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Hypersonicflight conditions produce temperature variations that can alter both the structural dynamics andflight

dynamics. These aerothermoelastic effects are modeled by a nonlinear, temperature-dependent, parameter-varying

state-space representation. The model includes an uncertain parameter-varying state matrix, an uncertain

parameter-varying nonsquare (column-deficient) input matrix, and a nonlinear additive bounded disturbance. A

Lyapunov-based continuous robust controller is developed that yields exponential tracking of a reference model,

despite the presence of bounded nonvanishing disturbances. Simulation results for a hypersonic aircraft are

provided to demonstrate the robustness and efficacy of the proposed controller.

I. Introduction

T HE design of guidance and control systems for airbreathing
hypersonic vehicles (HSV) is challenging because the

dynamics of the HSV are complex and highly coupled [1], and
temperature-induced stiffness variations impact the structural
dynamics [2]. The structural dynamics, in turn, affect the aero-
dynamic properties. Vibration in the forward fuselage changes the
apparent turn angle of the flow, which results in changes in the
pressure distribution over the forebody of the aircraft. The resulting
changes in the pressure distribution over the aircraft manifest
themselves as thrust, lift, drag, and pitching-moment perturbations
[1]. To develop control laws for the longitudinal dynamics of a HSV
capable of compensating for these structural and aerothermoelastic
effects, structural temperature variations and structural dynamics
must be considered.

Aerothermoelasticity is the response of elastic structures to
aerodynamic heating and loading. Aerothermoelastic effects cannot
be ignored in hypersonic flight, because such effects can destabilize
the HSV system [2]. A loss of stiffness induced by aerodynamic
heating has been shown to potentially induce dynamic instability in
supersonic/hypersonic flight speed regimes [3]. Yet active control
can be used to expand the flutter boundary and convert unstable limit
cycle oscillations (LCO) to stable LCO [3]. An active structural
controller was developed [4], which accounts for variations in the
HSV structural properties resulting from aerothermoelastic effects.
The control design [4] models the structural dynamics using a linear-
parameter-varying (LPV) framework, and states the benefits to using
the LPV framework are twofold: the dynamics can be represented as
a single model, and controllers can be designed that have affine
dependency on the operating parameters.

Previous publications have examined the challenges associated
with the control of HSVs. For example, HSV flight controllers are

designed using genetic algorithms to search a design parameter space
in which the nonlinear longitudinal equations of motion contain
uncertain parameters [5–7]. Some of these designs use Monte Carlo
simulations to estimate system robustness at each search iteration.
Another approach [7] is to use fuzzy logic to control the attitude
of the HSV about a single low-end flight condition. While such
approaches [5–7] generate stabilizing controllers, the procedures
are computationally demanding and require multiple evaluation
simulations of the objective function and have large convergent
times. An adaptive gain-scheduled controller [8] was designed using
estimates of the scheduled parameters, and a semi-optimal controller
is developed to adaptively attain H1 control performance. This
controller yields uniformly bounded stability due to the effects of
approximation errors and algorithmic errors in the neural networks.
Feedback linearization techniques have been applied to a control-
oriented HSV model to design a nonlinear controller [9]. The model
[9] is based on a previously developed [10] HSV longitudinal
dynamic model. The control design [9] neglects variations in thrust
lift parameters, altitude, and dynamic pressure. Linear output feed-
back tracking control methods have been developed [11], in which
sensor placement strategies can be used to increase observability, or
reconstruct full state information for a state-feedback controller. A
robust output feedback technique is also developed for the linear-
parameterizable HSV model, which does not rely on state
observation. A robust setpoint regulation controller [12] is designed
to yield asymptotic regulation in the presence of parametric and
structural uncertainty in a linear-parameterizable HSV system.

An adaptive controller [13] was designed to handle (linear in the
parameters) modeling uncertainties, actuator failures, and non-
minimum phase dynamics [14] for aHSVwith elevator and fuel ratio
inputs. Another adaptive approach [15] was recently developed with
the addition of a guidance law that maintains the fuel ratio within its
choking limits. While adaptive control and guidance control
strategies for a HSV are investigated [13–15], neither addresses the
case in which dynamics include unknown and unmodeled distur-
bances. There remains a need for a continuous controller, which is
capable of achieving exponential tracking for a HSV dynamic model
containing aerothermoelastic effects and unmodeled disturbances
(i.e., nonvanishing disturbances that do not satisfy the linear in the
parameters assumption).

In the context of the aforementioned literature, the contribution of
the current effort (and the preliminary effort by the authors [6]) is the
development of a controller that achieves exponential model
reference output tracking despite an uncertain model of the HSV that
includes nonvanishing exogenous disturbances. A nonlinear
temperature-dependent parameter-varying state-space representa-
tion is used to capture the aerothermoelastic effects and unmodeled
uncertainties in a HSV. This model includes an unknown parameter-
varying state matrix, an uncertain parameter-varying nonsquare

Received 18 August 2009; revision received 24 February 2010; accepted
for publication 25 February 2010. Copyright © 2010 by the American
Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/10
and $10.00 in correspondence with the CCC.

∗Graduate Research Assistant, Mechanical and Aerospace Engineering
Department; zibrus@ufl.edu. Student Member AIAA.

†NRC Research Associate, U.S. Air Force Research Laboratory, 101West
Eglin Boulevard, Eglin AFB, FL 32542; mackunis@ufl.edu.

‡Graduate Research Assistant, Mechanical and Aerospace Engineering
Department; sanketh@ufl.edu. Student Member AIAA.

§Associate Professor, Mechanical and Aerospace Engineering Depart-
ment; ricklind@ufl.edu. Associate Fellow AIAA.

¶Associate Professor, Mechanical and Aerospace Engineering Depart-
ment; wdixon@ufl.edu.

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 33, No. 4, July–August 2010

1213

http://dx.doi.org/10.2514/1.46785


(column-deficient) input matrix, and a nonlinear additive bounded
disturbance. To achieve an exponential tracking result in light of
these disturbances, a robust, continuous Lyapunov-based controller
is developed that includes a novel implicit learning characteristic that
compensates for the nonvanishing exogenous disturbance. That is,
the use of the implicit learning method enables the first exponential
tracking result by a continuous controller in the presence of the
bounded nonvanishing exogenous disturbance. To illustrate the
performance of the developed controller during velocity, angle of
attack, and pitch-rate tracking, simulations for the full nonlinear
model [11] are provided that include aerothermoelastic model
uncertainties and nonlinear exogenous disturbances whose magni-
tude is based on airspeed fluctuations.

II. HSV Model

A. Rigid Body and Elastic Dynamics

To incorporate structural dynamics and aerothermoelastic effects
in the HSV dynamic model, an assumed-modes model is considered
for the longitudinal dynamics [16] as

_V �
T cos��� �D

m
� g sin�� � �� (1)

_h� V sin�� � �� (2)

_���
L� T sin���

mV
�Q�

g

V
cos�� � �� (3)

_��Q (4)

_Q�
M

Iyy
(5)

�� i ��2�i!i _�i � !2
i �i � Ni; i� 1; 2; 3 (6)

In Eqs. (1–6), V�t� 2 R denotes the forward velocity; h�t� 2 R

denotes the altitude; ��t� 2 R denotes the angle of attack; ��t� 2 R

denotes the pitch angle;Q�t� 2 R is pitch rate; and �i�t� 2 R8i� 1,
2, 3 denotes the ith generalized structural mode displacement. Also
in Eqs. (1–6),m 2 R denotes thevehiclemass; Iyy 2 R is themoment
of inertia; g 2 R is the acceleration due to gravity; �i�t�, !i�t� 2 R

are the damping factor and natural frequency of the ith flexiblemode,
respectively; T�x� 2 R denotes the thrust; D�x� 2 R denotes the
drag;L�x� 2 R is the lift;M�x� 2 R is the pitchingmoment about the
body y axis; and Ni�x� 2 R 8i� 1, 2, 3 denotes the generalized
elastic forces, where x�t� 2 R

11 is composed of the five flight and six
structural dynamic states as

x� V � Q h � �1 _�1 �2 _�2 �3 _�3
� �

T (7)

The equations that define the aerodynamic and generalized moments
and forces are highly coupled and are provided explicitly in previous
work [1]. Specifically, the rigid-body and elastic modes are coupled
in the sense that T�x�,D�x�, and L�x�, are functions of �i�t� and that
Ni�x� is a function of the other states. As the temperature profile
changes, the modulus of elasticity of the vehicle changes and the
damping factors and natural frequencies of the flexible modes will
change. The subsequent development exploits an implicit learning
control structure, designed based on an LPV approximation of the
dynamics in Eqs. (1–6), to yield exponential tracking despite the
uncertainty due to the unknown aerothermoelastic effects and
additional unmodeled dynamics.

B. Temperature Profile Model

Temperature variations impact the HSV flight dynamics through
changes in the structural dynamics which affect the mode shapes
and natural frequencies of the vehicle. The temperature model used
assumes a free–free beam [1], which may not capture the actual
aircraft dynamics properly. In reality, the internal structure will be
made of a complex network of structural elements that will expand at
different rates causing thermal stresses. Thermal stresses affect
different modes in different manners, such that it raises the
frequencies of somemodes and lowers others (compared to a uniform
degradation with Young’s modulus only). Therefore, the current
model only offers an approximate approach. The natural frequencies
of a continuous beam are a function of the mass distribution of the
beam and the stiffness. In turn, the stiffness is a function of Young’s
modulus E and admissible mode functions. Hence, by modeling
Young’s modulus as a function of temperature, the effect of
temperature on flight dynamics can be captured. Thermostructural
dynamics are calculated under the material assumption that titanium
is below the thermal protection system [17,18]. Young’s modulus E
and the natural dynamic frequencies for the first three modes of a
titanium free–free beam are depicted in Figs. 1 and 2, respectively.

In Fig. 1, the moduli for the three modes are nearly identical.
The temperature range shown corresponds to the temperature range
that will be used in the simulation section. Frequencies in Fig. 2
correspond to a solid titanium beam,whichwill not correspond to the
actual natural frequencies of the aircraft. The data shown in Fig. 1 and
2 are both from previous experimental work [19]. Using this data,
different temperature gradients along the fuselage are introduced into
the model and affect the structural properties of the HSV. The
subsequent simulation uses linearly decreasing gradients from the
nose to the tail section. It is expected that the nose will be the hottest
part of the structure due to aerodynamic heating behind the bow
shock wave. Thermostructural dynamics are calculated under the
assumption that there are nine constant-temperature sections in
the aircraft [20], as shown in Fig. 3. Since the aircraft is 100 ft long,
the length of each of the nine sections is approximately 11.1 ft.

An example of some of the mode frequencies are provided in
Table 1, which shows the variation in the natural frequencies for five
decreasing linear temperature profiles shown in Fig. 4. For all three
natural modes, Table 1 shows that the natural frequency for the first
temperature profile is almost 7% lower than that of the fifth
temperature profile. The structural modes and frequencies are
calculated using an assumed-modes method with finite element
discretization, including vehiclemass distribution and inertia effects.
The result of this method is the generalized mode shapes and mode
frequencies for the HSV. Because the beam is nonuniform in
temperature, the modulus of elasticity is also nonuniform, which
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Fig. 1 Modulus of elasticity for the first three dynamic modes of

vibration for a free–free beam of titanium.
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produces asymmetric mode shapes. An example of the asymmetric
mode shapes is shown inFig. 5 and the asymmetry is due to variations
inE resulting from the fact that each of the nine fuselage sections (see
Fig. 3) has a different temperature and hence different flexible
dynamic properties.

The temperature profile in a HSVis a complex function of the state
history, structural properties, thermal protection system, etc. In the

subsequent simulation, the temperature profile is assumed to be a
linear function that decreases from the nose to the tail of the aircraft.
The linear profiles are then varied to span a preselected design space.
Rather than attempting to model a physical temperature gradient for
somevehicle design, the temperature profile in the simulation section
is intended to provide an aggressive temperature-dependent profile to
examine the robustness of the controller to such fluctuations.
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Fig. 2 Frequencies of vibration for the first three dynamic modes of a free–free titanium beam.

Fig. 3 Nine constant-temperature sections of the HSV used for temperature profile modeling.
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C. Control Model

The HSV dynamic model used for the subsequent control
development is a combination of LPV statematrices and nonlinearity
arising from unmodeled effects as [4,21]

_x� A���t��x� B���t��u� f�t� (8)

y� Cx (9)

In Eqs. (8) and (9), the state vector x�t� 2 R
11 is composed of the

same five flight and six structural dynamic states described in
Sec. II.A. Also in Eq. (8), A���t�� 2 R

11�11 denotes a linear-
parameter-varying state matrix, B���t�� 2 R

11�p denotes a column-
deficient, linear-parameter-varying input matrix, C 2 R

p�11 denotes
a known output matrix, u�t� 2 R

p denotes a vector of p control
inputs, ��t� represents the unknown time-dependent temperature
profile of the aircraft, and f�t� 2 R

11 represents a time-dependent
unknown nonlinear disturbance.

The matrices A���t�� and B���t�� have the standard linear-
parameter-varying form [4]:

A��; t� � A0 �
X

s

i�1

wi���t��Ai (10)

B��; t� � B0 �
X

s

i�1

vi���t��Bi (11)

where A0 2 R
11�11 and B0 2 R

11�p represent known nominal
matrices with unknown variations wi���t��Ai and vi���t��Bi for
i� 1; 2; . . . ; s, whereAi 2 R

11�11 andBi 2 R
11�p are time-invariant

matrices, and wi���t�� and vi���t�� 2 R are parameter-dependent
weighting terms. Knowledge of the nominal matrix B0 will be
exploited in the subsequent control design.

To facilitate the subsequent control design, a reference model is
given as

_x m � Amxm � Bm� (12)

ym � Cxm (13)

where Am 2 R
11�11 and Bm 2 R

11�p denote the state and input
matrices, respectively, where Am is Hurwitz; ��t� 2 R

p is a vector of
reference inputs; ym�t� 2 R

p are the reference outputs; and C was
defined in Eq. (9).

Assumption 1: The nonlinear disturbance f�t� and its first two time
derivatives are assumed to exist and be bounded by known constants.

Assumption 2: The dynamics in Eqs. (8) and (9) are assumed to be
controllable.

Assumption 3: The matrices A���t�� and B���t�� and their time
derivatives satisfy the following inequalities:

kA���t��ki1 � �A kB���t��ki1 � �B k _A���t��ki1 � �Ad

k _B���t��ki1 � �Bd (14)

where �A, �B, �Ad, and �Bd 2 R
� are known bounding constants, and

k � ki1 denotes the induced infinity norm of a matrix. As is typical in
robust control methods, knowledge of the upper bounds in Eq. (14)

are used to develop sufficient conditions on gains used in the
subsequent control design.

III. Control Development

A. Control Objective

The control objective is to ensure that the output y�t� tracks the
time-varying output generated from the reference model in Eqs. (12)
and (13). To quantify the control objective, an output tracking error,
denoted by e�t� 2 R

p, is defined as

e≜ y � ym � C�x � xm� (15)

To facilitate the subsequent analysis, a filtered tracking error denoted
by r�t� 2 R

p, is defined as

r≜ _e� �e (16)

where � 2 R is a positive, constant control gain, and is selected to
place a relative weight on the error state verses its derivative. To
facilitate the subsequent robust control development, the state vector
x�t� is expressed as

x�t� � x�t� � xu�t� (17)

where x�t� 2 R
11 contains the p output states, and xu�t� 2 R

11

contains the remaining 11 � p states. Likewise, the reference states
xm�t� can also be separated as in Eq. (17).

Assumption 4: The states contained in xu�t� in Eq. (17) and the
corresponding time derivatives can be further separated as

xu�t� � x�u�t� � x�u�t� _xu�t� � _x�u�t� � _x�u�t� (18)

where x�u�t�, _x�u�t�, x�u�t�, and _x�u�t� 2 R
11 are upper-bounded as

kx�u�t�k � c1kzk kx�u�t�k � �xu k _x�u�t�k � c2kzk

k _x�u�t�k � � _xu
(19)

where z�t� 2 R
2p is defined as

z≜ 	 eT rT 
T (20)

and c1, c2, �xu, and � _xu 2 R are known nonnegative bounding
constants. The terms in Eqs. (17) and (19) are used to develop
sufficient gain conditions for the subsequent robust control design.

B. Open-Loop Error System

The open-loop tracking error dynamics can be developed by
taking the time derivative of Eq. (16) and using the expressions in
Eqs. (8–13) to obtain

_r� �e� � _e� C� �x � �xm� � � _e� C� _Ax� A _x� _Bu� B _u� _f�t�

� Am _xm � Bm
_�� � � _e� ~N � Nd � C _Bu� CB _u � e (21)

The auxiliary functions ~N�x; _x; e; xm; _xm; t� 2 R
p and

Nd�xm; _xm; �;
_�; t� 2 R

p in Eq. (21) are defined as

~N ≜ CA� _x � _xm� � C _A�x � xm� � CA _x�u � C _Ax�u � � _e� e

(22)

and

Nd ≜ C _f�t� � CA _x�u � C _Ax�u � CA _xm � C _Axm

� CAm _xm � CBm
_� (23)

Motivation for the selective grouping of the terms in Eqs. (22) and
(23) is derived from the fact that the following inequalities can be
developed [22,23]:

Table 1 Natural frequencies for five linear temperature

profiles (nose/tail) in �F

900/500 800/400 700/300 600/200 500/100 %
Mode Hz Hz Hz Hz Hz differencea

1 23.0 23.0 23.9 24.3 24.7 7.39%
2 49.9 50.9 51.8 52.6 53.5 7.21%
3 98.9 101.0 102.7 104.4 106.2 7.38%

aPercent difference is the difference between the maximum and minimum frequencies
divided by the minimum frequency.
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k ~Nk � �0kzk kNdk � �Nd
(24)

where �0, �Nd
2 R

� are known bounding constants.

C. Closed-Loop Error System

Based on the expression in Eq. (21) and the subsequent stability
analysis, the control input is designed as

u��k��CB0�
�1	�ks � Ip�p�e�t� � �ks � Ip�p�e�0� � ��t�
 (25)

where ��t� 2 R
p is an implicit learning law with an update rule

given by

_��t�� kuku�t�ksgn�r�t��� �ks � Ip�p��e�t�� k�sgn�r�t�� (26)

and k�, ku, ks, and k� 2 R
p�p denote positive-definite diagonal

constant-control-gain matrices; B0 2 R
11�p is introduced in

Eq. (11), sgn��� denotes the standard signum function, in which
the function is applied to each element of the vector argument; and
Ip�p denotes a p � p identity matrix.

After substituting the time derivative of Eq. (25) into Eq. (21), the
error dynamics can be expressed as

_r� ~N � Nd � ~�kuku�t�ksgn�r�t�� � C _Bu � ~��ks � Ip�p�r�t�

� ~�k�sgn�r�t�� � e (27)

where the auxiliary matrix ~����t�� 2 R
p�p is defined as

~�≜ CBk��CB0�
�1 (28)

where ~����t�� can be separated into diagonal [i.e.,����t�� 2 R
p�p]

and offdiagonal [i.e., ����t�� 2 R
p�p] components as

~����� (29)

Differential equations such as Eqs. (25) and (26) have
discontinuous right-hand sides. Let f�y; t� 2 R

2p denote the right-
hand side of Eqs. (25) and (26). Since the subsequent analysis
requires that a solution exist for _y� f�y; t�, it is important to show
the existence of the generalized solution. The existence of Fillipov’s
generalized solution [24] can be established for Eqs. (25) and (26).
First, note that f�y; t� is continuous except in the set f�y; t�jr� 0g.
Let F�y; t� be a compact, convex, upper semicontinuous set-valued
map that embeds the differential equation _y� f�y; t� into the
differential inclusions _y 2 F�y; t�. An absolute continuous solution
exists to _y 2 F�y; t� that is a generalized solution to _y� f�y; t�. A
common choice [24] for F�y; t� that satisfies the above conditions is
the closed convex hull of f�y; t�. A proof that this choice forF�y; t� is
upper semicontinuous is given in [25].

Assumption 5: The subsequent development is based on the
assumption that the uncertain matrix ~����t�� is diagonally dominant
in the sense that

	min��� � k�ki1 > " (30)

where " 2 R
� is a known constant. While this assumption cannot be

validated for a generic HSV, the condition can be checked (within
some certainty tolerances) for a given aircraft. Essentially, this
condition indicates that the nominal value B0 introduced in Eq. (11)
and used in the controller in Eq. (25) must remain within some
bounded region of B. In practice, bands on the variation of B should
be known, for a particular aircraft under a set of operating conditions,
and this band could be used to check the sufficient conditions given in
Eq. (30).

Motivation for the structure of the controller in Eqs. (25) and (26)
comes from the desire to develop a closed-loop error system to
facilitate the subsequent Lyapunov-based stability analysis. In
particular, since the control input is premultiplied by the uncertain
matrix CB in Eq. (21), the term �CB0�

�1 is motivated to generate the
relationship in Eq. (28) so that if the diagonal dominance assumption
(Assumption 5) is satisfied, then the control can provide feedback to

compensate for the disturbance terms. The bracketed terms in
Eq. (25) include the state feedback, an initial condition term, and
the implicit learning term. The implicit learning term ��t� is the
generalized solution to Eq. (26). The structure of the update law in
Eq. (26) is motivated by the need to reject the exogenous disturbance
terms. Specifically, the update law is motivated by a sliding mode
control strategy that can be used to eliminate additive bounded
disturbances. Unlike sliding mode control (which is a discontinuous
control method requiring infinite actuator bandwidth), the current
continuous control approach includes the integral of the sgn� �
function. This implicit learning law is the key element that allows the
controller to obtain an exponential stability result despite the additive
nonvanishing exogenous disturbance. Other results in literature also
have used the implicit learning structure [26–29].

IV. Stability Analysis

Theorem 1: The controller given in Eqs. (25) and (26) ensures
exponential tracking in the sense that

ke�t�k � kz�0�k exp

�

�
	1

2
t

�

8 t 2 	0;1� (31)

where 	1 2 R
�, provided that the control gains ku, ks, and k�

introduced in Eq. (25) are selected according to the sufficient
conditions∗∗

	min�ku� �
��Bd
"

	min�ks�>
�20

4"minf�; "g
	min�k��>

�Nd

"

(32)

where �0 and �Nd
are introduced in Eq. (24), " is introduced in

Eq. (30), ��Bd 2 R
� is a known positive constant, and 	min��� denotes

the minimum eigenvalue of the argument.
Proof: Let VL�z; t�: R2p � 	0;1� ! R be a continuously

differentiable, positive-definite function defined as

VL�z; t�≜
1
2
eTe� 1

2
rTr (33)

where e�t� and r�t� are defined in Eqs. (15) and (16), respectively.
After taking the time derivative of Eq. (33) and using Eqs. (16), (27),
and (29), _VL�z; t� can be expressed as

_VL�z; t� � ��eTe� rT ~N � rTC _Bu � rT��ks � Ip�p�r

� rT��ks � Ip�p�r � rT�kukkusgn�r� � rT�kukkusgn�r�

� rT�k�sgn�r� � rT�k�sgn�r� � rTNd (34)

By using the bounding arguments in Eq. (24) andAssumptions 3 and
5, the upper bound of the expression in Eq. (34) can be explicitly
determined. Specifically, based on Eq. (14) of Assumption 3, the
term rTC _Bu in Eq. (34) can be upper-bounded as

rTC _Bu � ��Bdkrkkuk (35)

After using inequality (30) of Assumption 5, the following
inequalities can be developed:

� rT��ks � Ip�p�r � rT��ks � Ip�p�r � �"�	min�ks� � 1�krk2

� rT�ku�t�kkusgn�r� � rT�ku�t�kkusgn�r�

� �"	min�ku�jrjkuk � rT�k�sgn�r� � rT�k�sgn�r�

� �"	min�k��jrj (36)

∗∗The bounding constants are conservative upper bounds on the maximum
expected values. The Lyapunov analysis indicates that the gains in Eq. (32)
need to be selected sufficiently large based on the bounds. Therefore, if the
constants are chosen to be conservative, then the sufficient gain conditions
will be larger. Values for these gains could be determined through a physical
understanding of the system (within some conservative percentage of
uncertainty) and/or through numerical simulations.
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After using the inequalities in Eqs. (35) and (36), the expression in
Eq. (34) can be upper-bounded as

_VL�z; t� � ��kek2 � rT ~N � ��Bdkrkkuk � "�	min�ks� � 1�krk2

� "	min�ku�krkkuk � "	min�k��krk � rTNd (37)

where the fact that jrj � krk 8 r 2 R
p was used. After using the

inequalities in Eq. (24) and rearranging the resulting expression, the
upper bound for _VL�z; t� can be expressed as

_VL�z; t� � ��kek2 � "krk2 � "	min�ks�krk
2 � �0krkkzk

� 	"	min�ku� � �Bd
krkkuk � 	"	min�k�� � �Nd

krk (38)

If ku and k� satisfy the sufficient gain conditions in Eq. (32), the
bracketed terms in Eq. (38) are positive, and _VL�z; t� can be upper-
bounded using the squares of the components of z�t� as

_V L�z; t� � ��kek2 � "krk2 � 	"	min�ks�krk
2 � �0krkkzk
 (39)

By completing the squares, the upper bound in Eq. (39) can be
expressed in a more convenient form. To this end, the term

�20kzk
2

4"	min�ks�

is added and subtracted to the right-hand side of Eq. (39), yielding

_VL�z; t� � ��kek2 � "krk2 � "	min�ks�

�

krk �
�0kzk

2"	min�ks�

�

2

�
�20kzk

2

4"	min�ks�
(40)

Since the square of the bracketed term in Eq. (40) is always positive,
the upper bound can be expressed as

_V L�z; t� � �zTdiagf�Ip�p; "Ip�pgz�
�20kzk

2

4"	min�ks�
(41)

where z�t� is defined in Eq. (20). Hence, Eq. (41) can be used to
rewrite the upper bound of _VL�z; t� as

_V L�z; t� � �

�

minf�; "g �
�20

4"	min�ks�

�

kzk2 (42)

where the fact that zTdiagf�Ip�p; "Ip�pgz � minf�; "gkzk2 was
used.

Provided the gain condition in Eq. (32) is satisfied, Eqs. (33) and
(42) can be used to show that VL�t� 2 L1; hence, e�t� and
r�t� 2 L1. Given that e�t� and r�t� 2 L1, standard linear analysis
methods can be used to prove that _e�t� 2 L1 from Eq. (16). Since
e�t� and _e�t� 2 L1, the assumption that the reference model outputs
ym�t� and _ym�t� 2 L1 can be used along with Eq. (15) to prove that
y�t� and _y�t� 2 L1. Given that y�t�, _y�t�, e�t�, and r�t� 2 L1, the
vector x�t� 2 L1, the time derivative _x�t� 2 L1, and Eqs. (17–19)
can be used to show that x�t� and _x�t� 2 L1. Given that x�t� and
_x�t� 2 L1, Assumptions 1, 2, and 3 can be used along with Eq. (8) to
show that u�t� 2 L1.

The definition for VL�z; t� in Eq. (33) can be used along with
inequality (42) to show that VL�z; t� can be upper-bounded as

_V L�z; t� � �	1VL�z; t� (43)

provided the sufficient condition in Eq. (32) is satisfied. The
differential inequality in Eq. (43) can be solved as

VL�z; t� � VL�z�0�; 0� exp��	1t� (44)

Hence, Eqs. (20), (33), and (44) can be used to conclude that

ke�t�k � kz�0�k exp

�

�
	1

2
t

�

8 t 2 	0;1� (45)

V. Simulation

The controller in Eqs. (25) and (26) and the associated stability
analysis is based on the simplified linear-parameter-varying with
additive disturbances dynamics given in Eqs. (7) and (8). To illustrate
the performance of the controller and practicality of the assumptions,
a numerical simulation was performed on the full nonlinear
longitudinal equations of motion [1] given in Eqs. (1–6). The control
inputs were selected as u� �e�t� �c�t� 
f�t�

� �

T , as in previous
research [15], where �e�t� and �c�t� denote the elevator and canard
deflection angles, respectively, 
f�t� is the fuel equivalence ratio.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

N
o
s
e
 T

e
m

p
e
ra

tu
re

 (
F

)

Time (s)

0 5 10 15 20 25 30 35
0

200

400

600

800

Time (s)

T
a
il 

T
e
m

p
e
ra

tu
re

 (
F

)

Fig. 6 Temperature variation for the forebody and aftbody of the hypersonic vehicle as a function of time.
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The diffuser area ratio is left at its operational trim condition without
loss of generality (Ad�t� � 1). The reference outputs were selected as
maneuver oriented outputs of velocity, angle of attack, and pitch rate
as y� V�t� ��t� Q�t�

� �

T , where the output and state variables
are introduced in Eqs. (1–5). In addition, the proposed controller
could be used to control other output states such as altitude, provided
that the condition in Eq. (30) is satisfied.

The HSV parameters used in the simulation are m� 75; 000 lb,
Iyy � 86; 723 lb � ft2, and g� 32:174 ft=s2 as defined in Eqs. (1–6).
The simulation was executed for 35 s to sufficiently cycle through
the different temperature profiles. Other vehicle parameters in the
simulation are functions of the temperature profile. Linear
temperature profiles between the fore (i.e., Tfb 2 	450; 900
) and

aft (i.e., Tab 2 	100; 800
) were used to generate elastic mode shapes
and frequencies by varying the linear gradients as

Tfb�t� � 675� 225 cos

�

�

10
t

�

Tab�t� �

8

<

:

450� 350 cos

�

�
3
t

�

if Tfb�t�> Tab�t�

Tfb�t� otherwise

(46)

Figure 6 shows the temperature variation as a function of time. The
irregularities seen in the aftbody temperatures occur because the
temperature profiles were adjusted to ensure the tail of the aircraft
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was equal or cooler than the nose of the aircraft according to bow
shock wave thermodynamics. While the shock wave thermody-
namics motivated the need to only consider the case when the tail of
the aircraft was equal or cooler than the nose of the aircraft, the shape
of the temperature profile is not physically motivated. Specifically,
the frequencies of oscillation in Eq. (46) were selected to aggres-
sively span the available temperature ranges. These temperature
profiles are not motivated by physical temperature gradients, but
motivated by the desire to generate an aggressive temperature
disturbance to illustrate the controller robustness to the temperature
gradients. The simulation assumes the damping coefficient remains
constant for the structural modes ��i � 0:02�.

In addition to thermoelasticity, a bounded nonlinear disturbance
was added to the dynamics as

f� f _V f _� f _Q 0 0 0 f ��1 0 f ��2 0 f ��3

� �

T (47)

where f _V�t� 2 R denotes a longitudinal acceleration disturbance,
f _��t� 2 R denotes a angle-of-attack rate-of-change disturbance,
f _Q�t� 2 R denotes an angular acceleration disturbance, and f ��1�t�,
f ��2�t�, f ��3�t�, 2 R denote structural mode acceleration disturbances.
The disturbances in Eq. (47) were generated as an arbitrary
exogenous input (i.e., unmodeled nonvanishing disturbance that
does not satisfy the linear in the parameters assumption) as depicted
in Fig. 7. However, the magnitudes of the disturbances were
motivated by the scenario of a 300 ft=s change in airspeed. The
disturbances are not designed to mimic the exact effects of a wind
gust, but to demonstrate the proposed controller’s robustness with

0 5 10 15 20 25 30 35
−3

−2

−1

0

1

2

A
o

A
 (

d
e

g
)

0 5 10 15 20 25 30 35
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

A
o

A
 E

rr
o

r 
(d

e
g

)

Time (s)
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respect to realistically scaled disturbances. Specifically, a relative
force disturbance is determined by comparing the drag force D at
Mach 8 at 85,000 ft (i.e., 7355 ft=s) with the drag force after adding a
300 ft=s (e.g., a wind gust) disturbance. Using Newton’s second law
and dividing the drag force differential �D by the mass of the HSV
m, a realistic upper bound for an acceleration disturbance f _V�t�was
determined. Similarly, the same procedure can be performed, to
compare the change in pitching moment �M caused by a 300 ft=s
head wind gust. By dividing the moment differential by the moment
of inertia of the HSV Iyy, a realistic upper bound for f _Q�t� can be
determined. To calculate a reasonable angle-of-attack disturbance
magnitude, a vertical wind gust of 300 ft=s is considered. By taking
the inverse tangent of the vertical wind gust divided by the forward

velocity at Mach 8 and 85,000 ft, an upper bound for the angle-of-
attack disturbance f _��t� can be determined. Disturbances for the
structural modes f ��i�t� were placed on the acceleration terms with
��i�t�, where each subsequent mode is reduced by a factor of 10
relative to the first mode (see Fig. 7).

The proposed controller is designed to follow the outputs of a well
behaved reference model. To obtain these outputs, a reference model
that exhibited favorable characteristics was designed from a static
linearized dynamics model of the full nonlinear dynamics [1]. The
reference model outputs are shown in Fig. 8. The velocity reference
output follows a 1000 ft=s smooth step input, while the pitch rate
performs several �1 deg =s maneuvers. The angle of attack stays
within �2 deg.
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The control gains for Eqs. (15), (16), (25), and (26) are selected as

��10 ks�diagf5;1;300g ku�diagf0:01;0:001;0:01g

k� �diagf0:1;0:01;0:1g k��diagf1;0:5;1g (48)

The control gains in Eq. (48) were obtained by choosing gains and
then adjusting them based on the transient and steady-state
performance. If the response exhibited a prolonged transient
response (compared with the response obtained with other gains),
the proportional gains were adjusted. If the response exhibited
overshoot, derivative gains were adjusted. For this simulation, the
control gains were tuned based on this trial-and-error basis. As a
result of a conservative stability analysis, the final gains usedmay not

satisfy the sufficient gain conditions developed in the control
development and the theorem proof provided in the stability analysis.
The subsequent results indicate that the developed controller can be
applied despite the fact that some gain conditions may not be
satisfied. In contrast to this trial-and-error approach, the control gains
could have been adjusted using more methodical approaches as
described in various survey papers on the topic [30,31].

The Cmatrix and knowledge of some nominal B0 matrix must be
known. The C matrix is given by

C�

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

2

4

3

5 (49)
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for the output vector of Eq. (9), and the B0 matrix is selected as

B0

�

�32:69 �0:017 �9:07 0 0 0 2367 0 �1132 0 �316

25:72 �0:0111 9:39 0 0 0 3189 0 2519 0 2067

42:84 �0:0016 0:0527 0 0 0 42:13 0 92:12 0 �80:0

2

4

3

5

T

(50)

based on a linearized plant model about some nominal conditions.
The HSV has an initial velocity of Mach 7.5 at an altitude of

85,000 ft. The velocity, and velocity tracking errors are shown in
Fig. 9. The angle of attack and angle-of-attack tracking error is shown
in Fig. 10. The pitch rate and pitch tracking error are shown inFig. 11.
The control effort required to achieve these results is shown in
Fig. 12. In addition to the output states, other states such as altitude
and pitch angle are shown in Fig. 13. The structural modes are shown
in Fig. 14.

VI. Conclusions

This result represents the first ever application of a continuous,
robust model reference control strategy for a hypersonic vehicle
system with additive bounded disturbances and aerothermoelastic
effects, where the control input is multiplied by an uncertain,
column-deficient, parameter-varying matrix. A potential drawback
of the result is that the control structure requires that the product of
the output matrix with the nominal control matrix be invertible. For
the output matrix and nominal matrix, the elevator and canard
deflection angles and the fuel equivalence ratio can be used for
tracking outputs such as the velocity, angle of attack, and pitch rate;
or the velocity andflight-path angle; or thevelocity,flight-path angle,
and pitch rate. Yet, these controls cannot be applied to solve the
altitude tracking problem because the altitude is not directly
controllable and the product of the output matrix with the nominal
control matrix is singular. However, the integrator backstepping
approach that has been examined in other recent results for the
hypersonic vehicle could potentially be incorporated in the control
approach to address such objectives. A Lyapunov-based stability
analysis is provided to verify the exponential tracking result.
Although the controller was developed using a linear-parameter-
varying model of the hypersonic vehicle, simulations results for the
full nonlinear model with temperature variations and exogenous
disturbances illustrate the boundedness of the controller with
favorable transient and steady-state tracking errors. These results
indicate that the linear-parameter-varying model with exogenous
disturbances is a reasonable approximation of the dynamics for the
control development. However, due to the conservative nature of the
robust Lyapunov-based design process, the sufficient gain conditions
based on conservative bounding arguments do not provide a clear
indication of how to select the control gains.
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