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Lyapunov-Based Model Predictive Control of
Nonlinear Systems Subject to Data Losses

David Muñoz de la Peña and Panagiotis D. Christofides

Abstract—In this work, we focus on model predictive control of
nonlinear systems subject to data losses. The motivation for consid-
ering this problem is provided by wireless networked control sys-
tems and control of nonlinear systems under asynchronous mea-
surement sampling. In order to regulate the state of the system to-
wards an equilibrium point while minimizing a given performance
index, we propose a Lyapunov-based model predictive controller
which is designed taking data losses explicitly into account, both
in the optimization problem formulation and in the controller im-
plementation. The proposed controller allows for an explicit char-
acterization of the stability region and guarantees that this region
is an invariant set for the closed-loop system under data losses, if
the maximum time in which the loop is open is shorter than a given
constant that depends on the parameters of the system and the Lya-
punov-based controller that is used to formulate the optimization
problem. The theoretical results are demonstrated through a chem-
ical process example.

Index Terms—Fault-tolerant control systems, networked control
systems (NCS), predictive control for nonlinear systems, process
control applications.

I. INTRODUCTION

M OST control systems are designed under the assumption
of flawless communication at the sensor-controller and

controller-actuator links and continuous or synchronous mea-
surement sampling. These assumptions hold in most applications
where point-to-point communication links are usedandmeasure-
ments of velocity, position or temperature are fed into the control
system. However, nowadays there is an increasing number of
industrial processes controlled via a shared communication
network, see for example [1]–[3]. Control systems which operate
over a communication network (wired or wireless) are known as
networked control systems (NCS) and can substantially improve
the efficiency, flexibility, robustness and fault-tolerance of an
industrial control system as well as reduce the installation, re-
configuration and maintenance costs. In addition to dealing with
complex process dynamics (e.g., nonlinearities and uncertainty)
and enforcing certain optimality properties in the closed-loop
system, NCS have to account for the dynamics introduced by
the communication network. In general, network dynamics are
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Fig. 1. Networked control system subject to data losses.

modeled as time-varying delays, data quantization or data losses.
In this paper, we focus on the design and analysis of NCS for
nonlinear systems subject to data losses. Fig. 1 shows a schematic
of a NCS, where data can be lost at the sensor-controller and
controller-actuator links. In both cases feedback is lost, and the
actuator must operate on its own, usually setting the control
input to zero or to the last implemented value. Although data
losses may affect any NCS, the networked control formulation
of Fig. 1 (which is made precise mathematically in Section II
below) is of particular interest for wireless networks, where,
in general, data losses due to interference is the main dynamic
introduced by the network in the closed-loop system. Wireless
networks have received a lot of attention lately, see [4]–[7] and
the references therein, since they play a prominent role in several
areas of interest, like sensor networks [8], [9], multi-agent sys-
tems [10], [11] and chemical process systems [12] where a wide
range of wireless actuators and sensors is nowadays available
from vendors. In addition to NCS, the results presented in this
paper are also relevant for processes in which the sensor data are
received by the control system in an asynchronous manner due
to the difficulties of measuring certain process variables such as
the concentration of different species. In this case, the samplings
are not received at fixed time instants which are roughly equally
distributed. Both NCS subject to data losses and systems with
asynchronous measurements (see for example [13]) can be mod-
eled as asynchronous systems of the type considered in this work;
that is, systems with strongly coupled continuous and discrete
variables in which the continuous variables obey continuous
time ordinary differential equations and the evolution of the
discrete variables is randomly determined [14].

Although there are many works in the literature focusing on
the analysis and design of NCS, there are few results focused on
NCS subject to data losses. In [15], stability and disturbance at-
tenuation issues for a class of linear NCS subject to data losses
modeled as a discrete-time switched linear system with arbitrary
switching was studied. In [16] (see also [17]–[19]) optimal con-
trol of linear time-invariant systems over unreliable communi-
cation links under different communication protocols (with and
without acknowledgement of successful communication) was
investigated and sufficient conditions for the existence of sta-
bilizing control laws were derived. In [14], the stability prop-
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erties of a class of NCS modeled as linear asynchronous sys-
tems was studied. NCS in which the plant is modeled by a non-
linear system have received less attention. Limited access sys-
tems where each unit must compete with the others for access
to the network have been studied in [20]–[23] within a sam-
pled-data system framework. In these works, practical stability
of the system is guaranteed if the maximum time for which ac-
cess to the network is not available is smaller than a given con-
stant denoted as the maximum allowable transmission interval
(MATI). In [7], general nonlinear NCS with disturbances are
studied and a deterministic treatment of dropouts is presented.
Other recent results deal with the stability of continuous non-
linear systems under Lyapunov-based control subject to data
losses [12]. A common theme of the above-mentioned works
is that the controller is designed without taking into account
the network dynamics and subsequently, the robustness of the
closed-loop system in the presence of the network dynamics is
studied.

In another recent line of work, Antsaklis and co-workers [24],
[25] have proposed a strategy based on using an estimate of the
state computed via the nominal model of the plant to decide the
control input over the period of time in which feedback is lost
between consecutively received measurements. In [24], [25] this
framework was applied to optimize the bandwidth needed by
a networked control system modeled as a sampled-data linear
system with variable sampling rate. Other relevant works re-
lated to this approach include [26], [27], where the design of
a linear output-feedback controller to stabilize a linear NCS in
the presence of delays, sampling and data losses was addressed,
and [28], [29] where different control schemes were applied to
a magnetic levitation test-bed controlled through a network.

In the present work, we adopt the model-based control
approach to dealing with data losses and asynchronous
measurement sampling in the control system and propose a
Lyapunov-based model predictive controller for a broad class of
nonlinear uncertain systems that is designed taking into account
both disturbances and data losses. Model predictive control
(MPC) is a popular control strategy based on using a model to
predict at each sampling time, the future evolution of the system
from the current state along a given prediction horizon. Using
these predictions, the input trajectory that minimizes a given
performance index is computed solving a suitable optimization
problem. To obtain finite dimensional optimization problems,
MPC optimizes over the family of piecewise constant trajecto-
ries with a fixed sampling time and a fixed prediction horizon
(i.e., a fixed length). Once the optimization problem is solved,
only the first input is implemented, discarding the rest of the
trajectory and repeating the optimization the next sampling step
(the so called “receding horizon scheme”). See for example
[30], [31] for a review of results in this area. In our opinion,
the MPC framework is particularly appropriate for controlling
systems subject to data losses because the actuator can profit
from the predicted evolution of the system, to update the input
when feedback is lost, instead of setting the input to a fixed
value (normally to zero or to the last computed input).

In order to guarantee robust stability of the closed-loop
system, MPC controllers must include a set of stability con-
straints. Different schemes can be found in the literature, see

[32] for a review on MPC stability results. We consider a
Lyapunov-based model predictive control (LMPC) scheme
[33]–[35] (see also [36], [37]) based on uniting receding
horizon control with control Lyapunov functions, because it
allows for an explicit characterization of the stability region
and a reduced complexity optimization problem. Other ap-
proaches like min-max formulations [38]–[42] do not have a
priori closed-loop stability regions and in general have a higher
computational burden. LMPC has been applied with success
to constrained non-linear systems, switched systems and in
fault-tolerant control schemes [33]–[35].

The main idea of LMPC is to formulate appropriate con-
straints in the predictive controller’s optimization problem
based on an existing Lyapunov-based controller, in such a way
that the MPC controller inherits the robustness and stability
properties of the Lyapunov-based controller. However, pre-
vious results on LMPC [33]–[35] are based on the assumption
of flawless communications. When data losses are taken into
account, these schemes are not guaranteed to maintain the
desired closed-loop stability properties.

In the present work, we modify the previous LMPC con-
trollers to take into account data losses, both in the optimiza-
tion problem formulation and in the controller implementation.
In the LMPC scheme proposed in the present work, when data
is lost, instead of setting the control actuator output to zero or
to the last available value, the actuator implements the last op-
timal input trajectory evaluated by the controller (this requires
that the actuator must store in memory the last optimal input tra-
jectory received). The proposed LMPC scheme inherits the sta-
bility and robustness properties in the presence of uncertainty
and data losses of the Lyapunov-based controller, while taking
into account optimality issues. Specifically, the proposed LMPC
scheme allows for an explicit characterization of the stability re-
gion, guarantees practical stability in the absence of data losses,
and guarantees that the stability region is an invariant set for the
closed-loop system under data losses if the maximum time in
which the loop is open is shorter than a given constant that de-
pends on the parameters of the system and the Lyapunov-based
controller that is used to formulate the optimization problem.

This paper is organized as follows. In Section II the class
of nonlinear systems considered in this work is introduced as
well as Lyapunov-based model predictive controllers and a gen-
eral class of Lyapunov-based controllers. In Section III, some
properties of the Lyapunov-based controllers are established. In
Section IV, the proposed LMPC scheme is introduced along
with its stability and robustness properties. In Section V, the
theoretical results are demonstrated through a chemical reactor
example. In Section VI, we summarize our results.

II. PRELIMINARIES

A. Notation

The operator denotes Euclidean norm of a vector. Class
functions, , are strictly increasing continuous functions

of their argument and satisfy . We use to denote
the set . The operator “ ” denotes
set substraction, i.e., .
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B. System Definition

In this work, we assume that the process in Fig. 1 is modeled
by a nonlinear system subject to disturbances with the following
state-space description

(1)

where denotes the vector of state variables,
denotes the vector of input variables, denotes

the vector of disturbance variables, and is locally Lipschitz
on . The disturbance vector is bounded, i.e.,

where

Note that uncertainty must be introduced in the model in order
to consider the deviation of the real state of the system from the
one estimated using the model.

C. Lyapunov-Based MPC

LMPC is based on uniting receding horizon control with con-
trol Lyapunov functions and computes the manipulated input
trajectory solving a finite horizon constrained optimal control
problem. While there are several LMPC schemes that have been
proposed in the literature (see for example [36], [37]), in this
work we design the proposed LMPC using the results devel-
oped in [33]–[35]. In order to define a finite-dimensional opti-
mization problem, the manipulated input trajectory (i.e., the free
variable of the LMPC optimization problem) is constrained to
belong to the family of piece-wise constant functions with
sampling period and length equal to the prediction horizon.
This means that although system (1) is defined in continuous
time, the control input is a piece-wise constant function of time
and the resulting closed-loop system is a nonlinear sampled-data
system with sampling time . As mentioned in the introduction,
LMPC is characterized by a set of constraints based on an ex-
isting Lyapunov-based controller. This set of constraints guar-
antees that the LMPC inherits the same stability and robustness
properties of the Lyapunov-based controller when it is applied
in a sample-and-hold fashion.

To proceed with the presentation of the LMPC, we need to
make certain assumptions. First, we assume that the nominal
closed-loop system (system (1) with for all ) has an
asymptotically stable equilibrium at the origin for a given
feedback control which satisfies (this
assumption is equivalent to the existence of a control Lyapunov
function (CLF) for the system ). This feedback
law will be used in the design of the LMPC controller. Using
converse Lyapunov theorems (see [43], [44]), this assumption
implies that there exist functions of class
and a Lyapunov function for the nominal closed-loop system
(system (1) with and ) which is contin-
uous and bounded in , that satisfy the following inequalities

(2)

for all where is an open neighborhood
of the origin. We denote the region as the stability
region of the closed-loop system under controller . Note
that explicit stabilizing control laws that provide explicitly-de-
fined regions of attraction for the closed-loop system have been
developed using Lyapunov techniques for specific classes of
nonlinear systems, particularly input-affine nonlinear systems;
the reader may refer to [45], [46] for results in this area. In
Section V, a method such as the one presented in [47] is used for
the design of . In the remainder, we will refer to the con-
troller as the Lyapunov-based controller.

We will also need the following result to characterize the
properties of the Lyapunov-based controller. By continuity
and the local Lipschitz property assumed for the vector field

and the continuous differentiable property of the
control Lyapunov function , there exist positive constants

and such that
jf(x; h(x); w)j �M (3)

j
@V

@x
f(x; h(x); w)�

@V

@x
f(x0

; h(x); 0)j � Lwjwj+Lxjx�x
0j (4)

for all and . These constants will be used
to bound the evolution of the Lyapunov function for the closed-
loop system, when the controller is applied in a sample-
and-hold scheme in the presence of data losses.

Existing LMPC schemes [33]–[35] that do not take into
account data losses are defined by the following optimization
problem

(5a)

(5b)

(5c)

(5d)

where is the family of piece-wise constant functions with
sampling period is the predicted trajectory of the nom-
inal system for the input trajectory computed by the LMPC,
and are positive definite weight matrices that define the
cost. At each sampling time , the new state is received
from the sensors, problem (5) is solved, and is applied
to the closed-loop system for . This is the stan-
dard receding horizon strategy and it does not take into account
that the state might not be available at a given sampling time
due to data losses. Constraint (5d) guarantees that the value of
the time derivative of the Lyapunov function at based on the
nominal model is smaller or equal to the value obtained if the
Lyapunov-based controller is implemented in the
closed-loop system. This is the contractive constraint that allows
one to prove (when no data losses are taken into account) that
the LMPC inherits the stability and robustness properties of the
Lyapunov-based controller . In Section IV we present the
main contribution of this paper, a novel LMPC controller based
on a contractive constraint and a receding horizon implemen-
tation scheme that take explicitly into account data losses. The
main property of the LMPC controller (5) is that the origin of the
closed loop system is practically stable for all initial states in-
side the stability region for sufficiently small sampling time

and sufficiently small disturbance upper bound . This prop-
erty is also guaranteed by the Lyapunov-based controller when
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this controller is applied in a sample-and-hold fashion, see [48],
[49] for results on sampled-data systems. The main advantage
of LMPC approaches with respect to the Lyapunov-based con-
troller, is that optimality considerations can be taken explicitly
into account (as well as constraints on the inputs and the states
[34]) in the computation of the controller within an on-line op-
timization framework, improving the closed-loop performance
of the system.

D. Data Losses and Asynchronous Sampling

In the following sections, we will refer to data losses as the
source of asynchronous behaviour of the processes under con-
sideration. Note that asynchronous sampling with respect to a
fixed sampling can be viewed as data losses with respect to the
regular measurement schedule. All the results presented can be
applied to systems subject to asynchronous measurement sam-
pling.

To model data losses, an auxiliary random variable is
introduced with where is the initial time and

. Data may be lost in both the sensor-controller link
and the controller-actuator link. When , at sampling
time the full state vector is available for the controller and the
actuator receives the new data. When , either the mea-
surement of the full state is not available, or the new input tra-
jectory evaluated is not received by the actuator. In both cases,
the actuator has to operate in open-loop so, from a control point
of view, both cases are equivalent. The probability distribution
of variable characterizes the quality of the communication
links. In general, if the probability of successful communication
is fixed or if the data losses are modeled using a random variable
governed by a Markov chain, there exists the possibility of arbi-
trarily large (but finite) periods of time without feedback. In this
case, it is not possible to provide guaranteed stability properties,
because there exists a non-zero probability that the system oper-
ates in open-loop for a period of time large enough for the state
to leave the stability region or even diverge to infinity during that
period of time (i.e., finite escape time). In order to study the sta-
bility properties in a deterministic framework, in this paper we
consider systems where there is a limit on the maximum number
of consecutive sampling times in which data is lost, i.e.,

(6)

This bound on the maximum period of time in which the loop
is open has been also used in other works in the literature
[20]–[22], [12] and allows us to study deterministic notions of
stability.

When data losses occur, most approaches set the control input
to zero or to the last implemented value. Instead, when data is
lost, we take advantage of the model predictive control scheme
to update the input based on a prediction obtained using the
model. This is achieved using the following scheme: At each
sampling time where no data is lost (i.e., the current state is
available and the controller can send information to the actu-
ator), the Lyapunov-based controller uses the nominal model
of the system (system (1) with for all ) to predict
the future trajectory for a given input trajectory

with where is the prediction horizon.
A cost function is minimized, while assuring that the value of
the Lyapunov function along the predicted trajectory sat-
isfies a Lyapunov-based contractive constraint. The whole op-
timal input trajectory , with , is sent to the
actuator which implements the first value, and stores the rest
(note that this implies higher bandwidth requirements). When
the state is not available, or the data sent from the controller to
the actuator is lost, the actuator keeps implementing the last re-
ceived optimal trajectory. If data is lost for a period larger than
the prediction horizon, the actuator sets the input to the last im-
plemented value or to a fixed value. The proposed implementa-
tion technique is described in Section IV.

Remark 1: The data losses model proposed is based on full
state transmission. This is different from the formulation of
Walsh et al. [20], [21]. For this reason, we do not consider any
transmission protocol of the kind introduced by [22].

Remark 2: The definition of in (6) is reminiscent of the
maximum allowable transmission interval (MATI) introduced
by Walsh et al. [20], [21]. Specifically, MATI refers to the max-
imum time between any two consecutive transmissions (which
may include part of the full state vector), while refers to
the maximum time between any two successful transmissions
of the full state vector to the controller and the entire input tra-
jectory from the controller to the actuator.

III. PROPERTIES OF THE LYAPUNOV-BASED CONTROLLER

In this section, we present results that will be used to prove the
stability and robustness properties of the LMPC controller pro-
posed in Section IV. Specifically, we establish certain stability
and robustness properties of the Lyapunov-based controller

in the presence of uncertainty and data losses.

A. Nominal Closed-Loop System Under Sample-and-Hold
Control

We first investigate the properties of the Lyapunov-based
controller when applied in a sample-and-hold fashion without
taking into account uncertainty or data losses. These properties
are important because the proposed LMPC scheme is based
on the nominal model, that is, system (1) with .
Note that the sampled trajectories may fail to be defined on all
times because of the possibility of finite escape time in one
of the intervals. In the results presented in this work however,
the sampling time is chosen such that the trajectories are well
defined (i.e., is continuous and bounded for all times). To
state our results we need the following definition:

Definition 1: The nominal sampled trajectory of system (1)
associated with a feedback law with sampling time
starting at is denoted by and is obtained by solving
recursively

where and .
In the sampled trajectory of the nominal closed-loop system,

the uncertainty is set equal to zero. The LMPC scheme to be
proposed in Section IV below optimizes a cost function, subject
to a set of constraints defined by the nominal sampled trajectory
of system (1). This allows us to formulate an LMPC problem
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that does not depend on the uncertainty and so it is of manage-
able computational complexity.

The Lyapunov-based controller possesses a robustness prop-
erty in the sense that it maintains practical stability of system
(1) under a sample-and-hold implementation if some conditions
are satisfied. The following proposition states that there exists
a sufficiently small sampling time and a positive constant
such that if at time the state is inside but outside ,
then the Lyapunov function will decrease, that is,

. Using this result it can be proved that the system con-
verges to in finite time from any initial state inside .

Proposition 1: Consider the nominal sampled trajectory
of system (1) for a controller that satisfies (2). Let

and satisfy

(7)

Then, for any , if , the following inequalities
hold:

(8)

Proof: Following Definition 1, the time derivative of the
Lyapunov function along the nominal sampled trajectory
of system (1) in is given by

(9)

Adding and subtracting and taking
into account (2) we obtain

(10)

From (2) we have that

(11)

for all . Substituting (4) and (11) into (10), the
following bound for is obtained

Taking into account (3) and the continuity of and , the
following bound can be written for all

Using this expression, we obtain the following bound on the
time derivative of the Lyapunov function for , for
all initial states

If (7) is satisfied, then . Integrating this
bound on we obtain that the inequalities of (8)
hold.

Proposition 1 guarantees that if system (1) under the control
law , implemented in a sample-and-hold fashion, starts
in , it reaches provided that is sufficiently small.
However, is not proved to be an invariant set for . For
continuous-time systems under continuous control implementa-
tion, a sufficient condition for invariance is that the derivative of
the Lyapunov function is negative on the boundary of the set. For
systems with continuous-time dynamics and sample-and-hold
control implementation this condition is not sufficient because
the time derivative may become positive during the sampling
period and the system may leave the set before a new sample
is obtained. The following proposition defines a region that is
invariant. The region is defined by , which is the maximum
value that the Lyapunov function can achieve in a time period
of length when . The result is given in terms of
a function that upper bounds the Lyapunov function along the
nominal sampled trajectory.

Proposition 2: Consider the nominal sampled trajectory
of system (1) for a controller that satisfies (2). Let

and satisfy (7). Then, if where

and , the following inequalities hold

(12)

Proof: Applying Proposition 1 recursively, if
there exists such that

and .
Once the state converges to (or starts there) it
remains inside for all times. This statement holds because
by definition of , if then .
It follows that (12) holds and that is ultimately bounded
in . The bound on the evolution of the state between
sampling times follow from Proposition 1.

B. Effect of the Uncertainty

In this section we study the closed-loop trajectories of system
(1) with controller implemented in a sample-and-
hold fashion taking into account uncertainty. We assume that
there are no data losses. The results presented in this section are
obtained using standard techniques used to study sampled-data
systems [48], [49], nonlinear systems subject to data losses [1],
[21], [50], [22] and more recently scheduling of control tasks
[51]. The main idea is to characterize the conditions under which
the Lyapunov function is guaranteed to be decreasing between
sampling times for any given uncertainty realization. We next
define the open-loop sampled trajectory of system (1).

Definition 2: The open-loop sampled trajectory of system
(1) associated with a feedback law with sampling time
starting at for a given disturbance trajectory is de-
noted and is obtained by solving
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where and is the nominal
sampled trajectory of system (1) associated with a feedback law

with sampling time starting at .
In this section, we will use the open-loop sampled trajectory

to characterize the properties of the Lyapunov-based controller
when no data is lost. This is done studying the evolution of the
open-loop sampled trajectory in the first sampling step, i.e.,
with . In this time period the control input is evaluated
utilizing the actual state (because ). In this way,
we can apply recursively the obtained properties to characterize
the closed-loop behavior of the system in the presence of uncer-
tainty. The properties of the Lyapunov-based controller in the
presence of data losses will be studied in the next subsection.

Proposition 3: Consider the open-loop sampled trajectory
of system (1) for a controller that satisfies (2). Let

and satisfy (7) and

(13)

with . Then, if ,
the following inequalities hold for all

(14)

Proof: Since the Lyapunov function is continuous
and bounded on compact sets, there exists a positive constant
such that a Taylor series expansion of around yields

Note that the term bounds the high order terms of the
Taylor series of for . Taking into account (2) the
following bound for is obtained

(15)

We define the error vector as . The derivative
of the error is given by

so by (4)

for all all . Integrating with
(recall that ), the following bound on

the norm of the error vector is obtained

Using this bound we can define a function of class ,
such that

(16)

for all . Using (15) and (16), the following bound on
is obtained

(17)

Using Proposition 1 the following inequality holds for all

(18)

Using (18) and taking into account that , (17)
yields

for all . If (13) is satisfied then both inequalities of
(14) hold because the increase of the bound on the Lyapunov
function due to the error between the actual trajectory and the
nominal trajectory is a strictly increasing function of time.

The above proposition characterizes the trajectory of the first
time step of the open-loop sampled trajectory for initial states

inside the ring . In the following proposition we
study the trajectory of the first time step of the open-loop sam-
pled trajectory for any initial state inside the set . This
proposition takes into account that the value of the Lyapunov
function of the closed-loop sampled trajectories that start inside
the inner set may increase.

Proposition 4: Consider the open-loop sampled trajectory
of system (1) under the controller that satisfies (2).

Let and satisfy (7) and (13). Then, if
where

(19)

and , the following inequalities hold for all

(20)

Proof: Since , Proposition 2 guarantees that

Using (17) we obtain that

Applying (19) and (13) for , we obtain that the
inequalities of (20) hold.

When no data losses are present, at each time step, the input is
computed utilizing the actual state, so Proposition 4 can be used
recursively. These results will be used in Section IV to prove the
main contributions of this work.

C. Data Losses

In this section, we study the stability properties of system
(1) in closed-loop with controller applied in a sample-
and-hold fashion in the presence of data losses. The trajectory
of system (1) in the presence of data losses (i.e., the actual
state is not available for the Lyapunov-based controller to com-
pute its control action) when the nominal model is used to es-
timate the state of the system and update the control input, is
defined by the open-loop sampled trajectory (see Definition 2).
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Specifically, when data is lost, the state of the system is esti-
mated using the nominal model and the input is decided using
this estimated state. In this case, the control system is oper-
ating in open-loop because the input, is not decided on behalf
of the actual state , but instead is computed by using the
estimated state provided by the sampled-nominal trajec-
tory. When data is lost, the initial state of the open-loop
sampled trajectory is given by the last received state. We eval-
uate the nominal sampled trajectory from this initial state

. This trajectory is used by the actuator which implements,
until a new measurement of the

actual state is received. We will study this trajectory to charac-
terize the stability properties of the Lyapunov-based controller
in the presence of uncertainty and data losses. The LMPC will
inherit these properties because this strategy is consistent with
the modified receding horizon scheme proposed in the previous
section.

Due to the effect of the uncertainties, there is an error be-
tween the actual state and the estimated state . This
error limits the maximum amount of uncertainty the system
can handle and the maximum time the system can operate in
open-loop without leaving the stability region . The result
presented in Proposition 5 below states that under certain con-
ditions if the system starts inside , the open-loop sampled tra-
jectory will remain inside this set for a certain period of time and
provides an upper bound on the estimate of this time in terms of
the system and controller parameters. This result is used in the
following section to characterize the stability of the closed-loop
system under LMPC in the presence of data losses.

Proposition 5: Consider the open-loop sampled trajectory
of system (1) for a controller that satisfies (2). Let

and satisfy (7), (13) and (19). Then there exists
integer such that if and is known (see
Definition 2), then and .

Proof: The proof is based on using (17) to obtain a bound
on the worst case evolution of based on the trajectory of
the nominal system . Following Proposition 2 we know
that

and that, because the upper bound used to obtain this in-
equality is a strictly increasing function of time,

. To evaluate the maximum such that
we must take into account both possible values

of the bound on . The proof consists of two parts. We
first evaluate such that if
for all then . Then we define such that
if for all then . It follows that

satisfies the proposition.
Part 1: Assume that for all .

A sufficient condition to prove that if then
is that if then

. Using (17), the following bound on is ob-
tained for states on the boundary of

This bound is defined as the sum of a strictly decreasing
function and a strictly increasing function of time. The con-

stant is defined as the maximum such that ,
i.e.,

If , then it holds that for all
. A necessary and sufficient condition for the

existence of a constant that satisfies this inequality is
that . This holds because (13) is satisfied.

Part 2: Assume that for all . Following the
same reasoning as in part 1 of the proof of this proposition, and
using (17), the following bound is obtained

This bound is strictly increasing with respect to . Constant
is defined as the maximum such that , i.e.,

(21)

If , then it holds that for all
. Because (19) is satisfied, it follows that .

This assures the existence of that satisfies (21). Note
that (17) is valid only if for all . The
first claim holds by the definition of (note that
this is exactly what the proposition states). The second claim

holds because of Proposition 2.
The results presented in this section characterize the stability

and robustness properties of the Lyapunov-based controller.
Proposition 4 guarantees practical stability in the absence of
data losses, and Proposition 5 guarantees that the stability
region is invariant if the maximum time without measurements
is shorter than a fixed value. These properties will be inher-
ited by the proposed LMPC scheme, which at the same time,
introduces optimality considerations improving closed-loop
performance. This result is presented in the following section.

Remark 3: Proposition 5 guarantees that the stability region is
invariant if the maximum time without measurements is shorter
than and provides an estimate of the constant that is
guaranteed to be greater or equal than 1. Note that if is equal
to in order to guarantee closed-loop stability, a measurement
must be available every sampling time, so in practice, no data
losses can occur. This is possible, because depends on the
parameters of the system, the Lyapunov-based controller, the
sampling time and the size of the uncertainty . For a par-
ticular choice of and , the closed-loop system without data
losses may be guaranteed to be practically stable, so
guarantees that the stability region is invariant; but in the pres-
ence of data losses, it might not be possible to guarantee the
same property for .

Remark 4: Although the proofs of propositions 1, 2, 3, 4 and
5 are constructive, the constants obtained are conservative. This
is the case with most of the results of the type presented in this
paper, see for example [49], [51] for further discussion on this
issue. In practice, the sampling time and the maximum time that
the system can operate in open-loop without leaving the closed-
loop stability region are better estimated through closed-loop
simulation. The various inequalities proved in these five propo-
sitions are more useful as guidelines on the interaction between
the various parameters that define the system and the controller
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and may be used as guidelines to design the controller and the
network.

IV. PROPOSED LYAPUNOV-BASED MODEL

PREDICTIVE CONTROL

In this section, a new Lyapunov-based model predictive con-
troller for system (1) is proposed which takes into account ex-
plicitly data losses, both in the constraints imposed in the op-
timization problem and in the implementation procedure. Pre-
vious LMPC schemes (see [33]–[35]) are based on problem
(5). When data losses do not occur, these controllers guarantee
practical stability (due to the sample-and-hold implementation).
When data losses are taken into account whether the actuator
keeps the input at the last value, sets the input to a constant
value, or keeps on implementing the previously evaluated input
trajectory (like we propose for the new LMPC controller), the
existing LMPC schemes cannot guarantee closed-loop stability.
In particular, there are no guarantees that the LMPC optimiza-
tion problem will be feasible for all times, i.e., that the state will
remain inside the stability region for all time. The contractive
constraint (5d) only takes into account the first time step and
does not give any information on the behavior of the system
if data losses occur. If no additional constraints are included
in the optimization problem, no claims on the closed-loop sta-
bility behavior of the system can be made. For this reason, when
data losses are taken into account, the constraints of the LMPC
problem have to be modified. The proposed LMPC that takes
into account data losses in an explicit way is based on the fol-
lowing finite horizon constrained optimal control problem

(22a)

(22b)

(22c)

(22d)

where is the family of piece-wise constant functions with
sampling period is the predicted sampled trajectory of
the nominal system for the input trajectory computed by the
LMPC (22), is the nominal sampled trajectory under the
Lyapunov-based controller (see Definition 1), and

are weight matrices that define the cost. This optimiza-
tion problem does not depend on the uncertainty and assures that
the LMPC inherits the properties of the Lyapunov-based con-
troller. To take full advantage of the use of the nominal model
in the computation of the control action, we take .

The main difference between constraint (5d) and constraint
(22d) is that under the assumption of flawless communications,
the optimization problem is solved at each sampling time. This
implies, that to prove that the LMPC inherits the stability proper-
ties of the Lyapunov-based controller it is sufficient to guarantee
that the LMPC controller provides at least the same decrease of
the Lyapunov function as the Lyapunov based controller in the
first time step. When data losses are taken into account, in order
to prove that the LMPC inherits the same properties of the Lya-
punov-based controller applied in a sample and hold scheme
and using the model to predict the evolution of the system when
no data losses are present, the constraint must hold along the

whole prediction horizon. In this manner, when data is lost, the
optimal input trajectory evaluated guarantees that the predicted
decrease of the Lyapunov function using the nominal model is
at least equal to the one obtained applying the Lyapunov-based
controller, and hence, the same robustness properties are inher-
ited.

The implementation procedure is modified to profit from the
last optimal input trajectory when data is lost. At each sampling
time, if the current state is available and belongs in , the
controller solves the optimization problem, obtaining a new op-
timal input trajectory . This input trajectory
is sent to the actuator through the communication link. If the ac-
tuator receives the new trajectory (that is, if the loop is closed),
it implements the first input and stores the rest in memory. If
either the sensor-controller link or the controller-actuator link
fail, the actuator does not receive the new optimal trajectory. In
that case, the actuator implements the input corresponding to the
last received trajectory. As the optimal trajectory is the solution
of the LMPC optimization problem, it has been obtained using
the predictions of the nominal model. Note that if the state is
not available for a period longer than the prediction horizon, the
actuator no longer can use the last received trajectory because
the optimal trajectory of the LMPC optimization problem has
a length equal to the prediction horizon, so after time steps
without measurements, the input has to be kept constant at the
last implemented value or set to a predefined value. In such a
case, no guaranteed closed-loop stability or robustness proper-
ties can be obtained. This implementation procedure is summa-
rized in the following algorithm:

1) If then solve (22) and obtain , else
.

2) Apply .
3) Obtain a new sample and go to 1.

This strategy is a receding horizon strategy, which takes into ac-
count that data losses may occur. The actuator not only receives
and implements a given input, but must also be able to store a
future trajectory to implement it in case data losses occur. This
implies that to improve the efficiency of a NCS, not only the
control algorithms must be modified, but also the control actu-
ator hardware that implements the control action. This scheme
is motivated by the fact that when no feedback is available,
a reasonable estimate of the future evolution of the system is
given by the nominal trajectory. The proposed LMPC scheme,
therefore modifies the standard implementation scheme of set-
ting the actuator to zero or to the last computed input. Note
that setting the input to zero is equivalent to assuming that the
system has reached the origin, while setting the input to the last
value is equivalent to assuming that the state remains constant
throughout the time period on which data is lost. The idea of
using the model to predict the evolution of the system when no
feedback is possible has also been used in the context of sam-
pled-data linear systems, see [24]–[29].

We now present two theorems that characterize the robustness
properties of the proposed LMPC scheme if the process, con-
troller, uncertainty and data loss parameters satisfy the condi-
tions presented in the propositions 1–5. The first theorem states
that if no losses are present, the system converges to a neighbor-
hood of the origin. The second theorem states that in the pres-
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ence of data losses that satisfy the closed-loop system
state will not leave .

Theorem 1: Consider system (1) in closed-loop with the
LPMC scheme (22) based on a controller that satisfies
(2). Let and satisfy (7), (13) and (19). If
there are no data losses and , then

is ultimately bounded in .
Proof: Taking into account Definition 1, for all

, the LMPC optimization problem is feasible because
satisfies the Lyapunov-based contrac-

tive constraint of (22). Following the same reasoning used in
Proposition 3 to obtain (17), the following inequality is obtained
(note that is known because ):

The constraints of (22) guarantee that
which implies that

(23)

This inequality relates the actual trajectory obtained in
closed-loop with the LMPC controller, with the nominal sam-
pled trajectory of the Lyapunov-based controller. We will use
this inequality to bound the evolution of the Lyapunov function
in the first time step in order to characterize the stability prop-
erties of the closed-loop system without data losses, i.e.,

(24)

Since (7) holds, it follows from Proposition 2 that the nominal
sampled trajectory satisfies

(25)

Using (25) into (24), and taking into account that (13) and (19)
hold, the following inequality is obtained

Using this inequality recursively the closed-loop trajectories of
system (1) without data losses are characterized by means of the
following expression

This proves that the closed-loop system is ultimately bounded
in .

In the following theorem we present a result which guarantees
that if the maximum time without measurements (i.e., ) is
smaller than , where is defined in Proposition 5, and the
prediction horizon is chosen equal or greater than , then
is an invariant set for system (1) controlled with the proposed
LPMC scheme based on a controller that satisfies (2).

Theorem 2: Consider system (1) in closed-loop with the
LPMC scheme (22) based on a controller that satis-
fies (2). Let satisfy (7), (13), (19) and

is defined as in Proposition 5. If and

is known and , then for
.

Proof: We will prove in a recursive fashion that the the-
orem holds for the worst case trajectory with . The
worst case trajectory is given by if

and otherwise (that is, the system receives
only one sample every sampling times).

We will first prove that if and is known (so the
input at time is taken on behalf of the real state), and the
proposed implementation is applied, then .
At time the actual state is available so is evalu-
ated and applied in . Note that the input is
well defined for this period of time because . Since

, we can apply Proposition 5 to prove that

Using (19) and (23) it follows that for all
, and thus, .

Taking into account that and is known and using
recursively the property that states that if and is
known then , it is proved that if
for and otherwise, then

for .
Because the worst case trajectory is guaranteed to remain in
when the system is in closed-loop with the LMPC controller,

then any given trajectory with is also guaranteed to
remain in .

Remark 5: Theorem 2 is very important from an MPC point
of view because if the maximum time without data losses is
smaller than the maximum time that the system can operate in
open-loop without leaving the stability region, the feasibility
of the optimization problem for all times is guaranteed, since
each time feedback is regained, the state is guaranteed to be in-
side the stability region, thereby yielding a feasible optimization
problem.

Remark 6: In this work, no input or state constraints have
been considered but the proposed approach can be extended to
handle these issues. For input constraints, the Lyapunov-based
controller has to be designed taking into account the limits on
the inputs in an explicit way, such that a closed-loop stability re-
gion in which satisfaction of the constraints and asymptotic sta-
bility is guaranteed, is obtained. Example of such control laws
are available in the literature for a for certain classes of nonlinear
systems, see [45], [46] for results in this area. The LMPC op-
timization problem would also include the input and state con-
straints. Detailed development of theses results is outside the
scope of the present work.

Remark 7: When there are data losses in the control system,
standard MPC formulations do not provide guaranteed closed-
loop stability results because the stability properties of these
controllers are proved based upon the assumption of flawless
communications and in the presence of data losses the proofs are
no longer valid. In order to guarantee closed-loop properties in
the presence of data losses, the formulation of the optimization
problem and the implementation procedure have to be modified
accordingly to take into account data losses in an explicit way.
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TABLE I
PROCESS PARAMETERS

V. APPLICATION TO A CHEMICAL REACTOR

Consider a well mixed, non-isothermal continuous stirred
tank reactor where three parallel irreversible elementary
exothermic reactions take place of the form
and . B is the desired product and C and D are byprod-
ucts. The feed to the reactor consists of pure A at flow rate

, temperature and molar concentration
where is an unknown time-varying uncertainty. Due
to the non-isothermal nature of the reactor, a jacket is used to
remove/provide heat to the reactor. Using first principles and
standard modeling assumptions the following mathematical
model of the process is obtained

(26)

where denotes the concentration of the reactant
denotes the temperature of the reactor, denotes the rate
of heat input/removal, denotes the volume of the reactor,

denote the enthalpies, pre-exponential
constants and activation energies of the three reactions, respec-
tively, and denote the heat capacity and the density of the
fluid in the reactor. The values of the process parameters are
shown in Table I.

System (26) has three steady-states (two locally asymptoti-
cally stable and one unstable). The control objective is to sta-
bilize the system at the open-loop unstable steady state

. The manipulated input is the rate
of heat input . We consider a time-varying uncertainty in the
concentration of the inflow .

To demonstrate the theoretical results, we are going to apply
three different controllers: A Lyapunov-based controller that
satisfies (2), the original LMPC controller (5), and the proposed
LMPC controller (22). We first design a Lyapunov-based con-
troller using the method presented in [47]. This controller is used
to design both LMPC controllers. System (26) belongs to the
following class of non-linear systems

where is the state, is the input and
is a time varying bounded disturbance. Consider

the control Lyapunov function with

The values of the weights have been chosen to account for the
different range of numerical values for each state. The following
feedback law [47] asymptotically stabilizes the open-loop un-
stable steady-state of the nominal system (i.e., ) and is
of the form (2):

(27)

where and denote the Lie derivatives of the scalar
function with respect to the vectors fields and , respec-
tively. This controller will be used to design the LMPC con-
troller. The stability region is defined as , i.e.,

.
The main source of asynchronous behavior in the closed-loop

system of this chemical process example is the presence of asyn-
chronous measurement sampling which is meaningful from a
practical point of view given the type and size of the LMPC
optimization problem and the amount of data involved in the
transmission of the input trajectory from the controller to the
actuator. We assume that the sampling of the concentration of
product A occurs every three to ten minutes. Although the tem-
perature sampling is much faster, a measurement of the full
process state vector is sent to the controller only when
the concentration measurement is available. We model the asyn-
chronous measurement sampling of the closed-loop system with
a sampled-data system with a sampling time subject
to data losses. For this sampling time, the closed-loop system
with is practically stable and the performance in
terms of the evolution of the process states is similar to the
closed-loop system with continuous measurements. We com-
puted the maximum time such that the system remains in
when controlled in open-loop (i.e., no measurement of the full
process state vector are available to the controller apart from
the initial state) with the nominal sampled input trajectory to
be (i.e., ). This value is estimated using data from
simulations. As expected, the inequalities obtained in the main
results of this paper are too conservative to realistically estimate

and .
We implement the LMPC controller presented in the previous

section using a sample time of and a prediction
horizon . The cost function is defined by the
weight matrices and . The values of the
weights have been tuned in such a way that the values of the
control inputs are comparable to the ones computed by the Lya-
punov-based controller (i.e., same order of magnitude of the
input signal and convergence time of the closed-loop system
when no uncertainty or losses are taken into account).

We will first compare the proposed LMPC scheme with the
original LMPC scheme of [33]–[35]. In this scheme no data
losses were taken into account. This scheme is based on an op-
timization problem of the form (5) and will react to data loss
with the same approach as the proposed LMPC scheme, that
is, sending to the actuator the whole optimal input trajectory,
so in case data losses occur, the input is updated as in the modi-
fied receding horizon scheme proposed in Section IV. The same
weights, sampling time and prediction horizon are used.

In Fig. 2 the trajectories of both controllers are shown as-
suming no data is lost, that is, the state is available every
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Fig. 2. (a)(c) Trajectories of system (26) with the proposed LMPC scheme with no data losses. (b)(d) Trajectories of system (26) with the original LMPC scheme
with no data losses.

sampling time. It can be seen that both closed-loop systems are
practically stable. Note that regarding optimality, for a given
state, the original LMPC optimization problem (not necessarily
the closed-loop trajectory) yields a lower cost than the proposed
optimization problem, because the constraints that define the
original LMPC controller are less restrictive (i.e., the contrac-
tive constraint must hold only in the first time step whereas in
the proposed LMPC scheme it must hold along the whole pre-
diction horizon). The difference between the optimal cost of the
original LMPC and the proposed LMPC for a particular ini-
tial state depends on whether the contractive constraint (25d)
is active or not (i.e., satisfied with equality sign) at the solu-
tion. In general, the constraint is more restrictive for states near
the boundary of the stability region. For , the
original LMPC yields and the proposed con-
troller yields . For , the original
LMPC yields , while the proposed controller
yields .

When data losses occur, the proposed LMPC scheme is more
robust. The stability region is invariant for the closed-loop
system if (recall that we set the prediction horizon

equal to the maximum time defined in Proposition 5). That
is not the case with the LMPC scheme of (5). In Fig. 3 the
trajectories of the closed-loop system under both controllers
are shown in the presence of data losses with , and a
signal evaluated as if
and otherwise (that is, the system receives only
one measurement of the actual state every 5 samples). These
trajectories account for the worst-case effect of the data losses.
The trajectories are shown in the state space along with the
closed-loop stability region . It can be seen that the original
LMPC controller trajectory leaves the stability region, while
the proposed LMPC scheme remains inside. When data losses
are taken into account, in order to inherit the stability properties
of the Lyapunov-based controller of (27), the constraints must
be modified to take into account data losses as in the proposed
LMPC controller (22).

We now compare the LMPC with the Lyapunov-based con-
troller (27) applied in a sample-and-hold fashion following a
“last available control” strategy, i.e., when data is lost, the ac-
tuator keeps implementing the last received input value (note
that, through extensive simulations, we have found that in this
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Fig. 3. (a)(c) Worst case trajectories of system (26) with the proposed LMPC scheme withN = 5. (b)(d) Worst case trajectories of system (26) with the original
LMPC scheme with N = 5.

particular example, the strategy of setting the input to zero when
data losses occur, yields worse results than the strategy of im-
plementing the last available input). In Fig. 4 the worst case tra-
jectories with for both controllers are shown (note that
this loss rate is lower than the one that can be handled by the
proposed LMPC controller). It can be seen that, due to the in-
stability of the open-loop steady state, for this small amount of
losses, the Lyapunov-based controller is not able to stabilize the
system. This is due to the fact that this control scheme does not
update the control actuator output using the model, as the pro-
posed LMPC scheme does.

We have also carried out another set of simulations to
demonstrate that although the LMPC scheme inherits the same
stability and robustness properties of the Lyapunov-based con-
troller that it employs, it does outperform the Lyapunov-based
controller (27) from a performance index point of view. Table II
shows the total cost computed for 10 different closed-loop sim-
ulations under the LMPC and the Lyapunov-based controller
implemented in a sample-and-hold fashion, using the nominal
model to predict the evolution of the system when data is lost.
To carry out this comparison, we compute the total cost of each

simulation based on the performance index of the LMPC which
has the form

where is the initial time of the simulations and is the
end of the simulation. The sampling time is h. Each
sample has a 20% probability of being lost, that is

. For each pair of simulations (one for each controller)
a different initial state inside the stability region, a different
random uncertainty trajectory and a different data losses realiza-
tion is chosen. As it can be seen in Table II, the total cost under
the proposed LMPC controller is lower than the corresponding
total cost under the Lyapunov-based controller. This demon-
strates that in this example, the LMPC scheme shares the same
robustness and stability properties and is more optimal than the
Lyapunov-based controller, which is not designed taking into
account any optimality considerations.

The simulations have been done in Matlab using fmincon
and a Runge-Kutta solver with a fixed integration time of
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Fig. 4. Worst case trajectories of system (26) withN = 2 in closed-loop with
(a) the proposed LMPC scheme; (b) the Lyapunov-based controller.

TABLE II
PERFORMANCE COSTS ALONG THE CLOSED-LOOP TRAJECTORIES

0.001h. To simulate the time-varying uncertainty, a different
random value has been applied at each integration step.
This random value satisfies and is taken
from a uniform distribution using Matlab’s function rand.

VI. CONCLUSION

In this work, a LMPC controller was proposed for control of a
broad class of nonlinear uncertain systems subject to data losses.

The main idea is that in order to provide guaranteed stability
results in the presence of data losses, the constraints that de-
fine the LMPC optimization problem as well as the implemen-
tation procedure have to be modified to account for data losses.
This fact also holds for other MPC controllers. The proposed
LMPC controller allows for an explicit characterization of the
stability region, guarantees practical stability in the absence of
data losses, and guarantees that the stability region is invariant
if the maximum time without measurements is shorter than a
given constant that depends on the parameters of the system
and the controller used to design the LMPC. The proposed con-
trol method was demonstrated though application to a chemical
process example.
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