
 Open access  Journal Article  DOI:10.1017/S0143385703000579

Lyapunov exponents and rates of mixing for one-dimensional maps
— Source link 

José F. Alves, Stefano Luzzatto, Vilton Pinheiro

Institutions: Imperial College London, Federal University of Bahia

Published on: 01 Jun 2004 - Ergodic Theory and Dynamical Systems (Cambridge University Press)

Topics: Lyapunov exponent, Almost everywhere, Mixing (mathematics), Invariant measure and Zero (complex analysis)

Related papers:

 Recurrence times and rates of mixing

 Statistical properties of dynamical systems with some hyperbolicity

 SRB measures for partially hyperbolic systems whose central direction is mostly expanding

 Decay of correlations in one-dimensional dynamics

 Gibbs measures in ergodic theory

Share this paper:    

View more about this paper here: https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-
3qktv78sn0

https://typeset.io/
https://www.doi.org/10.1017/S0143385703000579
https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0
https://typeset.io/authors/jose-f-alves-2fq0a2wldq
https://typeset.io/authors/stefano-luzzatto-1oii7aodcr
https://typeset.io/authors/vilton-pinheiro-4w921t4lzf
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/institutions/federal-university-of-bahia-2b3180ky
https://typeset.io/journals/ergodic-theory-and-dynamical-systems-2o5e77md
https://typeset.io/topics/lyapunov-exponent-11odb6v4
https://typeset.io/topics/almost-everywhere-1h8k037b
https://typeset.io/topics/mixing-mathematics-5zsxnhuc
https://typeset.io/topics/invariant-measure-3vfx9jqz
https://typeset.io/topics/zero-complex-analysis-kbs1ebrl
https://typeset.io/papers/recurrence-times-and-rates-of-mixing-4lcza3yhqt
https://typeset.io/papers/statistical-properties-of-dynamical-systems-with-some-2s879on5h2
https://typeset.io/papers/srb-measures-for-partially-hyperbolic-systems-whose-central-2ek2linhd9
https://typeset.io/papers/decay-of-correlations-in-one-dimensional-dynamics-3490imvn2z
https://typeset.io/papers/gibbs-measures-in-ergodic-theory-4gbqjftupk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0
https://twitter.com/intent/tweet?text=Lyapunov%20exponents%20and%20rates%20of%20mixing%20for%20one-dimensional%20maps&url=https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0
https://typeset.io/papers/lyapunov-exponents-and-rates-of-mixing-for-one-dimensional-3qktv78sn0


Ergodic Theory and Dynamical Systems
http://journals.cambridge.org/ETS

Additional services for Ergodic Theory and Dynamical Systems:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Lyapunov exponents and rates of mixing for one-dimensional maps

JOS&Eacute; F. ALVES, STEFANO LUZZATTO and VILTON PINHEIRO

Ergodic Theory and Dynamical Systems / Volume 24 / Issue 03 / June 2004, pp 637 - 657
DOI: 10.1017/S0143385703000579, Published online: 04 May 2004

Link to this article: http://journals.cambridge.org/abstract_S0143385703000579

How to cite this article:
JOSÉ F. ALVES, STEFANO LUZZATTO and VILTON PINHEIRO (2004). Lyapunov exponents and rates of mixing for one-
dimensional maps. Ergodic Theory and Dynamical Systems, 24, pp 637-657 doi:10.1017/S0143385703000579

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ETS, IP address: 200.130.19.138 on 04 Dec 2013



http://journals.cambridge.org Downloaded: 04 Dec 2013 IP address: 200.130.19.138

Ergod. Th. & Dynam. Sys. (2004), 24, 637–657 c© 2004 Cambridge University Press

DOI: 10.1017/S0143385703000579 Printed in the United Kingdom

Lyapunov exponents and rates of mixing

for one-dimensional maps
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Abstract. We show that one-dimensional maps f with strictly positive Lyapunov exponents

almost everywhere admit an absolutely continuous invariant measure. If f is topologically

transitive, some power of f is mixing and, in particular, the correlation of Hölder

continuous observables decays to zero. The main objective of this paper is to show that the

rate of decay of correlations is determined, in some situations, by the average rate at which

typical points start to exhibit exponential growth of the derivative.

1. Introduction and statement of results

1.1. Lyapunov exponents. The purpose of this paper is to study the statistical properties

of one-dimensional maps f : I → I with positive Lyapunov exponents, where I may be

the circle S
1 or an interval. Such maps satisfy asymptotic exponential estimates for growth

of the derivative, but do not necessarily exhibit exponential estimates for other features of

the dynamics such as the decay of correlations. Our main objective here is to identify some

criterion which distinguishes different degrees of expansivity and which is reflected in the

rate of decay of correlations of the system.

Definition 1. We say that a map f : I → I has positive Lyapunov exponents almost

everywhere if there exists some λ > 0 such that

lim inf
n→∞

1

n
log |(f n)′(x)| ≥ λ > 0 (∗)

for Lebesgue almost every point x ∈ I .
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1.2. Decay of correlations. Positive Lyapunov exponents are known to be a cause of

sensitive dependence on initial conditions and other dynamical features which give rise to

a degree of chaoticity or stochasticity in the dynamics. We can formalize this idea through

the notion of mixing with respect to some invariant measure.

Definition 2. A probability measure µ defined on the Borel sets of I is said to be

f -invariant if µ(f −1(A)) = µ(A) for every Borel set A ⊂ I .

Definition 3. A map f is said to be mixing with respect to some f -invariant probability

measure µ if

|µ(f −n(A) ∩ B) − µ(A)µ(B)| → 0, when n → ∞,

for any measurable sets A,B.

One interpretation of this property is that the conditional probability of B given f −n(A),

i.e. the probability that the event A is a consequence of the event B having occurred at

some time in the past, is asymptotically the same as if the two events were completely

independent. This is sometimes referred to as a property of loss of memory, and thus

in some sense of stochasticity, of the system. A natural question of interest both for

application and for intrinsic reasons, therefore, is the speed at which such loss of memory

occurs. Standard counterexamples show that, in general, there is no specific rate: it is

always possible to choose sets A and B for which mixing is arbitrarily slow. However, this

notion can be generalized in the following way.

Definition 4. For a map f : I → I preserving a probability measure µ and functions

ϕ,ψ ∈ L1(µ), we define the correlation function

Cn = Cn(ϕ,ψ) =
∣∣∣∣
∫

(ϕ ◦ f n)ψ dµ −
∫

ϕ dµ

∫
ψ dµ

∣∣∣∣.

Note that choosing these observables to be characteristic functions of Borel sets gives

the well-known definition of mixing when Cn → 0. By restricting the set of allowed

observables, for example to the class of Hölder continuous functions, it is sometimes

possible to obtain specific upper bounds for the decay of the correlation function Cn which

depend only on the map f (up to a multiplicative constant which is allowed to depend

on ϕ and ψ). Indeed, it is generally possible to allow ψ ∈ L∞(µ) and only restrict the

choice of ϕ to the class of Hölder continuous functions. We make several statements below

concerning the decay of correlations for Hölder continuous observables meaning that ϕ is

Hölder continuous and ψ ∈ L∞(µ).

Not more than a decade ago, the only examples for which a specific rate of decay

of correlations was known were uniformly expanding maps in one dimension and, more

generally, uniformly hyperbolic systems in higher dimensions [14–16, 36]. In these cases

we always have exponential decay of correlations for Hölder continuous observables, an

estimate which can be expected due to the fact that essentially everything is exponential in

these cases. Relaxing uniform expansion conditions has proved extremely hard and until

now estimates on the decay for correlations for one-dimensional systems satisfying the

asymptotic exponential expansion condition (∗) but strictly not uniformly expanding have
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only been known in some fairly specific classes of examples such as maps with indifferent

fixed points [11, 12, 15, 24] or non-flat critical points [5, 6, 22] where the rate of decay

depends quite explicitly on the features of the neutral fixed point and the critical points,

respectively. See [18] for a more detailed discussion and references.

1.3. Degree of non-uniformity of the expansion. A natural question is what general

characteristics of a system satisfying (∗) determine the rate of decay of correlations?

The purpose of the present paper is to give a partial solution to this question by relating the

rate of decay of correlations to the degree of non-uniformity of the expansivity, i.e. the time

we have to wait for typical points to start behaving as though the system were uniformly

expanding.

Definition 5. For 0 < λ′ < λ, we define the expansion time function E by

E(x) = min

{
N : 1

n
log |(f n)′(x)| ≥ λ′, ∀n ≥ N

}
.

Condition (∗) implies that E is defined and finite almost everywhere. We think of this as

the waiting time before the exponential derivative growth kicks in. A map is uniformly

expanding if E(x) is uniformly bounded for every x. In general, however, E(x) is defined

only almost everywhere and unbounded, indicating that some points may exhibit no growth

or even arbitrarily large loss of growth of the derivative along their orbit for an arbitrarily

long time before starting to exhibit the exponential growth implied by condition (∗).

Our results show that at least in certain situations the properties of the function E(x) are

closely related to the rate of mixing of the map.

1.4. Local diffeomorphisms. We begin with the simplest situation in order to highlight

the main idea of the results.

THEOREM 1. Let f : I → I be a C2 local diffeomorphism with some point having dense

pre-orbit. Suppose that f satisfies condition (∗) and that there exists γ > 1 such that for

some 0 < λ′ < λ we have

|{E(x) > n}| ≤ O(n−γ ).

Then there exists an absolutely continuous, f -invariant, probability measure µ on I.

Some finite power of f is mixing with respect to µ and the correlation function Cn for

Hölder continuous observables on I satisfies

Cn ≤ O(n−γ+1).

We emphasize here that the asymptotic statements here do not depend on the choice

of λ′. Thus the rate of decay of correlations depends essentially on the average time with

which some given uniform exponential rate of expansion is attained and does not depend

on what turn out to be significantly more subtle characteristics of the system such as the

actual rate of convergence of the Lyapunov exponents to the limit.

Remark 1. The absolute continuity and ergodicity of µ follow from [2]. Our argument

gives an alternative proof of the absolute continuity of µ and allows us to obtain the

estimates on the rate of decay of correlations which are the main purpose of this paper.
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Remark 2. The statement about the rate of decay of the correlations is of interest even if

an absolutely continuous mixing f -invariant, probability measure µ is given to begin with.

Then condition (∗) is just equivalent to the integrability condition

∫
log |f ′| dµ > 0,

since Birkhoff’s ergodic theorem then implies that the limit

λ = lim
n→∞

1

n
log |(f n)′(x)| = lim

n→∞
1

n

n−1∑

i=0

log |f ′(x)| =
∫

log |f ′| dµ > 0

exists for µ-almost every x ∈ I . In particular, the expansion time function E(x) is also

defined and finite almost everywhere and the conclusions of the theorem hold under the

given conditions on the rate of decay of |{E(x) > n}|.

1.5. Multimodal maps. We can generalize our result to C2 maps with non-flat critical

points if we assume that almost all orbits have slow approximation to the critical set C. Let

distδ(x, C) denote the δ-truncated distance from x to C defined as distδ(x, C) = dist(x, C)

if dist(x, C) ≤ δ and distδ(x, C) = 1 otherwise.

Definition 6. We say that a map f : I → I , with a critical set C, satisfies the slow

recurrence condition if given any ǫ > 0 there exists δ > 0 such that for Lebesgue almost

every x ∈ I

lim sup
n→+∞

1

n

n−1∑

j=0

− log distδ(f
j (x), C) ≤ ǫ. (∗∗)

Condition (∗∗) is an asymptotic statement, just like condition (∗), and we have no a

priori knowledge about how fast this limit is approached or with what degree of uniformity

for different points x. Thus we introduce the analogue of the expansion time function as

follows.

Definition 7. The recurrence time function is defined by

R(x) = min

{
N ≥ 1 : 1

n

n−1∑

i=0

− log distδ(f
j (x), C) ≤ 2ǫ, ∀n ≥ N

}
.

Condition (∗∗) implies that R is well defined and finite almost everywhere in I .

For stating our results we also need the following.

Definition 8. For each n ≥ 1 define the tail of non-uniformity by

Ŵn = {x : E(x) > n or R(x) > n}

This is the set of points which at time n have not yet achieved either the uniform

exponential growth or the uniform slow approximation to C given by (∗) and (∗∗).
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THEOREM 2. Let f : I → I be a C2 map with a set C of non-flat critical points and

with some point having dense pre-orbit in I \ C. Suppose that f satisfies the non-uniform

expansivity condition (∗) and the slow approximation condition (∗∗) to C and suppose that

there exists γ > 1 such that

|Ŵn| ≤ O(n−γ ).

Then there exists an absolutely continuous, f -invariant, probability measure µ. Some

finite power of f is mixing with respect to µ and the correlation function Cn for Hölder

continuous observables on I satisfies

Cn ≤ O(n−γ+1).

Remark 3. As for condition (∗), condition (∗∗) also admits a formulation which may

appear more natural if an ergodic f -invariant, absolutely continuous probability measure

µ is given to begin with. Indeed, it then just reduces to an integrability condition on the

log of the distance function to the critical set:
∫

|log dist(x, C)| dµ < ∞.

This can be thought of as saying that the invariant measure does not give disproportionate

weight to neighbourhoods of C. In particular, the bounded recurrence condition (∗) is

satisfied quite generally in smooth maps for which the density of the absolutely continuous

invariant measure is known to be quite regular.

Remark 4. The existence of an f -invariant, absolutely continuous probability measure

under assumption (∗) only, has been known for some time in the unimodal case and is

due to Keller [13].

1.6. Maps with singular points. The way in which the control of the recurrence near

critical points comes into play in our argument can be used to deal similarly with other

kinds of criticalities or singularities, such as discontinuities and/or points with infinite

derivative. In fact, it is becoming increasingly clear (see, for example, the references given

above as well as [14, 17]) that there is a kind of duality in one-dimensional maps between

critical points and discontinuities with infinite derivative. Regions in which the derivative

is unbounded may appear at first to contribute positively in the direction of proving some

properties of the map which often follow from the expansivity. However, it has been known

for some time that discontinuities and unbounded derivatives create non-trivial obstructions

to the geometric structures and distortion estimates which usually form the basis for the

study of dynamical properties. Therefore, these regions need to be avoided, or at least

the recurrence in these regions needs to be controlled, in a very similar way to the way in

which the recurrence near critical points is controlled. In fact, it is possible to formulate a

general set of conditions in which we can talk about a singular set S without specifying the

nature of the singularities which may be critical points, discontinuities or points at which

the norm of the derivative goes to infinity. In this context we need to generalize the notion

of non-flatness for critical points.
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Definition 9. We say that the singular set S is non-degenerate if:

(s1) f ′ behaves like a power of the distance to S: there are constants B > 1 and β > 0

such that for every c ∈ S and x ∈ I \ S

1

B
|x − c|β ≤ |f ′(x)| ≤ B|x − c|−β;

(s2) log |f ′| is locally Lipschitz at points x ∈ I \ S with Lipschitz constant depending on

the distance to S: for every c ∈ S and x, y ∈ I \S with |x − y| < |x − c|/2 we have

|log|f ′(x)| − log |f ′(y)|| ≤ B

|x − c|β |x − y|.

We can define the slow recurrence condition (∗∗) with respect to a general non-

degenerate singular set in exactly the same way as for the simpler case of non-flat smooth

critical points. Similarly, we extend the definition of the recurrence function R and of the

tail of non-uniformity Ŵn. With these definitions we can now formulate our results in the

most general setting. Theorems 1 and 2 are then special cases of the following.

THEOREM 3. Let f : I → I be a C2 local diffeomorphism outside a non-degenerate

critical/singular set S with some point having dense pre-orbit in I \ S. Suppose that f

satisfies the non-uniform expansivity condition (∗) and the slow approximation condition

(∗∗) to the critical set and suppose that there exists γ > 1 such that

|Ŵn| ≤ O(n−γ ).

Then there exists an absolutely continuous, f -invariant, probability measure µ. Some

finite power of f is mixing with respect to µ and the correlation function Cn for Hölder

continuous observables on I satisfies

Cn ≤ O(n−γ+1).

We expect this relation between the rate of decay of the tails of the expansivity and

recurrence functions and the rate of decay of correlations to also hold for faster rates such

as exponential and stretched exponential. For the moment, however, the kind of statistical

arguments we use do not allow us to include these cases in our statements.

1.7. The Central Limit Theorem. As a by-product of our results we do however get some

further interesting statistical properties of the maps under consideration. In particular we

can apply some general results, e.g. [16, 24], which show that under certain conditions

including sufficiently fast decay of correlations, we can prove the Central Limit Theorem

which states that the probability of a given deviation of the average values of an observable

along an orbit from the asymptotic average is essentially given by a normal distribution:

given a Hölder continuous function φ which is not a coboundary (φ 
= ψ ◦ f − ψ for

any ψ) there exists σ > 0 such that for every interval J ⊂ R,

µ

{
x ∈ M : 1√

n

n−1∑

j=0

(
φ(f j (x)) −

∫
φ dµ

)
∈ J

}
→ 1

σ
√

2π

∫

J

e−t2/2σ 2

dt.

In our context we have the following.
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THEOREM 4. Let f : I → I be a C2 local diffeomorphism outside a non-degenerate

critical/singular set S with some point having dense pre-orbit in I \ S. Suppose that f

satisfies the non-uniform expansivity condition (∗) and the slow approximation condition

(∗∗) to S and suppose that

|Ŵn| ≤ O(n−γ ), for some γ > 2.

Then there exists an absolutely continuous, f -invariant, probability measure µ and the

Central Limit Theorem holds.

Note that we have strengthened our condition on the rate of decay of the tail of |Ŵn| to

γ > 2 rather than just γ > 1.

Remark 5. The hypotheses of f having a point whose pre-orbit is dense and disjoint from

the singular set is not needed in all its strength in all our theorems; cf. Remark 6. Actually,

we can prove that this is a consequence of the transitivity of the map.

1.8. Strategy and overview of the paper. There exist at least two basic methodologies

for studying the statistical properties of dynamical systems and, in particular, the decay

of correlations. The first is the functional-analytic approach where the problem is

formulated in terms of the spectral properties of the Ruelle–Perron–Frobenius operator.

This approach has been extremely successful in a variety of examples and general

situations [10, 19, 20, 22]. Another approach is more geometric/probabilistic and uses

the idea of coupling measures in a somewhat more direct approach, taking advantage of

the idea of the decay of correlations as being related to the convergence to equilibrium of

arbitrary densities. Both methods necessarily rely to some extent on the geometric structure

of the system under consideration; for example, the pioneering work of Sinai–Ruelle–

Bowen for uniformly hyperbolic systems combined the information on the existence of

finite Markov partitions with the functional-analytic approach. More recently, Young

[23, 24], has made the profound observation that the rate of decay of correlations can be

deduced via a coupling argument from the existence of a generalized Markov structure and

some analytic information about this structure. The existence of such a structure and the

necessary analytic estimates are highly non-trivial in general and of independent interest.

This is the approach which we take in this paper. More specifically, we show that there

exists an interval � ⊂ I \ S, a countable partition P (mod 0) of � into intervals J and

a return time function R : � → N piecewise constant on elements of P satisfying the

following properties.

(1) Markov: for each J ∈ P and R = R(J ), f R : J → �0 is a C2 diffeomorphism

(and, in particular, a bijection). Thus an induced map

F : �0 → �0 given by F(x) = f R(x)(x)

is defined almost everywhere and satisfies the classical Markov property.

(2) Uniform expansivity: there exists λ0 > 1 such that for almost all x ∈ �0 we have

|F ′(x)| ≥ λ0.
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In particular the separation time s(x, y) given by the maximum integer such that

F i(x) and F i(y) belong to the same element of the partition P for all i ≤ s(x, y), is

defined and finite for almost every pair of points x, y ∈ �0.

(3) Bounded distortion: there exists a constant K > 0 such that for any pair of points

x, y ∈ �0 with ∞ > s(x, y) ≥ 1 we have
∣∣∣∣
F ′(x)

F ′(y)
− 1

∣∣∣∣ ≤ Kλ̂−s(F (x),F (y)).

(4) Polynomial decay of tail of return times:

|{R > n}| ≤ O(n−γ ).

Our results then follow immediately from this construction and the abstract results of

Young [24] which state that precisely under these conditions there exists an absolutely

continuous invariant probability measure with decay of correlation of order O(n−γ+1) and

for which the Central Limit Theorem holds when γ > 2.

The argument is divided into two natural sections. In §2 we give the basic algorithm

for choosing the base interval �0 and for constructing the induced map of �0 to itself.

This includes various estimates concerning the time it takes for small regions to grow

to some fixed size and for these to return to �0 and relies essentially on the notion of

hyperbolic time introduced by Alves in [1]. We also prove that the partition elements

satisfy the required expansivity and distortion estimates. In §3 we address the more

analytical/statistical issues in the argument. We analyze the relative sizes of various

combinatorially distinct regions and conclude that almost every point effectively belongs

to some region of �0 which eventually has a good return. We also give the statistical

argument which allows us to relate more explicitly the tail of the return time function for

the induced map to the tail of non-uniformity of the system.

2. An induced Markov structure

2.1. Attaining large scale: hyperbolic times. The key idea underlying our strategy is

that of hyperbolic times first introduced in [1]. Let B > 1 and β > 0 be as in the hypotheses

(s1) and (s2). In the following b is any fixed constant satisfying 0 < b < min{1/2, 1/(4β)}.

Definition 10. Given σ < 1, we state that n is a (σ )-hyperbolic time for a point x ∈ I if

for all c ∈ S and 1 ≤ k ≤ n,

|(f k)′(f n−k(x))| ≥ σ−k and |f n−k(x) − c| ≥ σ bk.

For each n ≥ 1 we define

Hn = Hn(σ ) = {x ∈ I : n is a (σ )-hyperbolic time for x}.

LEMMA 1. Given σ < 1, there exist δ1, κ,D1 > 0, depending only on σ and f , such that

for any x ∈ I and n ≥ 1 a (σ )-hyperbolic time for x, there exists an open interval Vn(x)

containing x with the following properties:

(1) f n maps Vn(x) diffeomorphically onto (f n(x) − δ1, f
n(x) + δ1);

(2) for 1 ≤ k < n and y, z ∈ Vn(x), |f n−k(y) − f n−k(z)| ≤ σ k/2|f n(y) − f n(z)|;
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(3) Vn(x) is contained in B(x, κ−n);

(4) f n|Vn(x) has distortion bounded by D1: for every y, z ∈ Vn(x),

1

D1
≤ |(f n)′(y)|

|(f n)′(z)| ≤ D1.

For a proof, see [2, Lemma 5.2] and [2, Corollary 5.3].

We often refer to the sets Vn(x) as hyperbolic pre-intervals and to their images

f n(Vn(x)) as hyperbolic intervals. Note that the latter are intervals of length 2δ1.

The existence of hyperbolic times for points satisfying conditions (∗) and (∗∗) is assured

by the following lemma.

LEMMA 2. There exist θ > 0 and 0 < σ < 1, depending only on f , λ and λ′, such that

for every x ∈ I \ Ŵn there exist (σ )-hyperbolic times 1 ≤ n1 < · · · < nl ≤ n for x with

l ≥ θn.

For a proof, see [2, Lemma 5.4].

2.2. The partition. We start by outlining the order in which the main constants used in

the construction are chosen. We take the two constants θ > 0 and 0 < σ < 1 given by

Lemma 2, which depend only on the map f and the constants λ and λ′ which we consider

to be given. We then fix a small constant δ1 = δ1(σ ) > 0 given by Lemma 1. We finally

take small constants δ0 = δ0(δ1, θ) > 0 and ε = ε(δ0) > 0, and a large positive integer

R0 = R0(θ). We adjust δ0 at several places in the proof, but only a finite number of times.

Let us now fix once and for all p ∈ I and N0 ∈ N for which
⋃N0

j=0 f −j ({p}) is δ1/3

dense in I and disjoint from the critical set S.

Remark 6. Incidentally this is the only point where we use the existence of a point with

dense pre-orbit. Actually, δ1/3 dense is enough for our purposes.

Then we introduce the intervals �0
0 = �0 = (p − δ0, p + δ0) and

�1
0 = (p − 2δ0, p + 2δ0), �2

0 = (p −
√

δ0, p +
√

δ0), �3
0 = (p − 2

√
δ0, p + 2

√
δ0).

Let

Ik = {x ∈ �1
0 : δ0(1 + σ k/2) < |x − p| < δ0(1 + σ (k−1)/2)}, k ≥ 1,

be a partition (mod 0) into countably many rings of �1
0 \ �0. The next lemma shows

that there is some ‘scale’ after which we can guarantee a good return to �0 within a fixed

number of iterates.

LEMMA 3. There exist constants C0 > 1 and D0 > 0 depending only on f, σ, δ1 and the

point p, such that for any interval U ⊂ I of length 2δ1, there exist an open interval V ⊂ U

and an integer 0 ≤ m ≤ N0 such that:

(1) f m maps V diffeomorphically onto �3
0;

(2) f m|V has distortion bounded by D0;

(3) the m-preimages of �3
0 are uniformly bounded away from S for all 1 ≤ m ≤ N0 and

for x belonging to any such m-preimage we have

1

C0
≤ |(f m)′(x)| ≤ C0.
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Proof. Since
⋃N0

j=0 f −j ({p}) is δ1/3 dense in I and disjoint from S, choosing δ0 > 0

sufficiently small we have that each connected component of the preimages of �3
0 up to

time N0 are bounded away from the critical set S and are contained in an interval of length

2δ1/3. This immediately implies that any interval U ⊂ I of length 2δ1 contains a preimage

V of �3
0 which is mapped diffeomorphically onto �3

0 in at most N0 iterates. Moreover,

since the number of iterations and the distance to the critical region are uniformly bounded,

the distortion is uniformly bounded.

Observe that δ0 and N0 have been chosen in such a way that all the connected

components of the preimages of �3
0 up to time N0 satisfy the conclusions of the lemma.

In particular, they are uniformly bounded away from the critical set S and so there is some

constant C0 > 1 depending only on f and δ1 such that

1

C0
≤ |(f m)′(x)| ≤ C0

for all 1 ≤ m ≤ N0 and x belonging to an m-preimage of �3
0. ✷

Now we describe the inductive construction of the partition P of �0. For the sake of

clearness let us explain the meaning of the objects that we introduce below. At each step n

we take �n = �0 \ {R ≤ n} and write �n as the disjoint union of sets An and Bn. An may

be understood as the set of points that is ready for returning at time n+ 1 and tn : �n → N

gives the waiting time for points in Bn. We also introduce a neighborhood Aε
n of An whose

interest will become clear in §3.

We ignore any dynamics occurring up to time R0. We assume that sets �i , Ai , Aε
i ,

Bi , {R = i} and functions ti : �i → N are defined for all i ≤ n − 1. For i ≤ R0, we

just let Ai = Aε
i = �i = �0, Bi = {R = i} = ∅ and ti ≡ 0. Now let (J 3

n,j )j be the

connected components of f −n(�0) ∩ Aε
n−1 contained in hyperbolic pre-intervals Vk , with

n − N0 ≤ k ≤ n, which are mapped onto �3
0 by f n. Take J i

n,j = J 3
n,j ∩ f −n�i

0 for

i = 0, 1, 2 and set R(x) = n for x ∈ J 0
n,j . Also take �n = �n−1 \ {R = n}. The function

tn : �n → N is defined as follows:

tn(x) =





s if x ∈ J 1
n,j \ J 0

n,j and f n(x) ∈ Is for some j ,

0 if x ∈ An−1

∖ ⋃

j

J 1
n,j ,

tn−1(x) − 1 if x ∈ Bn−1

∖⋃

j

J 1
n,j .

Finally let

An = {x ∈ �n : tn(x) = 0}, Bn = {x ∈ �n : tn(x) > 0}

and

Aε
n = {x ∈ �n : dist(f n+1(x), f n+1(An)) < ε}.

At this point we have described the inductive construction of the sets An, Aε
n, Bn and

{R = n}. The proof that this indeed gives a partition (mod 0) of �0 is left to §3.

Associated to each component J 0
n−k of {R = n − k}, for some k > 0, we have the two

intervals of J 1
n−k \ J 0

n−k on both sides of it; knowing that the new components of {R = n}
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‘do not intersect too much’ J 1
n−k \ J 0

n−k is important for preventing overlaps on the new

intervals constructed. This is indeed the case as long as ε > 0 is taken small enough.

LEMMA 4. If ε > 0 is sufficiently small, then J 1
n ∩ {tn−1 ≥ 1} = ∅ for each J 1

n .

Proof. Take some k > 0 and let J 0
n−k be a component of {R = n−k}. Let Qk be the part of

J 1
n−k that is mapped by f n−k onto Ik and assume that Qk intersects some J 3

n . Recall that,

by construction, Qk is precisely the part of J 1
n−k on which tn−1 takes the value 1. Letting q1

and q2 be the two endpoints of one (of the two) connected components of Qk , we have by

Lemmas 1 and 3

|f n−k(q1) − f n−k(q2)| ≤ C0σ
(k−N0)/2|f n(q1) − f n(q2)|. (1)

We also have

|f n−k(q1) − f n−k(q2)| ≥ δ0(1 + σ (k−1)/2) − δ0(1 + σ k/2)

= δ0σ
k/2(σ−1/2 − 1),

which combined with (1) gives

|f n(q1) − f n(q2)| ≥ C−1
0 σN0/2δ0(σ

−1/2 − 1).

On the other hand, since J 3
n ⊂ Aε

n−1 by the construction of J 3
n , taking

ε < C−1
0 σN0/2δ0(σ

−1/2 − 1)

we have J 3
n ∩ {tn−1 > 1} = ∅. This implies J 1

n ∩ {tn−1 ≥ 1} = ∅. ✷

2.3. Expansivity. Recall that by construction, the return time R(J ) for J an element of

the partition P of �0, is formed by a certain number n of iterations given by the hyperbolic

time of a hyperbolic pre-interval Vn ⊃ J , and a certain number m ≤ N0 of additional

iterates which is the time it takes to go from f n(Vn) (which could be anywhere in I ) to

f n+m(Vn) (which covers �0 completely). By choosing R0 sufficiently large it then follows

from Lemma 3 that there exists a constant λ̂ > 1 and a time n0 such that for any hyperbolic

time n ≥ n0 and any point x ∈ Vn and 1 ≤ m ≤ N0, we have

|(f n+m)′(x)| ≥ λ̂ > 1.

We immediately have the required uniform expansivity property

|F ′(x)| = |(f R(x))′(x)| ≥ λ̂ > 1.

In particular, this implies that for any x, y ∈ �0 which have the same combinatorics, i.e.

which remain in the same elements of the partition P for some number s(x, y) of iterates

of the induced map F , we have

|x − y| ≤ λ̂−s(x,y). (2)
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2.4. Bounded distortion. The distortion estimate required follows immediately from (2)

above and the following more classical formulation of the bounded distortion property.

LEMMA 5. There exists a constant D > 0 such that for any x, y belonging to the same

element J ∈ P with return time R, we have

log

∣∣∣∣
F ′(x)

F ′(y)

∣∣∣∣ = log

∣∣∣∣∣

(
f R

)′
(x)

(
f R

)′
(y)

∣∣∣∣∣ ≤ D|f R(x) − f R(y)|.

Proof. Recall that by construction, the return time R(J ) for J an element of the partition P

of �0, is formed by a certain number n of iterations given by the hyperbolic time of a

hyperbolic pre-interval Vn ⊃ J , and a certain number m ≤ N0 of additional iterates which

is the time it takes to go from f n(Vn) (which could be anywhere in I ), to f n+m(Vn)

(which covers � completely). Some standard formal manipulation based on the chain rule

gives

log

∣∣∣∣
(f R)′(x)

(f R)′(y)

∣∣∣∣ = log

∣∣∣∣
(f R−n)′(f n(x))

(f R−n)′(f n(y))

∣∣∣∣ + log

∣∣∣∣
(f n)′(x)

(f n)′(y)

∣∣∣∣ .

Since f i(x) and f i(y) are uniformly bounded away from S for n ≤ i ≤ R (recall

Lemma 3), we may write

log

∣∣∣∣
(f R−n)′(f n(x))

(f R−n)′(f n(y))

∣∣∣∣ ≤ B1|f R(x) − f R(y)|

where B1 is some constant not depending on x, y or R. On the other hand, by the

construction of Vn (see the proof of Lemma 5.2 in [2]), there must be some z ∈ Vn for

which n is a hyperbolic time and such that, for 0 ≤ j < n, the distance from f j (z) to

either f j (x) or f j (y) is smaller than |f n(x) − f n(y)|σ (n−j)/2, which is much smaller

than σ b(n−j) ≤ dist(f j (z),S). Thus, by (s2) we have

log

∣∣∣∣
(f n)′(x)

(f n)′(y)

∣∣∣∣ ≤
n−1∑

j=0

log

∣∣∣∣
f ′(f j (x))

f ′(f j (y))

∣∣∣∣ ≤ |f n(x) − f n(y)|
n−1∑

j=0

2B
σ (n−j)/2

σ bβ(n−j)
.

Since bβ < 1/2, there must be some B2 > 0 such that

log

∣∣∣∣
(f n)′(x)

(f n)′(y)

∣∣∣∣ ≤ B2|f n(x) − f n(y)|.

Using again that f i(y) and f i(y) are uniformly bounded away from S for n ≤ i ≤ R

(cf. Lemma 3), it follows that

|f n(x) − f n(y)| ≤ B2|f R(x) − f R(y)|,

where B2 is some constant not depending on x, y or R. This completes the proof of the

lemma. ✷

3. The statistical argument

We now come to the main analytic estimates, i.e. the relation between the decay of |�n|
and that of |Ŵn|.
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3.1. Proportion of points in An−1 ∩ Hn returning at time of order n. In the first part

of the argument we use the strategy introduced in [23] for uniformly expanding maps,

together with the properties of hyperbolic times and give a lower bound for the flow of

mass from An−1 ∩ Hn to the new intervals of the partition. We start with an auxiliary

lemma.

LEMMA 6. For each ε > 0 there exists Nε > 0 such that any interval B ⊂ I with |B| ≥ 2ε

contains a hyperbolic pre-interval Vn with n ≤ Nε .

Proof. Given ε > 0 and an interval (z − ε, z + ε), choose N ′
ε large enough so that any

hyperbolic pre-interval Vn associated to a hyperbolic time n ≥ N ′
ε will be contained in an

interval of length ε/5 (N ′
ε ∼ κ−1 log(10ε−1)). Now note that almost every point has an

infinite number of hyperbolic times and therefore we have that
∣∣∣∣I

∖ n⋃

j=N ′
ε

Hj

∣∣∣∣ → 0 as n → ∞.

Therefore, it is possible to choose

Nε = min

{
n ≥ N ′

ε :
∣∣∣∣I

∖ n⋃

j=N ′
ε

Hj

∣∣∣∣ ≤ ε/10

}
.

This ensures that there is a point x̂ ∈ (z − ε/2, z + ε/2) with a hyperbolic time n ≤ Nε

and associated hyperbolic pre-ball Vn(x) ⊂ (z − ε, z + ε). ✷

PROPOSITION 1. There exist c0 > 0 and N = N(ε) such that for every n ≥ 1

∣∣∣∣
N⋃

i=0

{R = n + i}
∣∣∣∣ ≥ c0|An−1 ∩ Hn|.

Proof. Take r = 5δ0C
N0

0 , where N0 and C0 are given by Lemma 3. Let {zj } be a maximal

set in f n(An−1 ∩ Hn) with the property that the intervals (zj − r, zj + r) are pairwise

disjoint. By maximality we have
⋃

j

(zj − 2r, zj + 2r) ⊃ f n(An−1 ∩ Hn).

Let xj be a point in Hn such that f n(xj ) = zj and consider the hyperbolic pre-interval

Vn(xj ) associated to xj . Observe that f n sends Vn(xj ) diffeomorphically onto an interval

of length 2δ1 centered at zj , as in Lemma 1. In the following, given B ⊂ (zj −δ1, zj +δ1),

we simply denote (f n|Vn(xj ))
−1(B) by f −n(B).

Our aim now is to prove that f −n((zj − r, zj + r)) contains some component of

{R = n + kj } with 0 ≤ kj ≤ Nε + N0. We start by showing that

tn+kj |f −n((zj − ε, zj + ε)) > 0, for some 0 ≤ kj ≤ Nε + N0. (3)

Assume for a contradiction that tn+kj |f −n((zj −ε, zj +ε)) = 0, for all 0 ≤ kj ≤ Nε +N0.

This implies that

f −n((zj − ε, zj + ε)) ⊂ Aε
n+kj

, for all 0 ≤ kj ≤ Nε + N0. (4)
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Using Lemma 6 we may find a hyperbolic pre-interval Vm ⊂ (zj − ε, zj + ε) with

0 < m ≤ Nε . Now, since B = f m(Vm) is an interval of length 2δ1, it follows from

Lemma 3 that there is some V ⊂ B and m′ ≤ N0 with f m′
(V ) = �0. Thus, taking

kj = m + m′ we have that 0 ≤ kj ≤ Nε + N0 and f −n(Vm) is an element of {R = n+ kj }
inside f −n((zj − ε, zj + ε)). Note that, by (4), the interval f −n(Vm) satisfies the

requirements for the construction of partition elements described earlier. This contradicts

the fact that tn+kj |f −n((zj − ε, zj + ε)) = 0 for all 0 ≤ kj ≤ Nε + N0 and so (3) holds.

Let kj be the smallest integer 0 ≤ kj ≤ Nε + N0 for which tn+kj |f −n(B(zj , ε)) > 0.

Since

f −n((zj − ε, zj + ε)) ⊂ Aε
n−1 ⊂ {tn−1 ≤ 1},

there must be some element J 0
n+kj

(j) of {R = n + kj } for which

f −n((zj − ε, zj + ε)) ∩ J 1
n+kj

(j) 
= ∅.

Recall that by definition f n+kj sends J 1
n+kj

(j) diffeomorphically onto �1
0, the ball of

radius (1 + s)δ0 around p. From time n to n + kj we may have some final ‘bad’ period of

length at most N0 where the derivative of f may contract, however, being bounded from

below by 1/C0 in each step. Thus, the diameter of f n(J 1
n+kj

(j)) is at most 4δ0C
N0

0 .

Since (zj − ε, zj + ε) intersects f n(J 1
n+kj

(j)) and ε < δ0 < δ0C
N0

0 , we have by the

definition of r

f −n((zj − r, zj + r)) ⊃ J 0
n+kj

(j).

Thus we have shown that f −n((zj − r, zj + r)) contains some component of {R = n+ kj }
with 0 ≤ kj ≤ Nε + N0. Moreover, since n is a hyperbolic time for xj , we have by the

distortion control given by Lemma 1

|f −n((zj − 2r, zj + 2r))|
|f −n((zj − r, zj + r))| ≤ D1

4r

2r
= 2D1 (5)

and
|f −n((zj − r, zj + r))|

|J 0
n+kj

(j)|
≤ D1

2r

|f n(J 0
n+kj

(j))|
. (6)

Here we are implicitly assuming that 2r < δ1. This can be done just by taking δ0 small

enough. Note that the estimates on N0 and C0 improve when we diminish δ0.

From time n to time n + kj we have at most kj = m1 + m2 iterates with m1 ≤ Nε ,

m2 ≤ N0 and f n(J 0
n+kj

(j)) contains some point wj ∈ Hm1
. By the definition of

(σ, δ)-hyperbolic time we have that distδ(f
i(x),S) ≥ σ bNε for every 0 ≤ i ≤ m1, which

by the uniform distortion control implies that there is some constant D = D(ε) > 0 such

that |(f i)′(x)| ≤ D for 0 ≤ i ≤ m1 and x ∈ f n(J 0
n+kj

(j)). On the other hand, since the

first N0 preimages of �0 are uniformly bounded away from S we also have some D′ > 0

such that |(f i)′(x)| ≤ D′ for every 0 ≤ i ≤ m2 and x belonging to any i preimage of �0.

Hence,

|f n(J 0
n+kj

(j))| ≥ 1

DD′ |�0|,

which combined with (6) gives

|f −n((zj − r, zj + r))| ≤ C|J 0
n+kj

(j)|,
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with C only depending on D1, D, D′ and δ0. We also deduce from (5) that

|f −n((zj − 2r, zj + 2r))| ≤ C′|f −n((zj − r, zj + r))|

with C′ only depending on D1.

Finally, let us compare the measure of the sets
⋃N

i=0

{
R = n + i

}
and An−1 ∩ Hn.

We have

|An−1 ∩ Hn| ≤
∑

j

|f −n((zj − 2r, zj + 2r))| ≤ C′ ∑

j

|f −n((zj − r, zj + r))|.

On the other hand, by the disjointness of the intervals (zj − r, zj + r) we have

∑

j

|f −n((zj − r, zj + r))| ≤ C
∑

j

|J 0
n+kj

(j)| ≤ C

∣∣∣∣
N⋃

i=0

{R = n + i}
∣∣∣∣.

We just have to take c−1
0 = CC′. ✷

3.2. Relative proportion of An and Bn in �n. We now prove a couple of lemmas.

The first gives a lower bound for the flow of mass from Bn−1 to An and second gives a

lower bound for the flow of mass from An−1 to Bn and {R = n}.

LEMMA 7. There exists a1 > 0 such that for every n ≥ 1

|Bn−1 ∩ An| ≥ a1|Bn−1|.

Moreover, a1 is bounded away from zero independently from δ0.

Proof. It is enough to see this for each component of Bn−1 at a time. Let C be a component

of Bn−1 and Q be its outer interval corresponding to tn−1 = 1. Observe that by Lemma 4

we have Q = C ∩ An. Moreover, there must be some k < n and a component J 0
k of

{R = k} such that f k maps C diffeomorphically onto
⋃∞

i=k Ii and Q onto Ik , both with

uniform bounded distortion (not depending on δ0 or n). Thus, it is sufficient to compare

the lengths of
⋃∞

i=k Ii and Ik . We have

|Ik|∣∣ ⋃∞
i=k Ii

∣∣ = δ0(1 + σ (k−1)/2) − δ0(1 + σ k/2)

δ0(1 + σ (k−1)/2) − δ0

≈ 1 − σ 1/2.

Clearly this proportion does not depend on δ0. ✷

The second item of the lemma below is apparently counterintuitive, since our main goal

is to make the points in �0 have small return times. However, this is needed to keep |An|
uniformly much bigger than |Bn|. This will help us in the statistical estimates of the last

section.

LEMMA 8. There exist b1 = b1(δ0) > 0 and c1 = c1(δ0) > 0 with b1 + c1 < 1 such that

for every n ≥ 1:

(1) |An−1 ∩ Bn| ≤ b1|An−1|;
(2) |An−1 ∩ {R = n}| ≤ c1|An−1|.
Moreover, b1 → 0 and c1 → 0 as δ0 → 0.
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Proof. It is enough to prove this for each neighborhood of a component J 0
n of {R = n}.

Observe that by construction we have J 3
n ⊂ Aε

n−1, which means that J 2
n ⊂ An−1, because

ε < δ0 <
√

δ0. Using the uniform bounded distortion of f n on J 3
n given by Lemmas 6

and 3, we obtain

|J 1
n \ J 0

n |
|J 2

n \ J 1
n | ≈

|�1
0 \ �0

0|
|�2

0 \ �1
0|

≈ δ0√
δ0

≪ 1,

which gives the first estimate. Moreover,

|J 0
n |

|J 2
n \ J 1

n | ≈
|�0

0|
|�2

0 \ �1
0|

≈ δ0√
δ0

≪ 1,

and this gives the second estimate. ✷

The next result is a consequence of the estimates we obtained in the last two lemmas.

The proof is essentially the same as in the uniformly hyperbolic case (see [23]), although

here we need to be more careful with the estimates.

LEMMA 9. There exists a0 = a0(δ0) > 0 such that for every n ≥ 1

|Bn| ≤ a0|An|.

Moreover, a0 → 0 as δ0 → 0.

Proof. We have by Lemma 8

|An ∩ An−1| ≥ η|An−1| (7)

where η = 1 − b1 − c1. Then we define

â = b1 + c1

a1
, a0 = (1 + a1)b1 + c1

a1η
.

The fact that a0 → 0 when δ0 → 0 is a consequence of b1 → 0 and c1 → 0 when δ0 → 0

and a1 being bounded away from zero. Observe that 0 < η < 1 and â < a0. Now the

proof of the proposition follows by induction. The result obviously holds for n up to R0.

Assuming that it holds for n − 1 ≥ R0, we show that it also holds for n by separately

considering the cases |Bn−1| > â|An−1| and |Bn−1| ≤ â|An−1|.
Assume first that |Bn−1| > â|An−1|. We may write

|Bn−1| = |Bn−1 ∩ An| + |Bn−1 ∩ Bn|,

which by Lemma 7 gives

|Bn−1 ∩ Bn| ≤ (1 − a1)|Bn−1|. (8)

Since we also have

|Bn| = |Bn ∩ Bn−1| + |Bn ∩ An−1|,

it follows from (8) and Lemma 8 that

|Bn| ≤ (1 − a1)|Bn−1| + b1|An−1|,
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which according to the case we are considering leads to

|Bn| ≤ (1 − a1)|Bn−1| + b1a1

b1 + c1
|Bn−1| < |Bn−1|. (9)

On the other hand, we have |An| = |An ∩ An−1| + |An ∩ Bn−1|, which together with

Lemma 7 and (7) gives |An| ≥ η|An−1| + a0|Bn−1|. Again by the case we are considering

we have

|An| ≥ η|An−1| + a0â|An−1| ≥ |An−1|. (10)

Inequalities (9) and (10) together with the inductive hypothesis yield the result in this first

case.

Assume now that |Bn−1| ≤ â|An−1|. Since we have

|Bn| = |Bn ∩ Bn−1| + |Bn ∩ An−1|,
it follows from Lemma 8 that

|Bn| ≤ |Bn−1| + b1|An−1|.
From (7) we also know that |An| ≥ η|An−1|. Hence

|Bn|
|An|

<
|Bn−1| + b1|An−1|

η|An−1|
≤ â + b1

η
= a0,

which also gives the result in this case.

Assume now that |Bn−1| ≤ â|An−1|. Since we have

|Bn| = |Bn ∩ Bn−1| + |Bn ∩ An−1|,
it follows from Lemma 8 that

|Bn| ≤ |Bn−1| + b1|An−1|.
Hence,

|Bn|
|An|

<
|Bn−1| + b1|An−1|

η|An−1|
≤ â + b1

η
= a0,

which also gives the result in this case. ✷

Recalling that �n = An ∪ Bn, it easily follows from Proposition 1 and Lemma 9 that

there is some constant b0 > 0 not depending on n such that
∣∣∣∣

N⋃

i=0

{R = n + i}
∣∣∣∣ ≥ b0

|An−1 ∩ Hn|
|An−1|

|�n−1|.

This immediately implies that

|�n+N | ≤
(

1 − b0
|An−1 ∩ Hn|

|An−1|

)
|�n−1|.

It is not hard to deduce from this last formula that

|�n+N | ≤ exp

(
− b0

N + 1

n∑

j=R0

|Aj−1 ∩ Hj |
|Aj−1|

)
|�0|. (11)

On the other hand, it follows from Lemmas 8 and 9 that there is some constant c2 > 0 not

depending on n such that for every n ≥ 1,

|�n| ≤ c2|�n+1|. (12)
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3.3. The tail estimates. Recall that θ > 0 was obtained in Lemma 2 and gives a lower

bound for the frequency of hyperbolic times; it only depends on the non-uniform expansion

coefficient λ and the map f . Let us now derive a consequence of Lemma 2.

COROLLARY 1. For every n ≥ 1 and every A ⊂ I \ Ŵn with |A| > 0 we have

1

n

n∑

j=1

|A ∩ Hj |
|A| ≥ θ.

Proof. Take n ≥ 1 and A ⊂ I \Ŵn with positive Lebesgue measure. Let ξn be the measure

in {1, . . . , n} defined by ξn(J ) = #J/n, for each subset J . Then, using Fubini’s theorem,

1

n

n∑

j=1

|A ∩ Hj | =
∫ ( ∫

A

χ(x, i) dx

)
dξn(i)

=
∫

A

( ∫
χ(x, i) dξn(i)

)
dx,

where χ(x, i) = 1 if x ∈ Hi and χ(x, i) = 0 otherwise. Now, Lemma 2 means that the

integral with respect to dξn is larger than θ > 0. So, the last expression above is bounded

from below by θ |A|. ✷

Let γ > 0 be some positive number (to be determined later) and take 0 < α <

(θ/12)γ+1. Then we choose δ0 > 0 small so that a0 = a(δ0) < 2α. We define, for

each n ≥ 1,

En =
{
j ≤ n : |Aj−1 ∩ Hj |

|Aj−1|
< α

}
,

and

F =
{
n ∈ N : #En

n
> 1 − θ

12

}
.

In the following proposition we establish the relation between the statistics of

hyperbolic times and the geometrical structure of sets arising from the construction of the

partition described above. In the polynomial case this establishes an essentially optimal

link between the rate of decay of the expansion/recurrence function and the rate of decay

of correlations. The nature of the argument does not immediately extend to the exponential

case.

PROPOSITION 2. Take any n ∈ F with n ≥ R0 > 12/θ . If |An| ≥ 2|Ŵn|, then there is

some 0 < k = k(n) < n for which |An|/|Ak| < (k/n)γ .

Proof. We have for j ≤ n

|An ∩ Hj |
|An|

≥ |An \ Ŵn|
|An|

|(An \ Ŵn) ∩ Hj |
|An \ Ŵn|

≥ 1

2

|(An \ Ŵn) ∩ Hj |
|An \ Ŵn|

,

which together with the conclusion of Corollary 1 for the set An \ Ŵn gives

1

n

n∑

j=1

|An ∩ Hj |
|An|

≥ θ

2
. (13)
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Let

Gn =
{
j ∈ En : |Aj−1|

|An|
>

θ

12α

}
.

Since n ∈ F , we have

1

n

n∑

j=1

|An ∩ Hj |
|An|

≤ θ

12
+ 1

n

∑

j∈En

|An ∩ Hj |
|An|

≤ θ

12
+ 1

n

∑

j∈En\Gn

|An ∩ Hj |
|An|

+ #Gn

n
.

Now, for j ∈ En \ Gn,

|An ∩ Hj |
|An|

= |An ∩ Hj |
|Aj−1|

|Aj−1|
|An|

≤
( |An ∩ Aj−1 ∩ Hj |

|Aj−1|
+ |(An \ Aj−1) ∩ Hj |

|Aj−1|

) |Aj−1|
|An|

≤
( |Aj−1 ∩ Hj |

|Aj−1|
+ a0

)
θ

12α
.

For this last inequality we used the fact that (An \ Aj−1) ⊂ Bj−1 and j /∈ Gn. Hence,

1

n

n∑

j=1

|An ∩ Hj |
|An|

≤ θ

12
+ 1

n

∑

j∈En\Gn

|Aj−1 ∩ Hj |
|Aj−1|

θ

12α
+ a0

θ

12α
+ #Gn

n

<
θ

12
+ α

θ

12α
+ a0

θ

12α
+ #Gn

n
.

By the choice of a0 we have that the third term in the last sum above is smaller than θ/6.

So, using (13), we obtain
#Gn

n
>

θ

6
. (14)

Now, defining

k = max(Gn) − 1,

we have

|An| <
12α

θ
|Ak|.

It follows from (14) that k + 1 > θn/6 and so k/n > θ/12, because n ≥ R0 > 12/θ .

Since we have chosen α < (θ/12)γ+1, it follows that

(
k

n

)γ

>
12

θ

(
θ

12

)γ+1

>
12α

θ
.

This completes the proof of the result. ✷

By Lemma 9, we have |�n| ≤ const|An| and so it is enough to derive the tail estimate

for |An| in the place of |{R > n}| = |�n|. Given any large integer n, we consider the

following situations.
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(1) If n ∈ N \ F , then by (11) and (12) we have

|�n| ≤ cN
2 exp

(
− b0θα

12(N + 1)
(n − R0)

)
|�0|.

(2) If n ∈ F , then we distinguish the following two cases:

(a) if |An| < 2|Ŵn|, then nothing has to be done;

(b) if |An| ≥ 2|Ŵn|, then we apply Proposition 2 and get some k1 < n for which

|An| <

(
k1

n

)γ

|Ak1
|.

The only situation we are left to consider is (2)(b). In this case, either k1 is in situation (1)

or (2)(a), or by Proposition 2 we can find k2 < k1 for which

|Ak1
| <

(
k2

k1

)γ

|Ak2
|.

Arguing inductively we show that there is a sequence of integers 0 < ks < · · · < k1 < n

for which one of the following cases eventually holds:

(I)

|An| <

(
ks

n

)γ

cN
2 exp

(
− b0θα

12(N + 1)
(ks − R0)

)
|�0|;

(II)

|An| <

(
ks

n

)γ |Ŵks |
;

(III)

|An| <

(
R0

n

)γ |�0|
.

Case (III) corresponds to falling into situation (2)(b) repeatedly until ks ≤ R0. Observe

that until now γ > 0 was arbitrary. So, the only case we are left to consider is (II).

Assume that |Ŵn| ≤ O(n−γ ) for some γ > 0. In this case there must be some

C > 0 such that kγ |Ŵk| ≤ C for all k ∈ N, which applied to ks in case (II) leads to

|An| ≤ O(n−γ ).
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