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Abstract

We study continuous action reinforcement learn-

ing problems in which it is crucial that the agent

interacts with the environment only through safe

policies, i.e., policies that keep the agent in desir-

able situations, both during training and at con-

vergence. We formulate these problems as con-

strained Markov decision processes (CMDPs) and

present safe policy optimization algorithms that

are based on a Lyapunov approach to solve them.

Our algorithms can use any standard policy gra-

dient (PG) method, such as deep deterministic

policy gradient (DDPG) or proximal policy opti-

mization (PPO), to train a neural network policy,

while guaranteeing near-constraint satisfaction for

every policy update by projecting either the policy

parameter or the selected action onto the set of

feasible solutions induced by the state-dependent

linearized Lyapunov constraints. Compared to the

existing constrained PG algorithms, ours are more

data efficient as they are able to utilize both on-

policy and off-policy data. Moreover, our action-

projection algorithm often leads to less conserva-

tive policy updates and allows for natural integra-

tion into an end-to-end PG training pipeline. We

evaluate our algorithms and compare them with

the state-of-the-art baselines on several simulated

(MuJoCo) tasks, as well as a real-world robot

obstacle-avoidance problem, demonstrating their

effectiveness in terms of balancing performance

and constraint satisfaction.

1. Introduction
The field of reinforcement learning (RL) has witnessed

tremendous success in many high-dimensional control prob-

lems, including video games (Mnih et al., 2015), board

games (Silver et al., 2016), robot locomotion (Lillicrap et al.,

2016), manipulation (Levine et al., 2016; Kalashnikov et al.,

2018), navigation (Faust et al., 2018), and obstacle avoid-
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ance (Chiang et al., 2019). In RL, the ultimate goal is to

optimize the expected sum of rewards/costs, and the agent

is free to explore any behavior as long as it leads to per-

formance improvement. Although this freedom might be

acceptable in many problems, including those involving

simulated environments, and could expedite learning a good

policy, it might be harmful in many other problems and

could cause damage to the agent (robot) or to the environ-

ment (plant or the people working nearby). In such domains,

it is absolutely crucial that while the agent optimizes its

long-term performance, it only executes safe policies both

during training and at convergence.

A natural way to incorporate safety is via constraints. A stan-

dard model for RL with constraints is constrained Markov

decision process (CMDP) (Altman, 1999), where in addition

to its standard objective, the agent must satisfy constraints

on expectations of auxiliary costs. Although optimal poli-

cies for finite CMDPs with known models can be obtained

by linear programming (Altman, 1999), there are not many

results for solving CMDPs when the model is unknown or

the state and/or action spaces are large or infinite. A com-

mon approach to solve CMDPs is to use the Lagrangian

method (Altman, 1998; Geibel & Wysotzki, 2005), which

augments the original objective function with a penalty

on constraint violation and computes the saddle-point of

the constrained policy optimization via primal-dual meth-

ods (Chow et al., 2017). Although safety is ensured when

the policy converges asymptotically, a major drawback of

this approach is that it makes no guarantee with regards to

the safety of the policies generated during training.

A few algorithms have been recently proposed to solve

CMDPs at scale while remaining safe during training.

One such algorithm is constrained policy optimization

(CPO) (Achiam et al., 2017). CPO extends the trust-region

policy optimization (TRPO) algorithm (Schulman et al.,

2015a) to handle the constraints in a principled way and has

shown promising empirical results in terms scalability, per-

formance, and constraint satisfaction, both during training

and at convergence. Another class of these algorithms is

by Chow et al. (Chow et al., 2018). These algorithms use

the notion of Lyapunov functions that have a long history

in control theory to analyze the stability of dynamical sys-

tems (Khalil, 1996). Lyapunov functions have been used

in RL to guarantee closed-loop stability (Perkins & Barto,

2002; Faust et al., 2014). They also have been used to guar-
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antee that a model-based RL agent can be brought back to

a “region of attraction” during exploration (Berkenkamp

et al., 2017). Chow et al. (Chow et al., 2018) use the theoret-

ical properties of the Lyapunov functions and propose safe

approximate policy and value iteration algorithms. They

prove theories for their algorithms when the CMDP is finite

with known dynamics, and empirically evaluate them in

more general settings. However, their algorithms are value-

function-based, and thus are restricted to discrete-action

domains.

In this paper, we build on the problem formulation and the-

oretical findings of the Lyapunov-based approach to solve

CMDPs, and extend it to tackle continuous action problems

that play an important role in control theory and robotics.

We propose Lyapunov-based safe RL algorithms that can

handle problems with large or infinite action spaces, and

return safe policies both during training and at convergence.

To do so, there are two major difficulties that need to be

addressed: 1) the policy update becomes an optimization

problem over the large or continuous action space (similar

to standard MDPs with large actions), and 2) the policy

update is a constrained optimization problem in which the

(Lyapunov) constraints involve integration over the action

space, and thus, it is often impossible to have them in closed-

form. Since the number of Lyapunov constraints is equal to

the number of states, the situation is even more challenging

when the problem has a large state space. To address the first

difficulty, we switch from value-function-based to policy

gradient (PG) algorithms. To address the second difficulty,

we propose two approaches to solve our constrained policy

optimization problem (a problem with infinite constraints,

each involving an integral over the continuous action space)

that can work with any standard on-policy (e.g., proximal

policy optimization (PPO) (Schulman et al., 2017)) and off-

policy (e.g., deep deterministic policy gradient (DDPG) (Lil-

licrap et al., 2016)) PG algorithm. Our first approach, which

we call policy parameter projection or ✓-projection, is a

constrained optimization method that combines PG with a

projection of the policy parameters onto the set of feasible

solutions induced by the Lyapunov constraints. Our second

approach, which we call action projection or a-projection,

uses the concept of a safety layer introduced by Dalal et al.

(2018) to handle simple single-step constraints, extends this

concept to general trajectory-based constraints, solves the

constrained policy optimization problem in closed-form us-

ing Lyapunov functions, and integrates this closed-form into

the policy network via safety-layer augmentation. Since

both approaches guarantee safety at every policy update,

they manage to maintain safety throughout training (ignor-

ing errors resulting from function approximation), ensuring

that all intermediate policies are safe to be deployed. To pre-

vent constraint violations due to function approximation er-

rors, similar to CPO, we offer a safeguard policy update rule

that decreases constraint cost and ensures near-constraint

satisfaction.

Our proposed algorithms have two main advantages over

CPO. First, since CPO is closely connected to TRPO, it

can only be trivially combined with PG algorithms that

are regularized with relative entropy, such as PPO. This

restricts CPO to on-policy PG algorithms. On the contrary,

our algorithms can work with any on-policy (e.g., PPO) and

off-policy (e.g., DDPG) PG algorithm. Having an off-policy

implementation is beneficial, since off-policy algorithms

are potentially more data-efficient, as they can use the data

from the replay buffer. Second, while CPO is not a back-

propagatable algorithm, due to the backtracking line-search

procedure and the conjugate gradient iterations for comput-

ing natural gradient in TRPO, our algorithms can be trained

end-to-end, which is crucial for scalable and efficient im-

plementation (Hafner et al., 2017). In fact, we show in

Section 3.1 that CPO (minus the line search) can be viewed

as a special case of the on-policy version (PPO version)

of our ✓-projection algorithm, corresponding to a specific

approximation of the constraints.

We evaluate our algorithms and compare them with CPO

and the Lagrangian method on several continuous control

(MuJoCo) tasks and a real-world robot navigation problem,

in which the robot must satisfy certain constraints, while

minimizing its expected cumulative cost. Results show that

our algorithms outperform the baselines in terms of bal-

ancing the performance and constraint satisfaction (during

training), and generalize better to new and more complex

environments.

2. Preliminaries
We consider the RL problem in which the agent’s interac-

tion with the environment is modeled as a Markov decision

process (MDP). A MDP is a tuple (X ,A, �, c, P, x0), where

X and A are the state and action spaces; � 2 [0, 1) is a

discounting factor; c(x, a) 2 [0, Cmax] is the immediate cost

function; P (·|x, a) is the transition probability distribution;

and x0 2 X is the initial state. Although we consider de-

terministic initial state and cost function, our results can be

easily generalized to random initial states and costs. We

model the RL problems in which there are constraints on the

cumulative cost using CMDPs. The CMDP model extends

MDP by introducing additional costs and the associated

constraints, and is defined by (X ,A, �, c, P, x0, d, d0), where

the first six components are the same as in the unconstrained

MDP; d(x) 2 [0, Dmax] is the (state-dependent) immediate

constraint cost; and d0 2 R�0 is an upper-bound on the

expected cumulative constraint cost.

To formalize the optimization problem associated with

CMDPs, let ∆ be the set of Markovian stationary policies,

i.e., ∆ = {⇡ : X ⇥ A ! [0, 1],
P

a
⇡(a|x) = 1}. At each

state x 2 X , we define the generic Bellman operator w.r.t. a

policy ⇡ 2 ∆ and a cost function h as

T⇡,h[V ](x) =
X

a2A

⇡(a|x) [h(x, a) + �
X

x02X

P (x0|x, a)V (x0)].
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Given a policy ⇡ 2 ∆, we define the expected cumulative

cost and the safety constraint function (expected cumulative

constraint cost) as C⇡(x0) := E[
P1

t=0 �
tc(xt, at) | ⇡, x0] and

D⇡(x0) := E[
P1

t=0 �
td(xt) | ⇡, x0], respectively. The safety

constraint is then defined as D⇡(x0)  d0. The goal in

CMDPs is to solve the constrained optimization problem

⇡
⇤ 2 argmin

⇡2∆

�
C⇡(x0) : D⇡(x0)  d0

 
. (1)

It has been shown that if the feasibility set is non-empty,

then there exists an optimal policy in the class of stationary

Markovian policies ∆ (Theorem 3.1 in Altman (1999)).

2.1. Policy Gradient Algorithms
Policy gradient (PG) algorithms optimize a policy by com-

puting a sample estimate of the gradient of the expected

cumulative cost induced by the policy, and then updating

the policy parameter in the gradient direction. In general,

stochastic policies that give a probability distribution over

actions are parameterized by a -dimensional vector ✓, so

the space of policies can be written as {⇡✓, ✓ 2 Θ ⇢ R
}.

Since in this setting a policy ⇡ is uniquely defined by its

parameter ✓, policy-dependent functions can be written as a

function of ✓ or ⇡ interchangeably.

DDPG (Lillicrap et al., 2016) and PPO (Schulman et al.,

2017) are two PG algorithms that have recently gained pop-

ularity in solving continuous control problems. DDPG

is an off-policy Q-learning style algorithm that jointly

trains a deterministic policy ⇡✓(x) and a Q-value approxi-

mator Q(x, a;�). The Q-value approximator is trained to

fit the true Q-value function and the deterministic policy

is trained to optimize Q(x,⇡✓(x);�) via chain-rule. The

PPO algorithm we use in this paper is a penalty form of

TRPO (Schulman et al., 2015a) with an adaptive rule to

tune the DKL penalty weight �k. PPO trains a policy

⇡✓(x) by optimizing a loss function that consists of the

standard policy gradient objective and a penalty on the KL-

divergence between the current ✓ and previous ✓0 policies,

i.e., DKL(✓, ✓
0) = E[

P
t
�tDKL(⇡✓0(·|xt)||⇡✓(·|xt))|⇡✓0 , x0].

2.2. Lagrangian Method
Lagrangian method is a straightforward way to address

the constraint D⇡✓
(x0)  d0 in CMDPs. Lagrangian

method adds the constraint costs d(x) to the task costs

c(x, a) and transform the constrained optimization problem

to a penalty form, i.e., min✓2Θ max��0 E[
P1

t=0 c(xt, at) +

�d(xt)|⇡✓, x0] � �d0. The method then jointly optimizes ✓

and � to find a saddle-point of the penalized objective. The

optimization of ✓ may be performed by any PG algorithm

on the augmented cost c(x, a) + �d(x), while � is optimized

by stochastic gradient descent. As described in Sec. 1, al-

though the Lagrangian approach is easy to implement (see

Appendix A for the details), in practice, it often violates

the constraints during training. While at each step during

training, the objective encourages finding a safe solution,

the current value of � may lead to an unsafe policy. This is

why the Lagrangian method may not be suitable for solving

problems in which safety is crucial during training.

2.3. Lyapunov Functions
Since in this paper, we extend the Lyapunov-based approach

to CMDPs of Chow et al. (2018) to PG algorithms, we

end this section by introducing some terms and notations

from Chow et al. (2018) that are important in developing

our safe PG algorithms. We refer the reader to Appendix B

for more details.

We define a set of Lyapunov functions w.r.t. initial state x0 2

X and constraint threshold d0 as L⇡B
(x0, d0) = {L : X !

R�0 | T⇡B ,d[L](x)  L(x), 8x 2 X , L(x0)  d0}, where ⇡B

is a feasible policy of (1), i.e., D⇡B
(x0)  d0. We refer to the

constraints in this feasibility set as the Lyapunov constraints.

For an arbitrary Lyapunov function L 2 L⇡B
(x0, d0), we

denote by FL =
�
⇡ 2 ∆ : T⇡,d[L](x)  L(x), 8x 2 X

 
, the

set of L-induced Markov stationary policies. The contrac-

tion property of T⇡,d, together with L(x0)  d0, imply that

any L-induced policy in FL is a feasible policy of (1). How-

ever, FL(x) does not always contain an optimal solution

of (1), and thus, it is necessary to design a Lyapunov func-

tion that provides this guarantee. In other words, the main

goal of the Lyapunov approach is to construct a Lyapunov

function L 2 L⇡B
(x0, d0), such that FL contains an optimal

policy ⇡⇤, i.e., L(x) � T⇡⇤,d[L](x). Chow et al. (Chow et al.,

2018) show in their Theorem 1 that without loss of optimal-

ity, the Lyapunov function that satisfies the above criterion

can be expressed as L⇡B ,✏(x) := E
⇥P1

t=0 �
t
�
d(xt)+✏(xt)

�
|

⇡B , x
⇤
, in which ✏(x) � 0 is a specific immediate auxiliary

constraint cost that keeps track of the maximum constraint

budget available for policy improvement (from ⇡B to ⇡⇤).

They propose ways to construct such ✏, as well as an auxil-

iary constraint cost surrogate e✏, which is a tight upper-bound

on ✏ and can be computed more efficiently. They use this

construction to propose their safe (approximate) policy and

value iteration algorithms, in which the goal is to solve the

following LP (Eq. 6 in Chow et al. (2018)) at each policy

improvement step:

⇡+(·|x) = argmin
⇡2∆

Z

a2A

QV⇡B
(x, a)⇡(a|x),

s.t.

Z

a2A

QL⇡B
(x, a)

�
⇡(a|x)� ⇡B(a|x)

�
 e✏(x),

(2)

where V⇡B
(x) = T⇡B ,c[V⇡B

](x) and QV⇡B
(x, a) = c(x, a) +

�
P

x0 P (x0|x, a)V⇡B
(x0) are the value and state-action value

functions (w.r.t. the cost function c), and QL⇡B
(x, a) =

d(x)+e✏(x)+�
P

x0 P (x0|x, a)L⇡B ,e✏(x
0) is the Lyapunov func-

tion. In any iterative policy optimization method, such as

those studied in this paper, the feasible policy ⇡B at each

iteration can be set to the policy computed at the previous

iteration (which is feasible).

In LP (2), there are as many constraints as the number of

states and each constraint involves an integral over the en-

tire action space. When the state space is large, even if

the integral in the constraint has a closed-form (e.g., for
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finite actions), solving (2) becomes numerically intractable.

Chow et al. (Chow et al., 2018) assumed that the number

of actions is finite and focused on value-function-based RL

algorithms, and addressed the large state issue by policy

distillation. Since in this paper, we are interested in prob-

lems with large action spaces, solving (2) will be even more

challenging. To address this issue, in the next section, we

first switch from value-function-based algorithms to PG

algorithms, then propose an optimization problem with Lya-

punov constraints, analogous to (2), that is suitable for the

PG setting, and finally present two methods to solve our

proposed optimization problem efficiently.

3. Safe Lyapunov-based Policy Gradient
We now present our approach to solve CMDPs in a way that

guarantees safety both at convergence and during training.

Similar to Chow et al. (2018), our Lyapunov-based safe

PG algorithms solve a constrained optimization problem

analogous to (2). In particular, our algorithms consist of

two components, a baseline PG algorithm, such as DDPG or

PPO, and an effective method to solve the general Lyapunov-

based policy optimization problem, the analogous to (2), i.e,

✓+ = argmin
✓2Θ

C⇡✓
(x0) (3)

s.t.

Z

a2A

�
⇡✓(a|x)� ⇡B(a|x)

�
QL⇡B

(x, a) da  e✏(x), 8x 2 X .

In the next two sections, we present two approaches to

solve (3) efficiently. We call these approaches 1) ✓-

projection, a constrained optimization method that combines

PG with projecting the policy parameter ✓ onto the set of fea-

sible solutions induced by the Lyapunov constraints, and 2)

a-projection, in which we embed the Lyapunov constraints

into the policy network via a safety layer.

3.1. The ✓-projection Approach
The ✓-projection approach is based on the minorization-

maximization technique in conservative PG (Kakade

& Langford, 2002) and Taylor series expansion, and

can be applied to both on-policy and off-policy algo-

rithms. Following Theorem 4.1 in Kakade & Langford

(2002), we first have the following bound for the cu-

mulative cost: ��DKL(✓, ✓B)  C⇡✓
(x0) � C⇡✓B

(x0) �

Ex⇠µ✓B,x0
,a⇠⇡✓

[QV✓B
(x, a) � V✓B (x)]  �DKL(✓, ✓B),

where µ✓B ,x0 is the �-visiting distribution of ⇡✓B start-

ing at the initial state x0, and � is the weight for the

entropy-based regularization.1 Using this result, we

denote by C0
⇡✓
(x0;⇡✓B ) = C⇡✓B

(x0) + �DKL(✓, ✓B) +

Ex⇠µ✓B,x0
,a⇠⇡✓

[QV✓B
(x, a) � V✓B (x)] the surrogate cumu-

lative cost. It has been shown in Eq. 10 of Schulman et al.

(2015a) that replacing the objective function C⇡✓
(x0) with its

surrogate C0
⇡✓
(x0;⇡✓B ) in solving (3) will still lead to policy

1Theorem 1 in Schulman et al. (2015a) provides a recipe for
computing � such that the minorization-maximization inequality
holds. But in practice, � is treated as a tunable hyper-parameter
for entropy-based regularization.

improvement. In order to effectively compute the improved

policy parameter ✓+, one further approximates the function

C0
⇡✓
(x0;⇡✓B ) with its Taylor series expansion around ✓B . In

particular, the term Ex⇠µ✓B,x0
,a⇠⇡✓

[QV✓B
(x, a)� V✓B (x)] is

approximated up to its first order, and the term DKL(✓, ✓B) is

approximated up to its second order. These altogether allow

us to replace the objective function in (3) with the follow-

ing surrogate: h(✓ � ✓B),r✓Ex⇠µ✓B,x0
,a⇠⇡✓

[QV✓B
(x, a)]i +

�

2
h(✓ � ✓B),r

2
✓DKL(✓, ✓B) |✓=✓B (✓ � ✓B)i.

Similarly, regarding the constraints in (3), we can

use the Taylor series expansion (around ✓B) to ap-

proximate the LHS of the Lyapunov constraints asR
a2A

(⇡✓(a|x) � ⇡B(a|x)) QL(x, a) da ⇡ h(✓ �

✓B),r✓Ea⇠⇡✓
[QL✓B

(x, a)] |✓=✓B i. Using the above approx-

imations, at each iteration, our safe PG algorithm updates

the policy by solving the following constrained optimiza-

tion problem with semi-infinite dimensional Lyapunov con-

straints:

✓+ 2 argmin
✓2Θ

⌦
(✓ � ✓B),r✓Ex⇠µ✓B,x0

,a⇠⇡✓
[QV✓B

(x, a)]
↵

+
�

2

⌦
(✓ � ✓B),r

2
✓DKL(✓, ✓B) |✓=✓B (✓ � ✓B)

↵
,

s.t.
⌦
(✓ � ✓B),r✓Ea⇠⇡✓

[QL✓B
(x, a)] |✓=✓B

↵
 e✏(x), 8x 2 X .

(4)

It can be seen that if the errors resulted from the neural

network parameterizations of QV✓B
and QL✓B

, and the Tay-

lor series expansions are small, then an algorithm that

updates the policy parameter by solving (4) can ensure

safety during training. However, the presence of infinite-

dimensional Lyapunov constraints makes solving (4) nu-

merically intractable. A solution to this is to write the

Lyapunov constraints in (4) (without loss of optimality) as

maxx2X h(✓ � ✓B),r✓Ea⇠⇡✓
[QL✓B

(x, a)] |✓=✓B i � e✏(x)  0.

Since the above max-operator is non-differentiable, this

may still lead to numerical instability in gradient descent al-

gorithms. Similar to the surrogate constraint used in TRPO

(to transform the maxDKL constraint to an average DKL

constraint, see Eq. 12 in Schulman et al. (2015a)), a more

numerically stable way is to approximate the Lyapunov

constraint using the average constraint surrogate

⌦
(✓�✓B),

1

M

MX

i=1

r✓Ea⇠⇡✓
[QL✓B

(xi, a)] |✓=✓B

↵


1

M

MX

i=1

e✏(xi),

(5)

where M is the number of on-policy sample trajectories

of ⇡✓B . In order to effectively compute the gradient of

the Lyapunov value function, consider the special case

when the auxiliary constraint surrogate is chosen as e✏ =

(1��)(d0�D⇡✓B
(x0)) (see Appendix B for justification). Us-

ing the fact that e✏ is ✓-independent, the gradient term in (5)

can be written as
R
a
⇡✓(a|x)r✓ log ⇡✓(a|x)QW✓B

(xi, a)da,

where W✓B (x) = T⇡B ,d[W✓B ](x) and QW✓B
(x, a) = d(x) +

�
P

x0 P (x0|x, a)W✓B (x0) are the constraint value and state-

action value functions, respectively. Since the integral is
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equal to Ea⇠⇡✓
[QW✓B

(xi, a)], the average constraint surro-

gate (5) can be approximated (approximation is because of

the choice of e✏) by the inequality D⇡✓B
(x0) +

1
1��
h(✓ �

✓B),
1
M

PM

i=1r✓Ea⇠⇡✓
[QW✓B

(xi, a)] |✓=✓B i  d0, which is

equivalent to the constraint used in CPO (see Section 6.1

in Achiam et al. (2017)). This shows that CPO (minus the

line search) belongs to the class of our Lyapunov-based PG

algorithms with ✓-projection. We refer to the DDPG and

PPO versions of our ✓-projection safe PG algorithms as

SDDPG and SPPO. Derivation details and the pseudo-code

(Algorithm 4) of these algorithms are given in Appendix C.

3.2. The a-projection Approach
The main characteristic of the Lyapunov approach is to break

down a trajectory-based constraint into a sequence of single-

step state dependent constraints. However, when the state

space is infinite, the feasibility set is characterized by infinite

dimensional constraints, and thus, it is counter-intuitive to

directly enforce these Lyapunov constraints (as opposed

to the original trajectory-based constraint) into the policy

update optimization. To address this, we leverage the idea

of a safety layer from Dalal et al. (2018), that was applied to

simple single-step constraints, and propose a novel approach

to embed the set of Lyapunov constraints into the policy

network. This way, we reformulate the CMDP problem (1)

as an unconstrained optimization problem and optimize its

policy parameter ✓ (of the augmented network) using any

standard unconstrained PG algorithm. At every given state,

the unconstrained action is first computed and then passed

through the safety layer, where a feasible action mapping is

constructed by projecting the unconstrained actions onto the

feasibility set w.r.t. the corresponding Lyapunov constraint.

This constraint projection approach can guarantee safety

during training in the CMDP.

We now describe how the action mapping (to the set of

Lyapunov constraints) works2. Recall from the policy im-

provement problem in (3) that the Lyapunov constraint is

imposed at every state x 2 X . Given a baseline feasible

policy ⇡B = ⇡✓B , for any arbitrary policy parameter ✓ 2 Θ,

we denote by Ξ(⇡B , ✓) = {✓0 2 Θ : QL⇡B
(x,⇡✓0(x)) �

QL⇡B
(x,⇡B(x))  e✏(x), 8x 2 X}, the projection of ✓ onto

the feasibility set induced by the Lyapunov constraints. One

way to construct a feasible policy ⇡Ξ(⇡B ,✓) from a parameter

✓ is to solve the following `2-projection problem:

⇡Ξ(⇡B ,✓)(x) 2 argmin
a2A

1

2
ka� ⇡✓(x)k

2,

s.t. QL⇡B
(x, a)�QL⇡B

(x,⇡B(x))  e✏(x).
(6)

We refer to this operation as the Lyapunov safety layer. In-

tuitively, this projection perturbs the unconstrained action

as little as possible in the Euclidean norm in order to satisfy

2In our experiments, we use stochastic (Gaussian) policies with
parameterized mean and fixed variance. We leave extension of
the a-projection approach to policies in which variance is also
parameterized as future work.

the Lyapunov constraints. Since this projection guarantees

safety, if we have access to a closed form of the projec-

tion, we may insert it into the policy parameterization and

simply solve an unconstrained policy optimization problem,

i.e., ✓+ 2 argmin✓2Θ
C⇡Ξ(⇡B,✓)

(x0), using any standard PG

algorithm.

To simplify the projection (6), we can approximate the LHS

of the Lyapunov constraint with its first-order Taylor series

(w.r.t. action a = ⇡B(x)). Thus, at any given state x 2 X ,

the safety layer solves the following projection problem:

⇡Ξ(⇡B ,✓)(x)2argmin
a2A

1�⌘(x)

2
ka�⇡✓(x)k

2+
⌘(x)

2
ka�⇡B(x)k

2

s.t. (a� ⇡B(x))
>gL⇡B

(x)  e✏(x), (7)

where ⌘(x) 2 [0, 1) is the mixing parameter that controls the

trade-off between projecting on unconstrained policy (for

return maximization) and on baseline policy (for safety), and

gL⇡B
(x) := raQL⇡B

(x, a) |a=⇡B(x) is the action-gradient

of the state-action Lyapunov function.

Similar to the analysis of Section 3.1, if the auxiliary cost e✏
is state-independent, one can readily find gL⇡B

(x) by com-

puting the gradient of the constraint action-value function

raQW✓B
(x, a) |a=⇡B(x). Note that the objective function

in (7) is positive-definite and quadratic, and the constraint

approximation is linear. Therefore, the solution of this (con-

vex) projection problem can be effectively computed by

an in-graph QP-solver, such as OPT-Net (Amos & Kolter,

2017). Combined with the above projection procedure, this

further implies that the CMDP problem can be effectively

solved using an end-to-end PG training pipeline (such as

DDPG or PPO). Furthermore, when the CMDP has a sin-

gle constraint (and thus a single Lyapunov constraint), the

policy ⇡Ξ(⇡B ,✓)(x) has the following analytical solution.

Proposition 1. At any given state x 2 X , the solution to

the optimization problem (7) has the form ⇡Ξ(⇡B ,✓)(x) =

(1�⌘(x))⇡✓(x) + ⌘(x)⇡B(x)� �
⇤(x) · gL⇡B

(x), where

�
⇤(x) =

 �
(1� ⌘(x)) · gL⇡B

(x)>(⇡✓(x)� ⇡B(x))� e✏(x)
�

gL⇡B
(x)>gL⇡B

(x)

!

+

.

The closed-form solution is essentially a linear projection

of the unconstrained action ⇡✓(x) onto the Lyapunov-safe

hyper-plane with slope gL⇡B
(x) and intercept e✏(x) = (1 �

�)(d0 �D⇡B
(x0)). It is possible to extend this closed-form

solution to handle multiple constraints, if there is at most one

constraint active at a time (see Proposition 1 in (Dalal et al.,

2018)).We refer to the DDPG and PPO versions of our a-

projection safe Lyapunov-based PG algorithms as SDDPG

a-projection and SPPO a-projection. Derivation details and

the pseudo-code (Algorithm 5) of these algorithms are given

in Appendix C.
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4. Experiments on MuJoCo Benchmarks
We empirically evaluate3 our Lyapunov-based safe PG algo-

rithms to assess their: (i) performance in terms of cost and

safety during training, and (ii) robustness w.r.t. constraint

violation. We use three simulated robot locomotion con-

tinuous control tasks in the MuJoCo simulator (Todorov

et al., 2012). The notion of safety in these tasks is moti-

vated by physical constraints: (i) HalfCheetah-Safe: this

is a modification of the MuJoCo HalfCheetah problem in

which we impose constraints on the speed of Cheetah in

order to force it to run smoothly. The video shows that

the policy learned by our algorithm results in slower but

much smoother movement of Cheetah compared to the poli-

cies learned by PPO and Lagrangian4; (ii) Point-Circle: the

agent is rewarded for running in a wide circle, but is con-

strained to stay within a safe region defined by |x|  xlim;

(iii) Point-Gather & Ant-Gather: the agent is rewarded for

collecting target objects in a terrain map, while being con-

strained to avoid bombs. The last two tasks were first in-

troduced in Achiam et al. (2017) by adding constraints to

the original MuJoCo tasks: Point and Ant. Details of these

tasks and our experiments are given in Appendix D.

We compare our algorithms with two state-of-the-art uncon-

strained algorithms, DDPG and PPO, and two constrained

methods, Lagrangian with optimized Lagrange multiplier

(Appendix A) and on-policy CPO. We use the CPO algo-

rithm that is based on PPO (unlike the original CPO that is

based on TRPO) and coincides with our SPPO algorithm

derived in Section 4.1. SPPO preserves the essence of CPO

by adding the first-order constraint and relative entropy reg-

ularization to the policy optimization problem. The main

difference between CPO and SPPO is that the latter does not

perform backtracking line-search in learning rate. We com-

pare with SPPO instead of CPO to 1) avoid the additional

computational complexity of line-search in TRPO, while

maintaining the performance of PG using PPO, 2) have a

back-propagatable version of CPO, and 3) have a fair com-

parison with other back-propagatable safe PG algorithms,

such as our DDPG and a-projection based algorithms.

Comparison with baselines: Fig-

ures 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b show that our

Lyapunov-based PG algorithms are stable in learning

and all converge to feasible policies with reasonable

performance. Figures 1c, 1d, 2c, 2d, 3c, 3d, 4c, 4b show

the algorithms in terms of constraint violation during

training. These figures indicate that our algorithms quickly

stabilize the constraint cost below the threshold, while the

3In addition to the results reported in the paper
and appendix, videos of MuJoCo experiments can be
found at https://drive.google.com/file/d/

1pzuzFqWIE710bE2U6DmS59AfRzqK2Kek/view?

usp=sharing.
4We also imposed constraint on the torque at the Cheetah’s

joints in order to force it to run more smoothly and obtained similar
results as imposing constraint on its speed.

(a) HalfCheetah-Safe, Return (b) Point-Gather, Return

(c) HalfCheetah, Constraint (d) Point-Gather, Constraint

Figure 1. DDPG (red), DDPG-Lagrangian (cyan), SDDPG (blue),

SDDPG a-projection (green) on HalfCheetah-Safe and Point-

Gather. SDDPG and SDDPG a-projection perform stable and safe

learning, although the dynamics and cost functions are unknown,

control actions are continuous, and deep function approximations

are used. Unit of x-axis is in thousands of episodes. Shaded

areas represent the 1-SD confidence intervals (over 10 random

seeds). The dashed purple line in the two right figures represents

the constraint limit.

unconstrained DDPG and PPO violate the constraints, and

Lagrangian tends to jiggle around the threshold. Moreover,

it is worth-noting that the Lagrangian method can be

sensitive to the initialization of the Lagrange multiplier

�0. If �0 is too large, it would make policy updates overly

conservative, and if it is too small, then we will have more

constraint violation. Without further knowledge about the

environment, we treat �0 as a hyper-parameter and optimize

it via grid-search. See Appendix D for more details and for

the experimental results of Ant-Gather and Point-Circle.

a-projection vs. ✓-projection: The figures indicate that in

many cases DDPG and PPO with a-projection converge

faster and have lower constraint violation than their ✓-

projection counterparts (i.e., SDDPG and SPPO). This cor-

roborates with the hypothesis that a-projection is less con-

servative during policy updates than ✓-projection (which

is what CPO is based on) and generates smoother gradient

updates during end-to-end training.

DDPG vs. PPO: In most experiments (HalfCheetah, Point-

Gather, and AntGather) the DDPG algorithms tend to have

faster learning than their PPO counterparts, while the PPO

algorithms perform better in terms of constraint satisfaction.

The faster learning behavior is due to the improved data-

efficiency when using off-policy samples in PG, however,

the covariate-shift in off-policy data makes tight constraint

control more challenging.

5. Safe Policy Gradient for Robot Navigation
We now evaluate safe policy optimization algorithms on a

real robot task – a map-less navigation task (Chiang et al.,

2019) – where a noisy differential drive robot with limited
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(a) HalfCheetah-Safe, Return (b) Point-Gather, Return

(c) HalfCheetah, Constraint (d) Point-Gather, Constraint

Figure 2. PPO (red), PPO-Lagrangian (cyan), SPPO (blue), SPPO

a-projection (green) on HalfCheetah-Safe and Point-Gather. SPPO

a-projection perform stable and safe learning, when the dynamics

and cost functions are unknown, control actions are continuous,

and deep function approximation is used.

sensors (Fig. 5a) is required to navigate to a goal outside

of its visual field of view in unseen environments while

avoiding collision. The main goal is to learn a policy that

drives the robot to the goal as efficiently as possible, while

limiting the total impact energy of obstacle collisions, since

the collision can damage the robot and environment.

Here the CMDP is non-discounting and has a fixed horizon.

The agent’s observations consist of the relative goal position,

agent’s velocity, and Lidar measurements (Fig. 5a). The ac-

tions are the linear and angular velocity at the robot’s center

of the mass. The transition probability captures the noisy

robot’s dynamics, whose exact formulation is unknown to

the robot. The robot must navigate to arbitrary goal po-

sitions collision-free in a previously unseen environment,

and without access to the indoor map and any work-space

topology. We reward the agent for reaching the goal, which

translates to an immediate cost that measures the relative

distance to the goal. To measure the total impact energy of

obstacle collisions, we impose an immediate constraint cost

to account for the speed during collision, with a constraint

threshold d0 that characterizes the agent’s maximum toler-

able collision impact energy to any object. Different from

the standard approach, where a constraint on collision speed

is explicitly imposed to the learning problem at each time

step, we emphasize that a CMDP constraint is required here

because it allows the robot to lightly brush off the obstacle

(such as walls) but prevent it from ramming into any objects.

Other use cases of CMDP constraints in robot navigation

include collision avoidance (Pfeiffer et al., 2018) or limiting

total battery usage throughout the task.

Experimental Results: We evaluate the learning algo-

rithms on success rate and constraint control averaged over

100 episodes with random initialization. The task is suc-

cessful if the robot reaches the goal before the constraint

threshold (total energy of collision) is exhausted. While all

(a) Ant-Gather, Return (b) Point-Circle, Return

(c) Ant-Gather, Constraint (d) Point-Circle, Constraint

Figure 3. DDPG (red), DDPG-Lagrangian (cyan), SDDPG (blue),

SDDPG a-projection (green) on Ant-Gather and Point-Circle.

Ours SDDPG and SDDPG a-projection algorithms perform sta-

ble and safe learning, although the dynamics and cost functions

are unknown, control actions are continuous, and deep function

approximation is used. Unit of x-axis is in thousands of episodes.

Shaded areas represent the 1-SD confidence intervals (over 10
random seeds). The dashed purple line in the two right figures

represents the constraint limit.

methods converge to policies with reasonable performance,

Figure 6a and 6b show that the Lyapunov-based PG algo-

rithms have higher success rates, due to their robust abilities

of controlling the total constraint, as well minimizing the

distance to goal. Although the unconstrained method often

yields a lower distance to goal, it violates the constraint

more frequently leading to a lower success rate. Lagrangian

approach is less robust to initialization of parameters, and

therefore it generally has lower success rate and higher vari-

ability than the Lyapunov-based methods. Unfortunately

due to function approximation error and stochasticity of the

problem, all the algorithms converged pre-maturely with

constraints above the threshold, possibly due to the overly

conservative constraint threshold (d0 = 100). Inspection

of trajectories shows that the Lagrangian method tends to

zigzag and has more collisions, while the SDDPG chooses

a safer path to reach the goal (Figures 7a and 7b).

Next, we evaluate how well the methods generalize to (i)

longer trajectories, and (ii) new environments. The tasks are

trained in a 22 by 18 meters environment (Fig. 9) with goals

placed within 5 to 10 meters from the robot initial state. In a

much larger evaluation environment (60 by 47 meters) with

goals placed up to 15 meters away from the goal, the success

rate of all methods degrades as the goals are further away

(Fig. 8a). The safety methods (a-projection – SL-DDPG,

and ✓-projection – SG-DDPG) outperform unconstrained

and Lagrangian (DDPG and LA-DDPG), while retaining

lower constraints even with a more difficult task (Fig. 8b).

Finally, we deployed the SL-DDPG policy onto the real

Fetch robot (Wise et al., 2016) in an everyday office envi-
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(a) Ant-Gather, Return (b) Point-Circle, Return

(c) Ant-Gather, Constraint (d) Point-Circle, Constraint

Figure 4. PPO (red), PPO-Lagrangian (cyan), SPPO (blue), SPPO

a-projection (green) on Ant-Gather and Point-Circle. SPPO a-

projection performs stable and safe learning, when the dynamics

and cost functions are unknown, control actions are continuous,

and deep function approximation is used.

ronment. 5 Fetch robot weights 150 kilograms, and reaches

maximum speed of 7 km/h making the collision force a

safety paramount. Figure 7c shows the top down view of

the robot log. Robot travelled, through narrow corridors and

around people walking through the office, for a total of 500
meters to complete five repetitions of 12 tasks, each averag-

ing about 10 meters to the goal. The robot robustly avoids

both static and dynamic (humans) obstacles coming into its

path. We observed additional ”wobbling” effects, that was

not present in simulation. This is likely due to the wheel

slippage at the floor that the policy was not trained for. In

several occasions when the robot could not find a clear path,

the policy instructed the robot to stay put instead of narrowly

passing by the obstacle. This is precisely the safety behavior

we want to achieve with the Lyapunov-based algorithms.

6. Conclusions and Future Work
We used the notion of Lyapunov functions and developed a

class of safe RL algorithms for continuous action problems.

Each algorithm in this class is a combination of one of our

two proposed projections: ✓-projection and a-projection,

with any on-policy (e.g., PPO) or off-policy (e.g., DDPG)

PG algorithm. We evaluated our algorithms on four high-

dimensional simulated robot locomotion MuJoCo tasks and

compared them with several baselines. To demonstrate

the effectiveness of our algorithms in solving real-world

problems, we also applied them to an indoor robot naviga-

tion problem, to ensure that the robot’s path is optimal and

collision-free. Our results indicate that our algorithms 1)

achieve safe learning, 2) have better data-efficiency, 3) can

be more naturally integrated within the standard end-to-end

5Videos of Fetch robot navigation can be found in the
following link: https://drive.google.com/file/d/

1pzuzFqWIE710bE2U6DmS59AfRzqK2Kek/view?usp=

sharing

(a) Noisy Lidar observation in a corridor

22x18 m
Velocity and 
orientation 
@ 5 Hz

Reward: Distance to reach goal
Constraint: Total energy on collision Robot Agent                Training Environment: 22 x 18m

Observations: Noisy 1D lidar + Goal + Robot orientation

 Safe-DDPG

Parameters, θ Policy, 
𝛑θ(o, a) = P(a|o)

ActionActor

Critic

(b) SDDPG for point to point task

Figure 5. Robot navigation task details.

(a) Navigation, Success % (b) Navigation, Constraint

Figure 6. DDPG (red), DDPG-Lagrangian (cyan), SDDPG (blue),

DDPG a-projection (green) on Robot Navigation. Ours (SDDPG,

SDDPG a-projection) balance between reward and constraint

learning. Unit of x-axis is in thousands of steps. The shaded

areas represent the 1-SD confidence intervals (over 50 runs). The

dashed purple line represents the constraint limit.

(a) Lagrangian (b) SDDPG
a-projection

(c) SDDPG
a-projection

Figure 7. Navigation routes of two learned policies in the simulator

(a) and (b). On-robot experiment (c).

(a) Navigation, Success % (b) Navigation, Constraint

Figure 8. Generalization over success rate (a) and constraint satis-

faction (b) on a different environment.

differentiable PG training pipeline, and 4) are scalable to

tackle real-world problems. Our work is a step forward in

deploying RL to real-world problems in which safety guar-

antees are of paramount importance. Future work includes

1) extending a-projection to stochastic policies and 2) ex-

tensions of the Lyapunov approach to model-based RL and

use it for safe exploration.
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A. The Lagrangian Approach to Safe RL

We first state a number of mild technical and notational assumptions that we make throughout this section.

Assumption 1 (Differentiability). For any state-action pair (x, a), ⇡✓(a|x) is continuously differentiable in ✓ and r✓⇡✓(a|x)
is a Lipschitz function in ✓ for every x 2 X and a 2 A.

Assumption 2 (Strict Feasibility). There exists a transient policy ⇡✓(·|x) such that D⇡✓
(x0) < d0 in the constrained

problem.

Assumption 3 (Step Sizes). The step size schedules {↵3,k}, {↵2,k}, and {↵1,k} satisfy

X

k

↵1,k =
X

k

↵2,k =
X

k

↵3,k = 1, (8)

X

k

↵2
1,k,

X

k

↵2
2,k,

X

k

↵2
3,k < 1, (9)

↵1,k = o
�
↵2,k

�
, ↵2,k = o

�
↵3,k

�
. (10)

Assumption 1 imposes smoothness on the optimal policy. Assumption 2 guarantees the existence of a local saddle point in

the Lagrangian analysis. Assumption 3 refers to step sizes corresponding to policy updates and indicates that the update

corresponding to {↵3,k} is on the fastest time-scale, the updates corresponding to {↵2,k} is on the intermediate time-scale,

and the update corresponding to {↵1,k} is on the slowest time-scale. As this assumption refers to user-defined parameters,

they can always be chosen to be satisfied.

To solve the CMDP, we employ the Lagrangian relaxation procedure (Bertsekas, 1999) to convert it to the following

unconstrained problem:

max
��0

min
✓

✓
L(✓,�)

4
= C⇡✓

(x0) + �
�
D⇡✓

(x0)� d0
�◆

, (11)

where � is the Lagrange multiplier. Notice that L(✓,�) is a linear function in �. Then, there exists a local saddle point

(✓⇤,�⇤) for the minimax optimization problem max��0 min✓ L(✓,�), such that for some r > 0, 8✓ 2 R
 \ B✓⇤(r), and

8� 2 [0,�max], we have

L(✓,�⇤) � L(✓⇤,�⇤) � L(✓⇤,�), (12)

where B✓⇤(r) is a hyper-dimensional ball centered at ✓⇤ with radius r > 0.

In the following, we present a policy gradient (PG) algorithm and an actor-critic (AC) algorithm. While the PG algorithm

updates its parameters after observing several trajectories, the AC algorithm is incremental and updates its parameters at

each time-step.

We now present a policy gradient algorithm to solve the optimization problem (11). The idea of the algorithm is to descend

in ✓ and ascend in � using the gradients of L(✓,�) w.r.t. ✓ and �, i.e.,

r✓L(✓,�) = r✓

�
C⇡✓

(x0) + �D⇡✓
(x0)

�
, r�L(✓,�) = D⇡✓

(x0)� d0. (13)

The unit of observation in this algorithm is a system trajectory generated by following the current policy ⇡✓k . At each iteration,

the algorithm generates N trajectories by following the current policy ⇡✓k , uses them to estimate the gradients in (13),

and then uses these estimates to update the parameters ✓,�. Let ⇠ = {x0, a0, c0, x1, a1, c1, . . . , xT�1, aT�1, cT�1, xT }
be a trajectory generated by following the policy ✓, where xT = xTar is the target state of the system and T is the

(random) stopping time. The cost, constraint cost, and probability of ⇠ are defined as C(⇠) =
PT�1

k=0 �
kc(xk, ak), D(⇠) =PT�1

k=0 �
kd(xk), and P✓(⇠) = P0(x0)

QT�1
k=0 ⇡✓(ak|xk)P (xk+1|xk, ak), respectively. Based on the definition of P✓(⇠), one

obtains r✓ logP✓(⇠) =
PT�1

k=0 r✓ log ⇡✓(ak|xk).

Algorithm 1 contains the pseudo-code of our proposed PG algorithm. What appears inside the parentheses on the right-hand-

side of the update equations are the estimates of the gradients of L(✓,�) w.r.t. ✓,� (estimates of the expressions in (13)).

Gradient estimates of the Lagrangian function are given by

r✓L(✓,�) =
X

⇠

P✓(⇠) ·r✓ logP✓(⇠)
�
C⇡✓

(⇠) + �D⇡✓
(⇠)

�
, r�L(✓,�) = �d0 +

X

⇠

P✓(⇠) · D(⇠),
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Algorithm 1 Lagrangian Trajectory-based Policy Gradient Algorithm

Input: parameterized policy ⇡(·|·; ✓)
Initialization: policy parameter ✓ = ✓0, and the Lagrangian parameter � = �0
for i = 0, 1, 2, . . . do

for j = 1, 2, . . . do

Generate N trajectories {⇠j,i}
N
j=1 by starting at x0 and following the policy ✓i.

end for

✓ Update: ✓i+1 = ✓i � ↵2,i
1

N

NX

j=1

r✓ logP✓(⇠j,i)|✓=✓i

�
C(⇠j,i) + �iD(⇠j,i)

�

� Update: �i+1 = ΓΛ


�i + ↵1,i

✓
� d0 +

1

N

NX

j=1

D(⇠j,i)

◆�

end for

where the likelihood gradient is

r✓ logP✓(⇠) =r✓

8
<
:

T�1X

k=0

logP (xk+1|xk, ak) + log ⇡✓(ak|xk) + log 1{x0 = x0}

9
=
;

=

T�1X

k=0

r✓ log ⇡✓(ak|xk) =

T�1X

k=0

1

⇡✓(ak|xk)
r✓⇡✓(ak|xk).

In Algorithm 1, ΓΛ is a projection operator to [0,�max], i.e., ΓΛ(�) = argmin
�̂2[0,�max]

k� � �̂k22, which ensures the

convergence of the algorithm. Recall from Assumption 3 that the step-size schedules satisfy the standard conditions for

stochastic approximation algorithms, and ensure that the policy parameter ✓ update is on the fast time-scale {↵2,i}, and the

Lagrange multiplier � update is on the slow time-scale {↵1,i}. This results in a two time-scale stochastic approximation

algorithm that has been shown to converge to a (local) saddle point of the objective function L(✓,�). This convergence

proof makes use of standard results in stochastic approximation theory, because in the limit when the step-size is sufficiently

small, analyzing the convergence of PG is equivalent to analyzing the stability of an ordinary differential equation (ODE)

w.r.t. its equilibrium point.

In PG, the unit of observation is a system trajectory. This may result in high variance for the gradient estimates, especially

when the length of the trajectories is long. To address this issue, we propose two actor-critic algorithms that use value

function approximation in the gradient estimates and update the parameters incrementally (after each state-action transition).

We present two actor-critic algorithms for optimizing (11). These algorithms are still based on the above gradient estimates.

Algorithm 2 contains the pseudo-code of these algorithms. The projection operator ΓΛ is necessary to ensure the convergence

of the algorithms. Recall from Assumption 3 that the step-size schedules satisfy the standard conditions for stochastic

approximation algorithms, and ensure that the critic update is on the fastest time-scale
�
↵3,k

 
, the policy update

�
↵2,k

 
is

on the intermediate timescale, and finally the Lagrange multiplier update is on the slowest time-scale
�
↵1,k

 
. This results in

three time-scale stochastic approximation algorithms.

Using the PG theorem from (Sutton et al., 2000), one can show that

r✓L(✓,�) = r✓V✓(x0) =
1

1� �

X

x,a

µ✓(x, a|x0) r log ⇡✓(a|x) Q✓(x, a), (20)

where µ✓ is the discounted visiting distribution and Q✓ is the action-value function of policy ✓. We can show that
1

1��
r log ⇡✓(ak|xk) · �k is an unbiased estimate of r✓L(✓,�), where

�k = c�(xk, ak) + �V̂✓(xk+1)� V̂✓(xk)

is the temporal-difference (TD) error, and V̂✓ is an estimator of the value function V✓.

Traditionally, for convergence guarantees in actor-critic algorithms, the critic uses linear approximation for the value

function V✓(x) ⇡ v> (x) = V̂✓,v(x), where the feature vector  (·) belongs to a low-dimensional space R
2 . The linear
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Algorithm 2 Lagrangian Actor-Critic Algorithm

Input: Parameterized policy ⇡(·|·; ✓) and value function feature vector �(·)
Initialization: policy parameters ✓ = ✓0; Lagrangian parameter � = �0; value function weight v = v0
while TRUE do

for k = 0, 1, 2, . . . do
Sample ak ⇠ ⇡(·|xk; ✓k); c�k

(xk, ak) = c(xk, ak) + �kd(xk); xk+1 ⇠ P (·|xk, ak);
// AC Algorithm:

TD Error: �k(vk) = c�k
(xk, ak) + �V̂�k

(xk+1)� V̂�k
(xk) (14)

Critic Update: vk+1 = vk + ⇣3(k)�k(vk) (xk) (15)

✓ Update: ✓k+1 = ✓k � ⇣2(k)r✓ log ⇡✓(ak|xk) · �k(vk)/1� � (16)

� Update: �k+1 = ΓΛ

⇣
�k + ⇣1(k)

�
� d0 +

1

N

NX

j=1

D(⇠j,i)
�⌘

(17)

// NAC Algorithm:

Critic Update: wk+1 =
⇣
I � ⇣3(k)r✓ log ⇡✓(ak|xk)|✓=✓k

�
r✓ log ⇡✓(ak|xk)|✓=✓k

�>⌘
wk

+ ⇣3(k)�k(vk)r✓ log ⇡✓(ak|xk)|✓=✓k (18)

✓ Update: ✓k+1 = ✓k � ⇣2(k)wk/1� � (19)

Other Updates: Follow from Eqs. 14, 15, and 17.

end for
end while

approximation V̂✓,v belongs to a low-dimensional subspace SV =
�
Ψv|v 2 R

2
 

, where Ψ is a short-hand notation for the

set of features, i.e., Ψ(x) =  >(x). Recently with the advances in deep neural networks, it has become increasingly popular

to model the critic with a deep neural network, based on the objective function of minimizing the MSE of Bellman residual

w.r.t. V✓ or Q✓ (Mnih et al., 2013).
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B. The Lyapunov Approach to Solve CMDPs

In this section, we revisit the Lyapunov approach to solving CMDPs that was proposed by (Chow et al., 2018) and report

the mathematical results that are important in developing our safe policy optimization algorithms. To start, without loss of

generality, we assume that we have access to a baseline feasible policy of (1), ⇡B; i.e., ⇡B satisfies D⇡B
(x0)  d0. We

define a set of Lyapunov functions w.r.t. initial state x0 2 X and constraint threshold d0 as

L⇡B
(x0, d0)={L : X !R�0 : T⇡B ,d[L](x)L(x), 8x 2 X ; L(x0)  d0},

and call the constraints in this feasibility set the Lyapunov constraints. For any arbitrary Lyapunov function L 2 L⇡B
(x0, d0),

we denote by

FL(x) =
�
⇡(·|x) 2 ∆ : T⇡,d[L](x) L(x)

 
,

the set of L-induced Markov stationary policies. Since T⇡,d is a contraction mapping (Bertsekas, 2005), any L-induced

policy ⇡ has the property D⇡(x) = limk!1 T k
⇡,d[L](x)  L(x), 8x 2 X . Together with the property that L(x0)  d0,

they imply that any L-induced policy is a feasible policy of (1). However, in general, the set FL(x) does not necessarily

contain an optimal policy of (1), and thus, it is necessary to design a Lyapunov function (w.r.t. a baseline policy ⇡B) that

provides this guarantee. In other words, the main goal is to construct a Lyapunov function L 2 L⇡B
(x0, d0) such that

L(x) � T⇡⇤,d[L](x), L(x0)  d0. (21)

Chow et al. (Chow et al., 2018) show in their Theorem 1 that 1) without loss of optimality, the Lyapunov function can be

expressed as

L✏(x) := E

2
4

1X

t=0

�t(d(xt) + ✏(xt)) | ⇡B , x

3
5 ,

where ✏(x) � 0 is some auxiliary constraint cost uniformly upper-bounded by

✏⇤(x) := 2DmaxDTV (⇡
⇤||⇡B)(x)/(1� �),

and 2) if the baseline policy ⇡B satisfies the condition

max
x2X

✏⇤(x)  Dmax ·min

(
(1� �)

d0 �D⇡B
(x0)

Dmax
,
Dmax � (1� �)D

Dmax + (1� �)D

)
,

where D = maxx2X max⇡ D⇡(x) is the maximum constraint cost, then the Lyapunov function candidate L✏⇤ also satisfies

the properties of (21), and thus, its induced feasible policy set FL✏⇤
contains an optimal policy. Furthermore, suppose that

the distance between the baseline and optimal policies can be estimated efficiently. Using the set of L✏⇤-induced feasible

policies and noting that the safe Bellman operator T [V ](x) = min⇡2FL
✏⇤

(x) T⇡,c[V ](x) is monotonic and contractive,

one can show that T [V ](x) = V (x), 8x 2 X , has a unique fixed point V ⇤, such that V ⇤(x0) is a solution of (1) and

an optimal policy can be constructed via greedification, i.e., ⇡⇤(·|x) 2 argmin⇡2FL
✏⇤

(x) T⇡,c[V
⇤](x). This shows that

under the above assumption, (1) can be solved using standard dynamic programming (DP) algorithms. While this result

connects CMDP with Bellman’s principle of optimality, verifying whether ⇡B satisfies this assumption is challenging

when a good estimate of DTV (⇡
⇤||⇡B) is not available. To address this issue, Chow et al. (Chow et al., 2018) propose to

approximate ✏⇤ with an auxiliary constraint cost e✏, which is the largest auxiliary cost satisfying the Lyapunov condition

Le✏(x) � T⇡B ,d[Le✏](x), 8x 2 X , and the safety condition Le✏(x0)  d0. The intuition here is that the larger e✏, the larger

the set of policies FLe✏
. Thus, by choosing the largest such auxiliary cost, we hope to have a better chance of including the

optimal policy ⇡⇤ in the set of feasible policies. Specifically, e✏ is computed by solving the following linear program (LP):

e✏ 2 argmax
✏:X!R�0

⇢X

x2X

✏(x) : d0 �D⇡B
(x0) � 1(x0)

>
⇣
I � �

�
P
�
x0|x,⇡B(x)

� 
x,x02X

⌘�1

✏

�
, (22)

where 1(x0) represents a one-hot vector in which the non-zero element is located at x = x0. When ⇡B is a feasible policy,

this problem has a non-empty solution. Furthermore, according to the derivations in (Chow et al., 2018), the maximizer

of (22) has the following form:

e✏(x) =
�
d0 �D⇡B

(x0)
�
· 1{x = x}

E
⇥P1

t=0 �
t1{xt = x} | x0,⇡B

⇤ � 0,
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Algorithm 3 Safe Policy Iteration (SPI)

Input: Initial feasible policy ⇡0;
for k = 0, 1, 2, . . . do

Step 0: With ⇡b = ⇡k, evaluate the Lyapunov function L✏k , where ✏k is a solution of (22)
Step 1: Evaluate the cost value function V⇡k

(x) = C⇡k
(x); Then update the policy by solving the following problem: ⇡k+1(·|x) 2

argmin⇡2FL✏k
(x) T⇡,c[V⇡k

](x), 8x 2 X

end for
Return Final policy ⇡k⇤

where x 2 argminx2X E
⇥P1

t=0 �
t
1{xt = x} | x0,⇡B

⇤
. They also show that by further restricting e✏(x) to be a constant

function, the maximizer is given by

e✏(x) = (1� �) · (d0 �D⇡B
(x0)), 8x 2 X .

Using the construction of the Lyapunov function Le✏, (Chow et al., 2018) propose the safe policy iteration (SPI) algorithm (see

Algorithm 3) in which the Lyapunov function is updated via bootstrapping, i.e., at each iteration Le✏ is recomputed using (22)

w.r.t. the current baseline policy. At each iteration k, this algorithm has the following properties: 1) Consistent Feasibility,

i.e., if the current policy ⇡k is feasible, then ⇡k+1 is also feasible; 2) Monotonic Policy Improvement, i.e., C⇡k+1
(x)  C⇡k

(x)
for any x 2 X ; and 3) Asymptotic Convergence. Despite all these nice properties, SPI is still a value-function-based algorithm,

and thus, it is not straightforward to use it in continuous action problems. The main reason is that the greedification step

becomes an optimization problem over the continuous set of actions that is not necessarily easy to solve. In Section 3, we

show how we use SPI and its nice properties to develop safe policy optimization algorithms that can handle continuous

action problems. Our algorithms can be thought as combinations of DDPG or PPO (or any other on-policy or off-policy

policy optimization algorithm) with a SPI-inspired critic that evaluates the policy and computes its corresponding Lyapunov

function. The computed Lyapunov function is then used to guarantee safe policy update, i.e., the new policy is selected from

a restricted set of safe policies defined by the Lyapunov function of the current policy.
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C. Technical Details of the Safe Policy Gradient Algorithms

In this section, we first provide the details of the derivation of the ✓-projection and a-projection procedures described in

Section 3, and then provide the pseudo-codes of our safe PG algorithms.

C.1. Derivation of ✓-projection in Lyapunov-based Safe PG

To derive our ✓-projection algorithms, we first consider the original Lyapunov constraint in (3) that is given by

Z

a2A

�
⇡✓(a|x)� ⇡B(a|x)

�
QL⇡B

(x, a) da  e✏(x), 8x 2 X ,

where the baseline policy is parameterized as ⇡B = ⇡✓B . Using the first-order Taylor series expansion w.r.t. ✓ = ✓B , at any

arbitrary x 2 X , the term Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
=
R
a2A

⇡✓(a|x) QL⇡B
(x, a) da on left-hand-side of the above inequality

can be written as

Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
= Ea⇠⇡✓B

⇥
QL✓B

(x, a)
⇤
+
D
(✓ � ✓B),r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
|✓=✓B

E
+O(k✓ � ✓Bk2),

which implies that

Z

a2A

�
⇡✓(a|x)� ⇡B(a|x)

�
QL⇡B

(x, a) da =
D
(✓ � ✓B),r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
|✓=✓B

E
+O(k✓ � ✓Bk2).

Note that the objective function of the constrained minimization problem in (4) contains a regularization term:
�
2

D
(✓ � ✓B),r2

✓DKL(✓, ✓B) |✓=✓B (✓ � ✓B)
E

that controls the distance k✓ � ✓Bk to be small. For most practi-

cal purposes, here one can assume the higher-order term O(k✓ � ✓Bk2) to be much smaller than the first-order termD
(✓ � ✓B),r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
|✓=✓B

E
. Therefore, one can approximate the original Lyapunov constraint in (3) with

the following constraint: D
(✓ � ✓B),r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
|✓=✓B

E
 e✏(x), 8x 2 X .

Furthermore, following the same line of arguments used in TRPO (to transform the maxDKL constraint to an average DKL

constraint, see Eq. 12 in (Schulman et al., 2015a)), a more numerically stable way is to approximate the Lyapunov constraint

using the average constraint surrogate, i.e.,

D
(✓ � ✓B),

1

M

MX

i=1

r✓Ea⇠⇡✓

⇥
QL✓B

(xi, a)
⇤
|✓=✓B

E
 1

M

MX

i=1

e✏(xi).

Now consider the special case when auxiliary constraint surrogate is chosen as a constant, i.e., e✏ = (1� �)
�
d0�D⇡✓B

(x0)
�
.

The justification of such choice comes from analyzing the solution of optimization problem (22). Then, one can write the

Lyapunov action-value function QL✓B
(x, a) as

QL✓B
(x, a) = E

2
4

1X

t=0

�td(xt)|⇡B , x0 = x, a0 = a

3
5+

e✏
1� �

.

Since the second term is independent of ✓, for any state x 2 X , the gradient term r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤

can be simplified

as

r✓Ea⇠⇡✓

⇥
QL✓B

(x, a)
⇤
=

Z

a

⇡✓(a|x)r✓ log ⇡✓(a|x)QW✓B
(x, a)da = r✓Ea⇠⇡✓

⇥
QW✓B

(x, a)
⇤
,

where W✓B (x) = T⇡B ,d[W✓B ](x) and QW✓B
(x, a) = d(x) + �

P
x0 P (x0|x, a)W✓B (x

0) are the constraint value function

and constraint state-action value function, respectively. The second equality is based on the standard log-likelihood gradient

property in PG algorithms (Sutton et al., 2000).

Collectively, one can then re-write the Lyapunov average constraint surrogate as

D
(✓ � ✓B),

1

M

MX

i=1

r✓Ea⇠⇡✓

⇥
QW✓B

(xi, a)
⇤
|✓=✓B

E
e✏,
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where e✏ is the auxiliary constraint cost defined specifically by the Lyapunov-based approach, to guarantee constraint

satisfaction. By expanding the auxiliary constraint cost e✏ on the right-hand-side, the above constraint is equivalent to the

constraint used in CPO, i.e.,

D⇡✓B
(x0) +

1

1� �
h(✓ � ✓B),

1

M

MX

i=1

r✓Ea⇠⇡✓

⇥
QW✓B

(xi, a)
⇤
|✓=✓B id0.

C.2. Derivations of a-projection in Lyapunov-based Safe PG

For any arbitrary state x 2 X , consider the following constraint in the safety-layer projection problem given in (6):

QL⇡B
(x, a)�QL⇡B

(x,⇡B(x))  e✏(x).

Using first-order Taylor series expansion of the Lyapunov state-action value function QL⇡B
(x, a) w.r.t. action a = ⇡B(x),

the Lyapunov value function QL⇡B
(x, a) can be re-written as

QL⇡B
(x, a) = QL⇡B

(x,⇡B(x)) + (a� ⇡B(x))
>gL⇡B

(x) +O(ka� ⇡B(x)k2).

Note that the objective function of the action-projection problem in (7) contains a regularization term
⌘(x)
2 ka� ⇡B(x)k2

that controls the distance ka� ⇡B(x)k to be small. For most practical purposes, here one can assume the higher-order term

O(ka � ⇡B(x)k2) to be much smaller than the first-order term (a � ⇡B(x))
>gL⇡B

(x). Therefore, one can approximate

the original action-based Lyapunov constraint in (6) with the constraint
�
a� ⇡B(x)

�>
gL⇡B

(x)e✏(x) that is the constraint

in (7). Similar to the analysis of the ✓-projection approach, if the auxiliary cost e✏ is state-independent, the action-gradient

term gL⇡B
(x) is equal to the gradient of the constraint action-value function raQW✓B

(x, a) |a=⇡B(x), where QW✓B
is the

state-action constraint value function w.r.t. the baseline policy. The rest of the proof follows the results from Proposition 1

in (Dalal et al., 2018). This completes the derivations of the a-projection approach.

C.3. Pseudo-codes of Our Safe PG Algorithms

Algorithms 4 and 5 contain the pseudo-code of our safe Lyapunov-based policy gradient (PG) algorithms with ✓-projection

and a-projection, respectively.

C.4. Practical Implementation of Our Safe PG Algorithms

Due to function approximation errors, even with the Lyapunov constraints, in practice a safe PG algorithm may take a bad

step and produce an infeasible policy update and cannot automatically recover from such a bad step. To address this issue,

similar to (Achiam et al., 2017), we propose the following safeguard policy update rule to decrease the constraint cost:

✓k+1 = ✓k � ↵sg,kr✓D⇡✓
(x0)✓=✓k , where ↵sg,k is the learning rate for the safeguard update. If ↵sg,k >> ↵k (learning rate

of PG), then with the safeguard update, ✓ will quickly recover from the bad step, however, it might be overly conservative.

This approach is principled because as soon as ⇡✓k is unsafe/infeasible w.r.t. the CMDP constraints, the algorithm uses a

limiting search direction. One can directly extend this safeguard update to the multiple-constraint scenario by doing gradient

descent over the constraint that has the worst violation.

Another remedy to reduce the chance of constraint violation is to do constraint tightening on the constraint cost threshold.

Specifically, instead of d0, one may pose the constraint based on d0 · (1� �), where � 2 (0, 1) is the factor of safety for

providing additional buffer to constraint violation. Additional techniques in cost-shaping have been proposed in (Achiam

et al., 2017) to smooth out the sparse constraint costs. While these techniques can further ensure safety, construction of the

cost-shaping term requires knowledge of the environment, which makes the safe PG algorithms more complicated.
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Algorithm 4 Lyapunov-based Safe PG with ✓-projection (SDDPG and SPPO)

Input: Initial feasible policy ⇡0;
for k = 0, 1, 2, . . . do

Step 0: With ⇡b = ⇡✓k , generate N trajectories {⇠j,k}
N
j=1 of T steps by starting at x0 and following the policy ✓k

Step 1: Using the trajectories {⇠j,k}
N
j=1, estimate the critic Q✓(x, a) and the constraint critic QD,✓(x, a);

• For DDPG, these functions are trained by minimizing the MSE of Bellman residual, and one can also use off-policy samples
from replay buffer (Schaul et al., 2015);

• For PPO these functions can be estimated by the generalized advantage function technique from (Schulman et al., 2015b)

Step 2: Based on the closed form solution of a QP problem with an LP constraint in Section 10.2 of (Achiam et al., 2017), calculate
�⇤
k with the following formula:

�
⇤
k =

0
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�
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�k is the adaptive penalty weight of the DKL(⇡||⇡✓k ) regularizer, and H(✓k) = r
2
✓DKL(⇡||⇡✓) |✓=✓k is the Hessian of this term

Step 3: Update the policy parameter by following the objective gradient;

• For DDPG

✓k+1  ✓k � ↵k ·
1

N · T

X
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• For PPO,
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�
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Step 4: At any given state x 2 X , compute the feasible action probability a⇤(x) via action projection in the safety layer, that takes
inputsraQL(x, a) = raQD,✓k (x, a) and ✏(x) = (1� �)(d0 �QD,✓k (x0,⇡k(x0))), for any a 2 A.

end for
Return Final policy ⇡✓k⇤ ,

D. Experimental Setup in MuJoCo Tasks

Our experiments are performed on safety-augmented versions of standard MuJoCo domains (Todorov et al., 2012).

HalfCheetah-Safe. The agent is a the standard HalfCheetah (a 2-legged simulated robot rewarded for running at high

speed) augmented with safety constraints. We choose the safety constraints to be defined on the speed limit. We constrain

the speed to be less than 1, i.e., constraint cost is thus 1[|v| > 1]. Episodes are of length 200. The constraint threshold is 50.

Point Circle. This environment is taken from (Achiam et al., 2017). The agent is a point mass (controlled via a pivot). The

agent is initialized at (0, 0) and rewarded for moving counter-clockwise along a circle of radius 15 according to the reward
�dx·y+dy·x

1+|
p

x2+y2�15|
, for position x, y and velocity dx, dy. The safety constraint is defined as the agent staying in a position

satisfying |x|  2.5. The constraint cost is thus 1[|x| > 2.5]. Episodes are of length 65. The constraint threshold is 7.
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Algorithm 5 Lyapunov-based Safe PG (SDDPG and SPPO) with a-projection

Input: Initial feasible policy ⇡0;
for k = 0, 1, 2, . . . do

Step 0: With ⇡b = ⇡✓k , generate N trajectories {⇠j,k}
N
j=1 of T steps by starting at x0 and following the policy ✓k

Step 1: Using the trajectories {⇠j,k}
N
j=1, estimate the critic Q✓(x, a) and the constraint critic QD,✓(x, a);

• For DDPG, these functions are trained by minimizing the MSE of Bellman residual, and one can also use off-policy samples
from replay buffer (Schaul et al., 2015);

• For PPO these functions can be estimated by the generalized advantage function technique from (Schulman et al., 2015b)

Step 2: Update the policy parameter by following the objective gradient;

• For DDPG

✓k+1  ✓k � ↵k ·
1

N · T

X

x2⇠j,k,1jN

r✓⇡✓(x) |✓=✓k ·raQ✓k (x, a) |a=⇡✓k
(x);

• For PPO,
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H(✓k)

��1
X
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�
t ·r✓ log ⇡✓(aj,t|xj,t) |✓=✓k ·Q✓k (xj,t,aj,t)

where �k is the adaptive penalty weight of the DKL(⇡||⇡✓k ) regularizer, and H(✓k) = r
2
✓DKL(⇡||⇡✓) |✓=✓k is the Hessian of

this term

Step 3: At any given state x 2 X , compute the feasible action probability a⇤(x) via action projection in the safety layer, that takes
inputsraQL(x, a) = raQD,✓k (x, a) and ✏(x) = (1� �)(d0 �QD,✓k (x0,⇡k(x0))), for any a 2 A.

end for
Return Final policy ⇡✓k⇤ ,

Point Gather. This environment is taken from (Achiam et al., 2017). The agent is a point mass (controlled via a pivot) and

the environment includes randomly positioned apples (2 apples) and bombs (8 bombs). The agent given a reward of 10 for

each apple collected and a penalty of �10 for each bomb. The safety constraint is defined as the number of bombs collected

during the episode. Episodes are of length 15. The constraint threshold is 4 for DDPG and 2 for PPO.

Ant Gather. This environment is the same as Point Circle, only with an Ant agent (quadrapedal simulated robot). Each

episode is initialized with 8 apples and 8 bombs. The agent receives a reward of 10 for each apple collected, a penalty of

�20 for each bomb collected, and a penalty of �20 if the episode terminates prematurely (because the Ant falls). Episodes

are of length at most 500. The constraint threshold is 10 and 5 for DDPG and PPO, respectively.

Figure 9 shows the visualization of the above domains used in our experiments.

HalfCheetah-Safe Point-Circle Ant-Gather Point-Gather

Figure 9. The Robot Locomotion Control Tasks

In these experiments, there are three different agents: (1) a point-mass (X ✓ R
9, A ✓ R

2); an ant quadruped robot (X ✓ R
32,

A ✓ R
8); and (3) a half-cheetah (X ✓ R

18, A ✓ R
6). For all experiments, we use two neural networks with two hidden

layers of size (100, 50) and ReLU activation to model the mean and log-variance of the Gaussian actor policy, and two
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neural networks with two hidden layers of size (200, 50) and tanh activation to model the critic and constraint critic. To

build a low variance sample gradient estimate, we use GAE-� (Schulman et al., 2015b) to estimate the advantage and

constraint advantage functions, with a hyper-parameter � 2 (0, 1) optimized by grid-search.

On top of GAE-�, in all experiments and for each algorithm (SDDPG, SPPO, SDDPG a-projection, SPPO a-projection,

CPO, Lagrangian, and the unconstrained PG counterparts), we systematically explored different parameter settings by doing

grid-search over the following factors: (i) learning rates in the actor-critic algorithm, (ii) batch size, (iii) regularization

parameters of the policy relative entropy term, (iv) with-or-without natural policy gradient updates, (v) with-or-without the

emergency safeguard PG updates (see Appendix C.4 for more details). Although each algorithm might have a different

parameter setting that leads to the optimal performance in training, the results reported here are the best ones for each

algorithm, chosen by the same criteria (which is based on the value of return plus certain degree of constraint satisfaction).

To account for the variability during training, in each learning curve, a 1-SD confidence interval is also computed over 10
separate random runs (under the same parameter setting).

D.1. More Explanations on MuJoCo Results

In all numerical experiments and for each algorithm (SPPO ✓-projection, SDDPG ✓-projection, SPPO a-projection, SDDPG

a-projection, CPO, Lagrangian, and the unconstrained PG counterparts), we systematically explored various hyper-parameter

settings by doing grid-search over the following factors: (i) learning rates in the actor-critic algorithm, (ii) batch size,

(iii) regularization parameters of the policy relative entropy term, (iv) with-or-without natural policy gradient updates, (v)

with-or-without the emergency safeguard PG updates (see Appendix C.4 for more details). Although each algorithm might

have a different parameter setting that leads to the optimal training performance, the results reported in the paper are the

best ones for each algorithm, chosen by the same criteria (which is based on value of return + certain degree of constraint

satisfaction).

In our experiments, we compare the two classes of safe RL algorithms, one derived from ✓-projection (constrained policy

optimization) and one from the a-projection (safety layer), with the unconstrained and Lagrangian baselines in four problems:

PointGather, AntGather, PointCircle, and HalfCheetahSafe. We perform these experiments with both off-policy (DDPG)

and on-policy (PPO) versions of the algorithms.

In PointCircle DDPG, although the Lagrangian algorithm significantly outperforms the safe RL algorithms in terms of return,

it violates the constraint more often. The only experiment in which Lagrangian performs similarly to the safe algorithms

in terms of both return and constraint violation is PointCircle PPO. In all other experiments that are performed in the

HalfCheetahSafe, PointGather and AntGather domains, either (i) the policy learned by Lagrangian has a significantly lower

performance than that learned by one of the safe algorithms (see HalfCheetahSafe DDPG, PointGather DDPG, AntGather

DDPG), or (ii) the Lagrangian method violates the constraint during training, while the safe algorithms do not (see

HalfCheetahSafe PPO, PointGather PPO, AntGather PPO). This clearly illustrates the effectiveness of our Lyapunov-based

safe RL algorithms, when compared to Lagrangian method.
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E. Experimental Setup in the Robot Navigation Problem

Mapless navigation task is a continuous control task with a goal of navigating a robot to any arbitrary goal position

collision-free and without memory of the workspace topology. The goal is usually within 5 � 10 meters from the robot

agent, but it is not visible to the agent before the task starts, due to both limited sensor range and the presence of obstacles

that block a clear line of sight. The agent’s observations, x = (g, ġ, l) 2 R
68, consists of the relative goal position, the

relative goal velocity, and the Lidar measurements. Relative goal position, g, is the relative polar coordinates between the

goal position and the current robot pose, and ġ is the time derivative of g, which indicates the speed of the robot navigating

to the goal. This information is available from the robot’s localization sensors. Vector l is the noisy Lidar input (Fig. 5a),

which measures the nearest obstacle in a direction within a 220� field of view split in 64 bins, up to 5 meters in depth. The

action is given by a 2 R
2, which is linear and angular velocity vector at the robot’s center of the mass. The transition

probability P : X ⇥ A ! X captures the noisy differential drive robot dynamics. Without knowing the full non-linear

system dynamics, we here assume knowledge of a simplified blackbox kinematics simulator operating at 5Hz in which

Gaussian noise, N (0, 0.1), is added to both the observations and actions in order to model the noise in sensing, dynamics,

and action actuations in real-world. The objective of the P2P task is to navigate the robot to reach within 30 centimeters

from any real-time goal. While the dynamics of this system is simpler than that of HalfCheetah. But unlike the MuJoCo

tasks where the underlying dynamics are deterministic, in this robot experiment the sensor, localization, and dynamics

noise paired with partial world observations and unexpected obstacles make this safe RL much more challenging. More

descriptions about the indoor robot navigation problem and its implementation details can be found in Section 3 and 4 of

(Chiang et al., 2019). Fetch robot weights 150 kilograms, and reaches maximum speed of 7 km/h making the collision force

a safety paramount.

Here the CMDP is non-discounting and has a finite-horizon of T = 100. We reward the agent for reaching the goal, which

translates to an immediate cost of c(x,a) = kgk2, which measures the relative distance to goal. To measure the impact

energy of obstacle collisions, we impose an immediate constraint cost of d(x,a) = kġk · 1{klk  rimpact}/T , where rimpact

is the impact radius w.r.t. the Lidar depth signal, to account for the speed during collision, with a constraint threshold d0
that characterizes the agent’s maximum tolerable collision impact energy to any objects. (Here the total impact energy

is proportional to the robot’s speed during any collisions.) Under this CMDP framework (Fig. 5b), the main goal is to

train a policy ⇡⇤ that drives the robot along the shortest path to the goal and to limit the average impact energy of obstacle

collisions. Furthermore, due to limited data any intermediate point-to-point policy is deployed on the robot to collect more

samples for further training, therefore guaranteeing safety during training is critical in this application.

(a) Training, 23 by 18m (b) Building 2, 60 by 47m

Figure 10. (a) Training and (b) evaluation environments, generated from real office building plans. The evaluation environment is an order

of magnitude bigger.
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(a) Lagrangian policy (b) SDDPG (a-proj.) (c) SDDPG (a-proj.) on robot

Figure 11. Navigation routes of two policies on a similar setup (a) and (b). Log of on-robot experiments (c).


