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Abstract—Modeling and compensation for friction effects
has been a topic of considerable mainstream interest in
motion control research. This interest is spawned from the
fact that modeling nonlinear friction effects is a theoretically
challenging problem, and compensating for the effects of
friction in a controller has practical ramifications. If the
friction effects in the system can be accurately modeled,
there is an improved potential to design controllers that can
cancel the effects; whereas, excessive steady-state tracking
errors, oscillations, and limit cycles can result from controllers
that do not accurately compensate for friction. A tracking
controller is developed in this paper for a general Euler-
Lagrange system that contains a new continuously differen-
tiable friction model with uncertain nonlinear parameterizable
terms. To achieve the semi-global asymptotic tracking result,
a recently developed integral feedback compensation strategy
is used to identify the friction effects on-line, assuming exact
model knowledge of the remaining dynamics. A Lyapunov-
based stability analysis is provided to conclude the tracking
and friction identification results. On-going efforts are being
directed at the development of an experimental testbed to
illustrate the tracking and friction identification performance
of the developed controller.

I. INTRODUCTION
The modeling and compensation for friction effects has

been a topic of considerable mainstream interest in motion
control research. This interest is spawned from the fact
that modeling nonlinear friction effects is a theoretically
challenging problem, and compensating for the effects
of friction in a controller has practical ramifications. If
the friction effects in the system can be accurately mod-
eled, there is an improved potential to design controllers
that can cancel the effects (e.g., model-based controllers);
whereas, excessive steady-state tracking errors, oscillations,
and limit cycles can result from controllers that do not
accurately compensate for friction. Friction is exaggerated
at low velocities, which are present in high-precision and
high-performance motion control systems; unfortunately,
a general model for friction which describes the effects
at low velocity has not been universally accepted. Many
models of friction have been proposed to deal with the
various regimes of friction, each with their own merits
and limitations. See [1], [3], [9], [11]-[13], [16], [24],
and [27] for a survey of friction modeling and control
results. Given the difficulty in accurately modeling and
compensating for friction effects, researchers have proposed
a variety of (typically offline) friction estimation schemes

with the objective of identifying the friction effects. For
example, in [8], an offline maximum likelihood, frequency-
based approach (differential binary excitation) is proposed
to estimate Coulomb friction effects. Another frequency-
based offline friction identification approach was proposed
in [19]. Specifically, the approach in [19] uses a kind
of frequency-domain linear regression model derived from
Fourier analysis of the periodic steady-state oscillations
of the system. The approach in [19] requires a periodic
excitation input with sufficiently large amplitude and/or
frequency content. A new offline friction identification tool
is proposed in [20] where the static-friction models are not
required to be linear parameterizable. However the offline
optimization result in [20] is limited to single degree-of-
freedom systems where the initial and final velocity are
equal. Another frequency domain identification strategy
developed to identify dynamic model parameters for pres-
liding behavior is given in [14]. Additional identification
methods include least-squares [5] and Kalman filtering [15].
In addition to friction identification schemes, researchers

have developed adaptive, robust, and learning controllers to
achieve a control objective while accommodating for the
friction effects, but not necessarily identifying the friction
model. For example, given a desired trajectory that is
periodic and not constant over some interval of time, the
development in [9] provides a learning control approach to
damp out periodic steady-state oscillations due to friction.
As stated in [9], a periodic signal is applied to the system
and when the system reaches a steady-state oscillation, the
learning update law is applied. In [22], a discontinuous
linearizing controller was proposed along with an adaptive
estimator to achieve an exponentially stable tracking result
that estimates the unknown Coulomb friction coefficient.
However, [29] describes a technical error in the result
presented in [22] that invalidates the result. Additional
development is provided in [29] that modifies the result
in [22] to achieve asymptotic Coulomb friction coefficient
estimation provided a persistence of excitation condition
is satisfied. In [25], Tomei proposed a robust adaptive
controller where only instantaneous friction is taken into
account (dynamic friction effects are not included).
Motivated by the desire to include dynamic friction

models in the control design, numerous researchers have
embraced the LuGre friction model proposed in [7]. For
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example, the result in [25] was extended in [26] to include
the LuGre friction model [7], resulting in an asymptotic
tracking result for square integrable disturbances. Robust
adaptive controllers were also proposed in [17] and [23] to
account for the LuGre model. Canudas et al. investigated the
development of observer-based approaches for the LuGre
model in [7]. In [4], Canudas and Lichinsky proposed an
adaptive friction compensation method, and in [6] Canudas
and Kelly proposed a passivity-based friction compensation
term to achieve global asymptotic tracking using the LuGre
model. In [2], Barabanov and Ortega developed necessary
and sufficient conditions for the passivity of the LuGre
model. In [27], three observer-based control schemes were
proposed assuming exact model knowledge of the system
dynamics. The results in [27] were later extended to include
two adaptive observers to account for selected uncertainty
in the model. The observer-based design in [27] was further
extended in [12]. Specifically, in [12], a partial-state feed-
back exact model knowledge controller was developed to
achieve global exponential link position tracking of a robot
manipulator. Two adaptive, partial-state feedback global
asymptotic controllers were also proposed in [12] that
compensate for selected uncertainty in the system model.
In addition, a new adaptive control technique was proposed
in [12] to compensate for the nonlinear parameterizable
Stribeck effect, where the average square integral of the
position tracking errors were forced to an arbitrarily small
value.

In this paper, a tracking controller is developed for a
general Euler-Lagrange system that contains a new contin-
uously differentiable friction model with uncertain nonlinear
parameterizable terms. Friction models are often based on
the assumption that the friction coefficient is constant with
sliding speed and have a singularity at the onset of slip. Such
models typically include a signum function of the velocity
to assign the direction of friction force (e.g., [21], [24]), and
many other models are only piecewise continuous (e.g., the
LuGre model in [7]). The model proposed in this paper
captures a number of essential aspects of friction without
involving discontinuous or piecewise continuous functions.
This simple continuously differentiable model represents
a foundation that captures the major effects reported and
discussed in friction modeling and experimentation. The
proposed model is generic enough that other subtleties
such as frictional anisotropy with sliding direction can be
addressed by mathematically distorting this model without
compromising the continuous differentiability. Based on the
fact that the model is continuously differentiable, a new
integral feedback compensation term originally proposed
in [28] is exploited to enable a semi-global tracking result
while identifying the friction on-line, assuming exact model
knowledge of the remaining dynamics. A Lyapunov-based
stability analysis is provided to conclude the tracking and
friction identification results.

II. DYNAMIC MODEL AND PROPERTIES
The class of nonlinear dynamic systems considered in this

paper are assumed to be modeled by the following general
Euler-Lagrange formulation:

( )¨+ ( ˙) ˙ + ( ) + ( ˙) = ( ) (1)

In (1), ( ) R × denotes the inertia matrix, ( ˙)
R × denotes the centripetal-Coriolis matrix, ( ) R
denotes the gravity vector, ( ˙) R denotes a friction
vector, ( ) R represents the torque input control vector,
and ( ), ˙( ), (̈ ) R denote the link position, velocity,
and acceleration vectors, respectively. The friction term
( ˙) in (1) is assumed to have the following form:

( ˙) = 1(tanh( 2 ˙) tanh( 3 ˙)) (2)
+ 4 tanh( 5 ˙) + 6 ˙

where R = 1 2 6 denote unknown positive
constants. The friction model in (2) has the following
properties: 1) it is symmetric about the origin, 2) it has
a static coefficient of friction, 3) it exhibits the Stribeck
effect where the friction coefficient decreases from the static
coefficient friction with increasing slip velocity near the
origin, 4) it includes a viscous dissipation term, and 5)
it has a Coulombic friction coefficient in the absence of
viscous dissipation. To a good approximation, the static
friction coefficient is given by 1 + 4, and the Stribeck
effect is captured by tanh( 2 ˙) tanh( 3 ˙). The Coulom-
bic friction coefficient is given by 4 tanh( 5 ˙), and the
viscous dissipation is given by 6 ˙. Figures 1 and 2
illustrate the sum of the different effects in the friction
model where 1 = 0 25, 2 = 100, 3 = 1, 4 = 0 5,
5 = 100, 6 = 0 01. Figure 3 shows the flexibility of
such a model. For example, hydrodynamic lubrication in
many operating regimes is viscous, lacking the other effects,
which are easily set to zero in the model. Simple Coulombic
friction models are often good for solid lubricant coatings
at moderate sliding speeds. To capture this effect, the static
and viscous terms can be set to zero. For some sticky or
non-lubricous polymers, there exists an abrupt change from
static to kinetic friction, which is captured by making the
Stribeck decay portion very rapid.
The subsequent development is based on the assumption

that ( ) and ˙( ) are measurable and that ( ), ( ˙),
( ) are known. Moreover, the following properties and as-

sumptions will be exploited in the subsequent development:
Property 1: The inertia matrix ( ) is symmetric, positive
definite, and satisfies the following inequality ( ) R :

1 k k2 ( ) ¯ ( ) k k2 (3)

where 1 R is a known positive constant, ¯ ( ) R
is a known positive function, and k·k denotes the standard
Euclidean norm.
Property 2: If ( ) L , then

( )
, and

2 ( )
2

exist
and are bounded. Moreover, if ( ) ˙( ) L then
( ˙) and ( ) are bounded.
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Property 3: Based on the structure of ( ˙) given in (2),
( ˙) ˙( ˙ )̈ and (̈ ˙ ¨

...
) exist and are bounded provided

( ), ˙( ), (̈ )
...
( ) L .

Fig. 1. Friction model as a composition of different effects including:
a) Stribeck effect, b) viscous dissipation, c) Coulomb effect, and d) the
combined model.

Fig. 2. Friction model effects.

III. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the system tracks
a desired trajectory, denoted by ( ), that is assumed to be
designed such that ( ), ˙ ( ), ¨ ( )

...
( ) R exist and

are bounded. A position tracking error, denoted by 1( )
R , is defined as follows to quantify the control objective:

1 , (4)

The following filtered tracking errors, denoted by 2( ),
( ) R , are defined to facilitate the subsequent design
and analysis:

2 , ˙1 + 1 1 (5)

, ˙2 + 2 2 (6)

Fig. 3. Modular ability of the model to selectively model different friction
regimes: top plot - viscous regime (e.g., hydrodynamic lubrication), middle
plot - Coulombic friction regime (e.g., solid lubricant coatings at moderate
sliding speeds), and bottom plot - abrupt change from static to kinetic
friction (e.g., non-lubricous polymers).

where 1, 2 R denote positive constants. The filtered
tracking error ( ) is not measurable since the expression
in (6) depends on (̈ ).
After premultiplying (6) by ( ), the following expres-

sion can be obtained:

( ) = ( )¨ + ( ˙) ˙ + ( ) + ( ˙) (7)
( ) + ( ) 1 ˙1 + ( ) 2 2

where (1), (4), and (5) were utilized. Based on the expres-
sion in (7) the control torque input is designed as follows:

( ) = ( )¨ + ( ˙) ˙ + ( ) (8)
+ ( ) 1 ˙1 + ( ) 2 2 + ( )

where ( ) R denotes a subsequently designed control
term. By substituting (8) into (7), the following expression
can be obtained:

( ) = ( ˙) ( ) (9)

From (9), it is evident that if ( ) 0, then ( ) will
identify the friction dynamics; therefore, the objective is to
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design the control term ( ) to ensure that ( ) 0. To
facilitate the design of ( ), we differentiate (9) as follows:

( ) ˙ = ˙( ˙) ˙ ( ) ˙ ( ) (10)

Based on (10) and the subsequent stability analysis, ( ) is
designed as follows:

( ) = ( + 1) 2( ) ( + 1) 2( 0) (11)

+

Z
0

[( + 1) 2 2( ) + ( 2( ))]

where and are positive constants. The expression in
(11) for ( ) does not depend on the unmeasurable filtered
tracking error term ( ). However, the time derivative of
( ) (which is not implemented) can be expressed as a
function of ( ). The time derivative of (11) is given as

˙ ( ) = ( + 1) + ( 2) (12)

After substituting (12) into (10), the following closed-loop
error system can be obtained:

( ) ˙ =
1

2
˙ ( ) ( + 1) (13)

2 ( 2) + ( )

where ( ) R denotes the following unmeasurable
auxiliary term:

( ˙ ) , ˙( ˙)
1

2
˙ ( ) + 2 (14)

To facilitate the subsequent analysis, another unmeasurable
auxiliary term ( ) R is defined as follows:

( ) , ( ˙ )

˙
¨ (15)

= 1 2¨ 1 2¨ ktanh( 2 ˙ )k2

1 3¨ + 1 3¨ ktanh( 3 ˙ )k2
+ 4 5¨ 4 5¨ ktanh( 5 ˙ )k2
+ 6¨

The time derivative of (15) is given as follows:

˙ ( ) =
2 ( ˙ )

˙2
¨2 +

( ˙ )

˙

...
(16)

=
...
( 1 2 1 3 + 4 5 + 6)

1 2

... ktanh( 2 ˙ )k2
+ 1 3

... ktanh( 3 ˙ )k2
4 5

... ktanh( 5 ˙ )k2
2 1

2
2||¨ ||2 tanh( 2 ˙ )[1 ktanh( 2 ˙ )k2]

+2 1
2
3||¨ ||2 tanh( 3 ˙ )[1 ktanh( 3 ˙ )k2]

2 4
2
5||¨ ||2 tanh( 5 ˙ )[1 ktanh( 5 ˙ )k2]

After adding and subtracting (15), the closed-loop error
system in (13) can be expressed as follows:

( ) ˙ = 1
2
˙ ( ) ( + 1) 2 ( 2)(17)

+ ˜ +

where the unmeasurable auxiliary term ˜( ) R is
defined as

˜( ) , ( ) ( ) (18)

Based on the expressions in (15) and (16), the following
inequalities can be developed:

k ( )k ||¨ || · | 1 2+ 4 5+ 6 1 3| (19)°°° ˙ ( )°°° ||... || · | 1 2 + 4 5 + 6 1 3|(20)
+||¨ ||2(2 1

2
2 + 2 1

2
3 + 2 4

2
5)

2

where , 2 R are known positive constants.

IV. STABILITY ANALYSIS
Theorem 1: The controller given in (8) and (11) ensures

that the position tracking error is regulated in the sense that

1( ) 0

provided is selected according to the following sufficient
condition:

+
1

2
2 (21)

where and 2 are introduced in (19) and (20),
respectively, and is selected sufficiently large. The
control system represented by (8) and (11) also ensures that
all system signals are bounded under closed-loop operation
and that the system friction can be identified in the sense
that

( ˙) ( ) 0
Proof: Let D R3 +1 be a domain containing ( ) = 0,

where ( ) R3 +1 is defined as

( ) , [ ( )
p

( )] (22)

where ( ) R3 is defined as

( ) , [ 1 2 ] (23)

and the auxiliary function ( ) R is defined as

( ) , || 2( 0)|| 2( 0) ( 0)

Z
0

( ) (24)

where is a nonnegative design parameter to be determined
later.
In (24), the auxiliary function ( ) R is defined as

( ) , ( ( ) ( 2)) (25)

Thus, the derivative ˙ ( ) R can be expressed as
˙ ( ) = ( ) = ( ( ) ( 2)) (26)

Provided the sufficient condition introduced in (21) is
satisfied, the following inequality can be obtained
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Z
0

( ) | 2( 0)| 2( 0) ( 0) (27)

Hence, (27) can be used to conclude that ( ) 0. Let
( ) : D × [0 ) R be a continuously differentiable

positive definite function defined as

( ) , 1 1 +
1

2 2 2 +
1

2
( ) + (28)

that can be bounded as

1( ) ( ) 2( ) (29)

provided the sufficient condition introduced in (21) is sat-
isfied. In (29), the continuous positive definite functions
1( ), 2( ) R are defined as

1( ) = 1 k k2 2( ) = 2( ) k k2 (30)

where 1, 2( ) R are defined as

1 ,
1

2
min{1 1} 2( ) , max{1

2
¯ ( ) 1}

where 1, ¯ ( ) are introduced in (3). After taking the time
derivative of (28), ˙ ( ) can be expressed as

˙ ( ) = ( ) ˙ +
1

2
˙ ( )

+ 2 ˙2 + 2 1 ˙1 + ˙

After utilizing (5), (6), (17), and (26) ˙ ( ) can simplified
as follows:

˙ ( ) = ˜( ) ( + 1) k k2 (31)

2 k 2k2 2 1 k 1k2 + 2 2 1

Because 2 ( ) 1( ) can be upper bounded as

2 1
1

2
k 1k2 + 1

2
k 2k2

˙ ( ) can be upper bounded using the squares of the
components of ( ) as follows:

˙ ( ) ˜( ) ( + 1) k k2 2 k 2k2
2 1 k 1k2 + k 1k2 + k 2k2

By using the fact || ˜( )|| (|| ||) k k, the expression
in (31) can be rewritten as follows:
˙ ( ) 3 k k2 k k2 + (|| ||) k k k )k (32)

where 3 , min{2 1 1 2 1 1} and the bounding
function (|| ||) R is a positive globally invertible nonde-
creasing function; hence, 1 2 must be chosen according
to the following conditions:

1
1

2
2 1

The following can be obtained from (32) by combining the
second and third terms

˙ ( ) 3 k k2 +
2( ) k k2
4

(33)

The following expression can then be obtained from (33):

˙ ( ) ( ) (34)

where ( ) = k k2, for some positive constant R, is
a continuous positive semi-definite function that is defined
on the following domain:

, { R3 +1 | k k 1(2
p

3 )}

The inequalities in (29) and (34) can be used to show that
( ) L in D; hence, 1( ) 2( ), and ( ) L in

D. Given that 1( ), 2( ), and ( ) L in D, standard
linear analysis methods (e.g., Lemma 1.4 of [10]) can be
used to prove that ˙1( ), ˙2( ) L in D from (5) and
(6). Since 1( ), 2( ), ( ) L in D, the assumption
that ( ), ˙ ( ), ¨ ( ) exist and are bounded can be used
along with (4)-(6) to conclude that ( ), ˙( ), (̈ ) L in
D. Since ( ), ˙( ) L in D, Property 2 can be used to
conclude that ( ), ( ˙), ( ), and ( ˙) L in D.
From (8) and (11), we can show that ( ), ( ) L in D.
Given that ( ) L in D, (12) can be used to show that
˙ ( ) L in D. Property 2 and Property 3 can be used to
show that ˙( ) and ˙ ( ) L in D; hence, (10) can be
used to show that ˙( ) L in D. Given that ˙( ) L in
D, then (4)-(6) can be used to conclude that ...( ) L in
D. Since ˙1( ), ˙2( ), ˙( ) L in D, the definitions for
( ) and ( ) can be used to prove that ( ) is uniformly

continuous in D.
Let S D denote a set defined as follows:

S ,
½
( ) D | 2( ( )) 1

³
1(2
p

3 )
´2¾
(35)

The region of attraction in (35) can be made arbitrarily large
to include any initial conditions by increasing the control
gain (i.e., a semi-global type of stability result) [28].
Theorem 8.4 of [18] can now be invoked to state that

k ( )k2 0 ( 0) S (36)

Based on the definition of ( ), (36) can be used to show
that

( ) 0 ( 0) S (37)

Hence, from (5) and (6), standard linear analysis methods
(e.g., Lemma 1.6 of [10]) can be used to prove that

1( ) 0 ( 0) S

The result in (37) can also be used to conclude from (9)
that

( ) ( ˙( )) 0 ( 0) S
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V. CONCLUSION

In this paper, semi-global asymptotic tracking is proven
in the presence of a proposed continuously differentiable
friction model that contains uncertain nonlinear parame-
terizable terms. To achieve the tracking result, an integral
feedback compensation term is used to identify the sys-
tem friction effects. A Lyapunov-based stability analysis
is provided to conclude the tracking and friction iden-
tification results. On-going efforts are being directed at
the development of an experimental testbed to illustrate
the tracking and friction identification performance of the
developed controller. Specifically, future efforts will target
experimental comparisons of the identified friction effects
with the proposed model.
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