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Lyapunov-Based Tracking Control in the Presence of
Uncertain Nonlinear Parameterizable Friction

C. Makkar, G. Hu, W. G. Sawyer, and W. E. Dixon

Abstract—Modeling and compensation for friction effects has been a
topic of considerable mainstream interest in motion control research. This
interest is spawned from the fact that modeling nonlinear friction effects
is a theoretically challenging problem, and compensating for the effects of
friction in a controller has practical ramifications. If the friction effects in
the system can be accurately modeled, there is an improved potential to de-
sign controllers that can cancel the effects; whereas, excessive steady-state
tracking errors, oscillations, and limit cycles can result from controllers
that do not accurately compensate for friction. A tracking controller is
developed in this paper for a general Euler–Lagrange system that contains
a new continuously differentiable friction model with uncertain nonlinear
parameterizable terms. To achieve the semi-global asymptotic tracking re-
sult, a recently developed integral feedback compensation strategy is used
to identify the friction effects online, assuming exact model knowledge of
the remaining dynamics. A Lyapunov-based stability analysis is provided
to conclude the tracking and friction identification results. Experimental
results illustrate the tracking and friction identification performance of
the developed controller.

Index Terms—Friction, Lyapunov methods, nonlinear systems, uncertain
systems.

I. INTRODUCTION

The modeling and compensation for friction effects has been a topic
of considerable mainstream interest in motion control research. This
interest is spawned from the fact that modeling nonlinear friction ef-
fects is a theoretically challenging problem, and compensating for the
effects of friction in a controller has practical ramifications. If the fric-
tion effects in a system can be accurately modeled, there is an im-
proved potential to design controllers that can cancel the effects (e.g.,
model-based controllers); whereas, excessive steady-state tracking er-
rors, oscillations, and limit cycles can result from controllers that do
not accurately compensate for friction. Friction is exaggerated at low
velocities, which are present in high-precision and high-performance
motion control systems; unfortunately, a general model for friction
which describes the effects at low velocity has not been universally
accepted. Many models of friction have been proposed to deal with
the various regimes of friction, each with their own merits and limita-
tions. See [1], [3], [9], [11]–[13], [16], [30], and [33] for a survey of
friction modeling and control results. Given the difficulty in accurately
modeling and compensating for friction effects, researchers have pro-
posed a variety of (typically offline) friction estimation schemes with
the objective of identifying the friction effects. For example, in [8],
an offline maximum likelihood, frequency-based approach (differen-
tial binary excitation) is proposed to estimate Coulomb friction effects.
Another frequency-based offline friction identification approach was
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proposed in [19]. Specifically, the approach in [19] uses a kind of fre-
quency-domain linear regression model derived from Fourier analysis
of the periodic steady-state oscillations of the system. The approach
in [19] requires a periodic excitation input with sufficiently large am-
plitude and/or frequency content. A new offline friction identification
tool is proposed in [20] where the static-friction models are not re-
quired to be linear parameterizable. However the offline optimization
result in [20] is limited to single degree-of-freedom systems where the
initial and final velocities are equal. Another frequency domain iden-
tification strategy developed to identify dynamic model parameters for
presliding behavior is given in [14]. Additional identification methods
include least-squares [5] and Kalman filtering [15].

In addition to friction identification schemes, researchers have de-
veloped adaptive, robust, and learning controllers to achieve a control
objective while accommodating for the friction effects, but not nec-
essarily identifying friction. For example, given a desired trajectory
that is periodic and not constant over some interval of time, the de-
velopment in [9] provides a learning control approach to damp out pe-
riodic steady-state oscillations due to friction. As stated in [9], a pe-
riodic signal is applied to the system and when the system reaches a
steady-state oscillation, the learning update law is applied. In [22], a
discontinuous linearizing controller was proposed along with an adap-
tive estimator to achieve an exponentially stable tracking result that es-
timates the unknown Coulomb friction coefficient. However, [35] de-
scribes a technical error in the result presented in [22] that invalidates
the result. Additional development is provided in [35] that modifies the
result in [22] to achieve asymptotic Coulomb friction coefficient es-
timation provided a persistence of excitation condition is satisfied. In
[31], Tomei proposed a robust adaptive controller where only instan-
taneous friction is taken into account (dynamic friction effects are not
included).

Motivated by the desire to include dynamic friction models in the
control design, numerous researchers have embraced the LuGre fric-
tion model proposed in [7]. For example, the result in [31] was ex-
tended in [32] to include the LuGre friction model [7], resulting in an
asymptotic tracking result for square integrable disturbances. Robust
adaptive controllers were also proposed in [17] and [29] to account for
the LuGre model. Canudas et al. investigated the development of ob-
server-based approaches for the LuGre model in [7]. In [4], Canudas
and Lichinsky proposed an adaptive friction compensation method,
and in [6] Canudas and Kelly proposed a passivity-based friction com-
pensation term to achieve global asymptotic tracking using the LuGre
model. In [2], Barabanov and Ortega developed necessary and suffi-
cient conditions for the passivity of the LuGre model. In [33], three
observer-based control schemes were proposed assuming exact model
knowledge of the system dynamics. The results in [33] were later ex-
tended to include two adaptive observers to account for selected uncer-
tainty in the model. The observer-based design in [33] was further ex-
tended in [12]. Specifically, in [12], a partial-state feedback exact model
knowledge controller was developed to achieve global exponential link
position tracking of a robot manipulator. Two adaptive, partial-state
feedback global asymptotic controllers were also proposed in [12] that
compensate for selected uncertainty in the system model. In addition,
a new adaptive control technique was proposed in [12] to compensate
for the nonlinear parameterizable Stribeck effect, where the average
square integral of the position tracking errors were forced to an arbi-
trarily small value.

In this paper and in the preliminary results in [23], a tracking con-
troller is developed for a general Euler–Lagrange system that contains
a new continuously differentiable friction model with uncertain non-
linear parameterizable terms. Friction models are often based on the as-
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sumption that the friction coefficient is constant with sliding speed and
have a singularity at the onset of slip. Such models typically include a
signum function of the velocity to assign the direction of friction force
(e.g., [21], [30]), and many other models are only piecewise contin-
uous (e.g., the LuGre model in [7]). In [24], we proposed a new friction
model that captures a number of essential aspects of friction without in-
volving discontinuous or piecewise continuous functions. The simple
continuously differentiable model represents a foundation that captures
the major effects reported and discussed in friction modeling and exper-
imentation and the model is generic enough that other subtleties such as
frictional anisotropy with sliding direction can be addressed by math-
ematically distorting this model without compromising the continuous
differentiability. Based on the fact that the model is continuously dif-
ferentiable, a new integral feedback compensation term originally pro-
posed in [34] is exploited to enable a semi-global tracking result while
identifying the friction on-line, assuming exact model knowledge of
the remaining dynamics. A Lyapunov-based stability analysis is pro-
vided to conclude the tracking and friction identification results. Exper-
imental results show two orders of magnitude improvement in tracking
control over a proportional derivative (PD) controller, and a one order
of magnitude improvement over the model-based controller. Experi-
mental results are also used to illustrate that the experimentally identi-
fied friction can be approximated by the model in [24].

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in this paper
are assumed to be modeled by the following general Euler–Lagrange
formulation:

M(q)�q + Vm(q; _q) _q +G(q) + f( _q) = � (t): (1)

In (1), M(q) 2 n�n denotes the inertia matrix, Vm(q; _q) 2 n�n

denotes the centripetal-Coriolis matrix,G(q) 2 n denotes the gravity
vector, f( _q) 2 n denotes a friction vector, � (t) 2 n represents the
torque input control vector, and q(t), _q(t), �q(t) 2 n denote the link
position, velocity, and acceleration vectors, respectively. The friction
term f( _q) in (1) is assumed to have the following form as in [24]:

f( _q) = 1 (tanh(2 _q)� tanh(3 _q)) + 4 tanh(5 _q) + 6 _q (2)

where i 2 8i = 1; 2; . . . 6 denote unknown positive constants. The
friction model in (2) has the following properties: 1) it is symmetric
about the origin, 2) it has a static coefficient of friction, 3) it exhibits the
Stribeck effect where the friction coefficient decreases from the static
coefficient of friction with increasing slip velocity near the origin, 4) it
includes a viscous dissipation term, and 5) it has a Coulombic friction
coefficient in the absence of viscous dissipation. To a good approxima-
tion, the static friction coefficient is given by 1+ 4, and the Stribeck
effect is captured by tanh(2 _q) � tanh(3 _q). The Coulombic fric-
tion coefficient is given by 4 tanh(5 _q), and the viscous dissipation
is given by 6 _q. For further details regarding the friction model, see
[24].

The subsequent development is based on the assumption that q(t)
and _q(t) are measurable and that M(q), Vm(q; _q), G(q) are known.
Moreover, the following properties and assumptions will be exploited
in the subsequent development:

Property 1: The inertia matrixM(q) is symmetric, positive definite,
and satisfies the following inequality 8y(t) 2 n:

m1kyk
2 � yTM(q)y � �m (kyk)kyk2 (3)

where m1 2 is a known positive constant, �m(y) 2 is a known
positive function, and k � k denotes the standard Euclidean norm.

Property 2: If q(t) 2 L1, then @M(q)=@q, and @2M(q)=@q2 exist
and are bounded. Moreover, if q(t), _q(t) 2 L1 then Vm(q; _q) and
G(q) are bounded.

Property 3: Based on the structure of f( _q) given in (2), f( _q), _f( _q),
and �f( _q) exist and are bounded provided q(t), _q(t), �q(t), ���q (t) 2 L1.

III. ERROR SYSTEM DEVELOPMENT

The control objective is to ensure that the system tracks a desired
trajectory, denoted by qd(t), that is assumed to be designed such that
qd(t), _qd(t), �qd(t), ���q d

(t) 2 n exist and are bounded. A position
tracking error, denoted by e1(t) 2 n, is defined as follows to quantify
the control objective:

e1
�
= qd � q: (4)

The following filtered tracking errors, denoted by e2(t), r(t) 2 n,
are defined to facilitate the subsequent design and analysis:

e2
�
= _e1 + �1e1 (5)

r
�
= _e2 + �2e2 (6)

where�1, �2 2 denote positive constants. The filtered tracking error
r(t) is not measurable since the expression in (6) depends on �q(t).

After premultiplying (6) by M(q), the following expression can be
obtained:

M(q)r = M(q)�qd + Vm(q; _q) _q +G(q) + f( _q)� � (t)

+M(q)�1 _e1 +M(q)�2e2 (7)

where (1), (4), and (5) were utilized. Based on the expression in (7) the
control torque input is designed as follows:

� (t) = M(q)�qd + Vm(q; _q) _q +G(q) +M(q)�1 _e1

+M(q)�2e2 + �(t) (8)

where �(t) 2 n denotes a subsequently designed control term. By
substituting (8) into (7), the following expression can be obtained:

M(q)r = f( _q)� �(t): (9)

From (9), it is evident that if r(t) ! 0, then �(t) will identify the
friction dynamics; therefore, the objective is to design the control term
�(t) to ensure that r(t) ! 0. To facilitate the design of �(t), we dif-
ferentiate (9) as follows:

M(q) _r = _f( _q)� _�(t)� _M(q)r: (10)

Based on (10) and the subsequent stability analysis, �(t) is designed
as follows1:

�(t) = (ks + 1)e2(t)� (ks + 1)e2(0)

+

t

0

[(ks + 1)�2e2(�) + �sgn (e2(�))] d� (11)

1The expression in (11) for�(t) does not depend on the unmeasurable filtered
tracking error term r(t). However, the time derivative of �(t) (which is not
implemented) can be expressed as a function of r(t).
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where ks 2 and � 2 are positive constants. The time derivative
of (11) is given as2

_�(t) = (ks + 1)r + �sgn(e2): (12)

After substituting (12) into (10), the following closed-loop error system
can be obtained:

M(q) _r = �
1

2
_M(q)r� (ks + 1)r � e2 � �sgn(e2) +N(t) (13)

where N(q; _q; t) 2 n denotes the following unmeasurable auxiliary
term:

N(q; _q; t)
�
= _f( _q)�

1

2
_M(q)r + e2:

To facilitate the subsequent analysis, another unmeasurable auxiliary
term Nd(t) 2

n is defined as follows:

Nd(t)
�
=
@f( _qd)

@ _qd
�qd

= 12�qd � 12�qd ktanh(2 _qd)k
2

� 13�qd + 13�qd ktanh(3 _qd)k
2 + 45�qd

� 45�qd ktanh(5 _qd)k
2 + 6�qd: (14)

The time derivative of (14) is given as follows:

_Nd(t) =
@2f( _qd)

@ _q2
d

�q2d +
@f( _qd)

@ _qd
���q

d

= ���q
d
(12 � 13 + 45 + 6)

� 12
���q

d
ktanh(2 _qd)k

2

+ 13
���q

d
ktanh(3 _qd)k

2 � 45
���q

d
ktanh(5 _qd)k

2

� 21
2
2k�qdk

2 tanh(2 _qd) 1� ktanh(2 _qd)k
2

+ 21
2
3k�qdk

2 tanh(3 _qd) 1� ktanh(3 _qd)k
2

� 24
2
5k�qdk

2 tanh(5 _qd)

� 1� ktanh(5 _qd)k
2
: (15)

After adding and subtracting (14), the closed-loop error system in (13)
can be expressed as follows:

M(q) _r = �
1

2
_M(q)r� (ks+ 1)r� e2� �sgn(e2)+ ~N(t)+Nd(t)

(16)
where the unmeasurable auxiliary term ~N(t) 2 n is defined as

~N(t)
�
= N(t)�Nd(t): (17)

Based on the expressions in (14) and (15), the following inequalities
can be developed:

kNd(t)k�k�qdk�j12+45+6�13j��N (18)

_Nd(t) �k���q
d
k�j12+45+6�13j

+k�qdk
2 21

2
2+21

2
3+24

2
5 ��N 2 (19)

where �N , �N 2 2 are known positive constants.

2The expressions in (11) and (12) are based on [34].

IV. STABILITY ANALYSIS

Theorem 1: The controller given in (8) and (11) ensures that the
position tracking error is regulated in the sense that

e1(t)! 0 as t!1

provided � is selected according to the following sufficient condition:

� > �N +
1

�2
�N 2 (20)

where �N and �N 2 are introduced in (18) and (19), respectively, and
ks is selected sufficiently large to yield a semi-global asymptotic result.
The control system represented by (8) and (11) also ensures that all
system signals are bounded under closed-loop operation and that the
friction in the system can be identified in the sense that

f( _q)� �(t)! 0 as t!1:

Proof: Let D � 3n+1 be a domain containing y(t) = 0,
where y(t) 2 3n+1 is defined as y(t)

�
= [zT (t) P (t)]

T

where

z(t) 2 3n is defined as z(t)
�
= [eT1 eT2 rT ]

T

, and the auxiliary func-
tion P (t) 2 is defined as

P (t)
�
= � ke2(0)k� e2(0)

T
Nd(0)�

t

0

L(� )d� (21)

where � 2 is nonnegative by design.
In (21), the auxiliary function L(t) 2 is defined as

L(t)
�
= r

T (Nd(t)� �sgn(e2)) : (22)

The derivative _P (t) 2 can be expressed as

_P (t) = �L(t) = �rT (Nd(t)� �sgn(e2)) : (23)

Provided the sufficient condition introduced in (20) is satisfied, the fol-
lowing inequality can be obtained3:

t

0

L(�)d� � � je2(0)j � e2(0)
T
Nd(0): (24)

Hence, (24) can be used to conclude that P (t) � 0. Let V (y; t) :
D � [0;1) ! be a continuously differentiable positive–definite
function defined as

V (y; t)
�
= e

T

1 e1 +
1

2
e
T

2 e2 +
1

2
r
T
M(q)r + P (25)

that can be bounded as

�1kyk
2 � V (y; t) � �2(y)kyk

2 (26)

provided the sufficient condition introduced in (20) is satisfied. In (26),
�1, �2(y) 2 are defined as

�1
�
=

1

2
minf1;m1g; �2(y)

�
= max

1

2
�m(y); 1

3See [25] for details.
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where m1, �m(q) are introduced in (3). After taking the time derivative
of (25), _V (y; t) can be expressed as

_V = r
T
M(q) _r +

1

2
r
T _M(q)r+ e

T
2 _e2 + 2eT1 _e1 + _P :

After utilizing (5), (6), (16), and (23), _V (y; t) can be simplified as
follows:

_V = r
T ~N(t)� (ks + 1)krk2 � �2ke2k2 � 2�1ke1k2 + 2eT2 e1:

Because 2eT2 (t)e1(t) can be upper bounded as

2eT2 e1 � ke1k2 + ke2k2

_V (y; t) can be upper bounded using the squares of the components of
z(t) as follows:

_V �rT ~N�(ks+1)krk2��2ke2k2�2�1ke1k2+ke1k2+ke2k2: (27)

By exploiting the mean value theorem, the following inequality can
be developed for (17)4:

k ~Nk � � (kzk)kzk: (28)

By exploiting the inequality in (28), the expression in (27) can be
rewritten as

_V � ��3kzk2 � kskrk2 � � (kzk)krkkzk (29)

where �3
�
= minf2�1 � 1; �2 � 1; 1g and the bounding function

�(kzk) 2 is a positive globally invertible nondecreasing function;
hence, �1, �2 must be chosen according to the following conditions:

�1 >
1

2
; �2 > 1:

After completing the squares for the second and third term in (29), the
following expression can be obtained:

_V � ��3kzk2 + �2 (kzk)kzk2
4ks

: (30)

The following expression can then be obtained from (30):

_V � �W (y) (31)

where W (y) = ckzk2, for some positive constant c 2 , is a con-
tinuous positive semi-definite function that is defined on the following
domain:

D
�
= y 2 3n+1jkyk � �

�1(2 �3ks) :

The inequalities in (26) and (31) can be used to show that V 2 L1 in
D; hence, e1, e2, and r 2 L1 in D. Given that e1, e2, and r 2 L1
in D, standard linear analysis methods (e.g., Lemma 1.4 of [10]) can
be used to prove that _e1, _e2 2 L1 in D from (5) and (6). Since e1,
e2, r 2 L1 in D, the assumption that qd(t), _qd(t), �qd(t) exist and are
bounded can be used along with (4)–(6) to conclude that q, _q, �q 2 L1
in D. Since q, _q 2 L1 in D, Property 2 can be used to conclude that
M(q), Vm(q; _q), G(q), and f( _q) 2 L1 in D. From (8) and (11), we
can show that �, � 2 L1 in D. Given that r 2 L1 in D, (12) can
be used to show that _� 2 L1 in D. Property 2 and Property 3 can be
used to show that _f(q) and _M(q) 2 L1 inD; hence, (10) can be used
to show that _r 2 L1 in D. Given that _r 2 L1 in D, then (4)–(6) can

4See [25] and [34] for details.

be used to conclude that ���q 2 L1 in D. Since _e1, _e2, _r 2 L1 in D,
the definitions for W (y) and z(t) can be used to prove that W (y) is
uniformly continuous in D.

Let S � D denote a set defined as follows5:

S �
= y(t) � Dj�2(y)kyk2 < �1 �

�1(2
p
�3ks)

2

: (32)

Theorem 8.4 of [18] can now be invoked to state that

c kz(t)k2 ! 0 as t!1 8y(0) 2 S: (33)

Remark 1: The expressions in (5), (13), (21), and (22) can be written
as

_e1 = e2��1e1 (34)

_e2 = r��2e2 (35)

M _r =� 1

2
_Mr�(ks+1)r�e2��sgn(e2)+ ~N+Nd (36)

_P =�L=�rT (Nd��sgn(e2)) : (37)

From (34)–(37), it can be seen that the differential equations describing
the closed-loop system for which the stability analysis is being per-
formed has a discontinuous right-hand side. Let y = [eT1 eT2 rT P T ]

T

and f(y; t) : 3n+1 denote the right-hand side of (34)–(37). ForW (y)
to be uniformly continuous for y(0) 2 S , it is required that a solution
exists for _y = f(y; t); it is important to comment on the existence of
solutions to (34)–(37). To this end, the arguments used in [27] and [28]
can be used to discuss the existence of Filippov’s generalized solution
to (34)–(37). See remark 4 of [34] for details.

Based on the definition of z(t), (33) can be used to show that

r(t)! 0 as t!1 8y(0) 2 S: (38)

Hence, from (5) and (6), standard linear analysis methods (e.g., Lemma
1.6 of [10]) can be used to prove that

e1(t)! 0 as t!1 8y(0) 2 S:

The result in (38) can also be used to conclude from (9) that

�(t)� f( _q)! 0 as t!1 8y(0) 2 S:

V. EXPERIMENTAL RESULTS

To illustrate the performance of the controller, a testbed was con-
structed consisting of a circular disk made of aluminium mounted on
a NSK direct-drive switched reluctance motor. A rectangular Nylon
block was mounted on a pneumatic linear thruster to apply an external
friction load to the rotating disk. A pneumatic regulator maintained a
constant pressure of 15 pounds per square inch on the circular disk.
Data acquisition and control implementation were performed at a fre-
quency of 1.0 kHz using the ServoToGo I/O board.

The dynamics for the testbed are given as

� (t) = [Im + 0:5ma2][�q]

M(q)�q

+f( _q) (39)

where Im (rotor moment of inertia) =0.255 kg�m2, m (mass of the
circular disk) = 3.175 kg, a (radius of the disk) = 0.25527 m, and the
friction torque f( _q) 2 is defined in (2). The control torque input

5The region of attraction in (32) can be made arbitrarily large to include any
initial conditions by increasing the control gain k (i.e., a semi-global type of
stability result) [34].
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Fig. 1. Comparison of position tracking errors.

� (t) given in (8) is simplified (i.e., the centripetal-Coriolis matrix and
gravity terms do not exist in this testbed) as

� (t) = M(q)�qd +M(q)�1 _e1 +M(q)�2e2 + �(t) (40)

where �(t) is the adaptive friction identification term defined in (11).
The desired disk trajectory was selected similar to the one used in [12]
to emphasize a low-speed direction transition as follows (in degrees):

qd(t) = 11:25 tan�1 (3:0 sin(0:5t)) 1� exp(�0:01t3) : (41)

For all experiments, the rotor velocity signal is obtained by applying
a standard backwards difference algorithm to the position signal. All
states were initialized to zero. In addition, the integral structure of the
adaptive term in (40) was computed on-line via a standard trapezoidal
algorithm.

A. Experiment 1

In the first experiment, no external load from the thruster was applied
to the circular disk. In addition to the controller given in (39) and (40),
a PD controller and a model-based controller were also implemented
for comparison. The PD controller was implemented as:

� (t) = kd _e1 + kpe1 (42)

where kd 2 is the derivative gain and kp 2 is the proportional gain.
The model-based controller was implemented with standard friction
feedforward terms as:

� (t)=M(q)�qd+M(q)�1 _e1+M(q)�2e2+kcsgn( _q)+kv _q+ksq (43)

where kc 2 is the Coulomb friction coefficient, kv 2 is the viscous
friction coefficient, and ks 2 is the static friction coefficient.

A comparison of the position tracking error from each controller is
seen in Figs. 1 and 2. The friction identification term in (11) from the
proposed controller obtained from the experiment is given in Fig. 3.

B. Experiment 2

An external friction load was induced on the system. An external
moment load of 12.774 Nm was applied to the circular disk using the
linear thruster. The desired disk trajectory of (41) was again utilized.

Fig. 2. Comparison of position tracking errors from the model-based controller
and the proposed controller.

Fig. 3. Identified friction from the adaptive term in the proposed controller.

C. Experiment 3

The net external friction induced on the system as a result of external
load applied to the circular disk by the linear thruster was identified.
The friction in the testbed under no-load conditions was identified as
in Experiment 1 using the control gains of Experiment 2. This identified
friction term was subtracted from the identified friction terms obtained
from Experiment 2. The friction between the circular disk and Nylon
block can be seen in Fig. 4.

D. Experiment 4

The experimentally identified friction torque using the adaptive
term in (11) was compared with the friction torque model in (2). The
matching of the friction torque with the experimental data is plotted
in Fig. 5.

VI. DISCUSSION

Experiment 1 illustrates an approximate factor of 60 improvement
in the RMS tracking error over a PD controller, and a factor of ap-
proximately 4 over a typical exact model knowledge controller with
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Fig. 4. Net external friction induced. The net friction was calculated by sub-
racting the identified friction term in Experiment 1 from the identified friction
term in Experiment 2.

Fig. 5. The friction torque calculated from the model in (2) approximates the
experimentally identified friction torque in (11).

static and viscous friction feedforward terms (see Figs. 1 and 2); Ex-
periment 2 illustrates an approximate factor of 98 improvement in the
RMS tracking error over the PD controller, and a factor of approxi-
mately 6 over the exact model knowledge controller. In Tables I and
II, the RMS error from the proposed controller is approximately two
orders of magnitude better than the PD controller and approximately
one order of magnitude better than the model-based controller. This
performance improvement was obtained while using similar or lower
input torque.

The performance improvement is based on the fact that the proposed
controller contains a feedforward term that identifies the friction as a
general time-varying disturbance. To develop the friction identification
term, the friction model is required to be continuously differentiable.
Experiments 1–4 illustrate the identified friction torque. Specifically
in Experiment 4, the parameters of the nonlinear parameterizable con-
tinuously differentiable friction model proposed in [24] were varied to

TABLE I
COMPARISON OF TRACKING RESULTS WHEN NO EXTERNAL LOAD WAS

APPLIED TO THE CIRCULAR DISK

TABLE II
COMPARISON OF TRACKING RESULTS WHEN AN EXTERNAL LOAD WAS

APPLIED TO THE CIRCULAR DISK

match the experimentally obtained friction torque. Fig. 5 shows that the
proposed friction model in (2) approximates the experimental friction
torque. However, since friction is anisotropic in nature, the magnitude
of friction in experimental data is not symmetrical about the horizontal
axis whereas the friction model in (2) approximates it as symmetric.
Hence, future work can focus on mathematically distorting the model
proposed in (2) by addition of more terms to make it asymmetric or
making the unknown coefficients time-varying in order to capture more
friction effects.

VII. CONCLUSION

In this paper, semi-global asymptotic tracking is proven in the
presence of a proposed continuously differentiable friction model that
contains uncertain nonlinear parameterizable terms. To achieve the
tracking result, an integral feedback compensation term is used to iden-
tify the system friction effects. A Lyapunov-based stability analysis is
provided to conclude the tracking and friction identification results.
Experimental results show two orders of magnitude improvement in
tracking control over a proportional derivative (PD) controller, and a
one order of magnitude improvement over the model-based controller.
Experimental results are also used to illustrate that the experimentally
identified friction can be approximated by the model in [24].
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On the Stabilization of Linear Systems
Under Assigned I/O Quantization

Bruno Picasso and Antonio Bicchi

Abstract—This paper is concerned with the stabilization of discrete-time
linear systems with quantization of the input and output spaces, i.e., when
available values of inputs and outputs are discrete. Unlike most of the ex-
isting literature, we assume that how the input and output spaces are quan-
tized is a datum of the problem, rather than a degree of freedom in design.
Our focus is hence on the existence and synthesis of symbolic feedback con-
trollers, mapping output words into the input alphabet, to steer a quan-
tized I/O system to within small invariant neighborhoods of the equilib-
rium starting from large attraction basins. We provide a detailed analysis
of the practical stabilizability of systems in terms of the size of hypercubes
bounding the initial conditions, the state transient, and the steady-state evo-
lution. We also provide an explicit construction of a practically stabilizing
controller for the quantized I/O case.

Index Terms—Controlled invariance, dynamic output feedback, prac-
tical stability, quantized systems.

I. INTRODUCTION

Quantization is a peculiar characteristic of many systems, which can
be caused by analog-to-digital and digital-to-analog conversion, binary
or digital sensors and actuators, etc. In other cases, it is necessary to in-
troduce quantization of signals in order to reduce the information com-
plexity of some sensors (such as, e.g., video cameras) by encoding it in
a proper symbolic alphabet. Since [4], quantized control systems have
been attracting increasing attention of the control community. Most
recently, interest on quantization has been stimulated by the growing
number of applications involving “networked” control systems, i.e.,
systems interconnected through communication channels of limited ca-
pacity [1], [9], [10], [14], [15].

This paper deals with the control of the dynamical system

x(t+ 1) = Ax(t) + bu(t)

y(t) = q (x(t))

x 2 n; u 2 U � ; y 2 Y; t 2

(1)
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