasing near t = x , it is decreasing for p > p+, and
it is not monotone in any neighborhood of x for p ∈]p−, p+[.

The Clarke differential of a locally Lipschitz curve γ : R −→ M at a given time t is
the compact convex subset ∂γ (t) ⊂ Tγ (t)M defined as the convex hull of limit points of
sequences of the form (γ (tn), γ ′(tn)) in T M , where tn is a sequence of differentiability
points of γ , see [7, Theorem 2.5.1]. It satisfies the equality

d fγ (t) · ∂γ (t) = ∂( f ◦ γ )(t)

for each smooth function f , and this characterizes ∂γ (t). In other words, v ∈ ∂γ (t) if
and only if d fγ (t) · v ∈ ∂( f ◦ γ )(t) for each smooth function f .

Lemma 2.10. Given a closed cone field C on M, the following statements are equivalent
for a locally Lipschitz curve γ : I −→ M:

(a) γ ′(t) ∈ C(γ (t)) for almost every t ∈ I .
(b) ∂γ (t) ⊂ C(γ (t)) for each t ∈ I .
(c) For each t ∈ I and each local Lyapounov function τ at γ (t), the function τ ◦ γ

is non decreasing in a neighborhood of t .
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Proof. Note that (b) and (c) both hold at t if γ (t) is a singular point of C. In this case
the lemma is trivial. Therefore we can assume that γ (t) is a regular point of C.

Property (b) implies (a) since γ ′(s) exists almost everywhere, and then is contained
in ∂γ (s).

Assume property (a). For each t ∈ I and each local time function τ at γ (t), we
consider a neighborhood of γ (t) such that τ is a regular Lyapounov function on U . We
have γ (s) ∈ U for s close to t . Then, for almost every point s in a neighborhood of t ,
the derivative (τ ◦ γ )′(s) = dτγ (s) · γ ′(s) exists and is non negative. This implies that
the Lipschitz function τ ◦ γ is non decreasing near t .

If (b) does not hold at some time t , then there exists w ∈ ∂γ (t) and a local time
function τ at γ (t) such that dτγ (t) · w < 0. This implies that ∂(τ ◦ γ )(t) contains a
negative value, hence that τ ◦ γ is not non decreasing near t , i.e. contradicting (c). �

Given an open cone field E , we call a locally Lipschitz curve E-timelike if it satisfies
the inclusion ∂γ (t) ⊂ E(γ (t)) for each t . In the case of open cone fields, this is stronger
than requiring the inclusion γ ′(t) ⊂ E(γ (t)) for almost every t . Note however that a
piecewise smooth curve is timelike according to the present definition if and only if it
satisfies the definition given in the introduction (the Clarke differential at a non smooth
point of a piecewise smooth curve is the interval whose endpoints are the left and right
derivatives at that point). It is equivalent to define the timelike future I+

E using smooth,
piecewise smooth, or Lipschitz timelike curves :

Lemma 2.11. Let us consider an open cone field E . For each Lipschitz timelike curve
γ : [0, T ] −→ M, there exists a smooth timelike curve γ̃ : R −→ M such that γ̃ (0) =
γ (0) and γ̃ (T ) = γ (T ).

Proof. Let us set x = γ (0) and work in a local chart at x . Since ∂γ (0) ⊂ E(x), there
exists a compact neighborhood K of ∂γ (0) which is contained in E(x). In view of the
semi-continuity of the Clarke differential, we deduce that γ̇ (t) ∈ K almost everywhere
in some interval ]0, ε[. As a consequence, the curve γ (0)+ t (γ (ε)−γ (0))/ε is timelike
on [0, ε]. By using the same procedure at T , we can assume that γ is smooth near the
boundaries. We can then smooth γ on the whole interval by a standard convolution to a
smooth timelike curve. �

We will also use the concept of Clarke differential of a locally Lipschitz function
f : M −→ R. The Clarke differential ∂ f (x) ⊂ T ∗

x M at the point x is defined as the
convex hull of limit points of sequences of the form (xn, d f (xn)) in T ∗M , where xn is
a sequence of differentiability points of f converging to x , see [7, Theorem 2.5.1]. It
satisfies the equality

∂ fγ (t) · γ ′(t) = ∂( f ◦ γ )(t)

for each smooth curve γ , and this characterizes ∂ f . In other words, p ∈ ∂ f (x) if and
only if p · γ ′(t) ∈ ∂( f ◦ γ )(t) for each smooth curve γ satisfying γ (t) = x . If h is a
C1 function, then ∂h(x) = {dh(x)}, and more generally ∂(h + f )(x) = dh(x) + ∂ f (x)
for each locally Lipschitz function f .

If γ is a locally Lipschitz curve and f a Lipschitz function, then we have the chain
rule (see [7, Theorem 2.3.9])

∂( f ◦ γ )(t0) ⊂ [inf
p,v

p · v, sup
p,v

p · v]

where the sup and inf are taken on p ∈ ∂ f (γ (t0)), v ∈ ∂γ (t0). This inclusion is an
equality if γ or f are smooth, as seen above, but may be strict in general.
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2.3. Limit curve Lemma. Recall that we have fixed a complete Riemannian metric on
M . We consider a closed cone field C and a sequence En of open cone fields strictly
decreasing to C in the sense of Lemma 2.9.

Lemma 2.12. Let γn : I −→ M be an equi-Lipschitz sequence of En-timelike curves
converging to γ : I −→ M uniformly on compact subintervals of I , then γ is C-causal.
Proof. Note first that γ is Lipschitz. Let t ∈ I be given, and let τ be a local Lyapounov
function at γ (t). In view of Lemma 2.10, it is enough to prove that τ ◦γ is non decreasing
near t .

LetU be a compact neighborhood of γ (t) such that τ is a regular Lyapounov function
on U . Then τ is still a regular Lyapounov function on U for the closed cone field Ên
for n � n0. There exists a neighborhood J of t and n1 � n0 such that γn(s) ∈ U for
each s ∈ J , n � n1. These properties imply that τ ◦ γn is non decreasing on J provided
n � n1. At the limit, we deduce that τ ◦ γ is non decreasing on J . �

It is useful to control the length of the limit curve:

Lemma 2.13. Let C be a closed cone field and γ : [0, 1] −→ M be a C-causal curve
which does not contain any singular point of C. There exists L > 0 such that:

For each T ∈]0, 1[, there exists ε > 0 and an open enlargement E of C such that each
E-timelike curve η : [0, T ] −→ M satisfying d(γ (t), η(t)) � ε for each t ∈ [0, T ] has
a length less than L.

Proof. Let En be a sequence of open cone fields strictly decreasing to C, and let γ be as
in the statement. We denote by �(γ ) the length of a curve γ .

Wecover the imageofγ byfinitelymanyboundedopen setsU1, . . . ,Uk eachofwhich
has the property that there exists a local Lyapounov function τi on an open neighborhood
Vi of Ūi , which satisfies |v|x/2δi � d(τi )x · v � 2δi |v|x for some δi > 0, and for each
v ∈ C(x), x ∈ Ui . We set δ := min δi and prove the statement with L = (1+ �(γ )/δ)/δ.
We consider a sequence ηn : [0, 1[−→ M of En-timelike curves converging, uniformly
on compact subsets of [0, 1[, to γ . We have to prove that �(ηn|[0,T ]) � L for n large
enough.

Given T ∈]0, 1[, there exists a finite increasing sequence of times 0 = t0 < t1 <

· · · < tN = T such that γ[t j ,t j+1]] is contained in one of the open setsUi for each j . Then

for n large enough, this is also true for ηn|[t j ,t j+1] and |τi (η(t)) − τi (γ (t))| ≤ 1
2N . We

obtain, for n large enough :

δ�(ηn|[t j ,t j+1]) � τi (ηn(t j+1)) − τi (ηn(t j )) � τi (γ (t j+1)) − τi (γ (t j )) + 1/N

� 1/N + �(γ|[t j ,t j+1])/δ.

Taking the sum, we obtain that the inequality

δ�(ηn|[0,T ]) � 1 + �(γ )/δ

holds for n large enough, which ends the proof. �
Proposition 2.14. Letγn : [0, an[−→ M bea sequenceofEn-timelike curves parametrized
by arclength, such that γn(0) is bounded and an −→ ∞. Then along a subsequence,
the sequence γn converges, uniformly on compact intervals of [0,∞), to a limit γ :
[0,∞) −→ M which is C-causal and complete in the sense of Definition 1.9.
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Proof. Since the curves γn are 1-Lipschitz, Ascoli Arzela’s Theorem gives, for each
T > 0, the existence of a subsequence along which γn converge uniformly on [0, T ].
By a diagonal extraction, we get a subsequence along which γn converge uniformly
on compact intervals. By Lemma 2.12, the limit γ is C-causal. Let us prove that this
limit is complete. If it was not complete, it would have finite length and a regular limit
γ (∞) = y at infinity. Since the set of regular points is open, there would exit T > 0
such that γ ([T,∞]) contains only regular points. We could reparameterize γ on [T,∞)

to a curve γ̃ = γ ◦ λ : [0, 1[−→ M , and extend γ̃ to a causal curve γ̃ : [0, 1] −→ M .
Lemma 2.13, applied to the causal curve γ̃ and the sequence γ̃n = γn ◦ λ, gives L > 0
such that, for each S ∈]0, 1[, the curve γ̃n|[0,S] has length less than L for n large enough.
Observing that �(γ̃n|[0,S]) = λ(S) − T , this would imply that λ(S) � T + L for each
S ∈]0, 1[. This is a contradiction since λ maps [0, 1[ onto [T,∞). �
Corollary 2.15. If C is a non degenerate closed cone field, then each point is contained
in a complete causal curve. Each causal curve which is not forward complete can be
extended to a forward complete causal curve (hence each forward inextendible curve is
forward complete).

Proof. The first point is a consequence of Proposition 2.14 and Lemma 2.3. To prove
the second point, we consider a causal curve γ : [0, T [−→ M which is not complete,
parametrized by arclength. Since γ has finite length, T is finite. We consider the limit
y of γ at T , and a forward complete causal curve γ1 starting from y. The concatenation
of γ and γ1 is a forward complete causal curve. �

More care is needed in the presence of degenerate points, but we have:

Corollary 2.16. Let C be a closed cone field. For each x ∈ RC , there exists a complete
causal curve γ passing through x.

Proof. Let En be a sequence of open cone fields strictly decreasing to C. For each n,
there exists a closed En-timelike curve passing through x , that we see as a periodic En-
timelike curve γn : R −→ M satisfying γn(0) = x . The curve γn is periodic and not
constant, hence it has infinite length. At the limit, we obtain a complete causal curve
passing through x . �

The same method also yields:

Corollary 2.17. Let Y ⊂ K be two compact sets. If J +
C (Y ) is contained in the interior

of K , and F+
C (Y ) is not contained in K , then there exists a backward complete causal

curve γ :] − T, 0] −→ M contained in K and such that γ (0) ∈ ∂K.

Proof. For each n, there exists an En-timelike curve γn : [−Tn, 0] −→ K such that
γn(0) ∈ ∂K and γn(−Tn) ∈ Y , parametrized by arclength. If the sequence Tn was
bounded, then at the limit we would obtain a C-causal curve joining a point of Y to a
point of ∂K , which contradicts the hypothesis that J +

C (Y ) is contained in the interior of
K . We deduce that Tn is unbounded, and at the limit we obtain the desired backward
complete causal curve. �

3. Direct Lyapounov Theory

We consider a closed cone field C and explain how to deduce information about sta-
ble causality from the existence of appropriate (smooth) Lyapounov functions. More
precisely we prove the following parts of Theorem 1, and some variations:
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• If there exists a Lyapounov function τ such that τ(x ′) < τ(x), then x ′ /∈ F+
C (x).

• If there exists a Lyapounov function τ such that dτx �= 0, then x /∈ RC .

Definition 3.1. An open set A ⊂ M is a trapping domain for the open cone field E if
I+
E (A) ⊂ A. A is a trapping domain for the closed cone field C if it is a trapping domain

for some open enlargement E of C.
In the causality theory of space times such sets are called future sets, [22].

Lemma 3.2. If A is a trapping domain for C, then there exists an enlargement E of C
such that I+

E ( Ā) ⊂ A, in particular, F+
C ( Ā) ⊂ A.

Proof. Let E be an open enlargement of C such that I+
E (A) ⊂ A. By Lemma 2.5,

I+
E ( Ā) = I+

E (A) ⊂ A. �
Lemma 3.3. Let f be a C1 function, and a ∈ R. If the inequality d fx · v > 0 holds for
each x ∈ f −1(a) and v ∈ C(x), then { f > a} is a trapping domain.

In particular, if a is a regular value of the Lyapounov function τ , then {τ > a} is a
trapping domain.

The first part of the statement includes the possibility that C(x) may be empty, in
which case there is no condition on f at x .

Proof. Let us consider the open cone field E defined by E(x) = TxM if f (x) �= a and
E(x) = {v ∈ TxM : d fx · v > 0} if f (x) = a. Our hypothesis on f is that E in an open
enlargement of C. If γ (t) is an E-timelike curve, then f ◦ γ is increasing near each time
t such that f ◦ γ (t) = a. As a consequence, if f ◦ γ (t) > a, then f ◦ γ (s) > a for each
s > t . This implies that { f > a} is a trapping domain. �
Corollary 3.4. Let τ be a Lyapounov function. If τ(x ′) < τ(x), then x ′ �∈ F+

C (x).

Proof. Let a ∈]τ(x ′), τ (x)[ be a regular value of τ (there exists one by Sard’s theorem).
We have F+

C (x) ⊂ F+
C ({τ > a}) ⊂ {τ > a}. �

Lemma 3.5. Let τ be a Lyapounov function and x a regular point of τ . Then there exists
a Lyapounov function τ̃ which has the same critical set as τ , and such that τ̃ (x) is a
regular value of τ̃ . This implies that x is not stably recurrent.

Proof. Given a neighborhood U of x on which τ is regular, let f be a smooth function
supported in U and such that f (x) = 1. For δ > 0 small enough, the function τ + s f
is a Lyapounov function, which is regular on U for each s ∈] − δ, δ[. The interval
]τ(x) − δ, τ (x) + δ[ contains a regular value a of τ . The function τ̃ := τ + (a − τ(x)) f
is a Lyapounov function which is regular onU . The number a := τ̃ (x) is a regular value
of τ̃ : If τ̃ (y) = a, then either y ∈ U and then d τ̃y �= 0 or y does not belong to the
support of f , and then d τ̃y = dτy �= 0 since a is a regular value of τ . �

4. Smoothing

The goal of the present section is to prove the following regularization statement, which
is one of our main technical tools to prove the existence of Lyapounov functions. We
work with a closed cone field C on the manifold M . We say that the open set A ⊂ M
is smooth if its boundary is a smooth submanifold, we say that the open set A ⊂ M is
smooth near the set X if there exists an open set U containing X such that U ∩ A is
smooth in U .
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Proposition 4.1. Let A0 be a trapping domain, let Fi be a closed set contained in A0,
let Fe be a closed set disjoint from Ā0, and let θ0 be a point in the boundary of A0.

Then there exists a smooth (nearD(C)) trapping domain A′
0 which contains Fi , whose

boundary contains θ0, and whose closure is disjoint from Fe.

The proof is given in 4.3 after the exposition of preliminary material.

4.1. Local properties of trapping domains. Given an open set A ⊂ M and x ∈ ∂A, we
say that A is locally trapping at x if one of the following equivalent conditions hold:

(i) There exists an open conefieldE which contains {x}×C(x) and such thatI+
E (A) ⊂

A.
(ii) There exists a compact neighborhood K of x such that A is trapping for CK (the

cone field equal to C on K and degenerate outside of K ).
(iii) There exists an neighborhood U of x such that A ∩ U is trapping for the cone

field C on U .

Lemma 4.2. The open set A is a trapping domain for C if and only if it is locally trapping
at each point x ∈ ∂A.

Proof. If A is a trapping domain, then there exists an open enlargement E of C such that
I+
E (A) ⊂ A. This implies that C is locally trapping A at each point of ∂A.
Let us now prove the converse. For each point x ∈ ∂A, there exists an open cone

field Ex such that C(x) ⊂ Ex (x) and I+
Ex (A) ⊂ A. The inclusion C(y) ⊂ Ex (y) then

holds for all y in an open neighborhood Ux of x in ∂A. We consider a sequence xi such
that the open sets Uxi form a locally finite covering of ∂A. For each x ∈ ∂A, we denote
by J (x) the finite set of indices such that x ∈ Ūxi . Since the covering is locally finite,
there exists a neighborhood V of x in ∂A which is disjoint from Uxi for each i /∈ J (x).
We define, for each x ∈ ∂A, the open cone E(x) := ⋂

i∈J (x) Exi (x). For x /∈ ∂A, we set
E(x) = TxM . We claim that E := ⋃

x∈M {x} × E(x) is an open cone field. Indeed, for
each x ∈ A, the intersection

⋂
i∈J (x) Exi is an open cone field which is contained in E

in a neighborhood of x , and equal to E at x .
By construction, E is an enlargement of C. Let us verify that I+

E (A) ⊂ A. If not, there
exists an E-timelike curve γ such that γ (t) ∈ A on [0, T [ and γ (T ) ∈ ∂A. We have
γ̇ (T ) ∈ E(γ (T )) ⊂ Exi (γ (T ))) for some i (any i such that γ (T ) ∈ Uxi ). For this fixed
i , the curve t �→ γ (t) is then Exi -timelike on [S, T [ for some S < T . This contradicts
the inclusion I+

Exi (A) ⊂ A. �

Let E be an non degenerate open cone field, and A be a trapping domain for Ê . Then
Ê(x) is regular for all x ∈ ∂A. By Lemma 2.4, at each point x ∈ ∂A, there exists a chart
φ : Bd−1(2)×] − 2, 2[−→ M which sends (0, 0) to x and has the property that

Q1 ⊂ φ∗Ê(y, z) ⊂ Q0

for all (y, z) ∈ Bd−1(2)×] − 2, 2[. We recall that Bd(r) is the open ball of radius r
centered at 0 in R

d and that Qs, s � 0 is the open cone Qs = {(y, z) ∈ R
d−1 × R : z >

s|y|} ⊂ R
d .

Lemma 4.3. There exists a 1-Lipschitz function g : Bd−1(2) −→] − 2, 2[ such that
φ−1(A) is the open epigraph {z > g(y)}, hence φ−1(∂A) is the graph of g. Note that
g(0) = 0.
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Proof. Let us define the function g(y) = inf{z ∈]−2, 2[: φ(y, z) ∈ A}. Since φ(0, 0) ∈
∂A and Q1 ⊂ φ∗Ê there exists for all y ∈ Bd−1(2) a z < 2 with φ(y, z) ∈ A. Then
φ(y, g(y)) ∈ Ā for each y ∈ Bd−1(2). The curve t �−→ φ(y, z + t) is Ē-causal hence
the set {(y, z) : g(y) < z < 2} is contained in A. Furthermore, since Q1 ⊂ φ∗Ē , the
curve φ(y + tv, g(y) + t) is Ē-causal for each y ∈ Bd−1(1) and v ∈ B̄d−1(1). This
implies that g is 1-Lipschitz. �

Let C be a closed cone field on R
d−1 × R, and let A ⊂ R

d−1 × R be a trapping
domain which is the open epigraph of the Lipschitz function g : R

d−1 −→ R.

Lemma 4.4. For each point x = (y, g(y)) of ∂A, the following statements are equiva-
lent:

(a) The domain A is locally trapping at x.
(b) The inequality vz > p · vy holds for each (vy, vz) ∈ C(x), and each p ∈ ∂g(y).

Proof. If (b) does not hold, there exists p ∈ ∂g(y) and (vy, vz) ∈ C(x) such that
p · vy � vz . Then for each open cone field E containing {x} × C(x), there exists
w = (wy, wz) ∈ E(x) such that wz < p · wy . Then there exists an open interval I
containing 0 and a neighborhood V of x such that the curve t �−→ x ′ + tw is E-timelike
on I for each x ′ ∈ V . The inequality wz < p · wy implies that the Clarke differential
of the function t �−→ g(y + twy) − twz contains a positive value. As a consequence,
this function is not non increasing in any neighborhood of 0. In other words, there exists
t1 < t2 in I such that

g(y + t1wy) − t1wz < g(y + t2wy) − t2wz .

Wecan assumemoreover that t1 is sufficiently small to have (y, g(y+t1wy)−t1wz) ∈ V .
This implies that the curve

η = (ηy, ηz) : t �−→ (y + twy, g(y + t1wy) + (t − t1)wz)

is E-timelike on I . We observe that ηz(t1) = g(ηy(t1)) and ηz(t2) < g(ηy(t2)). As a
consequence, we do not have I+

E ( Ā) ⊂ A. We have proved that A is not locally trapping
at x .

Conversely, let us assume that (b) holds and consider the cone

� = {(vy, vz) : vz > p · vy,∀p ∈ ∂g(y)}.
Since ∂g(y) is compact, this is an open cone. We consider an open cone �1 such that

C(x) ⊂ �1 ⊂ �̂1 ⊂ �.

In view of the semi-continuity of the Clarke differential, there exists an open neigh-
borhood U of y in R

d−1 such that the inequality vz > supp∈∂g(y′) p · vy holds for
each (vy, vz) ∈ �1 and each y′ ∈ U . We consider the open cone field E which is
equal to �1 on U × R and empty outside, and prove that I+

E (A) ⊂ A. Otherwise,
there exists a smooth curve γ = (γy, γz), which is timelike for E , and such that
γz(T ) = g(γy(T )) and γz(t) > g(γy(t)) for each t ∈ [0, T [. Then, we have γy(T ) ∈ U
and (γ̇y(T ), γ̇z(T )) ∈ �1 hence

γ̇z(T ) > sup
p∈∂g(γy(T ))

p · γ̇y(T ).

This implies that the function γz(t) − g(γy(t)) is increasing near t = T , a
contradiction. �
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4.2. De Rham smoothing.

Proposition 4.5. For each Lipschitz function g : R
d −→ R, there exists a family gs, s >

0 of Lipschitz functions on R
d which converge uniformly to g as s −→ 0 and such that:

(a) gs is smooth on Bd(1) and equal to g outside of this ball for each s > 0, and
moreover gs is smooth on any open subset O ⊂ R

d where g is already smooth.
(b) lim sups−→0(Lip gs) � Lip g.
(c) If V ⊂ R

d × (Rd)∗ is an open set containing the graph ∂g := {(x, p) : x ∈
B̄d(1), p ∈ ∂g(x)} of the Clarke differential of g, then V contains the graph
∂gs := {(x, p) : x ∈ B̄d(1), p ∈ ∂gs(x)} for s small enough.

If y1, . . . , yN are finitely many points in Bd(1), then we can assume in addition that
gs(yi ) = g(yi ) for each i = 1, . . . , N and each s > 0.

Proof. We use the de Rham smoothing procedure. We follow the notations of [3,
Lemma A.1]. There exists a smooth action a : R

d × R
d → R

d , (y, x) �→ a(y, x) of
R
d on itself (meaning that a(y, a(y′, x)) = a(y + y′, x)) such that:

• a(y, x) = x for each y ∈ R
d and x ∈ R

d − Bd(1)
• The action of R

d on Bd(1) is conjugated to the standard action of R
d on itself

by translations (there exists a diffeomorphism ϕ : Bd(1) −→ R
d such that ϕ ◦

a(y, ϕ(x)) = y + ϕ(x)).
• The diffeomorphisms ay : x → a(y, x) converge to the identity C1-uniformly for

y −→ 0.

Given a Lipschitz function g : R
d −→ R, we define

gs(x) :=
∫

Rd
s−dg(a(y, x))ρ(−y/s)dy

where ρ is a mollification kernel supported in Bd(1). Properties (a) and (b) are proved,
for example, in [3, Lemma A.1]. Let us now prove property (c).

We denote by V (x) ⊂ (Rd)∗ the set of p such that (x, p) ∈ V . We cover the compact
set B̄d(1) byfinitelymany balls Bi each ofwhich has the following property: There exists
convex open sets Wi and Vi in (Rd)∗ such that ∂g(x) ⊂ Wi ⊂ W̄i ⊂ Vi ⊂ V (x) for
each x ∈ 2Bi (the ball of same center and double radius).

For each i , we define ni (v) := supp∈Wi
p · v and mi (v) = supp∈Vi p · v which are

convex and positively one-homogeneous (hence subadditive) functions. SinceWi ⊂ Vi
there exists δ > 0 such that mi (v) � ni (v) + δ|v|. Note that Vi (resp. Wi ) is precisely
the set of linear forms p satisfying p · v � mi (v) (resp. ni (v)) for each v . The function
g is ni -Lipschitz on 2Bi , which means that

g(x ′) − g(x) � ni (x
′ − x)

for each x and x ′ in 2Bi . Since the diffeomorphisms ay converge to the identity C1-
uniformly as y −→ 0, we have

∣∣a(y, x ′) − a(y, x) − x ′ + x
∣∣

=
∣∣∣∣
∫ 1

0
(∂xa(y, x + t (x ′ − x)) − I d) · (x ′ − x)dt

∣∣∣∣ � ε(|y|)|x ′ − x |
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with a function ε converging to 0 at 0. For s small enough, we have a(y, x) ∈ 2Bi for
each x ∈ Bi and |y| � s, and ε(s) < δ. We then obtain, for x and x ′ in Bi ,

|gs(x ′) − gs(x)| �
∫

s−d
∣∣g ◦ ay(x

′) − g ◦ ay(x)
∣∣ρ(−y/s)dy

�
∫

s−dni
(
ay(x

′) − ay(x)
)
ρ(−y/s)dy

�
∫

s−dmi (x
′ − x)ρ(−y/s)dy = mi (x

′ − x).

This implies that dgs(x) · v � mi (v) for each v, at each point of differentiability x of gs
in Bi , hence that ∂gs(x) ⊂ Vi ⊂ V (x) for each x ∈ Bi . Since the covering Bi is finite,
this inclusion holds for all x ∈ R

d provided s is small enough.
The function gs constructed so far does not necessarily satisfy the additional condi-

tions gs(yi ) = g(yi ). We thus consider the modified function

g̃s(x) = gs(x) +
N∑

i=1

(g(yi ) − gs(yi ))hi (x),

where hi , 1 � i � N are non negative smooth functions supported on Bd(1) and
satisfying hi (yi ) = 1 and hi (y j ) = 0 for j �= i . This modified family of functions
satisfies the three points of the statements since gs(yi ) −→ g(yi ) for each i , and

∂ g̃s(x) = ∂gs(x) +
∑

i

(g(yi ) − gs(yi ))dhx

for each x . �

4.3. Proof of Proposition 4.1. We first give the proof under the assumption thatD(C) =
M . Since A0 is also a trapping domain for some open enlargement E of C (Lemma 3.2),
we can assume without loss of generality that C is the closed hull of a non degenerate
open cone field.

We consider a locally finite covering of ∂A0 by domains

Uk(1) = φk(B
d−1(1)×] − 1, 1[)

associated to charts φk : Bd−1(2)×] − 2, 2[−→ M, k � 1 which have the property that

Q1 ⊂ φ∗
kC(y, z) ⊂ Q0

for all (y, z) ∈ Bd−1(2)×] − 2, 2[. We denote by xk the points φk(0), k � 1 and set
x0 = θ0. We moreover assume that the open sets Uk(2) := φk(Bd−1(2)×] − 2, 2[) are
all disjoint from Fi and Fe.

By Lemma 4.3, the open set φ−1
1 (A0) is the epigraph of a 1-Lipschitz function

f1 : Bd−1(2) −→] − 2, 2[ such that f1(0) = 0. The bounded set U1(1) contains
finitely many of the points xi . We denote by y1, . . . , yN the first component of the
preimages of these points. So those of the points xi which are contained in U1(1) are
φ1(y1, f1(y1)), . . . , φ1(yN , f1(yN )).

For each y ∈ Bd−1(2), the inequality vz > p · vy holds for each (vy, vz) ∈
φ∗
1C(y, f1(y)) and each p ∈ ∂ f1(y) by Lemma 4.4. By a compactness argument, we
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find an open neighborhoodW1 of {(y, f1(y)), y ∈ B̄d−1(1)}, and an open neighborhood
V1 of

∂ f1 := {(y, p), y ∈ B̄d−1(1), p ∈ ∂ f1(y)}

with the property that the inequality vz > p · vy holds for each x = (y, z) ∈ W1, each
p ∈ V1(y), and each (vy, vz) ∈ φ∗

1C(x). We have denoted by V1(y) the set of linear
forms p such that (y, p) ∈ V1.

By Proposition 4.5, there exists a function g1 : Bd−1(2) −→ Rwhich is 2-Lipschitz,
smooth on Bd−1(1), equal to f1 outside of Bd−1(1), and satisfies:

• ∂g1 = {(y, p), y ∈ B̄d−1(1), p ∈ ∂g1(y)} ⊂ V1,
• (y, g1(y)) ∈ W1 for each y ∈ Bd−1(1),
• g1(y j ) = f1(y j ) for j = 0, . . . , N .

In particular, g1(0) = 0, hence g1 takes vales in ] − 2, 2[.
Let A1 be the open set such that A1 ∩ (M −U1(1)) = A0 ∩ (M −U1(1)) and such

that φ−1
1 (A1) is the open epigraph of g1. The domain A1 is locally trapping at each point

of its boundary. Indeed, such a point x either belongs to ∂A0 ∩ (M − Ū1(1)), and then
A1 = A0 near x , or it is of the form φ1(y, g1(y)) for some y ∈ B̄d−1(1). In this second
case, we have φ−1

1 (x) = (y, g1(y)) ∈ W1, hence the inequality vz > p · vy holds for
each (vy, vz) ∈ φ∗

1C(x) and each p ∈ ∂g1(y) ⊂ V1(y). The conclusion then follows
from Lemma 4.4. We deduce by Lemma 4.2 that A1 is a trapping domain for C.

By the samemethod,we build inductively a sequence Am ,m � 0 of trapping domains
which have the following properties:

• ∂Am contains all the points xk (hence the point θ0), Fi is contained in Am and Fe is
disjoint from Ām .

• Theboundary ∂Am is contained in
⋃

k�1Uk(1), and its intersectionwith
⋃

m�k�1Uk(1)
is a smooth hypersurface.

• The symmetric difference between Am and Am−1 is contained in Um(1).

We denote by A′
0 := lim inf Am the set of points x which belong to all but finitely

many of the sets Am . We claim that A′
0 satisfies the conclusions of Proposition 4.1. Since

the covering Uk(1) is locally finite, the intersection Am ∩ K stabilizes to A′
0 ∩ K for

each compact K , i. e. K ∩ Am = K ∩ A′
0 for all m large enough. This implies that A′

0 is
open, and that ∂(A′

0) = lim inf ∂(Am). This boundary is smooth, contains all the points
xk , and is contained in

⋃
k�1Uk(1).

To prove that A′
0 is a trapping domain, it is enough to observe that it is locally trapping

at each point x of its boundary. Since the sequence Ak stabilizes in a neighborhood of x ,
this follows from the fact that each of the open sets Ak is trapping. This ends the proof
of Proposition 4.1 under the assumption that D(C) = M .

In case thatD(C) �= M we consider an enlargement E of C such that A0 is a trapping
domain for Ê (Lemmas 3.2 and 2.8). We can apply the result just proved on the manifold
D(E), to the cone field Ê . We deduce the existence of a smooth trapping region A′

0 for
Ê in D(E) which contains Fi ∩ D(E), is disjoint from Fe ∩ D(E), and whose boundary
contains θ0. Let O be an open subset of M which contains Fi and whose closure is
disjoint from Fe, and let Z ⊂ D(E) be a closed neighborhood of D(C) in M . The open
set A′

0 ∪ ((M − Z) ∩ O) then satisfies the conclusions of Proposition 4.1. �
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5. Existence of Lyapounov Functions

We consider in this section a closed cone field C and prove several existence results for
Lyapounov functions, in particular Theorems 1, 2 and 3.

5.1. Smooth trapping domains and Lyapounov functions. We associate (smooth) Lya-
pounov functions to smooth trapping domains:

Proposition 5.1. Let A be smooth trapping domain, then there exists a (smooth) Lya-
pounov function τ : M −→ [−1, 1] such that A = {τ > 0} and all values in ] − 1, 1[
are regular values of A (hence ∂A = {τ = 0}).

If Fi and Fe are closed sets contained in A and disjoint from Ā, respectively, we can
moreover impose that τ = 1 on Fi and τ = −1 on Fe.

Proof. We consider a collar of the hypersurface H := ∂A in themanifoldM−(Fe∪Fi ),
that is a smooth embedding ψ : H × R −→ M − (Fe ∪ Fi ) such that ψ(H × {0}) =
∂A and ψ−1(A) = H×]0,∞). We will prove the existence of a Lyapounov function
τ̃ : H × R −→ [−1, 1] for the cone field ψ∗C, which has the following properties:

• τ̃ = 0 on H × {0}.
• τ̃ = 1 on H × [1,∞) and τ̃ = −1 on H × (−∞,−1].
• The values in ] − 1, 1[ are regular for τ̃ .

Assuming the existence of the function τ̃ , we obtain the Lyapounov function τ on M as
follows: τ = τ̃ ◦ψ−1 onU = ψ(H×R), τ = 1 on A−U , and τ = −1 on M−(A∪U ).

Let us now prove the existence of the Lyapounov function τ̃ on H × R. We denote
by (y, z) the points of H × R. The cone field

C̃(y, z) = ψ∗C(y, z) = (dψ−1
(y,z) · C(ψ(y, z)))

is a closed cone field on H × R. The cones C̃(y, 0) satisfy vz > 0 for each (vy, vz) ⊂
C̃(y, 0). Fixing a Riemannian metric on H , there exists a smooth positive function δ(y)
on H such that

C̃(y, 0) ⊂ {(vy, vz) : vz � 3δ(y)‖vy‖}
for each y ∈ H . Then, there exists a smooth positive function ε on H such that

C̃(y, z) ⊂ {(vy, vz) : vz � 2δ(y)‖vy‖}
provided |z| � ε(y). Let f : H −→ R be a smooth positive function such that ‖d fy‖ �
δ(y) and f (y) � ε(y) for all y ∈ H , see Lemma 5.4 below for the existence of such a
function. We set

τ̃ (y, z) = φ(z/ f (y)),

where φ : R −→ [−1, 1] is a smooth nondecreasing function which has positive
derivative on ] − 1, 1[ and is equal to 1 on [1,∞) and to −1 on (−∞,−1]. The set of
regular points of the function τ̃ is {(y, z) : |z| < f (y)} = τ̃−1(]−1, 1[). At such a point
(y, z), we compute

d τ̃(y,z) · (vx , vz) = φ′(z/ f (y))
f (y)

(
vz − z

f (y)
d fy · vy

)
� φ′(z/ f (y))

2 f (y)
vz

for (vy, vz) ∈ C̃(y, z) since |(z/ f (y))d fy · vy | � δ(y)‖vy‖ � vz/2. �
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We will also need a variant of the above result.

Corollary 5.2. Let A be a trapping domain which is smooth nearD(C). Then there exists
a Lyapounov function τ : M −→ [−1, 1] such that A = {τ > 0} and such that τ is
regular at each point of τ−1(] − 1, 1[) ∩ D(C).

If Fi and Fe are closed sets contained in A and disjoint from Ā, respectively, we can
moreover impose that τ = 1 on Fi and τ = −1 on Fe.

We recall the classical:

Lemma 5.3. For A ⊂ M open there exists a non negative smooth function f : M → R

such that A = { f > 0}.

Proof. Choose a locally finite open cover {Bi }i of A and a subordinate partition of unity
{λi }i . There exists a positive sequence {ai }i (see [9] for example) such that f := ∑

i aiλi
is smooth. It satisfies the desired property. �
Proof of Corollary 5.2. Let U be an open neighborhood of D(C) such that ∂A ∩ U is
smooth. Let V be the complement of D(C). Let T : U −→ [−1, 1] be a Lyapounov
function of C on U such that A ∩ U = {T > 0} and all points in ] − 1, 1[ are regular
values of T . We obtain such a function by applying Proposition 5.1 on the manifold U .
Using Lemma 5.3 we can choose a smooth function f on M such that f = 1 on Fi ,
f > 0 on A, f < 0 outside of Ā, and f = −1 on Fe. Let g, h be a partition of unity
associated to the open covering (U, V ) of M . We set τ = gT + h f . �
Lemma 5.4. Le N be a Riemannian manifold, and let ε(x) be a positive continuous
function on N. There exists a smooth function f : N −→ R such that | f (x)| � ε(x)
and |d f (x)| � ε(x) for each x.

Proof. We consider a locally finite partition of the unity by smooth compactly supported
function gi , and a function f of the form f = ∑

i ai gi for some positive sequence ai .
We set h(x) := 1 +

∑
i |dgi (x)|. This is a continuous positive function (the sum is

locally finite). We claim that the function f = ∑
ai gi satisfies the desired inequalities

provided 0 < ai < minx∈Ki ε/h, where Ki is the support of gi .
To prove the claim, we define for each x the finite set I (x) of indices i such that

x ∈ Ki . For each i ∈ I (x), we have ai < ε(x)/h(x), hence

f (x) =
∑

i∈I (x)
ai gi (x) < (ε(x)/h(x))

∑

i

gi (x) < ε(x).

Moreover, |d f (x)| �
∑

i∈I (x) ai |dgi (x)| < ε(x). �

5.2. Conley theory for closed cone fields. We prove Theorems 1 and 2. We say that a is
a relative regular value of τ if τ−1(a) ∩ D(C) consists of regular points of τ .

Proposition 5.5. If x is not stably recurrent, then there exists a Lyapounov function τ

such that τ(x) is in the interior of the set of relative regular values of τ (in particular, τ
is regular at x).
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Proof. There are two cases. Either C(x) is degenerate, or there exists an enlargement E
of C such that x �∈ I+

E (x) and such that E(x) �= ∅.
In the first case, the point x belongs to the open set M − D(C). Then there exists a

smooth function τ compactly supported inside this open set, and such that τ(x) is in the
interior of the set of regular values of τ . This function τ is a Lyapounov function.

In the second case, the set A0 := I+
E (x) is a trapping domain for C whose boundary

contains x . Proposition 4.1 gives the existence of a trapping domain which is smooth
near D(C) and whose boundary contains x . Corollary 5.2 then implies the existence of
the desired Lyapounov function. �
Proposition 5.6. Let x and x ′ be two points such that x ′ does not belong toF+

C (x). Then
there exists a Lyapounov function τ : M −→ [−1, 1] such that τ(x ′) = −1, τ(x) = 1,
and all values in ] − 1, 1[ are relative regular values of τ .
Proof. We consider two cases. Either C(x) = ∅ or there exists an enlargement E of C
such that x ′ /∈ I+

E (x) ∪ {x} and E(x) �= ∅.
In the first case, we take a smooth function τ which is equal to 1 in a small neighbor-

hood of x and −1 in a neighborhood of D(C) ∪ {x ′}.
In the second case, the set A0 := I+

E (x) is a trapping domain containing x in its closure
and not containing x ′. Proposition 4.1 then implies the existence of a smooth (nearD(C))
trapping domain containing x in its closure and not containing x ′. Corollary 5.2 implies
the existence of a Lyapounov function τ̃ : M −→ [−1, 1] such that τ̃ (x ′) � 0 and
τ̃ (x) � 0 and values in ] − 1, 1[ are relatively regular. By slightly perturbing τ̃ near x if
necessary, we can assume that τ̃ (x) > 0. We then set τ = f ◦ τ̃ , with a non-decreasing
smooth function f : R −→ [−1, 1] which has positive derivative on ]τ̃ (x ′), τ̃ (x)[ and
sends this interval onto ] − 1, 1[. �

Theorem 1 obviously follows from the two propositions above. Let us prove
Theorem 2.

Proof of Theorem 2. Let us consider the setL of Lyapounov functions τ which have the
property that they take values in [−1, 1] and that each point of τ−1(] − 1, 1[) ∩D(C) is
regular for τ (in other words, values in ] − 1, 1[ are relative regular values). We endow
Lwith the topology of C1 convergence on compact sets. Being a subset of the separable
metric spaceC1

loc(M, R), it is a separable metric space. We consider a dense sequence τi

in L. There exists a positive sequence ai such that τ = ∑
aiτi converges in Ck for each

k on each compact set (see [9] for example). We can moreover assume that ai+1 � ai/5.
We claim that the sum τ then satisfies all the conclusions of Theorem 2.

For each point x ∈ D(C) which is not stably recurrent, there exists a Lyapounov
function f ∈ L such that d fx �= 0, byCorollary 5.2.As a consequence, there exists i such
that dτi (x) �= 0. If v ∈ C(x) is not zero, then all terms of the sum dτx ·v = ∑

i ai dτi (x)·v
are non negative, and one of them is positive, hence the sum is positive. We deduce that
x is a regular point of τ .

Let us then consider two points x �= x ′ in M such that x ′ ∈ F+(x) and x /∈ F+(x ′).
The first point implies that τ(x ′) � τ(x) for each Lyapounov function τ . The second
point implies, by Proposition 5.6, the existence of a function f ∈ L such that f (x ′) =
1, f (x) = −1. By density, there exists j such that τ j (x ′) > τ j (x). The difference
τ(x ′) − τ(x) is thus the sum of non negative terms one of which is positive, hence
τ(x ′) > τ(x).

Finally, if x and x ′ are two stably recurrent points which do not belong to the same
stable class, then there exists i such that τi (x) �= τi (x ′). We consider the first index j
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with this property. Since x ′ and x are stably recurrent, we necessarily have that τ j (x ′) =
±1 and τ j (x) = ±1 (the only critical values of τ j ). We assume for definiteness that
τ j (x ′) = 1, τ j (x) = −1. Then

τ(x ′) − τ(x) =
∑

i

ai (τi (x
′) − τi (x)) � a j −

∑

i> j

ai � 3a j/4 > 0

since ai � a j5i− j for each i � j . We conclude that τ(x ′) �= τ(x). �

5.3. More existence results of Lyapounov functions. We will use the following easy
Lemma in our next result:

Lemma 5.7. Let τi , 1 � i � k, be finitely many non negative Lyapounov functions,
then the product τ = τ1τ2 · · · τk is a non negative Lyapounov function. If all the τi are
regular at some point x0, then so is τ .

Proof. By induction, it is enough to prove the statement for k = 2. The expression

dτ(x) = τ1(x)dτ2(x) + τ2(x)dτ1(x)

implies that dτx · v � 0 for each (x, v) ∈ C. Assume now that there exists (x, v) ∈ C,
v �= 0, such that dτx · v = 0. Then each of the terms τ1(x)dτ2(x) · v and τ2(x)dτ1(x) · v
vanish, which implies that each of the linear forms τ1(x)dτ2(x) and τ2(x)dτ1(x) vanish,
hence that dτ(x) = 0. We have proved that τ is a Lyapounov function. If the functions
τ1 and τ2 are regular at x0, then τi (x0) > 0 and we see that dτ(x0) �= 0. �

For K ⊂ M , we set F±
C (K ) := ⋃

x∈K F±
C (x).

Proposition 5.8. Let K ⊂ M be a compact set. Then there exists a non negative Lya-
pounov function τ+ such that τ+ = 0 on K (hence on F−

C (K )) and τ+ > 0 outside of
F−
C (K ). This implies in particular thatF−

C (K ) is closed. The function τ+ can be chosen
regular on D(C) − (F−

C (K ) ∪ RC
)
.

There also exists a non positive Lyapounov function τ− such that τ− = 0 on K
(hence on F+

C (K )) and τ− < 0 outside of F+
C (K ). This implies that F+

C (K ) is closed.
The function τ− can be chosen regular on D(C) − (F+

C (K ) ∪ RC
)
.

Proof. The second part of the statement is a consequence of the first part applied to the
reversed cone −C. More precisely, we have τ−(C) = −τ+(−C).

To prove the first part, we fix a point x0 ∈ M − F−
C (K ). For each y ∈ K , there

exists a Lyapounov function f such that f (y) < f (x0). If moreover x0 �∈ RC , then the
function f can be chosen regular at x0. By composing f on the left with a non decreasing
function, we deduce the existence of a Lyapounov function τy such that τy � 0, τy = 0
in a neighborhood Uy of y, and τy(x0) > 0. If x0 �∈ RC , then in addition τy is regular
at x0.

Since K is compact, there exist finitely many points y1, . . . , yk such that the cor-
responding open sets Uyi cover K . The product τ0 := τy1τy2 · · · τyk is a non negative
Lyapounov function such that τ0(x0) > 0, and, if x0 �∈ RC , dτ0(x0) �= 0.

For each x0 ∈ M −F−
C (K ), we have proved the existence of an open neighborhood

V0 of x0 and of a non negative Lyapounov function τ which is null on K and positive on
V0. We can cover the separable metric space M −F−

C (K ) by a sequence Vi of open sets
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such that, for each i , there exists a non negative Lyapounov function τi which is null on
K and positive on Vi . Then there exists a positive sequence ai such that τ := ∑

i aiτi is
a smooth non negative function which is positive on M − F−

C (K ).
By exactly the same method we can also obtain a non negative Lyapounov function

τ which is null on K and which has the property that dτx · v > 0 for each x ∈ M −
(F−

C (K ) ∪ RC) and v ∈ C(x). �
By adding the functions τ+ and τ−, we obtain:

Corollary 5.9. Given a compact K ⊂ M, there exists a Lyapounov functionwhich is null
on K and regular onD(C)−(FC(K , K )∪RC

)
, whereFC(K , K ) := F+

C (K )∩F−
C (K ).

Let us also state the following :

Proposition 5.10. Let A ⊂ M be a trapping domain. There exists a Lyapounov function
τ such that τ > 0 on A and τ < 0 outside of Ā. The function τ can be chosen regular
on D(C) − (RC ∪ ∂A).

Proof. We consider an enlargement E of C such that A is a trapping domain for Ê .
We first fix a point x0 ∈ A and prove the existence of a Lyapounov function which is

non negative, null outside of A, positive at x0 and, if x0 is not stably recurrent, regular
at x0.

We consider a point x1 ∈ A∩I−
E (x0). Then the set A1 := I+

E (x1) is open, it contains
Fi := F+

C (x0), and its closure is contained in F+
Ê (x1), hence in A. In other words, the

closure of A1 is disjoint from the set Fe := M − A. By Proposition 4.1, there exists a
smooth (nearD(C)) trapping domain A′

1 which contains Fi and whose closure is disjoint
from Fe. By Proposition 5.1, there exists a Lyapounov function τ : M −→ [−1, 1] (for
C) which is equal to 1 on Fi and to −1 on Fe. The non negative Lyapounov function
1 + τ is then null outside of A and positive at x0.

In the case where x0 is not stably recurrent and non degenerate, we can take E in
such a way that x0 �∈ A2 := I+

E (x0), hence x0 belongs to the boundary of this trapping
domain. The closure of A2 is disjoint from the complement Fe of A. By Propositions 4.1
and 5.1, we find a non negative Lyapounov function τ which is regular (hence positive)
at x0 and null outside of A.

By considering a convex combination of countably many of the Lyapounov functions
we just built, we obtain a non negative Lyapounov function τi which is positive on A
and regular on (A ∩ D(C)) − RC .

We can apply the same result to the cone −C and the trapping domain M − Ā, and
get a Lyapounov function τe (for C) which is non positive, negative outside of Ā, and
regular on (D(C) − Ā) − RC .

The sum τ := τi + τe then satisfies the conclusions of the proposition. �

5.4. Hyperbolic cone fields. We prove Theorem 3 and discuss some alternative charac-
terizations of global hyperbolicity. We start with an easy observation:

Lemma 5.11. If the closed cone field C satisfies (GH2), then J ±
C (x) is closed for each

x ∈ M.

The lemma shows that hyperbolic cone fields satisfy the analogous conditions to
causal simplicity in [22].
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Proof. Let yn ∈ J +
C (x) be a convergent sequence with limit y ∈ M . Let Y be the

compact set Y := {y, y1, y2, . . .}. The set JC(x,Y ) is compact and it contains yn for
each n, hence it contains the limit y. �

Let us denote by CK the cone field which is equal to C on K and degenerate outside
of K . If C is a closed cone field and K is a closed set, then CK is a closed cone field. If
C is causal, then so is CK .
Lemma 5.12. Let C be a causal closed cone field and K be a compact set. Then there
exists an open enlargement E of CK and a real number L > 0 such that all E-timelike
curves have length less than L.

Proof. Let En be a decreasing sequence of open cone fields converging to CK . We can
assume thatUn := D(En) is bounded for each n. If the conclusion of the Lemma does not
hold, there exists a sequence γn : [−ln, ln] −→ M of En-timelike curves parametrized
by arclength with ln unbounded. By Proposition 2.14, there exists a complete CK -causal
curve γ : R −→ M . Since CK has no singular points, this curve has infinite length in
the forward direction. Let ω be a limit point of γ at +∞. For each s > t ∈ R, we have
γ (s) ∈ J +

C (γ (t)). Since this set is closed (Lemma 5.11), we deduce that ω ∈ J +
C (γ (t)),

or in other words that γ (t) ∈ J −
C (ω), and this holds for all t . Since ω is not singular,

there exists a local time function, and this implies that γ has another limit pointω′. Since
J −
C (ω) is closed, we obtain that ω′ ∈ J −

C (ω), and similarly ω ∈ J −
C (ω′). This is in

contradiction with C being causal. �
Corollary 5.13. Let C be a hyperbolic closed cone field and K be a compact set. The
stably recurrent setR(CK ) is empty.

Proof. IfR(CK ) is not empty, then CK has a complete causal curve, by Corollary 2.16.
Since CK has no singular point, this curve has infinite length, which contradicts Lemma
5.12. �
Corollary 5.14. Let C be a hyperbolic closed cone field, and K1, K2 be two compact
sets. Let K be a compact set containing JC(K1, K2). Then

FCK (K1, K2) = JCK (K1, K2) = JC(K1, K2).

Proof. The second equality is clear. To prove the first equality, we consider a sequence
En of open enlargements of CK decreasing to CK . By Lemma 5.12, we can assume that
each E1-timelike curve has length less than L > 0. This is then true for all En . Given
x ∈ FCK (K1, K2), there exists a sequence γn : [0, 1] −→ M of En-timelike curves con-
necting K1 to K2, parametrized proportionally to arclength, and passing through x . Since
the curves γn have bounded length, they are equi-Lipschitz. Up to a subsequence, they
converge uniformly to a Lipschitz curve γ : [0, 1] −→ M which is CK -causal by Lemma
2.13, passes through x , and connects K1 to K2. This implies that x ∈ JCK (K1, K2). �
Proof of Theorem 3. We first prove the existence of a steep Lyapounov function for a
hyperbolic cone field C. Let Ki , i � 0 be a sequence of compact subsets of M such
that JC(Ki , Ki ) is contained in the interior of Ki+1 and such that M = ∪i Ki . We set
Ai := Ki ∩ D(C).

For each i � 2, we apply Corollary 5.9 to the cone field CKi and the compact set
Ki−2. Since FCKi

(Ki−2, Ki−2) = JC(Ki−2, Ki−2) ⊂ K̊i−1 by Corollary 5.14 and
since R(CKi ) is empty, we obtain a smooth function τi : M −→ R with the following
properties:
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• τi is a Lyapounov function on Ki , which means that dτi (x) · v > 0 for each x ∈ Ki
such that dτi (x) �= 0 and each v ∈ C(x).

• τi is regular on Ai − K̊i−1, which means that dτi (x) �= 0 for each x ∈ Ai − K̊i−1.
• τi is null on Ki−2.

We also let τ1 be a smooth function on M which is a Lyapounov function on K1 and
regular on A1.

We now prove the existence of a sequence ai of positive numbers such that the sum
τ := ∑

i�1 aiτi is a steep Lyapounov function. Note that this sum is locally finite.

We build the sequence ai by induction, in such a way that the partial sum
∑k

i=1 aiτi
is a steep Lyapounov function on Kk for each k.

The function τ1 is a Lyapounvov function on the compact set K1, hence there exists
a1 > 0 such that a1τ1 is steep on K1. The function τ2 is Lyapounov on K2 and regular on
A2 − K̊1. Then there exists a2 > 0 such that a1τ1 + a2τ2 is a steep Lyapounvov function
on A2− K̊1, hence on K2 (being steep is an empty condition outside ofD(C)). Assuming
that a1, . . . , ak have been constructed, observe that the function τk+1 is Lyapounov on
Kk and regular on Ak − K̊k−1. On the other hand the partial sum

∑k
i=1 aiτi is a smooth

function on M which is a steep Lyapounov function on Kk . There exists ak+1 > 0 such
that

∑k+1
i=0 aiτi is a steep Lyapounvov function on Ak+1 − K̊k , hence on Kk+1. This ends

the proof of the existence of a steep Lyapounov function.
Conversely, let us assume the existence of a steep Lyapounvov function τ . It is clear

that C is causal. Let us prove thatF±
C (x) = J ±

C (x) for each x . We consider a decreasing
sequence En of enlargements of C, which have the property that dτy · v � |v|y/2 for
each (y, v) ∈ En . Given z ∈ F+

C (x), there exists a sequence γn : [0, 1] −→ M of
smooth En-timelike curves such that γn(0) = x and γn(1) = z. We can assume that γn is
parametrized proportionally to arclength, hence is Ln-Lipschitz, where Ln is the length
of γn . The hypothesis made on En implies that Ln � 2(τ (z) − τ(x)) is bounded. At the
limit, we obtain a Lipschitz causal curve γ : [0, 1] −→ M connecting x to z. We have
proved that F+

C (x) ⊂ J +
C (x), hence these sets are equal.

We finally prove (GH2). The set JC(K , K ′) = FC(K , K ′) is closed. If γ is a causal
curve joining K to K ′, then the length of γ is bounded by maxK ′ τ − minK τ . This
means that γ is contained in a bounded set, hence that JC(K , K ′) is bounded. Being
closed and bounded in the complete Riemannian manifold M , the set JC(K , K ′) is
compact. �

Let us finish this section with some alternative characterizations of global hyperbol-
icity which generalizes [22, Theorem 3.79] to the present case:

Proposition 5.15. A closed cone field (M, C) is hyperbolic if and only if it is regular,
and if

(GH4) For each compact K ⊂ M, there exists L > 0 such that each causal curve
γ : [0, T ] −→ M of length more than L satisfying γ (0) ∈ K satisfies γ (T ) �∈ K.

Proof. By Theorem 3 there exists a steep Lyapounov function τ if (M, C) is hyperbolic.
This implies (GH4) with L = maxK τ − minK τ .

Conversely, assume that C is a regular closed cone field satisfying (GH4). Then C is
causal (it satisfies (GH1)). Moreover, if K , K ′ ⊂ M are compact, there exists an upper
bound on the length of causal curves with endpoints in K ∪ K ′, by (GH4). In view of
Lemma 2.12, this implies (GH2). �
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Let us discuss the case where V is a smooth vector field without singular points
generating a complete flow φt (x). We say that the dynamics is trivial if there exists a
submanifold transverse to V and intersecting each orbit in one and only one point. This
is equivalent to the existence of a steep Lyapounov function for V .

We say that the action of φ is proper if, for each compact K ⊂ M , there exists L > 0
such that φt (x) �∈ K if x ∈ K and t > L . This is equivalent to (GH4). Proposition 5.15
implies that the dynamics is trivial if and only if the action φ of R on M is proper.

We now give another characterization of global hyperbolicity in the spirit of the one
given by Minguzzi for Lorentzian metrics, [18].

Proposition 5.16. A closed cone field (M, C) is hyperbolic if and only if

(GH5) No complete causal curve is contained in a compact set.
(GH6) for all K , K ′ ⊂ M compact the set JC(K , K ′) is bounded.

Proof. It is easy to see that the existence of a steep Lyapounov function implies (GH5)
and (GH6).

Conversely assume that the closed cone field (M, C) satisfies (GH5) and (GH6).
(GH5) implies that there are no singular points. We now prove (GH4). Consider a
compact subset K , and assume that (GH4) does not hold: There exists a sequence
γn : [−bn, bn] −→ M of causal curves with boundaries in K , parametrized by ar-
clength, with bn −→ ∞. Then by (GH6) γn is contained in the bounded set JC(K , K ).
By Proposition 2.14 a subsequence converges to a complete causal curve γ : R −→ M
which is contained in the compact set JC(K , K ). This contradicts (GH5). �

6. Final Remarks on the Stably Recurrent Set

Wepropose here someadditional remarks on the stably recurrent setRC .Wefirst improve
Corollary 2.16:

Proposition 6.1. Let C be a closed cone field, and RC be the stably recurrent set. For
each x ∈ RC , there exists a complete causal curve γ which takes values in RC and
satisfies γ (0) = x.

Proof. Let τ0 be a Lyapounov function which is regular outside of RC . We consider
a decreasing sequence En of open enlargements of C all smaller than {dτ0 > 0}. As
in Corollary 2.16, let γn : R −→ M be a sequence of En-timelike periodic curves
parametrized by arclength and satisfying γn(0) = x . The function τ0 is non decreasing,
hence constant, on γn . At the limit, we obtain a complete causal curve γ , and the function
τ0 is constant on it. We deduce that the curve γ takes values in the critical set of τ0, i.e.
inRC . �

We finish with a stability property:

Proposition 6.2. Let C be a closed cone field. We assume that the stably recurrent set
RC is compact. Then for every neighborhood U of RC there exists a closed enlargement
CU of C such that RCU ⊂ U.

Proof. We assume, without loss of generality, thatU is bounded, hence ∂U is compact.
It is enough to prove the existence of an enlargement E of C such that RÊ is disjoint
from ∂U .
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Let us fix a point z ∈ ∂U . By Lemma 3.5, there exists a Lyapounov function τ z for C
such that a := τ z(z) is a regular value of τ z . Then, there exists a closed enlargement Cz of
C such that τ z is a regular Lyapounov function for Cz in a neighborhood of {τ z = a}. This
implies, by Lemma 3.3, that {τ z > a} is a trapping region for Cz , hence that z �∈ RCz .

The open sets M −RCz , z ∈ ∂U , thus cover the compact set ∂U , hence finitely many
of them cover ∂U . By taking the intersection of the corresponding cone fields Cz , we
obtain a closed enlargement of C whose stably recurrent set is disjoint from ∂U , as was
claimed. �
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