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Abstract. This paper presents necessary and sufficient characterizations of several notions of
input to output stability. Similar Lyapunov characterizations have been found to play a key role in
the analysis of the input to state stability property, and the results given here extend their validity
to the case when the output, but not necessarily the entire internal state, is being regulated.
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1. Introduction. This paper concerns itself with systems with outputs of the
general form

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)),(1.1)

where f : R
n × R

m → R
n and h : R

n → R
p are both locally Lipschitz continuous,

f(0, 0) = 0, and h(0) = 0. In [19] (see also [17]), the authors introduced several
notions of output stability for such systems. All these notions serve to formalize the
idea of a “stable” dependence of outputs y upon inputs (which may be thought of
as disturbances, actuator or measurement errors, or regulation signals). They differ
in the precise formulation of the decay estimates and the overshoot, or transient
behavior, characteristics of the output. Among all of them, the one of most interest is
probably the one singled out for the name input to output stability, or IOS, for short.

Our main theorem in this paper provides a necessary and sufficient characteriza-
tion of the IOS property in terms of Lyapunov functions. In the process of obtaining
this characterization, we derive as well corresponding results for the variants of IOS
discussed in [19]. (The relationships between those variants, shown in [19], play a role
in our proofs, but otherwise the two papers are independent of each other.)

In the very special case when y = x, our concepts all reduce to the input to state
stability (ISS) property. Much of ISS control design (cf. [2, 3, 4, 5, 6, 7, 9, 10, 13, 14,
15, 20]) relies upon the Lyapunov characterizations first obtained in [12, 16]. Thus,
it is reasonable to expect a similar impact from the results given here for the more
general case.

In order to review the different i/o stability concepts, let us make the following
notational conventions. Euclidean norms will be denoted as |x|, and ‖u‖ denotes the
Lm
∞-norm (possibly infinite) of an input u (i.e., a measurable and locally essentially

bounded function u : I → R
m, where I is a subinterval of R which contains the origin;
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if we do not specify the domain I of an input u, we mean implicitly that I = R≥0). For
each initial state ξ ∈ R

n and input u, we let x(·, ξ, u) be the unique maximal solution
of the initial value problem ẋ = f(x, u), x(0) = ξ, and write the corresponding output
function h(x(t, ξ, u)) simply as y(·, ξ, u). Given a system with control-value set R

m,
we often consider the same system but with controls restricted to take values in some
subset Ω ⊆ R

m; we useMΩ for the set of all such controls. As usual, by a K function
we mean a function γ : [0,∞)→ [0,∞) that is strictly increasing and continuous and
satisfies γ(0) = 0, by a K∞ function one that is in addition unbounded, and we let KL
be the class of functions [0,∞)2 → [0,∞) which are of class K on the first argument
and decrease to zero on the second argument. When we state the various properties
below, we always interpret the respective estimates as holding for all inputs u and for
all initial states ξ ∈ R

n.
Recall that a system is said to be forward complete if for every initial state ξ and

input u, the solution x(t, ξ, u) is defined for all t ≥ 0.
The following four output stability properties were discussed in [19]. A forward

complete system is:
• IOS, or input to output stable, if there exist a KL-function β and a K-function

γ such that

|y(t, ξ, u)| ≤ β(|ξ| , t) + γ(‖u‖) ∀t ≥ 0(1.2)

(the term γ(‖u‖) can be replaced by the norm of the restriction to past inputs
γ(‖u‖[0,t]), and the sum could be replaced by a “max” or two analogous

terms);
• OLIOS, or output-Lagrange input to output stable, if it is IOS and, in addition,
there exist some K-functions σ1, σ2 such that

|y(t, ξ, u)| ≤ max{σ1(|h(ξ)|), σ2(‖u‖)} ∀ t ≥ 0;(1.3)

• SIIOS, or state-independent input to output stable, if there exist some β ∈ KL
and some γ ∈ K such that

|y(t, ξ, u)| ≤ β(|h(ξ)| , t) + γ(‖u‖) ∀ t ≥ 0;(1.4)

• ROS, or robustly output stable, if there are a smooth K∞-function λ and a
β ∈ KL such that the system

ẋ = g(x, d) := f(x, dλ(|y|)), y = h(x),(1.5)

is forward complete, and the estimate

|yλ(t, ξ, d)| ≤ β(|ξ| , t) ∀ t ≥ 0(1.6)

holds for all d ∈MB, where B = {|µ| ≤ 1} ⊂ R
m, and where yλ(·, ξ, d) denote

the output function of system (1.5).
The last concept corresponds to the preservation of output stability under output

feedback with “robustness margin” λ. It was shown in [19] that SIIOS ⇒ OLIOS
⇒ IOS ⇒ ROS, and no converses hold. It was also remarked in section 2.2 of [19]
that the OLIOS property is equivalent to the existence of a KL-function β and a
K-function γ such that the estimate

|y(t, ξ, u)| ≤ β

(
|h(ξ)| , t

1 + ρ(|ξ|)
)
+ γ(‖u‖) ∀ t ≥ 0
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holds for all trajectories of the system. We now introduce the associated Lyapunov
concepts.
Definition 1.1. With respect to the system (1.1), a smooth function V : R

n →
R≥0 is:

• an IOS-Lyapunov function if there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n(1.7)

and there exist χ ∈ K and α3 ∈ KL such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ, ∀µ,(1.8)

• an OLIOS-Lyapunov function if there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ ∈ R
n(1.9)

and there exist χ ∈ K and α3 ∈ KL such that (1.8) holds,
• an SIIOS-Lyapunov function if there exist χ ∈ K and α3 ∈ K such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ)) ∀ ξ, ∀µ(1.10)

and there exist α1, α2 ∈ K∞ such that (1.9) holds,
• an ROS-Lyapunov function if there exist χ ∈ K and α3 ∈ KL such that

|h(ξ)| ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ, ∀µ(1.11)

and there exist α1, α2 ∈ K∞ such that (1.7) holds.
Observe that, if an estimate (1.7) holds, then (1.11) is implied by (1.8) in the

sense that if χ and α1 are as in the former, then χ̃ := α−1
1 ◦ χ can be used as “χ” for

the latter. Note also that, provided that (1.9) holds, condition (1.8) is equivalent to
the existence of χ ∈ K and α3 ∈ KL so that

|h(ξ)| ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|).

Our main results can be summarized as follows. We say that system (1.1) is
uniformly bounded input bounded state stable, and write UBIBS for short, if it is
forward complete and, for some function σ of class K, the following estimate holds for
all solutions:

|x(t, ξ, u)| ≤ max{σ(|ξ|), σ(‖u‖)} ∀t ≥ 0.(1.12)

Theorem 1.2. A UBIBS system is:
1. IOS if and only if it admits an IOS-Lyapunov function;
2. OLIOS if and only if it admits an OLIOS-Lyapunov function;
3. ROS if and only if it admits an ROS-Lyapunov function; and
4. SIIOS if and only if it admits an SIIOS-Lyapunov function.

The proofs are provided in section 4.

2. Remarks on rates of decrease. In properties (1.8) and (1.11), the decay
rate of V (x(t)) depends on the state and on the value of V (x(t)). The main role of
α3 is to allow for slower convergence if V (x(t)) is very small or if x(t) is very large.
We first note two simplifications.
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Remark 2.1. Inequality (1.8) holds for some α3 ∈ KL if and only if there exist
K-functions κ1, κ2 such that

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)(2.1)

for all ξ ∈ R
n and all µ ∈ R

m. This follows from Lemma A.2, proved in the appendix.
A similar remark applies to (1.11).
Remark 2.2. Suppose V is an IOS-Lyapunov function for the system satisfy-

ing (1.7) with some α1, α2 ∈ K∞ and satisfying (2.1) with some χ, κ1, κ2 ∈ K. By the
proof of Lemma 11 together with Lemma 12 in [14], one sees that there exists a C1

K∞-function ρ such that ρ′(s)κ1(s) ≥ ρ(s) for all s ≥ 0. Let W = ρ ◦ V . Then W is
a C1 function satisfying the following:

ρ(α1(|h(ξ)|)) ≤W (ξ) ≤ ρ(α2(|ξ|)) ∀ ξ ∈ R
n,

and

W (ξ) ≥ χ
1
(|µ|) ⇒ DW (ξ)f(ξ, µ) ≤ − W (ξ)

1 + κ2(|ξ|)(2.2)

for all ξ ∈ R
n and all µ ∈ R

m, where χ
1
= ρ ◦ χ ∈ K. This shows that if a system

admits an IOS-Lyapunov function, then it admits one satisfying inequality (2.2). A
similar remark applies to (1.11).

Obviously, a function which satisfies a decay estimate of the stronger form

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ))(2.3)

for some χ, α ∈ K is in particular an IOS Lyapunov function. It is thus natural to
ask if there always exists, for an IOS system, a function with this stronger property.
We now show, by means of an example, that such functions do not in general exist.
Consider for that purpose the following two-dimensional single-input system:

ẋ1 = 0, ẋ2 = −2x2 + u

1 + x2
1

, y = x2.(2.4)

This system is IOS, because with V (x) := x2
2, it holds that

V (ξ) ≥ µ2 ⇒ DV (ξ)f(ξ, µ) = −2x2
2x2 + u

1 + x2
1

≤ − 2V (ξ)

1 + x2
1

.

Namely, V is an IOS-Lyapunov function for the system.
Suppose that system (2.4) would admit an IOS-Lyapunov function W with a

decay estimate as in (2.3), i.e., there exist some χ, α ∈ K such that

W (ξ) ≥ χ(|µ|) ⇒ DW (ξ)f(ξ, µ) ≤ −α(W (ξ)).(2.5)

Without loss of generality, we may assume that χ ∈ K∞. In particular, we have that

DW (ξ)f(ξ,−χ−1(W (ξ))) ≤ −α(W (ξ))(2.6)

for all ξ ∈ R
2. Fix any ξ1 ∈ R, and consider the one-dimensional differential equation

ẋ2 = −2x2 − χ−1(W (ξ1, x2))

1 + ξ2
1

.(2.7)
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Since W (ξ1, x2(t)) → 0 (because of (2.6)) and as α1(|ξ2|) ≤ W (ξ1, ξ2) for all ξ (for
some α1 ∈ K), it follows that x2(t) → 0 as t → ∞. This implies that W (ξ1, ξ2) <
χ(2ξ2) for all ξ1 ∈ R and ξ2 > 0. Together with (2.5), this implies that there exists
some β ∈ KL such that, for every trajectory of (2.4) with u(t) ≡ 0, it holds that

|x2(t)| ≤ β(|x2(0)| , t)
for all ξ = (x1(0), x2(0)) such that x2(0) > 0. This is impossible, as it can be seen

that, when u(t) ≡ 0, x2(t) = x2(0)e
−2t/(1+(x1(0))

2), whose decay rate depends on both
x2(0) and x1(0).

Observe that, if we let U(ξ1, ξ2) := [(1 + ξ2
1) |ξ2|](1+ξ2

1), then one obtains the
following estimate:

|ξ2| ≥ |µ| ⇒ DU(ξ)f(ξ, µ) ≤ −U(ξ)(2.8)

for all ξ1 ∈ R, ξ2 �= 0, and all µ ∈ R. (The function U is not smooth on the set where
U(ξ) = 0, but, using a routine smoothing argument, one may easily modify U to get a
smooth Lyapunov function.) This U is not an example of a W as here (which, in any
case, we know cannot exist), because (2.8) only means that U is an ROS-Lyapunov
function, not necessarily an IOS-Lyapunov function (since the comparison is between
|ξ2| and |µ| rather than between a function of U and |µ|).

Finally, we observe that property (1.8) in the IOS-Lyapunov definition may be
rephrased as follows:

V (ξ) > χ̃(|µ|) ⇒ DV (ξ)f(ξ, µ) < 0 ∀ ξ ∈ R
n, ∀µ ∈ R

m,(2.9)

where χ̃(s) := ρχ(s) (for any arbitrary chosen ρ ∈ (0, 1)). This statement is obviously
implied by (1.8). Conversely, if V satisfies this property, then there is an α ∈ KL so
that (1.8) holds; this follows from Lemma A.5 given in the appendix.

3. Uniform stability notions. There is a key technical result which underlies
the proofs of all our converse Lyapunov theorems. It requires yet another set of
definitions, which correspond to stability uniformly on all “disturbance” inputs.
Definition 3.1. A system (1.1) is uniformly output stable with respect to inputs

in MΩ, where Ω is a compact subset of R
m, if

• it is forward complete, and
• there exists a KL-function β such that

|y(t, ξ, u)| ≤ β(|ξ| , t) ∀t ≥ 0(3.1)

holds for all u and all ξ ∈ R
n.

If, in addition, there exists σ ∈ K such that

|y(t, ξ, u)| ≤ σ(|h(ξ)|) ∀ t ≥ 0(3.2)

holds for all trajectories of the system with u ∈ MΩ, then the system is output-
Lagrange uniformly output stable with respect to inputs in MΩ. Finally, if one
strengthens (3.1) to

|y(t, ξ, u)| ≤ β(|h(ξ)| , t) ∀ t ≥ 0(3.3)

holding for all trajectories of the system with u ∈ MΩ, then the system is state-
independent uniformly output stable with respect to inputs in MΩ.
Theorem 3.2. Let Ω be a compact subset of R

m, and suppose that a system (1.1)
is uniformly output stable with respect to inputs in MΩ. Then the system admits a
smooth Lyapunov function V satisfying the following properties:
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• there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n;(3.4)

• there exists α3 ∈ KL such that

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R
n, ∀µ ∈ Ω.(3.5)

Moreover, if the system is output-Lagrange uniformly output stable with respect
to inputs in MΩ, then (3.4) can be strengthened to

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ(3.6)

for some α1, α2 ∈ K∞. Finally, if the system is state-independent uniformly out-
put stable with respect to inputs in MΩ, then (3.4) can be strengthened to (3.6) and
also (3.5) can be strengthened to

DV (ξ)f(ξ, µ) ≤ −α4(V (ξ)) ∀ ξ ∈ R
n, ∀µ ∈ Ω(3.7)

for some α4 ∈ K.
The proof of this theorem will be postponed until section 4.5.

4. Proof of Theorem 1.2. In the proofs of the various parts of the theorem,
we need the following small gain lemma for output-Lagrange stability (see Lemma 8
of [19]).
Lemma 4.1. For every system which satisfies (1.3), there exist a K-function σ

and a K∞-function λ such that the system

ẋ = f(x, dλ(|y|)), y = h(x),(4.1)

where d ∈MB, is forward complete, and

|yλ(t, ξ, d)| ≤ σ(|h(ξ)|)(4.2)

for all ξ ∈ R
n, all t ≥ 0, and all d ∈MB.

4.1. Proof of Theorem 1.2, part 1.
Necessity. Consider an OLIOS system (1.1). By Lemma 4.1, there exist a smooth

K∞-function λ1 and a K-function σ such that the system

ẋ = f(x, dλ1(|y|)), y = h(x),

where d ∈MB, is forward complete, and (4.2) holds.
Since the system is OLIOS, and, in particular, IOS, and since, as shown in [19],

any IOS system is necessarily also ROS, there exists some smooth K∞-function λ2

such that the system

ẋ = f(x, dλ2(|y|)), y = h(x),(4.3)

where d ∈ MB, is forward complete, and there exists some β ∈ KL such that, for all
trajectories x

λ2
(t, ξ, u) with the output functions y

λ2
(t, ξ, u), it holds that∣∣y

λ2
(t, ξ, d)

∣∣ ≤ β(|ξ| , t) ∀ t ≥ 0, ∀ ξ ∈ R
n, ∀ d ∈MB.
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Let λ3(s) = min{λ1(s), λ2(s)}, and let λ(·) be any smooth K∞-function so that λ(s) ≤
λ3(s) for all s. Then, the system

ẋ = f(x, dλ(|y|)), y = h(x),(4.4)

where d ∈MB, is forward complete, and it holds that∣∣y
λ
(t, ξ, d)

∣∣ ≤ β(|ξ| , t) and
∣∣y

λ
(t, ξ, d)

∣∣ ≤ σ(|h(ξ)|) ∀ t ≥ 0.

Applying Theorem 3.2, one sees that there exists some smooth function V such that:
• there exist α1, α2 ∈ K∞ such that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|h(ξ)|) ∀ ξ;(4.5)

• there exist some α3 ∈ KL such that

DV (ξ)f(ξ, νλ(|h(ξ)|)) ≤ −α3(V (ξ), |ξ|)(4.6)

for all ξ ∈ R
n and all |ν| ≤ 1.

It then follows that

DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|)
whenever |µ| ≤ λ(|h(ξ)|), or, equivalently, whenever |h(ξ)| ≥ λ−1(|µ|). Let χ =
α−1

2 ◦ λ−1. Then one has

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|)
for all ξ and all µ. Hence, V is an OLIOS-Lyapunov function for the system.

Sufficiency. Let V be an OLIOS-Lyapunov function for system (1.1). Let α1, α2 ∈
K∞ such that (1.9) holds. By (1.8), and arguing as in Remark 2.1, one also knows
that there exist some κ1 and κ2 ∈ K∞ such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)(4.7)

for all ξ and µ.
Let β ∈ KL be as in Lemma A.4 for the function κ1. Pick any initial state ξ

and any u. Let x(t) and y(t) denote the ensuing trajectory and output function,
respectively. If for some t1 ≥ 0, V (x(t1)) ≤ χ(‖u‖), then V (x(t)) ≤ χ(‖u‖) for all
t ≥ t1. (Proof: pick any ε > 0. If t2 := inf{t > t1 |V (x(t)) > χ(‖u‖) + ε} is finite,
then V (x(t)) > χ(‖u‖) for all t in some left neighborhood of t2, so DV (x(t))/dt < 0
and V (x(t)) > V (x(t2)) for such t, contradicting its minimality. As ε was arbitrary,
the claim follows.) Now let

t̃ = inf{t ≥ 0 : V (x(t)) ≤ χ(‖u‖)}
with the understanding that t̃ =∞ if V (x(t)) > χ(‖u‖) for all t ≥ 0. Then

V (x(t)) ≤ χ(‖u‖) ∀ t ≥ t̃,(4.8)

and on [0, t̃), it holds that

d

dt
V (x(t)) ≤ − κ1(V (x(t)))

1 + κ2(|x(t)|) .
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Since the system is UBIBS, there exists some σ such that (1.12) holds. Hence,

d

dt
V (x(t)) ≤ − κ1(V (x(t)))

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
for all t ∈ [0, t̃), where κ̃2 = κ2 ◦ σ. It then follows Lemma A.4 that

V (x(t)) ≤ β

(
V (ξ),

t

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
)

for all t ∈ [0, t̃).
Let v0(s) = max|ξ|≤s V (ξ). Then v0 is nondecreasing, v0(0) = 0, and V (ξ) ≤

v0(|ξ|). Note then that

β

(
V (ξ),

t

1 + max{κ̃2(|ξ|), κ̃2(‖u‖)}
)

≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β

(
v0(‖u‖), t

1 + κ̃2(‖u‖)
)}

≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β (v0(‖u‖), 0)

}
(consider two cases: |ξ| ≥ ‖u‖ and |ξ| ≤ ‖u‖). This shows that

V (x(t)) ≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, β̃0(‖u‖)

}
for all t ∈ [0, t̃), where β̃0(s) = β(v0(s), 0). Combining this with (4.8), one sees that

V (x(t)) ≤ max

{
β

(
V (ξ),

t

1 + κ̃2(|ξ|)
)
, γ̃(‖u‖)

}
(4.9)

for all t ≥ 0, where γ̃(s) = β̃(s) + χ(s). Using the fact that |h(ξ)| ≤ α−1
1 (V (ξ)), we

conclude that

|y(t)| ≤ max

{
β̃

(
|h(ξ)| , t

1 + κ̃2(|ξ|)
)
, γ(‖u‖)

}
(4.10)

for all t ≥ 0, where β̃(s, r) = α−1
1 (β(α2(s), r)), and γ(s) = α−1

1 (γ̃(s)).

4.2. Proof of Theorem 1.2, part 2.
Necessity. Consider an IOS system (1.1). By Theorem 1 in [19], there exist some

locally Lipschitz map h0 and χ ∈ K∞ with the property that h0(ξ) ≥ χ(|h(ξ)|) such
that the system

ẋ = f(x, u), y = h0(x)(4.11)

is OLIOS. By part 1 of this theorem, system (4.11) admits an OLIOS-Lyapunov
function V . This means that there exist α1, α2, ρ ∈ K∞, and α3 ∈ KL such that

α1(|h0(ξ)|) ≤ V (ξ) ≤ α2(|h0(ξ)|) ∀ ξ ∈ R
n,

and

V (ξ) ≥ ρ(|µ|) =⇒ DV (ξ)f(ξ, µ) ≤ −α3(V (ξ), |ξ|).
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To show that V is an IOS-Lyapunov function, it remains only to show that V (ξ) ≥
α̃1(|h(ξ)|) for some α̃1 ∈ K∞. But this follows immediately from the fact that |h(ξ)| ≤
χ−1(h0(ξ)). So one can let α̃1 := α1◦χ. Hence, V is indeed an IOS-Lyapunov function
for system (1.1).

Sufficiency. Let V be an IOS-Lyapunov function for system (1.1). From the proof
of part 1 of Theorem 1.2 (sufficiency), one can see that if V satisfies (4.7) for some

χ, κ1, κ2 ∈ KL, then there exist β̃ ∈ KL, κ̃2, γ̃ ∈ K∞ such that (4.9) holds. This
means that the system

ẋ = f(x, u), y = V (x)

is OLIOS. Since V (x) ≥ α1(|h(ξ)|) for some α1 ∈ K∞, it follows that system (1.1) is
IOS.

4.3. Proof of Theorem 1.2, part 3.
Necessity. Since the system (1.1) is ROS, there is a smooth K∞-function λ such

that system (1.5) is forward complete, and (1.6) holds for the corresponding sys-
tem (1.5). That is, system (1.5) is uniformly output stable. By Theorem 3.2, sys-
tem (1.5) admits a smooth Lyapunov function V satisfying (3.4) and

DV (ξ)f(ξ, µλ(|y|)) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R
n, ∀ |µ| ≤ 1

for some α3 ∈ KL. This is equivalent to
|y| ≥ λ−1(|ν|) ⇒ DV (ξ)f(ξ, ν) ≤ −α3(V (ξ), |ξ|) ∀ ξ ∈ R

n, ∀ |ν| ∈ R
m.

Hence, one concludes that V is an ROS-Lyapunov function for system (1.1).
Sufficiency. Let V be an ROS-Lyapunov function. As in Remark 2.1, there exist

χ, κ1, κ2 ∈ K∞ such that

DV (ξ)f(ξ, µ) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)
whenever |h(ξ)| ≥ χ(|µ|). Let λ = χ−1. Without loss of generality, one may assume
that λ is smooth. (Otherwise, one can always replace λ by a smooth K∞-function
that is majorized by λ.) It then follows that

DV (ξ)f(ξ, νλ(|h(ξ)|)) ≤ − κ1(V (ξ))

1 + κ2(|ξ|)
for all ξ ∈ R

n and all |ν| ≤ 1. This implies that for any trajectory x
λ
(t) = x

λ
(t, ξ, d)

of the system

ẋ = f(x, dλ(|y|)), y = h(x),

where d ∈MB, it holds that

d

dt
V (x

λ
(t)) ≤ − κ1(V (x

λ
(t)))

1 + κ2(
∣∣x

λ
(t)

∣∣)(4.12)

for all t ≥ 0. It follows immediately that V (x
λ
(t)) ≤ V (ξ) for all t ≥ 0. Since

V (ξ) ≥ α1(|h(ξ)|) for some α1 ∈ K∞, it follows that, for some σ ∈ K∞,∣∣y
λ
(t)

∣∣ ≤ σ(|ξ|) ∀ t ≥ 0.(4.13)
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Since the system is UBIBS, there exists some σ0 ∈ K such that∣∣x
λ
(t, ξ, d)

∣∣ ≤ max{σ0(|ξ|), σ0(‖ud‖)} ∀ t ≥ 0,

where ud(t) = d(t)λ(|y(t)|). Combining this with (4.13), it follows that∣∣x
λ
(t, ξ, d)

∣∣ ≤ σ̃(|ξ|) ∀ t ≥ 0,

where σ̃(s) = max{σ0(s), σ0(λ(σ(s)))}. Substituting this back into (4.12), one has

d

dt
V (x

λ
(t)) ≤ −κ1(V (x

λ
(t)))

1 + κ3(|ξ|) ∀ t ≥ 0,

where κ3(s) = κ2(σ̃(s)). Again, by Lemma A.4, one knows that there exists some
β ∈ KL (which depends only upon κ1) such that

V (x
λ
(t)) ≤ β

(
V (ξ),

t

1 + κ3(|ξ|)
)

∀ t ≥ 0.

Together with the fact that |h(ξ)| ≤ α−1
1 (V (ξ)), this yields∣∣y

λ
(t, ξ, d)

∣∣ ≤ β̃(|ξ| , t) ∀ t ≥ 0,

where β̃(s, r) = α−1
1 [β(α2(s), t/(1+κ3(s)))] is in KL, and α2 is any K∞-function such

that V (ξ) ≤ α2(|ξ|) for all ξ. This shows that the system is ROS.

4.4. Proof of Theorem 1.2, part 4.
Necessity. Assume that a UBIBS system (1.1) admits an estimate (1.4) for some

β ∈ KL and some γ ∈ K. Without loss of generality, one may assume that

|y(t, ξ, u)| ≤ max{β(|h(ξ)| , t), γ(‖u‖)}.
Let σ1(s) = β(s, 0), and let σ2(s) = γ(s). Note then that (1.3) holds. By Lemma 8
in [19], there exists some smooth K∞-function such that the corresponding sys-
tem (1.5) is forward complete, and it holds that

σ2(|d(t)|λ(|yλ(t, ξ, d)|)) ≤ 1

2
|h(ξ)|

for all ξ ∈ R
n, all t ≥ 0, and all d ∈MB. One then can show that for the system

ẋ(t) = f(x(t), d(t)λ(|y(t)|)), y(t) = h(x(t)),

there exists β̃ ∈ KL so that, for all trajectories x
λ
(t, ξ, d), it holds that∣∣y

λ
(t, ξ, d)

∣∣ ≤ β̃(|h(ξ)| , t)
for all t ≥ 0. Applying the last part of Theorem 3.2, one sees that there exists V
satisfying (3.6) for some α1, α2 ∈ K∞ and

DV (ξ)f(ξ, νλ(|y(ξ)|)) ≤ −α3(V (ξ))

for all ξ and all |ν| ≤ 1. This is equivalent to the existence of χ ∈ K∞ such that

V (ξ) ≥ χ(|µ|)⇒ DV (ξ)f(ξ, u) ≤ −α3(V (ξ)).(4.14)



236 LYAPUNOV INPUT TO OUTPUT STABILITY

Sufficiency. It is routine to show that if there is a smooth function V satisfy-
ing (3.6) and (4.14), then the system admits an estimate of type (1.4).
Remark 4.1. Note that in all the proofs of the necessity implications of Theo-

rem 1.2, the UBIBS property is not needed. That is, to show the existence of various
Lyapunov functions for the corresponding stability properties, one does not need the
UBIBS property. However, the UBIBS property is indeed required in the proofs of the
sufficiency implications regarding the IOS, OLIOS, and the ROS properties. It is not
hard to find examples where a system admits an IOS-, OLIOS-, or ROS-Lyapunov
function, without satisfying the UBIBS property, and fails to be IOS, OLIOS, or ROS,
respectively.

It should also be noticed that part 4 of Theorem 1.2 also holds for all forward
complete systems (not necessarily UBIBS). Without the UBIBS assumption, this re-
sult recovers the converse Lyapunov theorem obtained in [12] for systems that are
uniformly globally asymptotically stable with respect to closed invariant sets, when
applied using as output the distance to a closed invariant set. In fact, part 4 of The-
orem 1.2 yields a more general result than the one in [12]. Because of the techniques
used in the proofs in [12], the systems were required to be backward complete. Due
to part 4 of Theorem 1.2, it can be seen that the backward completeness assumption
is redundant.

4.5. Proof of Theorem 3.2. Consider the system

ẋ(t) = f(x(t), u(t)), y = h(x(t)),(4.15)

where the input u takes values in a compact subset Ω of R
m. Assume that the system

is UBIBS and there exists some β ∈ KL such that (3.1) holds for all trajectories
of (4.15). Let ω : R

n → R≥0 be defined by

ω(ξ) := sup {|y(t, ξ, u)| : t ≥ 0, u ∈MΩ} .(4.16)

It then holds that

|h(ξ)| ≤ ω(ξ) ≤ β0(|ξ|) ∀ ξ ∈ R
n,(4.17)

where β0(s) = β(s, 0). Moreover, if there exists some σ ∈ K such that (3.2) holds for
all trajectories, then the above can be strengthened to

|h(ξ)| ≤ ω(ξ) ≤ σ(|h(ξ)|) ∀ ξ ∈ R
n.(4.18)

Observe that, for any ξ ∈ R
n, u ∈MΩ, and t1 ≥ 0,

ω(x(t1, ξ, u)) ≤ sup
t≥0,v∈MΩ

|y(t1 + t, ξ, v)| ≤ β(|ξ| , t1).(4.19)

Also ω decreases along trajectories, i.e.,

ω(x(t, ξ, u)) ≤ ω(ξ) ∀t ≥ 0, ξ ∈ R
n, u ∈MΩ.(4.20)

Define

D := {ξ : y(t, ξ, u) = 0 ∀ t ≥ 0, ∀u ∈MΩ}.
Then ω(ξ) = 0 if and only if ξ ∈ D. For ξ /∈ D, it holds that

ω(ξ) = sup
0≤t≤tξ, u∈MΩ

|y(t, ξ, u)| ,(4.21)
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where tξ = T|ξ|(ω(ξ)/2), and Tr(s) is defined as in Lemma A.1 associated with the
function β.
Lemma 4.2. The function ω(ξ) is locally Lipschitz on R

n \ D and continuous
everywhere.

Proof. First notice that

lim
ξ→ξ0

ω(ξ) ≥ ω(ξ0) ∀ ξ0 ∈ R
n;(4.22)

that is, ω(ξ) is lower semicontinuous on R
n. Indeed, pick ξ0 and let c := ω(ξ0). Take

any ε > 0. Then there are some u0 and t0 so that |y(t0, ξ0, u0)| ≥ c−ε/2. By continuity

of y(t0, ·, u0), there is some neighborhood Ũ0 of ξ0 so that |y(t0, ξ, u0)| ≥ c− ε for all

ξ ∈ Ũ0. Thus ω(ξ) ≥ c− ε for all ξ ∈ Ũ0, and this establishes (4.22).
Fix any ξ0 ∈ R

n \ D, and let c0 = ω(ξ0)/2. Then there exists a bounded neigh-
borhood U0 of ξ0 such that

ω(ξ) ≥ c0 ∀ ξ ∈ U0.

Let s0 be such that |ξ| ≤ s0 for all ξ ∈ U0. Then

ω(ξ) = sup {|y(t, ξ, u)| : t ∈ [0, t1], u ∈MΩ} ∀ ξ ∈ U0,

where t1 = Ts0(c0/2). By [12, Proposition 5.5], one knows that x(t, ξ, u) is locally
Lipschitz in ξ uniformly on u ∈ MΩ and on t ∈ [0, t1], and therefore, so is y(t, ξ, u).
Let C be a constant such that

|y(t, ξ, u)− y(t, η, u)| ≤ C |ξ − η| ∀ ξ, η ∈ U0, ∀ 0 ≤ t ≤ t1, ∀u ∈MΩ.

For any ε > 0 and any ξ ∈ U0, there exist some tξ,ε ∈ [0, t1] and some uξ,ε such that

ω(ξ) ≤ |y(tξ,ε, ξ, uξ,ε)|+ ε.

It then follows that, for any ξ, η ∈ U0, and for any ε > 0,

ω(ξ)− ω(η) ≤ |y(tξ,ε, ξ, uξ,ε)|+ ε− |y(tξ, ε, η, uξ,ε)| ≤ C |ξ − η|+ ε.

Consequently,

ω(ξ)− ω(η) ≤ C |ξ − η| ∀ ξ, η ∈ U0.

By symmetry,

ω(η)− ω(ξ) ≤ C |ξ − η| ∀ ξ, η ∈ U0.

This proves that ω is locally Lipschitz on R
n \ D.

We now show that ω is continuous on D. Fix ξ0 ∈ D. One would like to show that

lim
ξ→ξ0

ω(ξ) = 0.(4.23)

Assume that this does not hold. Then there exists some ε0 > 0 and a sequence {ξk}
with ξk → ξ0 such that ω(ξk) > ε0 for all k. Without loss of generality, one may
assume that

|ξk| ≤ s1 ∀ k
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for some s1 ≥ 0. It then follows that

ω(ξk) = sup {|y(t, ξk, u)| : t ∈ [0, t2], u ∈MΩ} ,
where t2 = Ts1(ε0/2). Hence, for each k, there exists some uk ∈ MΩ and some
τk ∈ [0, t2] such that

|y(τk, ξk, uk)| ≥ ω(ξk)− ε0/2 ≥ ε0/2.

Again, by the locally Lipschitz continuity of the trajectories, one knows that there is
some C1 > 0 such that

|y(t, ξk, u)− y(t, ξ0, u)| ≤ C1 |ξk − ξ0| ∀ k ≥ 0, ∀ 0 ≤ t ≤ t2, ∀u ∈MΩ.

Hence,

|y(τk, ξ0, uk)| ≥ ε0/4

for k large enough, contradicting the fact that y(t, ξ0, u) ≡ 0 for all u ∈ MΩ. This
shows that (4.23) holds if ξ0 ∈ D.

Next, we pick any smooth and bounded function k : R≥0 → R>0 whose derivative
is everywhere positive, and define W : R

n → R≥0 by

W (ξ) := sup {ω(x(t, ξ, u))k(t) : t ≥ 0, u ∈MΩ} .(4.24)

Corresponding to k there are two positive real numbers c1 < c2 such that k(t) ∈ [c1, c2]
for all t ≥ 0, and so

c1ω(ξ) ≤W (ξ) ≤ c2ω(ξ) ∀ ξ ∈ R
n,

which implies that

c1 |h(ξ)| ≤W (ξ) ≤ c2β0(|ξ|) ∀ ξ ∈ R
n.(4.25)

Note, for future reference, that it is always possible to find a bounded, positive,
and decreasing continuous function τ(·) with τ(t)→ 0 as t→∞ such that

k′(t) ≥ τ(t) ∀ t ≥ 0.(4.26)

By (4.19), one knows that ω(x(t, ξ, u)) → 0 as t → ∞. It follows that there is
some τξ ≥ 0 such that

W (ξ) = sup {ω(x(t, ξ, u))k(t) : u ∈MΩ, 0 ≤ t ≤ τξ} .(4.27)

Furthermore, one can get the following estimate, where {Tr} is a family of functions
associated to β as in Lemma A.4.
Lemma 4.3. For any ξ �∈ D with |ξ| ≤ r,

W (ξ) = sup {ω(x(t, ξ, u))k(t) : u ∈MΩ, 0 ≤ t ≤ τξ} ,
where τξ = Tr(

c1
2c2

ω(ξ)).
Proof. If the statement is not true, then for any ε > 0, there exists some tε >

Tr(
c1
2c2

ω(ξ)) and some uε ∈MΩ such that

W (ξ) ≤ ω(x(tε, ξ, uε))k(tε) + ε.
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This implies the following:

ω(ξ) ≤ 1

c1
W (ξ) ≤ 1

c1
ω(x(tε, ξ, uε))k(tε) +

ε

c1

≤ c2
c1

ω(x(tε, ξ, uε)) +
ε

c1
≤ c2

c1
· c1
2c2

ω(ξ) +
ε

c1

=
ω(ξ)

2
+

ε

c1
.

Taking the limit as ε→ 0 results in a contradiction.
Lemma 4.4. The function W (·) is locally Lipschitz on R

n \ D and continuous
everywhere.

Proof. Fix ξ0 �∈ D. Let K0 be a compact neighborhood of ξ0 such that K0∩D = ∅.
Since ω is continuous, it follows that there is some r0 > 0 such that ω(ξ) > r0 for all
ξ ∈ K0, and hence, W (ξ) > r1 := c1r0 for all ξ ∈ K0. Let

T0 = Ts0

(
r1
8c2

)
,

where s0 > 0 is such that |ξ| ≤ s0 for all ξ ∈ K0. Let C > 0 be such that

|y(t, ξ, u)− y(t, η, u)| ≤ C |ξ − η| ∀ t ∈ [0, T0], ∀ ξ, η ∈ K0, ∀u ∈MΩ.

Let

K1 = K0 ∩
{
ξ : |ξ − ξ0| ≤ r1

16Cc2

}
.

Fix any ε ∈ (0, r1/4). Then, for any ξ ∈ K1, there exist tξ,ε ∈ [0, T0] and uξ,ε ∈ MΩ

such that

W (ξ) ≤ ω(x(tξ,ε, ξ, uξ,ε))k(tξ,ε) + ε.

Claim. For any ξ, η ∈ K1, ω(x(tξ,ε, η, uξ,ε)) ≥ r1
8c2

.
Proof. First we note that for any ξ ∈ K1 ⊂ K0,

ω(x(tξ,ε, ξ, uξ,ε)) ≥ W (ξ)− ε

c2
≥ W (ξ)

2c2
≥ r2,

where r2 := r1
2c2

. Thus, for each ξ ∈ K1, there exists some vξ ∈MΩ and some τξ > 0
such that

|y(τξ, x(tξ,ε, ξ, uξ,ε), vξ)| ≥ ω(x(tξ,ε, ξ, uξ,ε))− r2/2 ≥ r2/2.

Observe that

y(τξ, x(tξ,ε, ξ, uξ,ε), vξ) = y(τξ + tξ,ε, ξ, vξ,ε),

where vξ,ε is the concatenation of uξ,ε and vξ, i.e.,

vξ,ε(t) =

{
uξ,ε(t), if 0 ≤ t < tξ,ε,

vξ(t− tξ,ε), if t ≥ tξ,ε.
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Noticing that |y(t, ξ, u)| ≤ r2/2 for all t ≥ Ts0(r2/4), one concludes that τξ + tξ,ε <
Ts0(r2/4) = T0. Note also that for any η ∈ K1,

|y(τξ, x(tξ,ε, η, uξ,ε), vξ)| = |y(τξ + tξ,ε, η, vξ,ε)|
≥ |y(τξ + tξ,ε, ξ, vξ,ε)| − |y(τξ + tξ,ε, η, vξ,ε)− y(τξ + tξ,ε, ξ, vξ,ε)|
≥ r2

2
− C |ξ − η|

≥ r2
2
− 2C

r1
16Cc2

=
r1
4c2

− r1
8c2

=
r1
8c2

.

This implies that ω(x(tξ,ε, η, uξ,ε)) ≥ r1
8c2

for all ξ, η ∈ K1, as claimed.
According to [12, Proposition 5.1], there is some compact set K2 such that

x(t, ξ, u) ∈ K2 for all 0 ≤ t ≤ T0, all ξ ∈ K1, and all u ∈MΩ. Let

K3 = K2 ∩ {ξ : ω(ξ) ≥ r1/8c2}.

Applying Lemma 4.2, one knows that there is some C1 > 0 such that

|ω(ζ1)− ω(ζ2)| ≤ C1 |ζ1 − ζ2| ∀ ζ1, ζ2 ∈ K3.

Since for all ξ, η ∈ K1, and all 0 < ε < r1/4, x(tξ,ε, η, uξ,ε) ∈ K3, we have

|ω(x(tξ,ε, ξ, uξ,ε))− ω(x(tξ,ε, η, uξ,ε))| ≤ C1 |x(tξ,ε, ξ, uξ,ε)− x(tξ,ε, η, uξ,ε)|

for all ξ, η ∈ K1, and all ε ∈ (0, r1/4). Hence,

W (ξ)−W (η) ≤ ω(x(tξ,ε, ξ, uξ,ε))k(tξ,ε)− ω(x(tξ,ε, η, uξ,ε))k(tξ,ε) + ε

≤ c2 |ω(x(tξ,ε, ξ, uξ,ε))− ω(x(tξ,ε, η, uξ,ε))|+ ε

≤ c2C1 |x(tξ,ε, ξ, uξ,ε)− x(tξ,ε, η, uξ,ε)|+ ε

≤ c2C1C2 |ξ − η|+ ε,

where C2 > 0 is such a constant that |x(t, ξ, u)− x(t, η, u)| ≤ C2 |ξ − η| for all ξ, η ∈
K3, all t ∈ [0, T0], and all u ∈ MΩ. Note that the above holds for any ε ∈ (0, r1/4),
and thus,

W (ξ)−W (η) ≤ C3 |ξ − η|

for all ξ, η ∈ K1, where C3 = c2C1C2. By symmetry, one proves that

W (η)−W (ξ) ≤ C3 |ξ − η|

for all ξ, η ∈ K1.
To prove the continuity of W on D, it is enough to notice that for any ξ ∈ D,

W (ξ) = 0 and

|W (ξ)−W (η)| ≤ c2ω(η)→ 0, as η → ξ.

The proof of Lemma 4.4 is thus concluded.
Below we show that W is decreasing along trajectories. Pick any ξ �∈ D. Let

θ0 > 0 be such that

ω(x(t, ξ,v)) ≥ ω(ξ)/2 ∀ t ∈ [0, θ0], ∀ v ∈ Ω,
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where v denotes the constant function v(t) ≡ v. (Observe that such a θ0 exists
because ω is continuous.) Pick any θ ∈ [0, θ0], and let ηv = x(θ, ξ,v). For any ε > 0,
there exists some tv,ε and uv,ε ∈MΩ such that

W (ηv) ≤ ω(x(tv,ε, ηv, uv,ε))k(tv,ε) + ε

= ω(x(tv,ε + θ, ξ, uv,ε))k(tv,ε + θ)

(
1− k(tv,ε + θ)− k(tv,ε)

k(tv,ε + θ)

)
+ ε

≤W (ξ)

(
1− k(tv,ε + θ)− k(tv,ε)

c2

)
+ ε,(4.28)

where uv,ε denotes the concatenation of v and uv,ε. Still for the fixed ξ and θ, and
for any r > |ξ|, define

T r
ξ,θ := max

ṽ∈Ω
Tr

(
c1
2c2

ω(x(θ, ξ, ṽ))

)
.(4.29)

Notice that x(θ, ξ, ṽ) is jointly continuous as a function of (θ, ξ, ṽ). Since ω and Tr

are both continuous, this maximum is well defined and, moreover, T r
ξ,θ is continuous

as a function of θ, so, in particular,

lim
θ→0+

T r
ξ,θ = Tr

(
c1
c2

ω(ξ)

)
.(4.30)

Claim. tv,ε + θ ≤ T r
ξ,θ for all v ∈ Ω and for all ε ∈ (0, c1

4 ω(ξ)).
Proof. Assume that this is not true. Then there is some v ∈ Ω and some ε ∈(

0, c1
4 ω(ξ)

)
such that tv,ε + θ > T r

ξ,θ, and, in particular,

tv,ε + θ ≥ Tr

(
c1
2c2

ω(x(θ, ξ,v))

)
,

from which it follows that

ω(x(tv,ε, ηv, uv,ε)) = ω(x(tv,ε + θ, ξ, uv,ε)) ≤ c1
2c2

ω(x(θ, ξ,v)) =
c1
2c2

ω(ηv)

for some input function uv,ε (which we can take to be the concatenation of v and
uv,ε; note that the inequality follows from (4.19) and the definition of the functions
Tr).

By the definition of W , one has

ω(ηv) ≤ 1

c1
W (ηv) ≤ 1

c1
ω(tv,ε, ηv, uv,ε)k(tv,ε) +

ε

c1

≤ c2
c1

ω(tv,ε + θ, ξ, uv,ε) +
ε

c1

≤ 1

2
ω(ηv) +

ε

c1
,

which is impossible, since ε < c1
4 ω(ξ) ≤ c1

2 ω(ηv). This proves the claim.
From (4.28), we have, for any v ∈ D and for any ε small enough,

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ(tv,ε + cθ)θ + ε



242 LYAPUNOV INPUT TO OUTPUT STABILITY

for some c ∈ (0, 1), where we used the mean value theorem in order to estimate the
change in k, and where τ is a function as in (4.26). Using the monotonicity of τ(·)
and the above claim, one concludes

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ
(
T r
ξ,θ

)
θ + ε

for all ε small enough. Letting ε→ 0, one obtains

W (x(θ, ξ,v))−W (ξ) ≤ −W (ξ)

c2
τ
(
T r
ξ,θ

)
θ ∀ v ∈ Ω.

Thus one concludes that for any v ∈ Ω and any θ > 0,

W (x(θ, ξ,v))−W (ξ)

θ
≤ −W (ξ)

c2
τ(T r

ξ,θ).

Since W is locally Lipschitz on R
n\D, it is differentiable almost everywhere on R

n\D,
and hence, for any v ∈ Ω, any r > |ξ|, and any ξ at which W is differentiable,

DW (ξ)f(ξ, v) = lim
θ→0+

W (x(θ, ξ,v))−W (ξ)

θ
≤ − lim

θ→0+

W (ξ)

c2
τ(T r

ξ,θ)

= −W (ξ)

c2
τ
(

lim
θ→0+

T r
ξ,θ

)
= −W (ξ)

c2
τ

(
Tr

(
c1
c2

ω(ξ)

))
≤ −W (ξ)

c2
τ

(
Tr

(
c1
c22

W (ξ)

))
= −α̃3(W (ξ), r),(4.31)

where α̃3(s, r) =
s
c2

τ(Tr(c3s)) with c3 = c1/c
2
2. Since (4.31) holds for all r > |ξ|, it

follows that

DW (ξ)f(ξ, v) ≤ −α̃3(W (ξ), 2 |ξ|)(4.32)

for all v ∈ Ω and for almost all ξ ∈ R
n \ D.

Since Tr(s) is defined for all r ≥ 0 and s > 0, one sees that α̃3 is defined on
R>0 × R≥0. Extend α̃3 to R≥0 × R≥0 by letting α̃3(0, r) := 0 for all r ≥ 0. By
the continuity property of τ and Tr(·), one sees that α̃3(·, r) is continuous for each
r. (The continuity at s = 0 follows from α̃3(s, r) = sτ(Tr(c3s))/c2 ≤ sτ(0)/c2 for all
s > 0.) Furthermore, since τ(Tr(c3s)) is nondecreasing in s, it follows that α̃3(s, r)
is of class K in s. Let α̌3(s, r) = α̃3(s, 2r)/(1 + r). This function tends to zero as
r →∞, because α̃3(s, r) is nonincreasing in r; thus α̌3(s, r) is of class KL. Moreover,

DW (ξ)f(ξ, v) ≤ −α̌3(W (ξ), |ξ|) ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.

By Corollary A.3, there exists a continuous KL-function α̂3 such that

DW (ξ)f(ξ, v) ≤ −α̂3(W (ξ), |ξ|) ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.(4.33)

To complete the proof, we follow the strategy used in [12] to find a smooth
approximation of W . First of all, by Theorem B.1 in [12], applied on R

n \D, there is
a continuous function W1 that is smooth on R

n \ D such that

|W1(ξ)−W (ξ)| ≤ W (ξ)

2
∀ ξ ∈ R

n \ D,(4.34)
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and

DW1(ξ)f(ξ, v) ≤ −α̂3(W (ξ), |ξ|)/2 ∀ ξ ∈ R
n \ D, ∀ v ∈ Ω.(4.35)

We extend W1 to all of R
n by letting W1 ≡ 0 on D; thus, the approximation (4.34)

holds on all of R
n. (Note that W and α̂3(V (ξ), |ξ|) are both continuous, so the result

in [12] can indeed be applied.)
Next, we appeal to Lemma 4.3 in [12]. This shows that there exists some ρ ∈ K∞

with ρ′(s) > 0 for all s > 0 such that ρ ◦W1 is smooth everywhere. Let V = ρ ◦W1.
It follows from (4.25) and (4.34) that

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|) ∀ ξ ∈ R
n,

where α1(s) = ρ(c1s/2), α2(s) = ρ(2c2β0(s)), and it follows from (4.34) and (4.35)
that

DV (ξ)f(ξ, µ) ≤ −ρ′(W1(ξ))α̂3(W (ξ), |ξ|)/2 ≤ −α3(V (ξ), |ξ|)(4.36)

for all ξ ∈ R
n \ D and all µ ∈ Ω, where

α3(s, r) =
ρ′(ρ−1(s))α̂3(ρ

−1(V (ξ))/2, r)

2
.

Since V has local (actually, global) minima at all points inD, it follows thatDV (ξ) ≡ 0
on D, so we know that the estimate (4.36) also holds on all of R

n.
Finally, observe that if there exists σ ∈ K such that (3.2) holds for all trajectories

of the system, then (4.18) holds for all ξ, which, in turn, implies that

c1 |h(ξ)| ≤W (ξ) ≤ c2σ(|h(ξ)|) ∀ ξ ∈ R
n.(4.37)

This results in the desired inequality

α1(|h(ξ)|) ≤ V (ξ) ≤ σ1(|h(ξ)|) ∀ ξ ∈ R
n,(4.38)

where σ1(s) = ρ(2c2σ(s)). This shows that if (3.2) holds for some σ ∈ K, then
property (3.4) can be strengthened to property (3.6).

Finally, suppose that, in the above proof, one strengthens (3.1) to (3.3). Asso-
ciated to the function β there are, as before, functions {Tr}. Since we also have an
estimate as in (3.1), there are functions {Tr} associated to a β as in (3.1); without loss
of generality, we will assume that the same Tr’s work for both. Thus, we know that,
provided t ≥ Tr(s), |y(t, ξ, u)| ≤ s whenever |h(ξ)| ≤ r or |ξ| ≤ r. The claim stated
after (4.30) holds now for all r > |h(ξ)| (instead of merely if r > |ξ|), because (4.19)
can be strengthened to

ω(x(t1, ξ, u)) ≤ β(|h(ξ)| , t1).
We now repeat the above proof to get a function W (ξ) satisfying (4.37), and corre-
sponding to (4.33), one has now also

DW (ξ)f(ξ, v) ≤ −α̂3(W (ξ), |h(ξ)|) ≤ −α̂3

(
W (ξ),

W (ξ)

c1

)
for all ξ ∈ R

n \ D and all v ∈ Ω. Therefore, on R
n \ D,

DW (ξ)f(ξ, v) ≤ −α4(W (ξ)),
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where α̃4(s) = α̃3(s, s/c1) is a continuous positive definite function. Using the same
smoothing argument as earlier, we can show that there is a smooth function V such
that (4.38) holds for some σ1, σ2 ∈ K∞, and (4.36) can be strengthened to

DV (ξ)f(ξ, v) ≤ −α̂4(V (ξ))(4.39)

for all ξ ∈ R
n and all v ∈ Ω, where α̂4(·) is some continuous positive definite function.

Now we modify the function V to get V1 so that V1 satisfies inequalities of
type (4.37) and (4.39) with α̂4 replaced by a K∞ function α5. For this purpose,
let ρ0(·) be a smooth K∞-function such that ρ0(s)α̂4(s) ≥ 1 for s ≥ 1, and let

ρ1(s) = e
∫ s
0
ρ0(s1) ds1 − 1.

Define V1(ξ) = ρ1(V (ξ)). It holds that

α̂1(|h(ξ)|) ≤ V1(ξ) ≤ α̂2(|h(ξ)|) ∀ ξ ∈ R
n,

where α̂1(s) = ρ1(α1(s)), α̂2(s) = ρ1(α2(s)), and

DV1(ξ)f(ξ, v) = −(V1(ξ) + 1)ρ0(V (ξ))α̂4(V (ξ)) ≤ −α5(V1(ξ))

for all ξ ∈ R
n and all v ∈ Ω, where α5 is any K∞ function with the property that

α5(ρ1(s)) ≤ (ρ1(s) + 1)ρ0(s)α̂4(s)

for all s ≥ 0 (such a K∞-function exists because (s+ 1)ρ0(s)α̂4(s) ≥ s for all s ≥ 1).
Using V1 as a Lyapunov function, this completes the proof.

5. Remarks. The concept of IOS does not distinguish between “measured out-
puts,” which may be used to provide information about the state of a system, and
“target outputs,” which are often the object of control, nor does it allow for the con-
sideration of “robustness” to disturbances. A more general concept can be studied as
well, as follows. Suppose that, instead of systems as in (1.1), we study more general
systems of the following form:

ẋ(t) = f(x(t), u(t), d(t)), y(t) = h(x(t)), w(t) = k(x(t)),(5.1)

where f : R
n×R

m×R
r → R

n, h : R
n → R

p, and k : R
n → R

q are all locally Lipschitz
continuous (for some nonnegative integers n,m, r, p, q). We think of the functions d(·)
and w(·) as disturbances and measured outputs, respectively. Even more generality
is gained if one considers, as mentioned in [17], a “measure” for states (in the sense
of [11]), which we denote by |x|A in analogy to the distance to a set A as in previous
extensions of the ISS notion. Then, a natural definition of relative stability is given
by the requirement that there should exist a KL-function β and K-functions γ1 and
γ2 such that, for each initial state ξ and inputs (u, d), and for all t in the domain of
definition of the corresponding maximal solution x(·) of (5.1),

|y(t)| ≤ β(|ξ|A , t) + γ1(‖u‖) + γ2(‖w‖),(5.2)

where y and w are the functions h(x(·)) and k(x(·)), respectively. Observe that, when
d does not appear in the equations and when k ≡ 0, we recover (if |·|A = |·|) the
IOS definition. When, again, d does not appear in the equations, but now h(x) = x,
we recover (if |·|A = |·|) the input/output to state stability (IOSS) notion of zero-
detectability discussed in [18] and recently completely characterized in [8]. (These
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notions are related by the fact that a system is ISS if and only if it is both IOSS
and IOS, which generalizes the linear systems theory fact that internal stability is
equivalent to detectability plus external stability.) A sufficient Lyapunov-theoretic
condition for our general notion (which could be called “input/measurement to output
stability”) is the existence of a smooth V : R

n → R≥0 such that, for some α1, α2 ∈ K∞,

α1(|h(ξ)|) ≤ V (ξ) ≤ α2(|ξ|A) ∀ ξ ∈ R
n(5.3)

and there exist χ1, χ2 ∈ K, and α3 ∈ KL such that

DV (ξ)f(ξ, µ, δ) ≤ −α3(V (ξ), |ξ|) + χ1(|µ|) + χ2(|h(ξ)|) ∀ ξ, ∀µ, ∀ δ,(5.4)

or obvious variations of this inequality. We leave the formulation of converse theorems
for future work.

Appendix A. Some facts regarding KL functions.
The following simple observation is proved in [19] and will be needed here too.
Lemma A.1. For any KL-function β, there exists a family of mappings {Tr}r≥0

such that
• for each fixed r > 0, Tr : R>0

onto−→ R>0 is continuous and strictly decreasing,
and T0(s) ≡ 0;

• for each fixed s > 0, Tr(s) is strictly increasing as r increases and is such
that β(r, Tr(s)) < s, and consequently, β(r, t) < s for all t ≥ Tr(s).

Lemma A.2. For any KL function β, there exist two K functions κ1 and κ2

so that

β(s, t) ≥ κ1(s)

1 + κ2(t)
(A.1)

for all s ≥ 0 and all t ≥ 0.
Proof. We assume that b := sups β(s, 0) < ∞ (otherwise, we first find a β0 ≤ β

with that property and prove the result for β0). We define, for all s ≥ 0 and t ≥ 0,

β̃(s, t) :=

∫ t+1

t

β(s, τ) dτ.

Note that β̃ is again of class KL, and β̃(s, t) ≤ β(s, t) for all s, t. Let

α̃(t) := sup
s≥0

β̃(s, t).

This is finite everywhere, since it is bounded by b. Moreover, it is a continuous
function, because

α̃(t) :=

∫ t+1

t

α(τ) dτ,

where α is the decreasing function (not necessarily strictly) defined by α(t) :=

sups≥0 β(s, t). We will write from now on β̃(∞, t) instead of α̃(t). Finally, we let

ρ(x) := max{x, 0}
for all x ∈ R and introduce the following function:

c : R
2 → R : (x, y) �→ − ln β̃

(
1

ρ(x)
, ρ(y)

)
− ρ(−x)− ρ(−y),
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where we understand β̃( 1
0 , t) as α̃(t). As in [1], we let N denote the class of all

functions k : R → R that are nondecreasing, continuous, and unbounded below.
Note that c is of class N on each variable separately. (Continuity follows from the

continuity of each of β̃(∞, ·), β̃(s, ·) for each s ≥ 0, and β̃(·, t) for each t ≥ 0 as well as

continuity of ρ. The nondecreasing property is clear, using that β̃(·, t) for each t ≥ 0

and ρ are nondecreasing, and that β̃(∞, ·) and β̃(s, ·) for each s ≥ 0 are nonincreasing.
Unbounded below follows from the fact that for x → −∞ we have c(x, y0) = a + x,

where a = β̃(∞, ρ(y0)) − ρ(−y0) and for y → −∞ we have c(x0, y) = a + y, where

a = − ln β̃
(

1
ρ(x0)

, 0
)
− ρ(−x0).

By Proposition 3.4 in [1], there is some k ∈ N such that c(x, y) ≤ k(x) + k(y)

for all x, y. So, we can write, after using that β ≥ β̃: β(1/x, y) ≥ e−k(x)e−k(y) for all
x, y > 0. Equivalently,

β(s, t) ≥ κ1(s)

1 + κ2(t)

for all s, t > 0, when we define

κ1(s) := e−k(1/s)−k(0)

for all s > 0 and

κ2(t) := ek(t)−k(0) − 1

for all t ≥ 0. Observe that both of these functions are continuous, nondecreasing, and
nonnegative. Moreover, κ2(0) = 0, so κ2 is in K. From the inequality

[1 + κ2(0)]β(s, 0) ≥ κ1(s)

for all s > 0, and the fact that β(0, 0) = 0, we conclude that lims→0+ κ1(s) = 0, so
we may extend κ1 by defining κ1(0) = 0, and thus κ1 is in K as well.

As κ1 and κ2 in Lemma A.2 are continuous, we have, in particular, the following
corollary.
Corollary A.3. For any KL-function β, there is a (jointly) continuous KL-

function β1 such that β(s, r) ≥ β1(s, r) for all (s, r) ∈ R≥0 × R≥0.
The following is a generalization of the comparison lemma given in [12]. It plays

a role in the proofs of sufficiency, which are the easier parts of the theorems.
Lemma A.4. For any K-function κ, there exists a KL function β such that if

y(·) is any locally absolutely continuous function defined on some interval [0, T ] with
y(t) ≥ 0, and if y(·) satisfies the differential inequality

ẏ(t) ≤ −c κ(y(t)) for almost all t ∈ [0, T ](A.2)

for some c ≥ 0 with y(0) = y0 ≥ 0, then it holds that

y(t) ≤ β(y0, ct)

for all t ∈ [0, T ].
Proof. First, by Lemma 4.4 in [12], for each κ ∈ K, there exists β ∈ KL such that

for any locally absolutely continuous function z(t) ≥ 0, if it satisfies the inequality

ż(t) ≤ −κ(z(t))
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on [0, T ], it holds that z(t) ≤ β(z(0), t) for all t. (The statement in that reference
applies to z defined on all of [0,∞), but exactly the same proof works for a finite
interval.)

Let y(t) be a function as in the statement of the lemma for some c > 0, T > 0.
Let ỹ(t) = y(t/c). Then ỹ is again locally absolutely continuous and nonnegative on
[0, cT ]. Moreover, ỹ satisfies the inequality

d

dt
ỹ(t) ≤ −κ(ỹ(t)).

Hence,

ỹ(t) ≤ β(ỹ(0), t)

for all t ∈ [0, cT ]. This then implies that

y(t) ≤ β(y(0), ct)

for all t ∈ [0, T ].
Finally, we have the following fact, mentioned when discussing decrease condi-

tions.
Lemma A.5. Let V : R

n → R be a C1 positive definition function with the
following property: for some K function χ, it holds that

V (ξ) ≥ χ(|µ|) and V (ξ) �= 0 ⇒ DV (ξ)f(ξ, µ) < 0.

Then, there is a function α ∈ KL so that

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ), |ξ|)

for all ξ ∈ R
n, µ ∈ R

m.
Proof. Without loss of generality, we assume that χ ∈ K∞. Define the set for

each s, t ≥ 0:

R(s, t) := {(x, u) : |ξ| ≤ t, V (ξ) ≥ s, |µ| ≤ χ−1(V (ξ))}.

These sets are compact (possibly empty) for each s and t. Note the following proper-
ties:

s > s′ ⇒ R(s, t) ⊆ R(s′, t),

t > t′ ⇒ R(s, t′) ⊆ R(s, t).

Now let

α0(s, t) = min
(ξ,µ)∈R(s,t)

−DV (ξ)f(ξ, µ)

(with the convention that α0(s, t) = +∞ if R(s, t) = ∅). Then, α0(s, t) is nonin-
creasing in t and nondecreasing in s. Moreover, α(s, t) > 0 whenever s > 0 (by the
hypothesis of the lemma). Next let

α̂(s, t) := min{α0(s, t), s}.
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This function has the same monotonicity properties as α0, it satisfies α0(s, t) ≥ α̂(s, t)
for all s, t, and is finite-valued. It also satisfies α̂(s, t) �= 0 for s > 0. Now pick

α̃(s, t) :=

∫ s

s−1

α̂(σ, t) dσ

(let α̂(s, t) := 0 for s < 0). This function still has the same monotonicity properties,
satisfies α̃(s, t) > 0 for s > 0, and is continuous in s. It may not be strictly increasing
in s, nor need it converge to zero as t → 0, so we obtain finally a KL function α by
defining

α(s, t) :=
sα̃(s, t)

(1 + s)(1 + t)
.

This satisfies the desired properties by construction, because

V (ξ) ≥ χ(|µ|) ⇒ DV (ξ)f(ξ, µ) ≤ −α(V (ξ), |µ|),

and α0 ≥ α̂ ≥ α̃ ≥ α pointwise.
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