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Lyapunov Designed Super-Twisting Sliding Mode Control for Wind
Energy Conversion Optimization

C. Evangelista*†, P. Puleston*, F. Valenciaga* and L. Fridman**

Abstract— This work explores an adaptive second order sliding
mode control strategy to maximize the energy production of a
wind energy conversion system (WECS) simultaneously reducing
the mechanical stress on the shaft. Such strategy successfully
deals with the random nature of wind speed, the intrinsic
nonlinear behavior of the WECS and the presence of model
uncertainties and external perturbations acting on the system.
The synthesized adaptive controller is designed from a modified
version of the super-twisting (ST) algorithm with variable gains.
The suitability of the proposed strategy is proved by extensive
computer aided simulations employing a comprehensive model
of the system emulating realistic conditions of operation,i.e.,
considering variations in the parameters and including external
disturbances.
Additionally, a second controller based on the traditional ST
algorithm is also designed and simulated. Results are presented
and discussed, in order to establish a comparison framework.

Index Terms— Sliding Mode Control, Wind Power Generation,
Super-Twisting.

I. INTRODUCTION

It is well known that due to several reasons, worldwide
attention has turned to renewable energy sources, among
which wind represents one of the most interesting options. Its
exploitation has been one of the most dynamically growing
for the last years. By the end of 2010, wind turbines were
generating 2.5% of the world electricity consumption and the
global wind installed capacity exceeded 197GW [1], [2].

This growing trend must be accompanied by continuous
technological development and optimization, leading to better
options concerning reductions in costs, integration to the
grid and improvements regarding turbine performance and
reliability in the electricity delivery. Among the main research
subjects in the wind energy field there is the exploration of
novel control strategies, which must cope with the exacting
characteristics presented by WECS such as the nonlinear
behavior of the system, usual uncertainties in both the aerody-
namic and the electrical models and the presence of external
perturbations, and the random variability of the wind.

In this context, it results of interest to explore the use of
second order sliding mode (SOSM) algorithms, which are an
excellent option to control nonlinear uncertain systems operat-
ing in perturbed environments [3]. Roughly speaking, SOSM
techniques consist of zeroing the sliding variableσ and its first
time derivativeσ̇ in finite time, through a continuous control
u(t) acting discontinuously on its second time derivative,σ̈,
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reducing strongly the chattering phenomenon. They result in
controllers with several attractive characteristics [4]-[16]:

- Robustness with respect to various internal and external
disturbances and model uncertainties, allowing accurate regu-
lation and tracking.

- Finite-time convergence.
- Reduction of mechanical stresses and chattering (i.e., high-

frequency vibrations of the controlled system), compared to
standard sliding mode strategies, given that the applied control
actions are continuous.

- Relatively simple control laws, which entails low real time
computational burden.

- The design procedure is capable of dealing with nonlinear
descriptions of the system, therefore wider ranges of operation
are attained, in comparison to design techniques based on
model linearization.

This work presents a controller based on the ST algorithm
with variable gains proposed by Dávila, Moreno and Fridman
[17], using Lyapunov techniques. In particular, it has been
applied and developed to control a grid-connected variable-
speed WECS topology with slip power recovery, which can be
electronically controlled. Its variable speed feature allows to
seek power conversion maximization in the zone of operation
known as partial load zone, where the wind speed is below
the rated of the turbine. The followed control objective wasto
optimize its power conversion efficiency, reducing mechanical
fatigue and attenuating the output chattering.

Additionally, a non adaptive SOSM controller is designed,
in order to both assess its applicability to the studied WECS
and to compare its performance with the adaptive-gain pro-
posal. Suitable candidates could be a classic ST structure or
other constant-gain SOSM algorithms (e.g. Twisting or Sub-
optimal) with the incorporation of an integrator to increase
the relative degree. The ST algorithm, originally presented by
Levant [11], has been preferred given that it can be directly
applied to systems of relative degree 1 (as the considered
WECS) and besides, it does not require information ofσ̇ for
its implementation. For comparative reasons, the fixed-gain ST
controller has been tuned following the development presented
by Moreno and Osorio [18], since the design method is based
on Lyapunov and is analogous to the one proposed for the
variable-gain ST algorithm.

The paper is organized as follows. The WECS and the con-
trol objective are briefly explained in Section II. The control
design is described in Section III, including the development
of the variable-gain and of the fixed-gain ST controllers, in
III-A and III-B respectively. Simulation results are shownin
Section IV, where the two strategies are evaluated. Finally,
conclusions are presented in Section V.
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II. WECS DESCRIPTION

Grid-connected WECS based on a double-output induction
generator (DOIG) with slip power recovery are considered.
Such variable-speed configuration can operate at different
speeds but generates electricity at the constant frequency
and voltage fixed by the grid and, adequately controlled,
allows power conversion maximization and mechanical stress
alleviation. Particularly in this paper, a simple topologyhas
been selected as a case of study, namely one that uses a static
Kramer drive (SKD) as slip power recovery drive. A schematic
diagram of this configuration is shown in Fig. 1.
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Fig. 1. WECS-DOIG with static Kramer drive.

As it can be observed, both stator and rotor circuits provide
power to the grid, making the system capable of generation
above its rated power. While the former is directly delivered
to the grid, the latter is partially recovered through an elec-
tronic converter, which processes only the recovered power.
This converter consists of an uncontrolled bridge rectifier, a
smoothing reactor and a line commutated inverter, whose firing
angleα can be modified to control the generator torque, and
hence the system operation speed and the operation point [19],
[20], [21].

Starting the description of the WECS with the aerodynamic
subsystem, it should be mentioned that the present work
focuses on the partial load zone of operation, within which
the control objective is to extract the maximum power from
the wind. As it can be seen in Fig. 2, the partial load zone is the
operation zone between the cut-in (when the wind energy is
not sufficient to move on the turbine) and the rated wind speed
[22]. Operation above the rated wind speed is not considered
here and the existence of a power limiting mechanism has
been assumed (possibly by actively or passively changing its
aerodynamic characteristics).
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Fig. 2. Wind turbine operation zone.

For the subsequent analysis a rigid drive train has been as-
sumed and for mathematical simplicity every turbine variable
in the paper has been rendered at the fast shaft or generator
side through the transmission ratiokgb of the gear box (see
AppendixA).

The mechanical power a real turbine can capture is only
a fraction of the available power in the wind and it can be
written as [23]:

Pt = 0.5πρR2Cp(λ)ν3 (1)

where ν is the wind speed,ρ the air density,R the blades
length andCp(λ) the conversion efficiency or power coeffi-
cient of the WECS. This coefficient is a nonlinear function of
the called tip speed ratioλ = RΩ/ν, with Ω the mechanical
rotation speed, and depends on the shape and geometrical
dimensions of the rotor, presenting for a turbine with fixed
pitch a single maximum.

Therefore, power efficiency maximization is obtained if
the tip speed ratio is kept equal toλopt, which can be
accomplished by controlling the system speed operation to
track the variable optimum reference given by [22], [23]:

Ωref =
λoptν

R
(2)

The power coefficient curve for the three-bladed turbine
used in this work, modeled asCp(λ) =

∑3
i=0 ciλ

i, is depicted
in Fig. 3.

opt

p
(
)

Fig. 3. Power coefficient versus tip speed ratio.

An expression for the turbine torqueTt is obtained from
the quotientPt/Ω and, defining the torque coefficient of the
turbine asCt(λ) = Cp(λ)/λ, it can be written as:

Tt = 0.5πρR3Ct(λ)ν2 (3)

Regarding the electromechanical subsystem of the WECS,
it is reasonable to assume that the electrical dynamics are
considerably faster than the mechanical ones. Therefore, a
reduced order model considering the dominant dynamics is
used in this work for the controller design. Then, the nonlinear
dynamic equation of the system can be straightforwardly
obtained by applying Newton’s second law, including a term
g(·) to consider friction, uncertainties and other disturbances,
it can be stated as:

Ω̇ =
1

J

(

Tt(Ω, ν(t)) + Te(Ω, u)
)

+ g(Ω, t) (4)

whereJ is the inertia of the combined rotating parts,Te is
the electrical resistant torque of the generator (Te < 0 as
generator), andu is the control action. Although the generator
torque is physically modified by the controlled firing angle
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α, in this design framework the variableu = | cos(α)| is used
as the control action for simplicity’s sake. In this context, the
expression of the generator torque is given by [24]:

Te(Ω, u, t) =
3V ′2

s sReq

Ωs [(sR′

s + Req)2 + (sωsL)2]
(5)

where

Req =
s

s2 − n2u2

[

sRb + n2u2R′

s−

−nu
√

∣

∣(Rb + sR′

s)
2 + ω2

sL2
(

s2 − n2u2
)
∣

∣

]

andRb = Rr +0.55Rf , L = L′

s +Lr. Rs, Rr andRf are the
resistance of stator, rotor and dc-link, respectively,Ls andLr

are the leakage inductances of stator and rotor windings,Ωs

andωs are the mechanical and electrical synchronous speeds,
s = 1 − Ω/Ωs is the generator slip,Vs the stator voltage,
andn = n1

n2

, with n1 andn2 the turns ratios of the generator
and the step-down transformer respectively. Note that a single
quotation mark applied to a stator variable indicates that it has
been referred to the rotor windings byn1.

The torque characteristicsTt and −Te are schematically
depicted in Fig. 4, in theT − Ω plane. The curves in solid
lines show the variation of−Te with Ω for some values of
the control actionu, while the variation ofTt is depicted
in dotted lines for several wind speeds. The geometric locus
corresponding to the points of maximum power generation is
also presented in the picture in bold dashed line.
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Fig. 4. Torque versus rotational speed characteristics of the DOIG (solid
lines). Wind turbine characteristic for different wind speeds (dotted lines).
Affine approximation to DOIG characteristic (dash-dotted lines). Maximum
power generation locus (bold dashed line).

III. CONTROLLER DESIGN

The expression of the generator torque can be rewritten as:

Te(Ω, u, t) =
3V ′2

s n

ΩsRb
u +

3V ′2
s

ΩsRb

(

1 − Ω

Ωs

)

+ ∆Te(Ω, t)

= B1u + Te1
(Ω) + ∆Te(Ω, t) (6)

where the two first terms correspond to an affine in the control
approximation of the generator torque and the third term,∆Te,
takes into account the remaining differences.

In the zone of operation, where the torque keeps below the
rated, the term∆Te(·) is considerably small and, consequently,
the affine description results a good approximation forTe (see
characteristic in dash-dotted lines in Fig. 4).

Replacing (6) into (4), it results in:

Ω̇ =
B1

J
u +

Tt(Ω, ν) + Te1
(Ω)

J
+ g(Ω, t) +

∆Te(Ω, t)

J
(7)

At this point, to accomplish the speed reference tracking
the sliding variable is chosen as

σ =
J

B1

(

Ω − Ωref (t)
)

(8)

In this way, the 2-sliding conditioṅσ = σ = 0 guarantees
the main control objectiveΩ = Ωref . At the same time, the
inclusion of the constant factorJ/B1 allows to express the
sliding dynamics in the regular form using (2), (7) and (8):

σ̇ =
J

B1
Ω̇ − Jλopt

B1R
ν̇ = u + F (σ, t) + G(σ, t) (9)

F (σ, t) =
1

B1

(

Tt(Ω, ν) + Te1
(Ω) − Jλopt

R
ν̇
)

(10)

G(σ, t) =
1

B1

(

g(Ω, t) + ∆Te(Ω, t) + J ∆Ωref (t)
)

(11)

whereΩ = B1

J σ +
λopt

R ν and ∆Ωref (t) considers the errors
in the determination of the reference. FunctionF represents
the nominal or undisturbed design model and functionG takes
into account measurement and modeling errors, uncertainties
in the parameters and external disturbances.

A two-component control action is proposed as
u = ueq + ũ, where ueq is the equivalent control for
system (7) and̃u is designed using a modified version of the
ST algorithm.

The expression ofueq is computed from the undisturbed
system (9) (i.e.G(σ, t) = 0). It is obtained solving foru the
algebraic equatioṅσ = 0, on the sliding surface (i.e. with
σ = 0) [25]. Writing ko =

λopt

R , the expression forueq is:

ueq = −F (0, t) =
Jkoν̇ − Tt(koν, ν) − Te1

(koν)

B1
(12)

Using this formula, (9) can be written as:

σ̇ = ueq + ũ + F (σ, t) + G(σ, t) = ũ + G̃(σ, t) (13)

whereG̃(σ, t) = F (σ, t)−F (0, t)+G(σ, t). This function can
be divided into two terms such as̃G(σ, t) = G̃1(σ, t) + G̃2(t):

G̃2(t) = G̃(0, t) (14)

G̃1(σ, t) = G̃(σ, t) − G̃(0, t) (15)

The design of̃u is based on certain bounding functions which
must be found forG̃1(σ, t) and the time derivative of̃G2(t).

In the following subsections, two designs are developed for
this term. In the main proposal,̃u has variable gains and is a
variation of the Lyapunov based design presented in [17]. Its
adaptive characteristic is intended to be beneficial regarding
output chattering and mechanical efforts applied to the shaft.
As a second case of study, the Lyapunov based standard ST
algorithm proposed in [18] is applied to this control problem.
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A. Variable-gain Super-Twisting

The variable-gain ST control action term̃u has the form:

ũ = − k1(σ, t)φ1(σ) −
∫ t

0

k2(σ, τ)φ2(σ)dτ (16)

φ1(σ) = kc|σ|
1

2 sign(σ), kc > 0 (17)

φ2(σ) = φ
′

1(σ)φ1(σ) =
k2

c

2
sign(σ) (18)

The constantkc is not present in the original algorithm.
It has been considered here as an additional tuning pa-
rameter, to allow a better behaviour of the controlled sys-
tem with respect to chattering. Then, definingz1 = σ
andz2 = −

∫ t

0
k2(σ, t)φ2(σ)dt + G̃2(t) as the new states, the

closed loop system dynamics for (13) with the variable-gain
ST control law given in (16) can be written as







ż1 = −k1(z1, t)φ1(z1) + z2 + G̃1(z1, t)

ż2 = −k2(z1, t)φ2(z1) +
d

dt
G̃2(t)

(19)

A Lyapunov function can be found for this system so that,
if the components of̃G can be bounded such that:

|G̃1(z1, t)| ≤ ̺1(z1, t)|φ1(z1)| = ̺1(z1, t) kc |z1|
1

2 (20)

| d

dt
G̃2(t)| ≤ ̺2(z1, t)|φ2(z1)| = ̺2(z1, t)

k2
c

2
(21)

with some known positive functions̺1(z1, t) and ̺2(z1, t),
and for four constantsǫ > 0, p1 > 0, p2 < −ǫ and p3 > 0
verifying p1p3 > p2

2, the varying gains of̃u are selected as:

k1(z1, t) =
p3

p1p3 − p2
2

(

(p3̺2 − p2̺1)
2

−4(p2 + ǫ)
+ p1̺1−

− p2̺2 −
p1p2

p3
+ ǫ

)

+ δ , δ > 0 (22)

k2(z1, t) =
p1

p3
− p2

p3
k1(z1, t) , (23)

with δ small, then the trajectories of the controlled system (19)
converge to the origin in finite time despite the perturbations.

This can be proved using the following Lyapunov function:

V (z) = ζT Pζ (24)

with ζT = [φ1(z1), z2] = [kc|z1|1/2sign(z1), z2] and

P =

[

p1 p2

p2 p3

]

= PT > 0

Then, a procedure similar to the one developed in the general
proof in [17] is followed. Given that conditions (20)-(23) are
verified for the WECS under study, it can be shown that the
time derivative of the Lyapunov function is bounded by:

V̇ ≤ −ǫφ
′

1(z1)ζ
T ζ = − ǫkc

2|z1|1/2
‖ζ‖2

2 (25)

where‖ζ‖2
2 = k2

c |z1|+z2
2 is the Euclidean norm. Hence, from

the standard inequality for quadratic forms:

λPm‖ζ‖2
2 ≤ ζT Pζ = V (z) ≤ λPM‖ζ‖2

2 (26)

where λPm and λPM are the minimum and the maximum
eigenvalues ofP , it stands that:

V
1

2 ≥ λ
1

2

Pm‖ζ‖2 ≥ λ
1

2

Pmkc|z1|
1

2 (27)

And finally, from (25), (26) and (27):

V̇ ≤ − ǫkc

2|z1|
1

2

V

λPM
≤ − ǫk2

cλ
1

2

Pm

2λPM
V

1

2 = −γV
1

2 (28)

with γ =
ǫk2

cλ
1

2

P m

2λP M
> 0, which shows thatV (z) is a strong

Lyapunov function. Consequently, by the comparison principle
[26], V (z) and, therefore, the trajectories of (19) converge to
zero in finite time.

The expression of̃G(z1, t) for the WECS under study is
given in AppendixB. It has been computed by propagation of
error of (9), considering uncertainties in nominal parameters,
variable measurement errors and the addition of disturbances.
In this case of study, the parameters taken into account
as sources of errors and perturbations were the electrical
resistances (±20% of their nominal values), the grid nominal
voltage (±15% of its nominal value), bounded wind speed
measurement errors and the coefficients of the polynomial
which describes the torque coefficient of the turbineCt

(±10% of their nominal values). As a strong disturbance, an
unmodeled friction torque has been included, computed as a
quadratic function of the rotational speed with the addition
of a random varying independent term (up to±10% of the
friction), generated as band-limited white noise.

Following the described procedure, analytical expressions
have been found for the bounding functions:

̺1(z1, t) =
1

kc
|z1|

1

2 (A1 + A2 |z1| + A3 z2
1) (29)

̺2(z1, t) =
A0

k2
c

(30)

where the values for constantsA0-A3 are given in Appendix
A. The final tuning was aided by simulation tests, selecting the
values for the remaining control design parameters according
to the objective of reducing mechanical loads and output
chattering in the controlled system. The chosen values for
kc, p1, p2, p3, ǫ and δ, to computek1(z1, t) and k2(z1, t)
according to (22)-(23) are also in AppendixA.

B. Fixed-gain Super-Twisting

In this case, the control action expression for the termũ in
(13) is similar to (16), but using fixed gains:

ũ = −k1φ1(σ) − k2

∫ t

0

φ2(σ)dτ (31)

whereφ1(σ) andφ2(σ) are the ones in (17)-(18) withkc = 1:

φ1(σ) = |σ| 12 sign(σ) (32)

φ2(σ) = φ
′

1(σ)φ1(σ) =
1

2
sign(σ) (33)
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Proceeding similarly to the variable-gain case, new states
z1 = σ and z2 = −k2

∫ t

0 φ2(σ)dt + G̃2(t) are defined. Then,
bounding the components of̃G as

|G̃1(z1, t)| ≤ δ1 |φ1(z1)| = δ1 |z1|
1

2 (34)

| d

dt
G̃2(t)| ≤ δ2 (35)

with δ1 and δ2 positive constants, the proposed Lyapunov
function (24) guarantees the trajectories of the controlled
WECS converge to the origin in finite time, having chosen
the fixed gains to verify [18]:

k1 > 2δ1 (36)

k2 > k1
5δ1 + 6δ2 + 4(δ1 + δ2/k1)

2

2(k1 − 2δ1)
(37)

It follows from (20)-(21) and (34)-(35) thatδ1 and δ2 for
the WECS under study can be obtained bounding the functions
̺1(z1, t) and̺2(z1, t) in (29)-(30), found for the calculation
of the variable gains. The constantsδ1 andδ2 must satisfy:

δ1 ≥ |z1|
1

2 (A1 + A2 |z1| + A3 z2
1) (38)

δ2 ≥ A0

2
(39)

Clearly, a global use of this algorithm would not be conve-
nient. Therefore, it is necessary to establish a maximum for
z1 = σ = J

B1

(Ω − Ωref (t)) to determine the value ofδ1. In
this case of study, this maximum was derived assuming values
for Ω within the range|Ω−Ωref (t)| = 5rad/sec and the final
selection was aided by simulation tests, considering the same
disturbances and parameter uncertainties described in section
III-A. The chosen values forδ1, δ2 and the gainsk1 and k2

can be found in AppendixA.

IV. SIMULATION RESULTS

To assess the designed controllers under realistic conditions,
several tests were conducted using a full order model of the
WECS including both the mechanical and the electric dy-
namics, together with uncertainties and disturbances. Thefifth
order set of differential equations used in these simulations
to model the WECS based on DOIG-SKD are detailed in
AppendixC [27].

The performance of the controlled system is shown herein
through a representative example. For the simulations, the
system is set to operate in the partial load zone, incorporating
disturbances and parameter variations within the ranges sum-
marized in section III-A. The 10-minute wind profile used in
the presented simulations can be seen in the upper box of Fig.
5, modeled by adding a high frequency turbulent term to the
quasi-steady term,νs, which is the one that provides useful
work and generates power, and was used for the control design
and tracking (see bottom box of Fig. 5) [28]. The bounds of
νs considered for the design are in AppendixA.

A. Variable-Gain Super-Twisting

The evolution of the rotational speed and the referenceΩref

is depicted in Fig. 6. After a brief reaching time the difference
between the two variables is negligible, as it can be appreciated
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Fig. 5. Wind speed profile and quasi-steady term.

in the zoom box. The sliding variable is presented in Fig.
7, where the practical fulfilment of conditionσ = J

B1

(Ω −
Ωref (t)) = 0 can be observed, as well as it can be inferred
from the comparison of both speeds curves in Fig. 6. Note
that the system operates in sliding exhibiting practicallyno
chattering and proving the robustness of the controller in the
presence of the aforementioned disturbances.
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Fig. 7. Sliding variableσ(t).

Illustratively, the trajectory of the controlled system inthe
state space (σ − σ̇ plane) is shown in Fig. 8.

The maximum available power in the wind, i.e. (1) with
λ = λopt and the generator power are plotted in Fig. 9. As
the system successfully operates withλ = λopt (σ = 0),
the primary control objective is satisfactorily attained and the
generator power finely follows the maximum, except for the
gusts and turbulence and an offset due to friction an other
losses.

The electrical resistant torque of the generator−Te and
the turbine torque are shown in Fig. 10 together with the
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unmodeled friction torqueTfr. A detail of the generator torque
oscillations is shown in the zoomed image inside the figure.
The small amplitude of this oscillations can be appreciated,
showing the excellent behavior of the controlled system re-
garding mechanical loads.
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Fig. 10. Generator, turbine and friction torques.

The evolution of the control input,u(t) = | cos(α)|, is
depicted in Fig. 11. Note that its smoothness and, therefore,
the smoothness of the physical control inputα are responsible
for the reduced mechanical stresses and practically absence of
chattering.

Finally, the electric variables of the WECS are depicted.
The d − q components of the stator and rotor currents and
voltages can be seen in Fig. 12 and 13 respectively.

B. Fixed-Gain Super-Twisting and comparison

The simulations for the WECS using the fixed-gain con-
troller designed in section III-B demonstrated the achievement
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Fig. 11. Control actionu = | cos(α)|.
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Fig. 12. d-q components of stator and rotor electrical currents.
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Fig. 13. d-q components of stator and rotor voltages.

of the main control objective of maximizing the captured
power. The controller proved its robustness to the several
disturbances and uncertainties already described, maintaining
the chattering and mechanical stresses at low levels. Repre-
sentative simulated results, corresponding to the wind profile
displayed at the beginning of the section (Fig. 5), are presented
and discussed in the sequel, comparing them to the ones
corresponding to the variable-gain controller.

The rotational speed and the referenceΩref are displayed
together in Fig. 14. As in the case of the previous controller,
the difference between both variables is negligible, conse-
quently fulfilling the sliding condition. The oscillationsshown
in the zoom boxes of Figs. 6 and 14, which are directly
related to the chattering, allows to mention that, althoughboth
cases exhibit an excellent tracking behavior in this regard, the
variable-gain controller is better.

The time profiles of the electrical and the turbine torques,
−Te and Tt respectively, are depicted in Fig. 15. A look at
its zoom box evidences the satisfactory mechanical behavior,
existing oscillations which are kept below4%. The comparison
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Fig. 14. Rotational speed and speed reference (Fixed-Gain ST).

with the case of the variable-gain controller (see Fig. 10),
where the variations of the generator torque are maintained
smaller than0.2%, shows the improvement obtained on this
matter by having variable gains in the control action. Note that
from the standpoint of mechanical stress, the variations ofthe
torque applied to the shaft is reduced by 20 times in the case
of the variable gain design, without significantly increasing
the complexity of the control.
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Fig. 15. Generator, turbine and friction torques (Fixed-Gain ST).

Finally, the time evolution of the control input,u(t) =
| cos(α)|, is presented in Fig. 16. When compared to the one
corresponding to the variable-gain algorithm (Fig. 11), the
smoothness of the latter must be pointed out, being it the
responsible for the better mechanical behavior.
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Fig. 16. Control actionu = | cos(α)| (Fixed-Gain ST).

V. CONCLUSIONS

In this paper a super-twisting algorithm with variable gains
was applied to the control of a variable-speed WECS with slip
power recovery to maximize the energy extracted from the

wind. A Lyapunov based controller was designed considering
a reduced model of the WECS and tested afterwards through
extensive simulations using a realistic full order model, in-
cluding several disturbances and uncertainties.

The design procedure required the finding of analytical
expressions for certain functions to bind such disturbances
and uncertainties. Those functions, together with five design
parameters, were employed in the calculation of the variable
gains of the controller. The find of the bounds and the overall
controller tuning is not straightforward, but it is an off-line
procedure. On the other hand, the resultant WECS control
algorithm is relatively simple, hence the online computational
cost is considerably low.

The proposed strategy proved to be suitable for this WECS
application, showing a highly robust behavior at accurately
tracking the maximum conversion efficiency, which is de-
termined by the randomly varying wind speed. A special
important feature of the control law synthesized following
this ST approach is the smoothness of the converter firing
angle, facilitating its realizability in commutated systems and
allowing captured power maximization, very low mechanical
stress and practically no output chattering.

An additional controller based on the ST algorithm with
fixed gains, also Lyapunov designed, was developed for the
studied WECS. Simulations ran under conditions similar to the
variable-gain case proved robust tracking behavior. Regarding
chattering and mechanical fatigue, the controller has an ac-
ceptable performance. However, it must be pointed out the
improvement of the variable-gain ST controller in this matter.
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APPENDIX

A. Nominal and design parameters

Prated = 60kW ; ωs =2π50rad/s; Vs = 460/
√

3;
Rs = 119mΩ; Rr = 238mΩ; Rf = 25.9mΩ;
Ls =Lr =1.4mH ; Lf = 10.1mH ; Ms = 35.1mH ;
ρ=1.2242Kg/m3; J =7.0623Kgm2; R = 6.75m;
c0 =−1.142 10−2; c1 =2.214 10−4; c2 =−1.03 10−6;
c3 =1.191 10−9; n1 = n2 = 1.2; pp = 2;

A3 = 8.117; A2 = 3.664; A1 = 7.59; A0 = 0.02;

|ν̇s| ≤ 0.09; |ν̈s| ≤ 0.07; |ν(3)
s | ≤ 0.01; kc = 0.072;

ǫ = 0.001; p3 =0.0069; p2 =−0.002; p1 =0.00579;
δ1 = 0.62; δ2 = 0.01; k1 = 130; k2 = 2.37;
δ = 0.0001;

Rendering to the fast shaft side:kgb = 19.85; Tt = Ttlow/kgb;
Ω = Ωtkgb; J = (Jt/k2

gb + Jg), whereJt and Jg are the
inertia of the turbine rotor and of the generator rotating parts
respectively.
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B. Expression for G̃(z1, t)

G̃(z1, t) = z3
1

9n2πR6V ′3
s ρ

2J3ν2R3
bΩ

2
s

(

V ′

sνRb∆c3 − 2c3V
′

s∆Rb ν+

+ c3Rb(V
′

s∆ν − 4∆Vs ν)
)

+ F (z1, t) − F (0, t)+

+ Tfr(z1, t) + z2
1

3nπR5V ′

sρ

2J2R2
bΩs

(

c2(2∆V ′

s Rb − V ′

s∆Rb)−

− 3V ′

s∆Rb c3λopt + Rb

(

3λopt(2∆V ′

s c3 + V ′

s∆c3)+

+ V ′

s∆c2

)

)

+
z1

2JR2
bΩ

2
s

(

6V ′2
s ∆Rb − 12V ′

s∆V ′

s Rb+

+ πR4ρR2
bΩ

2
s

(

∆ν c1 + ν∆c1 + λopt(2∆ν c2 + 2ν∆c2)+

+ 3λ2
opt(∆ν c3 + ν∆c3)

)

)

− λopt
3V ′2

s ∆ν + J∆RbΩ
2
s ν̇

3nRV ′2
s Ωs

+

+
πR3νρΩs

6nV ′3
s

3
∑

i=0

(

(

V ′

s∆Rb ν + 2Rb(V
′

s∆ν − ν∆V ′

s )
)

ci+

+ V ′

sνRb∆ci

)

λi
opt +

λoptRbJΩs

3nRV ′

s

(2∆V ′

s ν̇ − V ′

s∆ν ν̈)

C. Park model

The nonlinear differential equations that describe the topol-
ogy under study in a synchronously rotating direct quadrature
(d-q) frame are









0
Vs

−(V ′′

s )′u sin(ϕ)
−(V ′′

s )′u cos(ϕ)









= Z









isd

isq

i′rd

i′rq









, (40)

with

Z =









Rs + Lsp −wsLs Msp −ωsMs

ωsLs Rs + Lsp ωsMs Msp
Msp −sωsMs R′

b + L′

bp −sωsL
′

r

sωsMs Msp sωsL
′

r R′

b + L′

bp









where p is the time derivative operator,ϕ = tan−1
(

ird

irq

)

,
Lb = Lr + 0.55Lf , with Lr andLf the inductances of rotor
and dc-link, respectively, andMs the magnetizing inductance.
Quotation marks applied toVs indicates it has been referred
to the inverter terminals byn2. The equation for the generator
torque, which replaces (5), is

Te = ppMs(isqi
′

rd − isdi
′

rq) (41)

wherepp corresponds to the number of pole pairs.
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