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Abstract—This paper presents an adaptive state of
charge (SOC) and state of health (SOH) estimation tech-
nique for lithium-ion batteries. The adaptive strategy es-
timates online parameters of the battery model using a
Lyapunov-based adaptation law. Therefore, the adaptive
observer stability is guaranteed by Lyapunov’s direct
method. Since no a priori knowledge of battery parameters
is required, accurate estimation is still achieved, although
parameters change due to aging or other factors. Unlike
other estimation strategies, only battery terminal voltage
and current measurements are required. Simulation and
experimental results highlight the high SOC and SOH ac-
curacy estimation of the proposed technique.

Index Terms—Adaptive observer, lithium-ion batteries,
Lyapunov stability, state of charge (SOC), state of health
(SOH).

I. INTRODUCTION

L ITHIUM-ION batteries have received an increasing inter-
est from the scientific community. Unlike other types of

batteries such as lead acid, nickel cadmium (NiCd), and nickel
metal hydride (NiMH), they offer higher energy efficiency and
power density [1], [2]. Moreover, several other advantages, such
as low steady-state float current, light weight, small size, wide
temperature operation range, rapid charge capability, long life
cycle, low self-discharge rate, no memory effects, and absence
of hydrogen outgassing, make them good candidates for many
applications such as laptops, mobile phones, and electric vehi-
cles [3]. However, optimal energy utilization and minimization
of degradation effects are among the typical challenges to be
faced. State of charge (SOC) and state of health (SOH), which
are both expressed in percentage, are the equivalent for batteries
of an energy and a lifetime gauge, respectively. Therefore, the
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accuracy of SOC and SOH algorithms remains an important
aspect in battery management systems (BMS) because a bad
SOC estimation might significantly damage the battery and
ultimately result in reduced battery life.

Conventional SOC estimation techniques are known for
their simplicity. The coulomb counting method, which is also
called ampere-hour (Ah) balancing method, is a rational way
to estimate a battery’s SOC [4], [5]. In this technique, the
battery’s incoming and departing currents are measured and
integrated through time to determine SOC. However, startup
and current sensor errors are accumulated, which leads to a drift
and poor precision, since the process is open-loop based [6].
Moreover, changes to the batteries’ capacity as they age are not
taken into account. This method has some serious drawbacks
[4]. Nevertheless, it remains the simplest approach for real-
time industrial applications. On the other hand, open-circuit
voltage (OCV) can be used to determine a battery SOC since
its voltage is correlated with the electrolyte concentration that
varies with the battery charge status [7], [8]. However, this is
true only when the battery reaches an equilibrium state (i.e., no
current flows through the battery for several minutes or hours).
Moreover, this relationship is affected by temperature and aging
since capacity is known to gradually decrease with charge and
discharge cycles along with depth of discharge. A combination
between the aforementioned two methods yields a hybrid esti-
mation technique. Thus, the coulomb counting method is used
in operation (i.e., current is flowing into and out of the battery),
and whenever the battery reaches an equilibrium state, the SOC
is updated with the OCV method to reset accumulated errors.
However, some applications require a continuous operation and
do not allow batteries to reach an equilibrium state. This raises
the urgency of considering other SOC estimation alternatives.

Several robust and accurate estimation techniques are pro-
posed at the cost of higher computational complexity [9], [10].
An accurate SOC estimation technique [11] is proposed using a
reduced-order observer. However, it requires the knowledge of
the battery’s parameters, which results in accuracy reduction
as batteries age. This drawback has been overcome in [12],
where an adaptive SOC estimation strategy is presented for
lead-acid batteries. A simple battery model is used with a slid-
ing mode observer to compensate for modeling uncertainties
[13]. Taking into account temperature effects, charge/discharge
characteristics under different constant currents are established
experimentally for a NiMH battery [14]. Then, the SOC is
derived from the experimental data. In [15], an optimization
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procedure uses measured current/voltage profiles to estimate
online parameters of the battery model. This way, the model
is able to capture the relevant battery dynamics and predict the
SOC based on voltage estimation.

On another aspect, neural networks and fuzzy logic have
been credited in various applications as powerful tools for
systems subjected to structured and unstructured uncertainties
[16], [17]. Several neural network models have been applied
for the SOC and SOH estimation problem, which have led
to a satisfactory performance [18], [19]. However, despite the
success witnessed by neural networks, they remain incapable of
incorporating any humanlike expertise already acquired about
the dynamics of the system in hand, which is considered one of
the main weaknesses of such soft-computing methodologies. In
[20], a fuzzy neural network (FNN) has been proposed to over-
come this weakness. These techniques are among the intelligent
management systems that can monitor the SOC and gradually
reduce the load to prevent continuous operation at a low SOC.

The contribution of this paper is to propose an adaptive SOC
and SOH estimation technique for lithium-ion batteries. The
adaptive strategy consists of a Lyapunov-based adaptation law
for online parameter estimation. Therefore, the battery OCV
and impedance are estimated since they vary with SOC and
SOH, respectively. Thus, robustness to parametric uncertain-
ties is achieved, which yields better accuracy as the battery
ages compared to classical methods. On the other hand, soft-
computing-based estimation techniques do not have such lim-
itations, due to their learning and generalization capabilities.
However, these tools suffer from a heavy computation, and
tuning may not be trivial since they are based on heuristics. In
this paper, we propose a Lyapunov stability-based estimation
technique. Thus, stability is guaranteed unlike many classi-
cal and computational intelligence-based estimation strategies.
Therefore, the proposed adaptive estimation technique achieves
high accuracy and robustness, while reducing the computa-
tional burden associated with machine-learning-based tech-
niques, which makes it realizable at low cost. Furthermore, the
proposed method requires only battery voltage and current mea-
surement, which reduces the number of sensors, with respect
to other methods. The effectiveness of the proposed method is
verified by simulation and experiments. The rest of the paper is
organized as follows: Section II outlines the circuit model for
lithium-ion batteries along with their dynamics. The proposed
adaptive estimation technique is detailed in Section III. In
Sections IV and V, simulation and experimental results are
reported and discussed. We conclude with some remarks and
suggestions for further studies pertaining to this problem.

II. LITHIUM-ION BATTERIES

A. Modeling

Similar to other types of batteries, the lithium-ion battery has
four primary components: an electrolyte, a separator, an anode,
and a cathode. The electric circuit model of an electrochemical
lithium-ion battery is depicted in Fig. 1. The internal battery’s
resistance is represented by Rb. The slow and fast RC network
characteristic is modeled with resistances and capacitors Rs, Cs

and Rf , Cf . On the other hand, the OCV–SOC characteristic

Fig. 1. Electric circuit of a lithium-ion battery.

is represented in this model by a current-controlled current
source, a battery storage capacity Cc, and a self-discharge
resistance Rd. A voltage-controlled voltage source is also used
to bridge SOC to OCV [21].

Remark 1: It is noteworthy that, although such a model
results in a drastic increase in the system’s nonlinear complex-
ity, it generally provides a more accurate representation of the
system’s dynamics [7], [21].

The voltage–current characteristic dynamic mathematical
model can be described by the following equations [22]:

V̇ps =
1

RsCs
Vps −

1

Cs
Ib (1)

V̇pf =
1

RfCf
Vpf −

1

Cf
Ib (2)

Vb =Voc + Vps + Vpf +RbIb (3)

where
Voc OCV;
Vb voltage at battery terminals;
Ib current at battery terminals;
Rb internal resistance;
RsCs slow RC network;
RfCf fast RC network;
Vps voltage across slow RC network;
Vpf voltage across fast RC network.

B. Problem Statement

We aim to estimate the OCV Voc and the battery’s impedance
since they are directly correlated to the battery’s SOC and SOH.
In this paper, parameters Rs, Cs, Rf , Cf , and Rb are assumed
to be a priori unknown, and Vps, Vpf are not measurable. The
system’s measurable states are battery voltage Vb and current
Ib. The current Ib is taken as positive in the charge mode and
negative otherwise.

Assumption 1: Battery voltage Vb and current Ib along with
their derivatives V̇b and İb are continuous and bounded.

Assumption 2: The OCV Voc is a slowly time-varying
signal, such that V̇oc ≈ 0.

Assumption 3: Vb and Ib are persistently excited.

III. ADAPTIVE OBSERVER

Define e = Vb − V̂b as the battery voltage estimation error
and the following reference model as:

s = e+ ψ

∫
e = Vb − Vr (4)

where ψ is a positive constant, and Vr = V̂b − ψ
∫
e.
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Fig. 2. Equivalent circuit model of voltage–current characteristic.

As shown experimentally in [23] and references therein,
the voltage–current characteristic can be represented by the
equivalent circuit model in Fig. 2, where RC is an equivalent
network. Therefore, the dynamic equations can be written as

V̇p =
1

RC
Vp −

1

C
Ib (5)

Vb =Voc + Vp +RbIb (6)

where R and C are the equivalent resistance and capacitance,
respectively.

Substituting Vp from (6) into (5) and using assumption 2
yields

V̇b −
1

RC
Vb −Rbİb +

Rb

RC
Ib +

1

C
Ib +

1

RC
Voc = 0.

Multiplying by RC yields

Vb = RCV̇b −RbRCİb + (R+Rb)Ib + Voc. (7)

This model can be represented by a regression model

RCV̇r −RbRCİb + (R+Rb)Ib + Voc = ΦTW (8)

where Φ ∈ R
4 is a vector of known functions (regressor), and

W ∈ R
4 is a vector of parameters

W1 =RC

W2 = −RbRC

W3 =R+Rb

W4 =Voc.

Accurate estimation of parameter W4 leads to a precise SOC
estimation [22]. On the other hand, SOH estimation is impor-
tant to determine the battery’s end of life (EOL). Generally,
accurate SOH estimation is obtained by capacity check using
ac signal injection. However, it requires additional hardware,
costly measurement, and analysis instrumentation [24]. More-
over, it requires interruption of the system’s operation. Another
simple way without use of additional hardware consists of mon-
itoring the time needed for a fully charged battery to get dis-
charged with a constant load (current). However, this also has
to be performed offline, and it takes several minutes or hours to
fully discharge a battery and get data regarding actual capacity.
Unlike these methods, the proposed technique achieves online
SOH estimation with impedance measurement while battery is
in normal operation, which eliminates constraints as opposed to
other methods. Studies have reported a battery impedance Rbat

increase as an indication of SOH decline, which is estimated by

Rbat = Rb +Rf +Rs = Rb +R = W3.

Fig. 3. System response: (a) battery’s voltage Vb; (b) battery’s cur-
rent Ib; (c) OCV estimate W4 ≈ Voc; and (d) battery’s impedance
W3 ≈ Rbat.

Therefore, estimating parameter W3 leads to battery’s
impedance Rbat estimation. It is important to note that the
proposed estimator is able to estimate Rbat, regardless of the
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Fig. 4. Experimental results for discharge mode: (a) and (b) battery’s voltage Vb; (c) battery’s impedance W3 ≈ Rbat; (d) battery’s current Ib;
(e) voltage estimation error e; and (f) OCV estimate W4 ≈ Voc and SOC.

system’s order, since individual values of Rb, Rf1, Rs1, Rf2,
Rs2, . . . , Rfn, Rsn are not needed for estimation. Instead, the
battery’s impedance Rbat is alone sufficient for SOH estima-
tion. On the other hand, Voc is also independent of the order of
the RC networks. Therefore, a battery’s EOL impedance REOL

is taken as 160% brand new battery’s impedance Rnew usually
given by the manufacturer [7] (i.e., REOL = Rnew ∗ 160%).
Thus, SOH is expressed as

SOH(%) =
REOL −Rbat

REOL −Rnew
∗ 100%.

It is noteworthy that accurate SOC estimation is guaranteed
as battery ages since Rbat is among the vector of parameters
W estimated by the adaptive observer. Many SOC estimation
techniques are based on the knowledge of the battery’s param-
eters, which are known to be time varying (see Figs. 3 and
4). Therefore, their performance degrades as batteries age [11].
Hence, designing an observer based on presumably accurate pa-
rameters’ knowledge cannot be applied efficiently in this case.
Unlike these methods, the proposed observer is adaptive and
tracks parameters as they vary because of aging or other factors.
On the other hand, the OCV–SOC curve is known to shift
with battery aging (Fig. 5). Therefore, since battery impedance
Rbat is an indication of SOH, it is used to compensate for the
OCV–SOC drift due to aging. These correlation data are usually
provided by manufacturers [7]. Therefore, the battery voltage
estimation law is defined as follows:

V̂b = ΦT Ŵ −Kd s− e (9)

where Kd is a strictly positive constant gain.

Fig. 5. Experimental results: OCV versus SOC.

Theorem 1: Consider a nonlinear system in the form of
(1)–(3) with the estimation law (9). The estimation error asymp-
totic stability and convergence to zero are guaranteed with the
following adaptation law:

˙̂
W = −Γ Φ s (10)

where Γ = [γ1, γ2, . . . , γ4], and γi is a positive constant gain.
Proof 1: Choose the following Lyapunov candidate:

V =
1

2
{sTRCs+ W̃TΓ−1W̃}

where W̃ = Ŵ −W . Taking the derivative of V yields

V̇ = sTRCṡ+ W̃TΓ−1 ˙̂
W. (11)
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Since parameters W are considered to be constant or slowly

time-varying (assumption 2), therefore, ˙̃W =
˙̂
W . Taking the

time derivative of (4) and multiplying both sides by RC yields

RCṡ = RCV̇b −RCV̇r.

Substitute RCV̇b from (7) as follows:

RCṡ = −RCV̇r +RbRCİb − (R+Rb)Ib − Voc + Vb.

Using the linear regression (8) yields

RCṡ = Vb − ΦTW.

Add and subtract e, i.e.,

RCṡ = V̂b − ΦTW + e.

Set the estimation law V̂b, as defined in (9), as follows:

RCṡ = ΦT W̃ −Kds. (12)

Substitute RCṡ from (12) into (11) as follows:

V̇ = sTΦT W̃ + W̃TΓ−1 ˙̂
W − sTKds.

Setting the adaptation law, as defined in (10), leads to

V̇ = −sTKds < 0.

Since Kd > 0, then V̇ < 0 ∀s �= 0, so that s = 0 is a globally
asymptotically stable equilibrium point. A positive Lyapunov
function V , which is decreasing (V̇ < 0), must converge to a
finite limit. Therefore, the system is asymptotically stable, in
the sense of Lyapunov. Hence, signals s, W̃ , and Ŵ are also
bounded and converge to finite values. It implies from (4) that
e and

∫
e and, thus, V̂b, Vr, and V̇r are bounded. It follows from

(9) that Vb is bounded, which implies from (12) that ṡ is also
bounded.

Taking the derivative of V̇ yields

V̈ = −2sTKdṡ.

Therefore, V̈ is also bounded.
Lemma 1: (Barbalat): If the differentiable function V (t)

has a finite limit as t → ∞, and if V̇ (t) is uniformly continuous,
then V̇ (t) → 0 as t → ∞.

From Lemma 1, V has a finite limit as t → ∞, and V̇ is
uniformly continuous. Therefore, limt→∞ V̇ = 0, and hence,
limt→∞ s = 0. On the other hand, ė is also bounded since ṡ
is bounded. From Lemma 1,

∫
e has a finite limit as t → ∞ and

e is uniformly continuous shows that limt→∞ e = 0. Therefore,
limt→∞ V̂b = Vb.

Remark 2: In many adaptive systems, one important aspect
is the tracking error convergence. However, it gives a false
impression that exponential parameter convergence is achieved.
Persistent excitation condition ensures parameter convergence
if the following condition:

α0In ≤
t0+β∫

t0

WWT dt ≤ α1In

is met for all t0, where α0, α1, and β are all positive, and W
is the regressor vector. Note that the integral of WWT must be

TABLE I
BATTERY’S PARAMETERS

positive definite and bounded over all intervals of length β. In
other words, W must vary sufficiently over the interval β, so
that the entire dimensional space is spanned.

IV. SIMULATION RESULTS

A. Setup

To demonstrate the performance of the proposed adaptive
observer, a computer simulation is carried out on a lithium-
ion battery model. The battery’s model is implemented in
MATLAB using a SimPowerSystems Simulink toolbox, and
the sampling frequency is set to 1 KHz. Table I summarizes
the battery’s parameters along with their respective values.
Parameters Rb, R, C, and Voc are assumed to be a priori
unknown and slowly time varying. The parameter estimate
vector is initialized to (0, 0, 6 · 10−2, 3.5), where the battery’s
initial impedance Rbat and OCV Voc are set to 50% their
respective desired values.

B. Results

A computer simulation is carried out to study the proposed
estimator’s performance. The system’s response is studied,
taking into account the battery’s voltage Vb and current Ib, the
OCV estimate W4 ≈ Voc, and the battery’s impedance W3 ≈
Rbat. The aforementioned nominal values are used to simulate
the system’s dynamics. The simulation is conducted for a time
period of t = 6 s, where the system is left at equilibrium state
for 0 ≤ t < 1 s, and the operation resumes for 1 ≤ t < 6 s. As
shown in Fig. 3, a fast OCV tracking is achieved at equilibrium
state (W4 ≈ Voc = Vb). It is noteworthy that, although param-
eter estimation needs persistent excitation in many adaptive
systems, the fact that SOC can be estimated in a battery’s
equilibrium state makes the SOC estimator independent of
this requirement. On the other hand, the battery’s impedance
estimation parameter stays constant since the system is not
yet in operation (equilibrium state), which is consistent with
regression model (8). When the system starts operating, the
battery’s impedance estimate converges gradually to its desired
value [see Fig. 3(d)]. On the other hand, startup acts as a
disturbance on the OCV estimate and causes it to deviate
from its desired value. This is expected in startup since other
parameter estimates did not converge yet to their respective
desired values. Then, OCV starts converging gradually to its
final value, as shown in Fig. 3(c).
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Fig. 6. Battery charger experimental setup at TDE Techno Design.

Fig. 7. Illustration of the experimental setup.

Fig. 8. Equivalent circuit of the experimental setup.

Fig. 9. Converter’s control scheme.

V. EXPERIMENTAL RESULTS

A. Setup

A battery charger has been designed at TDE Techno De-
sign (see Figs. 6 and 7). It consists of a synchronous buck
converter (see Fig. 8), which is controlled by conventional
proportional–integral (PI) controllers, as shown in Fig. 9. A
2350-mAh 3.6-V lithium-ion battery (CGR18650D) has been
used in a hardware-in-the-loop (HIL) system for validation. The
SOC/SOH algorithm has been implemented using LabVIEW
software, and a Universal Serial Bus (USB)-based data acqui-
sition device (NI USB-6008) has been used as interface with
the lithium-ion battery, as shown in Fig. 7. Hence, two 12-bit
analog inputs are used for battery voltage and current acqui-
sition. The control structure in Fig. 9 has been implemented
in a microcontroller board (PIC24HJ256). The converter’s
switching frequency is set to 300 KHz, and the SOC/SOH
algorithm sampling time is set to 1 s, which yields reduced
computation burden once implemented in the microcontroller

TABLE II
CONVERTER’S PARAMETERS

board. Table II summarizes the converter’s parameters along
with their respective values. The input voltage source is set
to 24 V.

B. Results

Two experiments are carried out to validate the proposed
approach. The system’s response is studied taking into account
the battery voltage Vb and its estimate V̂b, the battery voltage
estimation error e, the OCV estimate W4 ≈ Voc, the battery
impedance W3 ≈ Rbat, and the battery current Ib. To better
show convergence at startup, the battery voltage Vb and its
estimate V̂b, along with the battery voltage estimation error e,
are also shown for the first 500 s. In the first experiment, a
fully charged 3.6-V lithium-ion battery is left at equilibrium
state (i.e., S1 and S2 are both open), for the first 150 s, to show
initial convergence. Then, the battery is completely discharged
(i.e., S1 open and S2 closed), for about 2 h, at a constant rate
of 1.15 A. Results are depicted in Fig. 4. The battery voltage
tracking and error convergence to zero for both equilibrium and
discharging states is shown in Fig. 4(b) and (e). The advantage
behind the use of the adaptive observer is clearly shown by very
good tracking performance and negligible amplitude, where the
voltage error is kept in, i.e., 0.1%, within sensors’ resolution. As
the battery discharges, OCV decreases [see Fig. 4(f)] and bat-
tery impedance increases [see Fig. 4(c)]. It is important to note
that battery impedance and OCV vary with the battery SOC.
The relationship between the OCV and the SOC is usually
given by the manufacturer. However, since these data are not
available for the battery in hand, the battery’s SOC is obtained
through current integration to show its correlation with OCV. It
is noteworthy that, although this method is known to drift due to
current sensor gain/offset errors if no reset is used after a period
of time, duration of experiments is not sufficient to introduce
a significant error. Furthermore, the current sensor used for ex-
periments is calibrated, and its offset is removed in the software
before integration occurs. Therefore, the OCV/SOC correla-
tion, which is also called the OCV–SOC curve, is illustrated in
Fig. 5. When this curve is provided by a manufacturer, instead
of experimental measurements, mapping is often performed
using a curve-fitting method or a lookup table.

In the next experiment, a 3.6-V lithium-ion battery, whose
initial SOC is around 5%, is subjected to a charge process (i.e.,
S1 closed and S2 open) for around 3 h. Before charging the
battery, the system is left at equilibrium state (i.e., S1 and S2 are
both open), for the first 2 min, to validate convergence in this
case. Results are depicted in Fig. 10. As shown in Fig. 10(b)
and (e), the adaptive observer tracks the battery voltage Vb,
and the voltage estimation error decreases gradually to zero
for both equilibrium and charge states. Faster convergence can
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Fig. 10. Experimental results for charge mode: (a) and (b) battery’s voltage Vb; (c) battery’s impedance W3 ≈ Rbat; (d) battery’s current Ib;
(e) voltage estimation error e; and (f) OCV estimate W4 ≈ Voc and SOC.

be achieved by increasing adaptation parameter γi in (10), at
the expense of more noise in the estimates. However, accuracy
at steady state will be affected by noise as in any adaptive
system. Therefore, there is a tradeoff between fast convergence
at startup and accuracy (noise rejection). Since SOC is slowly
time varying, accuracy at steady state should be given more
importance. On the other hand, battery impedance convergence
is also achieved. As the battery charges, current decreases
continuously to zero, and OCV increases progressively since it
is directly correlated with battery SOC, as shown in Fig. 10(f).
It is noteworthy that the final SOC shows around 98%, which
is very accurate and matches the small charge current drawn
at the end of the charge process. Unlike other methods, where
temperature effect is embedded in the identification model [25],
this paper presents a postcompensation technique, which yields
complexity reduction. Similar to aging, temperature variation
introduces a drift in the OCV–SOC curve. Therefore, using
temperature change ΔT = Tactual − 25 ◦C, compensation is
carried out as V corrected

oc = V 25 ◦C
oc − ηΔT , where V 25 ◦C

oc is the
OCV at 25 ◦C (77 ◦F) and η is the compensation coefficient,
which are both usually given by manufacturers. In addition,
further experiments with a combination of various temperature
and SOC/SOH conditions might be conducted to accurately
determine the postcompensation coefficients. Since this paper
is not about charger design’s methods, the converter’s efficiency
and performance are briefly discussed. The charger has been
designed as a “Universal Charger” with a voltage and current
range from 1.2 V to 17.6 V and 200 mA to 12 A, respectively.
Therefore, the converter’s efficiency is revealed in Fig. 11 for
different voltages and currents. As it is expected, efficiency

Fig. 11. Converter’s efficiency.

increases with the load’s power (i.e., voltage and current) to
reach its maximum of 92%. It is worth mentioning that this
has been achieved with hard switching. Switching losses can
be significantly reduced with soft switching, which improves
efficiency. However, this technique requires more complex
control circuits. On the other hand, a minimum voltage ripple is
expected to minimize fluctuations’ impact on batteries. There-
fore, the converter’s voltage ripple is studied, and results are
depicted in Fig. 12 for low- and high-power conditions (i.e.,
3 V, 1 A and 17 V, 12 A). Voltage ripple is about 1% of the
load voltage in low power, while it is decreased to around 0.5%
for high power, which is acceptable for a discrete synchronous
buck converter [26].
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Fig. 12. Converter’s voltage ripple: (a) low power and (b) high power.

VI. CONCLUSION

In this paper, an adaptive SOC and SOH estimator has
been introduced for lithium-ion batteries. The proposed strat-
egy makes use of the capabilities of adaptive control theory
to achieve robustness for online parameters estimation. The
estimation technique shows that the SOC and SOH can be
determined with high accuracy based on only the measurements
of the battery voltage and current. Moreover, Lyapunov-based
stability analysis guarantees the convergence and stability of
the proposed strategy. It is easier to be implemented as op-
posed to other estimation approaches with similar performance,
such as intelligent-based BMS. Simulation and experimental
results highlight the performance of the proposed estimator in
determining the SOC and SOH with high accuracy. Startup,
discharge, and charge operations with constant and varying cur-
rents demonstrate the effectiveness of the adaptive estimation
technique in dealing with these burdensome situations.
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