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LYAPUNOV EQUATIONS, ENERGY FUNCTIONALS, AND MODEL

ORDER REDUCTION OF BILINEAR AND STOCHASTIC SYSTEMS∗
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Abstract. We discuss the relation of a certain type of generalized Lyapunov equations to Grami-
ans of stochastic and bilinear systems together with the corresponding energy functionals. While
Gramians and energy functionals of stochastic linear systems show a strong correspondence to the
analogous objects for deterministic linear systems, the relation of Gramians and energy functionals
for bilinear systems is less obvious. We discuss results from the literature for the latter problem and
provide new characterizations of input and output energies of bilinear systems in terms of algebraic
Gramians satisfying generalized Lyapunov equations. In any of the considered cases, the definition
of algebraic Gramians allows us to compute balancing transformations and implies model reduction
methods analogous to balanced truncation for linear deterministic systems. We illustrate the per-
formance of these model reduction methods by showing numerical experiments for different bilinear
systems.
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1. Introduction. Model order reduction by balanced truncation is a standard
method, which has been introduced by Moore in [40] for linear deterministic control
systems of the form

(1.1) ẋ = Ax+Bu , y = Cx ,

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and x(t) ∈ Rn, y(t) ∈ Rp, u(t) ∈ Rm

are the state, output, and input of the system, respectively. It preserves stability
and provides guaranteed error estimates. The main obstacle in its realization is the
computation of controllability and observability Gramians as solutions of the dual
Lyapunov equations

(1.2) AP + PAT = −BBT , ATQ+QA = −CTC .

Although this requires a higher effort than, e.g., methods, based on Krylov subspace
approximations, there are algorithms which allow balanced truncation for sparse sys-
tems of dimensions O(105) and more; see, e.g., [46, 5, 36, 29].

The appealing features of balanced truncation have motivated similar approaches
for other system classes. In a series of papers, Scherpen and others (see, e.g., [50, 52,
51, 24, 27, 23, 59]) have developed a theory of balancing for nonlinear systems. The
notion of Gramians is replaced by controllability and observability energy functionals.
While on a conceptional base this generalization is quite attractive, often it is hardly
practicable from the computational point of view, since the energy functionals are

∗Received by the editors February 23, 2009; accepted for publication (in revised form) December
28, 2010; published electronically April 5, 2011.

http://www.siam.org/journals/sicon/49-2/75041.html
†Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magde-

burg, Germany (benner@mpi-magdeburg.mpg.de).
‡AG Technomathematik, Fachbereich Mathematik, TU Kaiserslautern, 67663 Kaiserslautern,

Germany (damm@mathematik.uni-kl.de).

686

D
o
w

n
lo

ad
ed

 0
6
/2

1
/1

2
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENERGY FUNCTIONALS AND MODEL ORDER REDUCTION 687

obtained as solutions of nonlinear Hamilton–Jacobi equations, which are very expen-
sive for large dimensions. Recently in [33], there have been attempts to reduce the
complexity of the optimality equations by POD methods, but nevertheless the scope
of the approach seems to be limited. To overcome this drawback, other generaliza-
tions of Gramians have been considered, especially for bilinear systems in the context
of model order reduction; cf. [1, 25, 26, 63, 64, 11]. These generalized Gramians are
solutions of generalized Lyapunov equations of the forms

AP + PAT +
m∑

j=1

AjPAT
j = −BBT ,

ATQ+QA+

m∑

j=1

AT
j QAj = −CTC ,

(1.3)

where A,B,C are as in (1.1), (1.2), and Aj ∈ Rn×n for j = 1, . . . ,m. If Aj = 0 for
all j, then the linear matrix equations in (1.3) boil down to (1.2). Therefore, we call
them generalized Lyapunov equations, but they should not be confused with other
types of generalized Lyapunov equations such as

APET + EPAT = −BBT

arising in the context of generalized state-space systems [45]. The Gramians defined
by (1.3) have already been considered in [49, 13] to characterize controllability and
observability of bilinear systems

ẋ = Ax+

m∑

j=1

Ajujx+Bu , y = Cx .(1.4)

A first attempt to give an energy-based interpretation of these algebraic Gramians
apparently was made by Gray and Mesko in [25]. Their results look quite promising
and have been taken up recently, e.g., in [34, 17, 11, 28, 16]. Unfortunately, however,
the characterization of energy functionals given in [25] does not hold in the stated
generality. This issue, together with the nonuniqueness of singular value functions
and balancing of nonlinear system, has been addressed by Gray and Scherpen in [24].
Their analysis is quite subtle and applies to general nonlinear systems. However, it
does not discuss the special role of the algebraic Gramians of bilinear systems from
[49, 13], which is of particular interest to us from the computational point of view.
Moreover, the implications of [24] are not fully accounted for in subsequent papers on
bilinear systems, e.g., [11].

Hence, for the special case of bilinear systems, we try to clarify conditions un-
der which the algebraic Gramians give quantifiable information on reachability and
observability properties of the state vectors. In section 3, we first suggest a new ap-
proach to characterize unreachable and unobservable states (Theorem 3.1) via the
Gramians and then give a simple example to illustrate how an integrability condition
contradicts the characterization of energy functionals in [25]. We also discuss some
patches, which, however, do not give satisfactory error estimates for truncation errors.

Since we mainly aim at practical methods for model order reduction applicable
to large-scale problems, we review solvability conditions for the generalized Lyapunov
equations and, in section 4, provide numerical examples to support the significance
of the generalized Gramians in (1.3) for model order reduction of a bilinear system
(1.4)—at least in special cases.
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688 PETER BENNER AND TOBIAS DAMM

On the other hand, it is a well-known fact that generalized Lyapunov equations of
the forms (1.3) are naturally associated to stochastic linear control systems; see, e.g.,
[32, 31, 15]. Therefore it is not surprising that P andQ can be interpreted as Gramians
of stochastic systems and that the method of balanced truncation can immediately
be carried over to this class of systems. Although, of course, work has been done in
this direction, e.g., in [42, 62, 59], to our knowledge this connection between bilinear
and stochastic Gramians has not really been documented in the literature so far; it is
thus another goal of this paper (pursued in section 2) to fill this gap and to open up
the field for further research.

2. Gramians and energy functionals of linear systems. The representation
of input and output energies for deterministic linear control systems as quadratic forms
involving the Gramians is a classical result. Factorizations of the Gramians are used to
compute balanced realizations which can be reduced by truncation. This method has
first been described for time-invariant systems in [40] and for time-varying systems in
[54, 60]. Our adaptation to stochastic systems is quite analogous. To clarify the idea
and the notation as well as for later reference in the discussion of bilinear systems,
we will briefly recapitulate some basic results for time-varying systems.

2.1. Time-varying deterministic linear equations. Let us consider a linear
control system

(2.1) ẋ = A(t)x+ B(t)u , y = C(t)x

with coefficient matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, and C(t) ∈ Rp×n being mea-
surable functions of t. Here u ∈ Rm and y ∈ Rp are called input and output vectors,
while x ∈ Rn is the state vector. For a given measurable input function u : R → Rm

and an initial vector x0 ∈ Rn, let x(t, x0, u) denote the solution of (2.1) with input u
and x(0, x0, u) = x0; the corresponding output will be denoted by y(t, x0, u). For the
fundamental solution of the homogeneous system ẋ = A(t)x, we write Φ(t, τ).

Assuming that the homogeneous system ẋ = A(t)x is exponentially asymptoti-
cally stable, we can define the controllability and observability Gramian by

P =

∫ 0

−∞

Φ(0, τ)B(τ)B(τ)TΦ(0, τ)T dτ ,

Q =

∫ ∞

0

Φ(t, 0)TC(t)TC(t)Φ(t, 0) dt .

(2.2)

Furthermore, for x0 ∈ Rn, we define the input and output energy functionals as

Ec(x0) = inf
u∈L2]−∞,0]

x(−∞,x0,u)=0

∫ 0

−∞

‖u(t)‖2 dt ,

Eo(x0) =

∫ ∞

0

‖y(t, x0, 0)‖
2 dt .

Note that Ec(x0) = ∞ if x0 cannot be reached from 0 over the time-interval ]−∞, 0].
It is easy to see that this is equivalent to x0 �∈ ImP . The following result is well
known. We present a proof both to motivate similar arguments for other systems and
to discuss some issues of forward and backward solutions (see Remark 2.2), which are
important for the stochastic case. Some details of the argument will also play a role
in the bilinear setup.
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Theorem 2.1. Consider the time-varying system (2.1) and the Gramians P and

Q defined by (2.2). If x0 ∈ ImP , then

Ec(x0) = xT
0 P

♯x0 ,

where P ♯ denotes the Moore–Penrose inverse.

For x0 ∈ Rn we have

Eo(x0) = xT
0 Qx0 .

Proof. For fixed x0 we define u : ]−∞, 0] → Rm by

u(t) = B(t)TΦ(0, t)TP ♯x0 .(2.3)

Then

x(t, x0, u) =

∫ t

−∞

Φ(t, τ)B(τ)u(τ) dτ

is well defined by the exponential stability of the homogeneous equation and satisfies
(2.1) as well as the boundary conditions limt→∞ x(t, x0, u) = 0 and

x(0, x0, u) =

∫ 0

−∞

Φ(0, τ)B(τ)u(τ) dτ =

∫ 0

−∞

Φ(0, τ)B(τ)B(τ)TΦ(0, τ)T dτP ♯x0

= PP ♯x0 = x0 .

Among all ũ with x(∞, x0, ũ) = 0 the given control has minimal L2-norm. To show
this, let us assume that ũ = u+ û is another solution to the control problem. Then

x0 =

∫ 0

−∞

Φ(0, τ)B(τ)(u(τ) + û(τ)) dτ , whence

∫ 0

−∞

Φ(0, τ)B(τ)û(τ) dτ = 0 .

This implies
∫ 0

−∞
u(t)T û(t) dt = 0, so that

‖ũ‖2L2 = ‖u+ û‖2L2 = ‖u‖2L2 + ‖û‖2L2 ≥ ‖u‖2L2 .

Since

‖u‖2L2 =

∫ 0

−∞

‖u(t)‖2 dt =

∫ 0

−∞

xT
0 P

♯Φ(0, t)B(t)B(t)TΦ(0, t)TP ♯x0 dt

= xT
0 P

♯PP ♯x0 = xT
0 P

♯x0 ,

the proof of the first assertion is complete.
To prove the second, assume that the system starts in state x0 and is not con-

trolled. Then the corresponding output is y(t) = C(t)Φ(t, 0)x0. The output energy is
the L2-norm of y,

Eo(x0) = ‖y‖2L2 =

∫ ∞

0

y(t)T y(t) dt = xT
0

(∫ ∞

0

Φ(t, 0)TC(t)TC(t)Φ(t, 0) dt

)

x0

= xT
0 Qx0 ,

which we had to show.
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690 PETER BENNER AND TOBIAS DAMM

Remark 2.2.

(i) If a state x0 minimizes the quadratic form xT
0 Px0, then either it is in kerP

or it maximizes xT
0 P

♯x0 among all x0 ∈ ImP . Hence a state is hard to reach
if xT

0 Px0 is small. Similarly, we can say that a state is hard to observe if
xT
0 Qx0 is small.

(ii) We will need later for the controllability Gramian to be interpreted as the
observability Gramian of the dual system. Note that Φ(0, t) = Φ(t, 0)−1,
whence

d

dt
Φ(0, t) = −Φ(0, t)A(t)Φ(t, 0)Φ(0, t) = −Φ(0, t)A(t) ,

d

dt
Φ(0,−t)T = A(−t)TΦ(0,−t)T ;

see, e.g., [55]. Therefore,

P =

∫ ∞

0

Φ(0,−τ)B(−τ)B(−τ)TΦ(0,−τ)T dτ

=

∫ ∞

0

Φ̃(τ, 0)TB(−τ)B(−τ)T Φ̃(τ, 0) dτ ,

where Φ̃ is the fundamental solution of the equation ẋ = A(−t)Tx.
(iii) It is customary to define Ec(x0) as the minimal energy needed to steer from

0 to x0 over the interval ]−∞, 0]. Alternatively, one can steer asymptotically
from t0 to x0 over an interval [t0, t0+T ], where t0 ∈ R and T > 0 are arbitrary,
and set

E(t0)
c (x0) = inf

u∈L2[t0,t0+T ],T>0

x(t0+T,t0,u)=x0

∫ t0+T

t0

‖u(t)‖2 dt .

For time-varying systems in general this yields a different value, E
(t0)
c (x0) �=

Ec(x0), but in the time-invariant case it is the same (which is well known and
follows also as a special case from our discussion in the next subsection). An
advantage is that we may also consider solutions for positive times, and these
are also defined for stochastic systems.

(iv) For completeness, let us recall that in the time-invariant case, P and Q satisfy
the Lyapunov equations AP + PAT = −BBT and QA+ATQ = −CTC.

2.2. Stochastic linear differential equations. Consider a stochastic linear
control system of Itô type (see, e.g., [3, 44])

dx = Axdt+
∑N

j=1 Ajx dwj +Budt ,

y = Cx .
(2.4)

The wj = wj(t) are independent zero mean real Wiener processes on a probability
space (Ω,F , µ) with respect to an increasing family (Ft)t∈R+ of σ-algebras Ft ⊂ F .

Let L2
w(R+,R

q) denote the corresponding space of nonanticipating stochastic pro-
cesses v with values in Rq and norm

‖v(·)‖2L2
w
:= E

(∫ ∞

0

‖v(t)‖2dt

)

< ∞ ,
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where E denotes expectation. We assume that the homogeneous equation dx =

Axdt +
∑

Ajx dwj is mean-square-stable, i.e., E(‖x(t)‖2)
t→∞
−→ 0, for all initial con-

ditions x(0) = x0. Its fundamental solution will be denoted by Φ, so that x(t) =
Φ(t, 0)x0. Since stochastic differential equations in general can be solved only forward
in time (see, e.g., [44]), note that Φ(t, τ) is defined only for t ≥ τ . By time-invariance,
we have Φ(t, τ) = Φ(t− τ, 0). For simplicity, we write Φ(t) = Φ(t, 0), where t ≥ 0. By
the stability assumption, the generalized Lyapunov equations

AP + PAT +

N∑

j=1

AjPAT
j = − BBT ,

ATQ +QA+

N∑

j=1

AT
j QAj = − CTC

(2.5)

have nonnegative definite solutions P ≥ 0 and Q ≥ 0, which can be written (cf. [15])
as

P = E

(∫ ∞

0

Φ(t)BBTΦ(t)T dt

)

and Q = E

(∫ ∞

0

Φ(t)TCTCΦ(t) dt

)

.

Let x0 ∈ Rn be given. We determine the minimal energy of an input u, so that
E(x(T, 0, u)) = x0 for some T > 0. In other words, u steers the average state from 0
to x0 over an arbitrary time-interval [0, T ]. Similarly, we consider the output energy
produced by x0. Thus, we consider the energy functionals

Ec(x0) = inf
u∈L2

w [0,T ],T>0

x(T,x0,u)=0

E

(
∫ T

0

‖u(t)‖2 dt

)

,

Eo(x0) = E

(∫ ∞

0

‖y(t, x0, 0)‖
2 dt

)

.

Note that Ec(x0) = ∞ if the average state x0 cannot be reached from 0. It is
easy to see that this is equivalent to x0 �∈ ImP . We have the following analogue of
Theorem 2.1.

Theorem 2.3. Consider the stochastic system (2.4) and the Gramians P and Q
defined by (2.5). If x0 ∈ ImP , then

Ec(x0) = xT
0 P

♯x0 .

For x0 ∈ Rn we have

Eo(x0) = xT
0 Qx0 .

Proof. For T > 0, we set PT = E(
∫ T

0 Φ(t)BBTΦ(t)T dt), and for fixed x0 ∈ ImPT ,

we define u : [0, T ] → Rm via u(t) = BTΦ(T − t)TP ♯
Tx0. By the “variation of

constants” formula for stochastic linear differential equations (see, e.g., [3, 15]) we
have

E (x(T, 0, u)) = E

(
∫ T

0

Φ(T − t)Bu(t) dt

)

=

∫ T

0

Φ(T − t)BBTΦ(T − t)TP ♯
Tx0 dt

= E

(
∫ T

0

Φ(τ)BBTΦ(τ)T dτ

)

P ♯
Tx0 = PTP

♯
Tx0 = x0 .
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692 PETER BENNER AND TOBIAS DAMM

Moreover, u is the unique control with E(x(T, 0, u)) = x0 and minimal L2
w[0, T ]-norm

‖u‖2L2
w
= E

(∫ 0

−∞

‖u(t)‖2 dt

)

= E

(∫ 0

−∞

xT
0 P

♯Φ(−t)BBTΦ(−t)TP ♯
Tx0 dt

)

= xT
0 P

♯
TPTP

♯
Tx0 = xT

0 P
♯
Tx0 .

To prove minimality, we assume that ũ = u + û is another solution to the control
problem. Then

x0 = E

(
∫ T

0

Φ(T − t)B(u(t) + û(t)) dt

)

, whence E

(
∫ T

0

Φ(T − t)Bû(t) dt

)

= 0 .

This implies E(
∫ T

0 u(t)T û(t) dt) = 0, so that

‖ũ‖2L2
w[0,T ] = ‖u+ û‖2L2

w[0,T ] = ‖u‖2L2
w[0,T ] + ‖û‖2L2

w[0,T ] ≥ ‖u‖2L2
w[0,T ] .

Hence Ec(x0) = infT>0 x
T
0 P

♯
Tx0. From the definitions it is clear that PT is monoton-

ically increasing and limT→∞ PT = P . Hence P ♯
T is decreasing, and the infimum is

given by xT
0 P

♯x0.
On the other hand, if the system starts in state x0 and is not controlled, then the

corresponding output is y(t) = CΦ(t)x0. The output energy is the L2
w-norm of y,

Eo(x0) = ‖y‖2L2
w
= E

(∫ ∞

0

y(t)T y(t) dt

)

= xT
0 E

(∫ ∞

0

Φ(t)TCTCΦ(t) dt

)

x0 = xT
0 Qx0 ,

which concludes the proof.
Remark 2.4.

(a) Likewise, the matrices P and Q can be interpreted as state and output co-
variances of a white-noise driven linear system; cf. [59]. We come back to this
idea for bilinear systems in subsection 3.5.

(b) Balancing of systems with stochasticity is also discussed, e.g., in [43, 42], but
not in the case of differential equations with multiplicative noise and not on
the basis of the stochastic Lyapunov equations (2.5).

2.3. Stochastic linear discrete-time systems. Let us now consider a stochas-
tic linear discrete-time control system (see, e.g., [9, 20])

xk+1 = Axk +A0xkwk +Buk,
yk = Cxk .

(2.6)

Here (wk) denotes a scalar stochastic process with zero mean and variance 1. Let
ℓ2w(N,R

q) denote the corresponding space of nonanticipating stochastic processes v
with values in Rq and norm

‖v(·)‖2ℓ2w := E

⎛

⎝

∞∑

j=0

‖vj‖
2

⎞

⎠ < ∞ .
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As in the previous subsection, we could also introduce vector-valued Wiener processes
and write

xk+1 = Axk +
N∑

j=1

Ajxkw
(j)
k +Buk ,

but this only complicates the notation without leading to new insight.
We assume that the homogeneous equation xk+1 = Axk +A0xwj is mean-square-

stable, which means that for all initial conditions x0, we have E(‖xk‖
2)

k→∞
−→ 0. Its

fundamental solution is

Φk =

k−1∏

j=0

(A+ wjA0) ,

where multiplication is always from the left, i.e., Φk+1 = (A + wkA0)Φk. Under the
stability assumption, the generalized discrete-time Lyapunov equations

APAT +A0PAT
0 − P = −BBT ,

ATQA+AT
0 QA0 −Q = −CTC

(2.7)

have nonnegative definite solutions P ≥ 0 and Q ≥ 0, which can be written (cf. [41])
as

P = E

⎛

⎝

∞∑

j=0

ΦjBBTΦT
j

⎞

⎠ and Q = E

⎛

⎝

∞∑

j=0

ΦT
j C

TCΦj

⎞

⎠ .

Note that (1.3) is a special form of (2.7) if we set A = 1
2I and N = 1.

Let x0 ∈ Rn be given. In analogy to the continuous-time situation, we define

Ec(x0) = inf
u∈ℓ2w [0,N ],N>0

x(N,x0,u)=0

E

⎛

⎝

N∑

j=0

‖uj‖
2

⎞

⎠ ,

Eo(x0) = E

⎛

⎝

∞∑

j=0

‖yj‖
2

⎞

⎠ .

Again, Ec(x0) = ∞ if the average state x0 cannot be reached from 0, which is equiv-
alent to x0 �∈ ImP . We have the following analogue of Theorem 2.3.

Theorem 2.5. Consider system (2.6) and the Gramians P and Q given by (2.7).
If x0 ∈ ImP , then Ec(x0) = xT

0 P
♯x0, and for all x0 ∈ Rn we have Eo(x0) =

xT
0 Qx0.

Proof. For N > 0 we set PN = E
(∑N−1

j=0 ΦjBBTΦT
j

)
, and for x0 ∈ ImP , we

define a sequence u0, . . . , uN−1 via uj = BTΦT
(N−1)−jP

♯
Nx0. Then

E (x(N, 0, u)) = E

⎛

⎝

N−1∑

j=0

Φ(N−1)−jBuj

⎞

⎠ = E

⎛

⎝

N−1∑

j=0

Φ(N−1)−jBBTΦT
(N−1)−jP

♯
Nx0

⎞

⎠

= E

(
N−1∑

i=0

ΦiBBTΦT
i

)

P ♯
Nx0 = PNP ♯

Nx0 = x0 .
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694 PETER BENNER AND TOBIAS DAMM

Moreover, u is the unique control with E (x(N, 0, u)) = x0 and minimal ℓ2w-norm

‖u‖2ℓ2w = E

⎛

⎝

N−1∑

j=0

‖uj‖
2

⎞

⎠ = E

(
N−1∑

i=0

xT
0 P

♯
NΦiBBTΦT

i P
♯
Nx0

)

= xT
0 P

♯PP ♯x0

= xT
0 P

♯x0 .

To prove minimality, we assume that ũ = u + û is another solution to the control
problem. Then

x0 = E

⎛

⎝

N−1∑

j=0

Φ(N−1)−jB(uj + ûj)

⎞

⎠ , whence E

⎛

⎝

N−1∑

j=0

Φ(N−1)−jBûj

⎞

⎠ = 0 .

This implies E
(∑N−1

j=0 uT
j ûj

)
= 0, so that

‖ũ‖2ℓ2w = ‖u+ û‖2ℓ2w = ‖u‖2ℓ2w + ‖û‖2ℓ2w ≥ ‖u‖2ℓ2w .

As in the previous subsection, we have Ec(x0) = infN>0 x
T
0 P

♯
Nx0 = xT

0 P
♯x0.

On the other hand, if the system starts in state x0 and is not controlled, then the
corresponding output is yj = CΦjx0. The output energy is the ℓ2w-norm of y,

Eo(x0) = ‖y‖2ℓ2w = E

⎛

⎝

∞∑

j=0

yTj yj

⎞

⎠ = xT
0 E

(
∞∑

0

ΦT
j C

TCΦj

)

x0 = xT
0 Qx0 ,

which concludes the proof.
Remark 2.6. The discrete-time stochastic Gramians (2.7) are also discussed, e.g.,

in [64, 62] in the context of model order reduction. But we have no reference for the
specific energy interpretation given in this section.

In summary, in this section we have shown that the solutions P and Q of the
Lyapunov equations (1.3) exactly represent the energy functionals for different classes
of autonomous linear systems. We could also have added deterministic discrete-time
systems as a special case of stochastic discrete-time systems (2.6) with A0 = 0. Time-
varying stochastic versions can be obtained along the lines of subsection 2.1. Thus,
given P and Q the method of model reduction by balanced truncation can be applied
to the corresponding system in an obvious way; we skip the details here but will
discuss the same idea for bilinear systems in Remark 3.2.

3. Gramians and energy functionals for bilinear systems. Let us now
consider a bilinear control system of the form

ẋ = Ax+
m∑

j=1

Njxuj +Bu,(3.1)

y = Cx,(3.2)

with A,Nj ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, x(t) ∈ Rn, u(t) = [u1(t), . . . , um(t)]T ∈
Rm, y(t) ∈ Rp.

The system is locally controllable if the pair (A,B) is controllable, and locally ob-
servable if the pair (A,C) is observable. It is asymptotically stable for all u ∈ L2[0,∞[
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if A is stable. Assuming these properties, we can consider the energy functionals

Ec(x0) = min
u∈L2]−∞,0]

x(−∞,x0,u)=0

‖u‖2L2(]−∞,0]),(3.3)

Eo(x0) = Eα
o (x0) = max

u∈L2[0,∞[
‖u‖

L2≤α

‖y(·, x0, u)‖
2
L2([0,∞[) ,(3.4)

where α > 0 is a fixed small parameter. While in the definition of Ec we naturally
consider the solution x of (3.1) with the given boundary conditions and minimize over
all u ∈ L2 ] −∞, 0], there is some ambiguity concerning the roles of y and α in the
definition of Eo. For reasons of duality (as we will see later), we prefer to consider y
as the output of the following homogeneous system:

ẋ = Ax+
m∑

j=1

Njxuj ,

y = Cx

(3.5)

instead of the inhomogeneous system (3.1), (3.2). Both versions are considered by
Gray and Mesko in [25], while, e.g., Scherpen in [50] defines Eo for general nonlinear
systems with zero control input, i.e., with α = 0.

Based on further duality considerations, we will suggest an alternative definition
of Eo, which does not involve additional parameters. If the controllability condition
or the observability condition is not satisfied, then we may have Ec(x0) = ∞ or
Eo(x0) = 0 for arbitrarily small x0.

The aim is to compareEc and Eo with the quadratic forms defined by the algebraic
Gramians P ≥ 0 and Q ≥ 0 from the generalized Lyapunov equations

AP + PAT +

m∑

j=1

NjPNT
j = −BBT ,

ATQ+QA+
m∑

j=1

NT
j QNj = −CTC .

(3.6)

In section 3.4 we will review necessary and sufficient conditions for these Gramians to
exist. Let us now show how the definiteness of the Gramians is related to reachability
and observability of the bilinear system.

Theorem 3.1.

(a) Consider the bilinear system (3.1) and assume that P defined by (3.6) is

nonnegative definite. Then x(t, 0, u) ∈ ImP for all t ≥ 0 and all input

functions u, i.e., Ec(x0) = ∞ for all x0 �∈ ImP .

(b) Consider the homogeneous bilinear system (3.5) and assume that Q defined

by (3.6) is nonnegative definite. If x0 ∈ KerQ, then y(t, x0, 0) = 0 for all

t ≥ 0, i.e., Eo(x0) = 0.
Proof. (a) If v ∈ KerP , then by the defining equation for P we have

0 = vT

⎛

⎝AP + PAT +

m∑

j=1

NjPNT
j +BBT

⎞

⎠ v = vT

⎛

⎝

m∑

j=1

NjPNT
j +BBT

⎞

⎠ v ,

which, by the nonnegativity of P , implies BT v = 0 and PNT
j v = 0 for j = 1, . . . ,m.

Hence NT
j KerP ⊂ KerP ⊂ KerBT . Again by (3.6), this implies PAT v = 0, i.e.,

AT KerP ⊂ KerP . Let x(t) denote an arbitrary solution of (3.1).
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696 PETER BENNER AND TOBIAS DAMM

If x(t) ∈ ImP = (KerP )⊥ for some t, then

ẋ(t)T v = x(t)T AT v
︸︷︷︸

∈KerP

+

m∑

j=1

uj(t)x(t)
T NT

j v
︸︷︷︸

∈KerP

+u(t)T BT v
︸︷︷︸

=0

= 0 ,

i.e., ẋ(t)⊥v for all v ∈ KerP . Thus ẋ(t) ∈ ImP if x(t) ∈ ImP , which means that
ImP is invariant under the dynamics. Hence x(0) = 0 ∈ ImP implies x(t) ∈ ImP for
all t ≥ 0.

(b) For x0 ∈ KerQ we can argue as above to show thatNj KerQ ⊂ KerQ ⊂ KerC
and AKerQ ⊂ KerQ. Hence x(t) ∈ KerQ implies ẋ(t) ∈ KerQ, so that KerQ is
invariant under the dynamics. If x0 ∈ KerQ, then x(t, x0, u) ∈ KerQ for all t ≥ 0,
implying y(t, x0, u) = Cx(t, x0, u) = 0.

Remark 3.2. It follows that states in KerP or KerQ are irrelevant for the transfer
behavior of the system and can be eliminated. The idea of balanced truncation is to
dispense also with those states which are almost in KerP or KerQ, i.e., which belong
to small singular values of P and Q. In analogy to the linear case (see, e.g., [2]), one
can use factorizations P = LLT and LTQL = UΣ2UT to compute a transformation
matrix T = LUΣ−1/2 and an equivalent system

ẋ = Ãx+

m∑

j=1

Ñjxuj , y = C̃x ,

with

Ã = T−1AT , Ñj = T−1NjT , B̃ = T−1B , C̃ = CT .

Then (cf. [1]) the corresponding Gramians are balanced, i.e., equal and diagonal,

P̃ = Q̃ =

⎡

⎢
⎣

σ1

. . .

σn

⎤

⎥
⎦ with σ1 ≥ · · · ≥ σn > 0 .(3.7)

Hence, we may assume without loss of generality that P and Q are balanced, when
it is convenient. As in the linear case, we call the numbers σ1, . . . , σn the generalized

Hankel singular values of the bilinear system. If, e.g., σr+1, . . . , σn are particularly
small for some r ∈ N, then locally the states in the subspace spanned by the canon-
ical unit vectors er+1, . . . , en are both hard to reach and hard to observe, and thus

negligible for the transfer behavior. Partitions T = [T1, T2] and T−1 =
[ S1

S2

]

with

the projection matrices T1 ∈ Rn×r and S1 ∈ Rr×n then define the truncated system

matrices Ã(r) = S1AT1, Ñ
(r)
j = S1NjT1, B̃

(r) = S1B, and C̃(r) = CT1, which give a
good local approximation of the original system. It is, however, not obvious how to
measure the error caused by such a procedure.

3.1. Some comments on recent results. In [25] (see also [11]), it is stated
that locally, i.e., for x �= 0 with ‖x‖ sufficiently small, the gradients of Ec and Eo are
given by

∇Ec(x) = P̃ (x)−1x and ∇Eo(x) = Q̃(x)x(3.8)
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with

AP̃ (x) + P̃ (x)AT = −

m∑

j=1

(Njx+ bj)(Njx+ bj)
T ,(3.9)

AT Q̃(x) + Q̃(x)A = −

m∑

j=1

Q̃(x)Njxx
TNT

j Q̃(x)− CTC .(3.10)

From this the authors derive the inequalities

Ec(x0) > xT
0 P

−1x0 and Eo(x0) < xT
0 Qx0 ,(3.11)

under the assumption that at least one of the Nj is nonsingular.
The statements (3.8), and thus the reasoning of [25, 11] leading to (3.11), however,

require a further integrability condition. Note that P̃ (x) and Q̃(x) are the Gramians
of the linearization of (3.1) at x ∈ Rn and u = 0. The functionals xT P̃ (x)−1x thus
describe the minimal local cost associated with moving in direction x. Equation (3.8)
implies that the cost on a whole neighborhood of zero can be obtained from these
local forms. Verriest in [59, sect. 5] discusses in detail that an integrability condition
generally will be an obstruction to this. The following explicit example illustrates
that the field P̃ (x)−1x need not be integrable.

Example 3.3. Let us concentrate on the controllability Gramian. We introduce a
locally controllable system for which the vector field x �→ P̃ (x)−1x defined by (3.9) is
not integrable, so that (3.8) cannot hold. To see this we consider the second derivative
in direction h ∈ Rn. Assuming (3.8) and (3.9), we have

∂

∂x
∇Ec(x)(h) = P̃ (x)−1h− P̃ (x)−1P̃ ′

x(h)P̃ (x)−1x ,

with

AP̃ ′
x(h) + P̃ ′

x(h)A
T = −

m∑

j=1

Njh(Njx+ bj)
T + (Njx+ bj)h

TNT
j .

We now check the integrability condition for the field F (x) := P̃ (x)−1x. Its derivative
is

h �→ F ′(x)h = P̃ (x)−1h− P̃ (x)−1P̃ ′
x(h)P̃ (x)−1x .

The matrix F ′(x) must be symmetric for the field to be integrable (see, e.g., [39,
sect. 18.2]). As a solution of a Lyapunov equation with symmetric right-hand side,
P̃ (x) is symmetric. Hence we concentrate on the matrix representation of the second
term, which we rewrite in terms of Kronecker products. We have

vec
(

P̃ (x)−1P̃ ′
x(h)P̃ (x)−1x

)

= (xT ⊗ I)
(

P̃ (x) ⊗ P̃ (x)
)−1

vec P̃ ′
x(h) ,

where

vec P̃ ′
x(h) = (A⊗ I + I ⊗A)

−1
m∑

j=1

((Njx+ bj)⊗Nj +Nj ⊗ (Njx+ bj))h .
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Thus we have to check the symmetry of the n× n matrices Fj given by

(xT ⊗ I)
(

P̃ (x) ⊗ P̃ (x)
)−1

(A⊗ I + I ⊗A)
−1
(

(Njx+ bj)⊗Nj +Nj ⊗ (Njx+ bj)
)

.

In general, this condition is not fulfilled. Let us consider a simple explicit example:

A =

[
−1 0
0 −2

]

, N = ν

[
0 1
1 0

]

, b =

[
1
1

]

, x = ξ

[
1
1

]

.

Here ν and ξ are parameters which can be chosen small, but which turn out to be
irrelevant for the computation. We can solve explicitly for P̃ (x)−1:

AP̃ (x) + P̃ (x)AT = −(Nx+ b)(Nx+ b)T = −(1 + νξ)2
[

1 1
1 1

]

⇒ P̃ (x) = (1 + νξ)2
[

1/2 1/3
1/3 1/4

]

, P̃ (x)−1 =
6

(1 + νξ)2

[
3 −4

−4 6

]

.

Hence the matrix Fj = F now takes the form

36νξ

(1 + νξ)3

⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

9 −12 −12 16
−12 18 16 −24
−12 16 18 −24
16 −24 −24 36

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 1
2

1
3

1
3

1
4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 2
1 1
1 1
2 0

⎤

⎥
⎥
⎦

=
12νξ

(1 + νξ)3

[
2 −1

−4 2

]

,

which is not symmetric. We can argue similarly for the observability Gramian and
conclude that the corresponding assertions in [25, 11] are not true in general.

Remark 3.4. The critical step in [25] and [11] is the following. In the Hamilton–
Jacobi equation

∂Ec

∂x
Ax+ xTAT ∂Ec

∂x

T

+
∂Ec

∂x

m∑

j=1

(Njx+ bj)(Njx+ bj)
∂Ec

∂x

T

= 0 ,

the authors replace ∂Ec

∂x by the ansatz xT P̃ (x)−1. This gives

xT P̃ (x)−1Ax+ xTAT P̃ (x)−1x+ xT P̃ (x)−1
m∑

j=1

(Njx+ bj)(Njx+ bj)P̃ (x)−1x = 0

for all x ∈ Rn, from which, however, in general it cannot be concluded that

M(x) = P̃ (x)−1A+AT P̃ (x)−1 + P̃ (x)−1
m∑

j=1

(Njx+ bj)(Njx+ bj)P̃ (x)−1 = 0 .

In [24] this issue is treated properly. The authors call M(x) a null matrix function

if it satisfies M(0) = 0 and xTM(x)x = 0 on an open neighborhood of V . Then
they analyze the nonunique singular value decompositions of different null matrix
functions. This analysis, however, does not give an explicit comparison of the energy
functional Ec with the algebraic Gramian P .
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3.2. Some patches. We wish to compare the energy functionals and the quadra-
tic form given by the algebraic Gramians and follow another line of reasoning in [25]
(see also [24, 22] for related fixes). It suffices to concentrate on the control energy
Ec(x0) and to consider the system

ẋ =

⎛

⎝A+

m∑

j=1

Njuj(t)

⎞

⎠ x+Bu .

Assume that P is the unique positive definite solution of a generalized Lyapunov
equation

AP + PAT +

m∑

j=1

ÑjPÑT
j = −BBT ,

where typically, but not necessarily, Ñj = Nj . For simplicity let P be balanced as
in (3.7). For a fixed x0 ∈ Rn let u = ux0 : ]− ∞, 0] → Rm denote the minimizing
control in the definition of Ec(x0) (see, e.g., [50]). With this function we consider the
time-varying homogeneous linear differential equation

ϕ̇ =

⎛

⎝A+

m∑

j=1

Njuj(t)

⎞

⎠ϕ =: Au(t)ϕ(t)

and its fundamental solution Φu(t, τ). The controllability Gramian of the time-varying
control system ẋ = Au(t)x +Bu is then given by

Pu =

∫ 0

−∞

Φu(0, τ)BBTΦu(0, τ)
T dτ .

Since u also steers the state of the time-varying system from 0 to x0, we have

‖u‖2L2 ≥ xT
0 P

♯
ux0 .

By Remark 2.2(iii), we can write Pu also as an observability Gramian

Pu =

∫ ∞

0

Ψu(t, 0)
TBBTΨu(t, 0) dt ,

where Ψu is the fundamental solution of the dual system

Ψ̇u =

⎛

⎝AT +

m∑

j=1

NT
j uj(−t)

⎞

⎠Ψu , Ψu(t, t) = I .

With xu(t) = Ψu(t, 0)x0, we have

xT
0 Px0 = −

∫ ∞

0

d

dt

(

xu(t)
TPxu(t)

)

dt

= −

∫ ∞

0

xu(t)
T

((

A+

m∑

j=1

Njuj(−t)

)

P + P

(

AT +

m∑

j=1

NT
j uj(−t)

))

xu(t) dt

= −

∫ ∞

0

xu(t)
T

((

AP + PAT +

m∑

j=1

ÑjPÑT
j

))

xu(t) dt

+

∫ ∞

0

xu(t)
T

m∑

j=1

(

ÑjPÑT
j −Njuj(−t)P − PNT

j uj(−t)
)

xu(t) dt .
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700 PETER BENNER AND TOBIAS DAMM

Here

−

∫ ∞

0

xu(t)
T

(

AP + PAT +

m∑

j=1

ÑjPÑT
j

)

xu(t) dt =

∫ ∞

0

xu(t)
TBBTxu(t) dt

= xT
0 Pux0 .

Hence, if
∫ ∞

0

xu(t)
T

m∑

j=1

(

ÑjPÑT
j −Njuj(−t)P − PNT

j uj(−t)
)

xu(t) dt ≥ 0 ,(3.12)

then xT
0 Px0 ≥ xT

0 Pux0 and xT
0 P

−1x0 ≤ x0P
−1
u x0 = Ec for canonical unit vectors

x0 = ej (cf. [30, Thm. 7.7.8]). Note that (3.12) obviously holds, if
∑m

j=1 ÑjPNT
j > 0

(i.e., P > 0) and supt∈R−
‖ux0(t)‖ is sufficiently small.

For small ‖x0‖, it follows from the continuous dependence of the solution x(t, x0, u)
on the data that the optimal control u = ux0 for the bilinear system is close to the op-
timal control ulin

x0
of the linearized system (compare (2.3)). Thus supt∈R−

‖ux0(t)‖ will
be arbitrarily small if we restrict our attention to sufficiently small ‖x0‖. This reestab-
lishes an essential part of the first assertion in (3.11), which we summarize as follows.

Proposition 3.5. Consider the bilinear system (3.1) and assume that the

Gramian P defined by (3.6) is positive definite and diagonal, i.e., P = diag(σ1, . . . , σn)
with σj > 0. Then there exists an ε > 0, so that for all canonical unit vectors ej the

inequality Ec(εej) > ε2eTj P
−1ej =

ε2

σj
holds.

Remark 3.6.

(a) In [25] an analogue of the inequality (3.12) is taken as an assumption at some
stage in the discussion of the output energy and the observability Gramian.

(b) It is surprising and, in fact, dissatisfying that the Nj do not really play a
role in our reasoning here. The same is true for the arguments in [25, 11]. In
special examples, it could be that inequality (3.12) is more likely to hold for
larger uj if Ñj = Nj , but there is no evidence for that.

(c) If we set Ñj = Nj , and if none of these matrices has full rank, then (3.12) need
not hold. Another approach might be based on considering the generalized
Lyapunov equation with a shifted matrix A. This idea in different contexts
can be found, e.g., in [7, 14] or [15, sects. 1.6 and 2.3.2]. Let

(A+ κI)P + P (A+ κI)T +

m∑

j=1

NjPNT
j +BBT = 0 ,

where κ > 0 is small enough, so that σ(A + κI) ⊂ C−. Then the previous
computation yields

xT
0 Px0 − xT

0 Pux0

=

∫ ∞

0

xu(t)
T

⎛

⎝

m∑

j=1

(
NjPNT

j −Njuj(−t)P − PNT
j uj(−t)

)
+ 2κP

⎞

⎠xu(t) dt ,

where now we have
m∑

j=1

(

NjPNT
j −Njuj(−t)P − PNT

j uj(−t)
)

+ 2κP ≥ 0 ,

as long as the |uj| are sufficiently small.
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3.3. Dual definition and characterization of output energy. As mentioned
before, the presence of the parameter α in the definition of the output energy is
awkward. Here we wish to give an alternative definition, which—in analogy to Re-
mark 2.2(ii)—is based on the input energy of a dual control problem. If we regard
the homogeneous system (3.5) for fixed u as a time-varying linear system, then the
output energy for a given x0 is equal to the minimal energy needed to steer the dual
system from x0 to 0. The dual system, however, can be interpreted again as a bilinear
system, which allows us to fix an adequate u. This is formalized in the following
definition.

We can assume that m = p, since adding zero columns to B or zero rows to C
changes neither the energies nor the Gramians.

Definition 3.7. Together with (3.5), where y(t) ∈ Rm, consider the antistable,

locally controllable dual system

ξ̇ = −AT ξ −
m∑

j=1

NT
j ξuj + CTu .(3.13)

For small x0 ∈ Rn let u = ux0 denote the control of minimal L2-norm, so that

limt→∞ ξ(t, x0, u) = 0.
With this input consider the output y(·, x0, ux0) of (3.5) and define the output

energy

Eo(x0) = ‖y(·, x0, ux0)‖
2
L2[0,∞[.(3.14)

Note that, in contrast to maximizing over a class of bounded inputs in the def-
inition (3.4), here we choose a special input ux0 for each x0. This input maximizes
the output energy in the following sense. Let u be an arbitrary L2-input to both the
primal system (3.5) and the dual system (3.13). If x and ξ denote the corresponding
solutions with initial value x0, then we have

d

dt
ξTx = ξ̇Tx+ ξT ẋ =

⎛

⎝−ξTA−

m∑

j=1

ujξ
TNj + uTC

⎞

⎠x+ ξT

⎛

⎝Ax+

m∑

j=1

ujNjx

⎞

⎠

= uT y .

If ξ(t, x0, u) is bounded, then ξ(t)Tx(t) → 0 as t → ∞ and

‖x0‖
2 =

∣
∣
∣
∣
∣

∫ ∞

0

d

dt
ξTx dt

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ ∞

0

u(t)T y(t, x0, u) dt

∣
∣
∣
∣
∣
≤ ‖u‖L2‖y(·, x0, u)‖L2 ,

and

‖y(·, x0, u)‖L2 ≥
‖x0‖

2

‖u‖L2

.

The right-hand side is maximized if u = ux0 .
Applying Proposition 3.5 to the dual system (3.13), we obtain the dual result.
Proposition 3.8. Consider the bilinear system (3.2) and assume that

the Gramian Q defined by (3.6) is positive definite and diagonal, i.e., Q =
diag(σ1, . . . , σn) with σj > 0. Then there exists an ε > 0, so that for all canoni-

cal unit vectors ej the inequality Eo(εej) < ε2eTj Qej = ε2σj holds.
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3.4. Solvability of generalized Lyapunov equations. In the previous sec-
tions we have encountered dual pairs of matrix equations of the forms (1.3). To
characterize their solvability, it suffices to concentrate on the equation

AP + PAT +

m∑

j=1

AjPAT
j = −BBT ,(3.15)

where P is required to be nonnegative definite. We cite a general theorem (cf. [53, 15,
16]), which gives necessary and sufficient criteria for the existence of a positive definite
solution P > 0. (In particular see [15, Thm. 3.6.1] for further equivalent conditions.
Note that parts of this theorem are contained also in [61, 32].) To apply the result to
(3.15), we have to note that the linear matrix operator

Π(X) �→

m∑

j=1

AjXAT
j

is nonnegative in the sense that Π(X) ≥ 0, whenever X ≥ 0. Moreover, we write
σ(T ) ⊂ C for the spectrum of a linear operator T and ρ(T ) = max{|λ|

∣
∣ λ ∈ σ(T )}

for the spectral radius.
Theorem 3.9. Let A ∈ R

n×n, and consider linear operators LA,Π : Rn×n →
Rn×n, where LA is defined by LA(X) = AX + XAT , and Π is nonnegative. The

following are equivalent:

(a) For all Y > 0: ∃X > 0: LA(X) + Π(X) = −Y ;

(b) ∃Y > 0: ∃X > 0: LA(X) + Π(X) = −Y ;

(c) ∃Y ≥ 0 with (A, Y ) controllable: ∃X > 0: LA(X) + Π(X) = −Y ;

(d) σ(LA + Π) ⊂ C−;

(e) σ(LA) ⊂ C− and ρ(L−1
A Π) < 1.

In particular we note that (3.15) possesses a positive definite solution P if A is
stable, (A,B) is controllable, and the norms of the Aj are sufficiently small. If the
pair (A,B) is not controllable, then P is not necessarily definite. This is consistent
with Theorem 3.1.

The algebraic Gramians may not exist if the Aj are too large. For the stochastic
systems discussed in section 2, this is equivalent to the system being unstable, so that
the energy functionals are not well defined either.

In the context of locally stable bilinear systems, however, we may always rescale
the input variable u so that the algebraic Gramians exist (see also [11]). More pre-
cisely, we replace the bilinear system (3.1) by the equivalent one

ẋ = Ax+
m∑

j=1

(γNj)x
uj

γ
+ (γB)

u

γ
= Ax+

m∑

j=1

Ñjxũj + B̃ũ,

y = Cx .

Then equations (3.6) for the algebraic Gramians have to be replaced by

AP + PAT + γ2
m∑

j=1

NjPNT
j = −BBT ,

ATQ+QA+ γ2
m∑

j=1

NT
j QNj = −CTC .

(3.16)
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Choosing γ > 0 small enough guarantees the existence of the algebraic Gramians
at the price of possibly decreasing the region where the energy estimates hold (i.e.,
decreasing ε in Propositions 3.5 and 3.8). In particular, as we will also see in the
following numerical examples, the smaller γ is chosen, the faster the decay of the
generalized Hankel singular values. Note, however, that in exact arithmetic the kernel
of P is independent of γ > 0.

3.5. Covariance approximation. To conclude this section we give another
interpretation of the Gramians (3.16) as residual covariances; for linear systems this
interpretation is suggested in [59]. Assume that (3.1) is driven by white noise, i.e., u
is a vector of independent white-noise processes of given spectral density γ. Then we
interpret the system as a linear Itô-type stochastic differential equation

dx = Axdt+

m∑

j=1

Njx dwj +B dw,(3.17)

y = Cx .(3.18)

The covariance matrix P (t) = E(xxT ) satisfies the deterministic differential equation

Ṗ (t) = AP (t) + P (t)AT + γ2
m∑

j=1

NjP (t)NT
j +BBT .

If the system (3.17) is mean-square-stable, then P (t) converges to a limiting covariance
P ≥ 0 satisfying (3.16). For the output we have

d

dt
E(y(t)T y(t)) =

d

dt
E(x(t)TCTCx(t)) = 〈Ṗ (t), CTC〉 ,

where 〈X,Y 〉 = traceXY for symmetric matrices X and Y . Hence

E(y(t)T y(t)) = 〈P (t), CTC〉
t→∞
→ 〈P,CTC〉 = 〈BBT , Q〉 .

Summarizing this section, we have shown that the kernels of the algebraic Grami-
ans P and Q of bilinear systems are unreachable and unobservable, respectively. But
we have observed some difficulties with the energy interpretation. In contrast to the
linear case, we can only expect the Gramians to provide a bound for the energies.
Moreover, this estimate seems to hold only locally. Nevertheless we expect that small
Hankel singular values correspond to states, which are both hard to reach and hard
to observe. We will provide some numerical evidence for this in the next section.
In any case, the existence of the algebraic Gramians of bilinear systems allows us
to apply balanced truncation to bilinear systems by using a truncated version of the
contragradient transformation represented by T ∈ Rn×n nonsingular, which balances
P vs. Q via

TPT T = T−TQT−1 = diag(σ1, . . . , σn) ,

where the σj are the generalized Hankel singular values. The implementation of the
corresponding model reduction method using the square-root [35, 56] or balancing-

free square-root [58] versions of balanced truncation is straightforward: after solving
the generalized Lyapunov equations (3.6) for the Cholesky factors of P,Q, the only
difference is that the truncation operators have to be applied to the matrices Nj ,
analogous to their application to A. In the following section, we report results achieved
by this approach.
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4. Numerical examples. Numerically, the solution of the generalized Lya-
punov equations (3.16) is a challenge even for medium-sized systems. A naive direct
approach has complexity O(n6), which is impracticable. Iterative methods can be
based on the contraction property in Theorem 3.9(e). In [16] a preconditioned Krylov
subspace method has been described, which converges reasonably fast in many cases
and has complexity O(n3). This allows us to deal with dimensions n up to a few thou-
sand (let us call this medium-sized) on a standard computer, but in general not more.
In the following we consider several medium-sized numerical examples and compare
the approximation property of balanced truncation with that of a Krylov subspace
projection method, developed in [4], which we briefly summarize below. (Other Krylov
subspace methods for bilinear systems can be found, e.g., in [47, 38, 21, 12, 8].) Since
it is not obvious to define a transfer norm for nonlinear systems, we compare just the
outputs of the original system and the reduced systems for a given input function.
As in the linear case, we observe that for a fixed r < n the worst case approximation
error of a reduced system of order r seems to be particularly small if we use balanced
truncation. We interpret this as a strong indication that balanced truncation yields
good error bounds also for bilinear systems.

We also try a two-step reduction procedure, where in the first step a system is
reduced by a Krylov subspace projection, and the smaller system is reduced further
in the second step by balanced truncation. This method can be used also for a large-
scale system if the first step reduces it to medium-sized. We expect that the two-step
reduction can give better error bounds than just a Krylov subspace projection.

Krylov subspace projection. In [4], Bai and Skoogh describe a Krylov sub-
space projection method for the order reduction of SISO bilinear systems (3.1), (3.2).
Given parameters q1, p2, q2 ∈ N, the method produces a reduced system of order
r = q1 + p2q2, which matches the first and second moments (cf. [19])

m(ℓ1) = −CA−ℓ1B for ℓ1 = 1, 2, . . . , q1 and

m(ℓ1, ℓ2) = CA−ℓ2NA−ℓ1B for ℓ1 = 1, 2, . . . , p2, ℓ2 = 1, 2, . . . , q2 .
(4.1)

It is easy to generalize the algorithm for the MIMO case.
To sum up, we compare three methods:
BT. Balanced truncation as in Remark 3.2, where P and Q solve (3.16) with a

given γ ≥ 0. In particular, if γ = 0, the transformation is based only on the
linear part of the system.

Krylov. Krylov subspace projection with moment matching for given parameters
q1, p2, q2.

Krylov & BT. Two-step reduction, where the first step is Krylov and the second
is BT.

A nonlinear RC circuit. In [4, Example 2] a large system obtained by Carle-
man bilinearization of an RC circuit with nonlinear resistor is considered. See that
paper for further details on the derivation of the model and the structure of the matri-
ces; the same system has also been discussed, e.g., in [10, 18, 11, 12]. If the dimension
of the nonlinear system is N0, then the bilinear system has dimension n = N2

0 +N0.
For N0 = 200 the authors of [4] compute a reduced model of order r = 21 with
q1 = 20, p2 = q2 = 1.

Since n = 40,200 is too large for our generalized Lyapunov solver, we first consider
the case N0 = 50, which still gives a medium-sized bilinear system with n = 2550.
This system is reduced to order r = 21 by the different methods. Our first plots in
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Figure 4.1 show the advantage of BT with respect to the relative error. Even the
mixed method, which first reduces the system to order 76 by Krylov and then to 21
by BT, is superior to Krylov alone in this example.

Fig. 4.1. For the input function u(t) = e−t (left) and u(t) = cos((2πt)/10) + 1)/2 (right) the
outputs of the full and the reduced systems are compared. The plots show the relative errors over
time.

The choice of parameters, of course, is important. Let us have a look at the role of
r and γ, since these are essential in BT. We solve the generalized Lyapunov equations
(3.16) for γ = 0 , γ = 0.2, γ = 0.5, and γ = 1 and compute the generalized Hankel
singular values. From these we can read off a local error estimate if we truncate at
r = 21. Moreover, we can determine the numerical rank rγ of the balanced Gramians
and truncate for this value as well. The results in Figure 4.2 clearly indicate that one
should use γ > 0; i.e., for the approximation it is unfavorable to consider only the
linearization. On the other hand, increasing γ does not improve the approximation
in this special example. In fact, if we fix r = 21, then the best results are obtained
for γ = 0.2, while the results are quite similar if we choose r = rγ .

Fig. 4.2. The plots on the left show the largest generalized Hankel values for different γ. The
dotted line shows the truncation error for r = 21, and the dashed line shows the numerical rank.
For γ = 0 the numerical rank is less than 21. On the right we see the relative errors at the output
(with u = e−t) for the corresponding r and γ.
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A heat transfer model. As another example we introduce a bilinear controlled
heat transfer system. On the unit square Ω = [0, 1] × [0, 1], we consider the heat
equation xt = ∆x with the mixed Dirichlet and Robin boundary conditions

n · ∇x = u1(x− 1) on Γ1 := {0}× ]0, 1[ ,

n · ∇x = u2(x− 1) on Γ2 := ]0, 1[×{0} ,

x = 0 on Γ3 := {1} × [0, 1] and Γ4 = [0, 1]× {1} .

Here the heat transfer coefficients u1 and u2 on the left and the lower boundaries Γ1

and Γ2 are the input variables. They can be interpreted, e.g., as spraying-intensities
of a cooling-fluid acting on these boundaries (cf. [48, 57, 6, 37]), where in [6], linear
and bilinear control systems are derived using different choices of controls. The tem-
perature of the fluid is normalized to the value 1, and the heat flow over the boundary
is proportional to the difference of temperatures x − 1 on the boundary. Note that
the inputs uj enter these conditions bilinearly.

By a finite difference discretization of the Poisson equation on an equidistant
k × k-mesh (meshsize h = 1

k+1 ) with nodes xij , we obtain the well-known Poisson
matrix

I ⊗ Tk + Tk ⊗ I , where Tk =

⎡

⎢
⎢
⎢
⎢
⎣

−2 1

1 −2
. . .

. . .
. . . 1
1 −2

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
k×k .

Together with the boundary conditions, this leads to the bilinear system

ẋ = Ax+ u1N1x+ u2N2x+Bu

for x = vec(xij), where

A =
1

h2
(I ⊗ Tk + Tk ⊗ I + E1 ⊗ I + I ⊗ Ek) , Ej = eje

T
j .

The coefficient matrices Nj and the columns bj of B corresponding to the left and
lower boundaries are given by

N1 =
1

h
E1 ⊗ I , N2 =

1

h
I ⊗ Ek , b1 =

1

h
e1 ⊗ e , b2 =

1

h
e⊗ ek , e = [1, . . . , 1]T ∈ R

k .

As an output, we consider the average temperature

y = Cx =
1

k2

k∑

i,j=1

xij =
1

k2
(e⊗ e)Tx .D
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Example 4.1. We illustrate these definitions for the sim-
ple 2× 2 mesh (i.e., k = 2, h = 1/3) shown on the right.
The state vector x = [x11, x21, x12, x22]

T contains the
temperatures at the inner points and the Laplacian is
approximated via

∆xij ≈ −
1

h2
(4xij − xi+1,j − xi,j+1 − xi−1,j − xi,j−1) .

For the boundary points a discretization of the Robin
condition

n · ∇x = u(x− 1)

�

�

�

�❞

❞

❞

❞

❞ ❞

❞ ❞

❞

❞

❞

❞

x11

x21

x12

x22

x31

Γ2

x32

x13

Γ3
x23

x10

Γ1
x20

x01

Γ4
x02

gives, e.g., the approximations

x10 ≈ x11 − hu1(x11 − 1) , x20 ≈ x21 − hu1(x21 − 1) , x31 ≈ x21 − hu2(x21 − 1) .

Altogether this leads to the bilinear system

ẋ = 9

⎡

⎢
⎢
⎣

−3 1 1 0
1 −2 0 1
1 0 −4 1
0 1 1 −3

⎤

⎥
⎥
⎦
x + 3

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

x11 − 1
x21 − 1

0
0

⎤

⎥
⎥
⎦
u1 +

⎡

⎢
⎢
⎣

0
x21 − 1

0
x22 − 1

⎤

⎥
⎥
⎦
u2

⎞

⎟
⎟
⎠

= Ax+ (N1x+ b1)u1 + (N2x+ b2)u2 ,

y =
1

4

[
1 1 1 1

]
x = Cx ,

where the matrices A,N1, N2, C and the vectors b1, b2 are as above.
Now let k = 50, so that the discretized bilinear system has order n = k2 = 2500,

two inputs, and one output. As in the previous example, we first compare BT, Krylov,
and Krylov & BT (see Figure 4.3). Then, in Figure 4.4 we compare the results of BT
for different γ.

Fig. 4.3. Relative output errors for the input functions uj(t) = cos(jπt) and Hankel singular
values for different γ.D

o
w

n
lo

ad
ed

 0
6
/2

1
/1

2
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

708 PETER BENNER AND TOBIAS DAMM

Fig. 4.4. Relative output error for different γ. For γ = 0 the solution is unstable. For fixed
r = 50 we see that the error seems to increase if γ ≥ 0.2 increases. If we choose r = rγ, i.e., the
numerical rank of the balanced Gramians, then the errors are almost equal.

5. Conclusions. We have discussed the relation of a certain type of generalized
Lyapunov equations to Gramians of stochastic and bilinear systems together with
the corresponding energy functionals. The Gramians of continuous- and discrete-
time stochastic linear systems allow the same energy interpretations as in the case
of deterministic linear systems. The relation of algebraic Gramians solving gener-
alized Lyapunov equations and energy functionals for bilinear systems is less clear.
We have discussed results from the literature for the latter problem and point out
some inaccuracies in the energy interpretations used so far. In order to provide some
motivation for using the algebraic Gramians of bilinear systems for model reduc-
tion, we have derived new characterizations of input and output energies of bilinear
systems. In any of the considered cases, the definition of the algebraic Gramians
allows us to compute balancing transformations, which in turn implies model re-
duction methods analogous to balanced truncation for linear deterministic systems.
We have illustrated the performance of these model reduction methods by show-
ing numerical experiments for different bilinear systems. The results demonstrate
that model reduction for bilinear systems based on balanced truncation often ap-
pears to be superior to Krylov subspace methods. In order to make these meth-
ods more efficient and reliable, it would be necessary to derive numerical methods
for the generalized Lyapunov equations that would enable us to solve such equa-
tions for dimensions n > 10, 000, as well as error bounds for the reduced order
models.
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