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LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS

FOR DIFFEOMORPHISMS

by A. KATOK (
1
) (2)

Dedicated to the memory of Rufus Bowen (1947-1978)

Introduction.

i. In this paper I study some dynamical properties of diffeomorphisms on compact

manifolds by combining two different techniques, s-trajectories and the Lyapunov

characteristic exponents. These two approaches were developed separately and for

different purposes. The technique of s-trajectories introduced by Rufus Bowen ([i],

[2]? [3]) an(i D- V- Anosov ([4]; for proofs see [5], [6]) is based on the observation

that assuming some hyperbolicity conditions, dynamical phenomena which are observed

to almost occur for some diffeomorphism usually do occur for that diffeomorphism.

Using this approach Bowen proved a number of profound results concerning the

asymptotic growth and the limit distribution of periodic orbits for Axiom A diffeo-

morphisms and flows, uniqueness and the ergodic properties of equilibrium states and
so on ([2], [3], [7]).

The second approach was developed by Ja. B. Pesin [8] for the study of ergodic

properties (such as ergodicity, entropy, K-property, Bernoulli property) of smooth

dynamical systems with an invariant measure equivalent to a Riemannian volume ([9],

[10], [i i]). Many of the ideas used in this cycle of papers had occurred in the earlier

work of Brin and Pesin [12]. A large part of Pesin's arguments works without special

assumptions about the invariant measure (D. Ruelle has also observed this fact in [21]).

This section contains the description of the behavior of a diffeomorphism near a trajectory

regular in the Lyapunov sense (for definitions of regularity, see [8], no. (o. 3); [9], § 3; [13])

and the construction and the properties of invariant contracting and expanding manifolds,

(1) The author is partially supported by National Science Foundation grant MCS 78-15278.
(2) This paper was written in part during a visit to the Institut des Hautes Etudes Scientifiques at Bures-

sur-Yvette, France. The author gratefully acknowledges the hospitality of the IHES and the financial support
of the Stiftung Volkswagenwerk for the visit.
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138 A . K A T O K

except for the absolute continuity ([8], §§ i, 2). It is possible to consider a neigh-

borhood of a regular trajectory with non-zero Lyapunov exponents as something similar

to a neighborhood of a hyperbolic set, and use a technique very close to e-trajectories.

2. To describe more carefully some problems which can be studied from this point

of view, let us recall a few very basic notions about the Lyapunov exponents.

Let/be a diffeomorphismofa compact ^-dimensional manifold M and df: TM->TM

the derivative (linear part) of/. Let us fix a smooth Riemannian metric on M, i.e., a

scalar product (and consequently a norm) in every tangent space TpM, xeM, which

depends on x in a different! able way. The number

(«.„ x^,/)^™

is called the upper Lyapunov exponent for the tangent vector yeTM. The function ^+

being defined on the tangent bundle TM takes on at most s values on each tangent

space T^M and generates a filtration

L,WCL^)C.. .CL^)=T,M

of every such space. Namely, there are numbers -)iz{x)<^{x)<. ..<y^)(^) such that

X^?/) ==ZiW fof veL,{x)\Li_^{x). The numbers ^{x) are called the upper Lyapunov

exponents of/at the point x and the number k,{x)=dim L^)—dim L^^A:) is called

the multiplicity of the i-th exponent. None of these values depend on the choice of a
Riemannian metric.

, , ,. . Inll^IJ
In general, the limit of —-———- may not exist but even the existence of such

n

limits (which are called in that case the Lyapunov exponents) for all veT^M does not

prevent a pathology in the asymptotic behavior of (^% as n tends to infinity. Such a

pathology is prevented by the conditions of regularity ([8], no. (0.3); [9], § 3) which in

particular guarantee the existence of Lyapunov exponents. The multiplicative ergodic

theorem proved by Oseledec [13] (for later proofs see [14], [15]) implies that for any

Borel probability/invariant measure [L the set of regular points has measure i. More-

over, for almost every regular point x the exponents ^{x) of/"1 at x and their multi-

plicities k,{x) are equal to —x^-^+iM and k^_^^x) respectively, for z = i , . . . , r{x}.

The functions r(^), ^{x), k^{x) are measurable and/invariant with respect to any

Borel invariant measure (JL. Therefore, if (JL is an ergodic measure, then the functions are

constant almost everywhere. In this case we will denote these essential values of r{x),

XzW? W by r", ^, ^ respectively.

If all the functions ^{x) are different from zero (i-almost everywhere, then we

will say that (JL is a measure with non-zero Lyapunov exponents. In the case of ergodic

^ this means that %f=t=o for i= i, . . . , r^.

The case of a measure with non-zero Lyapunov exponents is the center of our

138



LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS FOR DIFFEOMORPHISMS 139

interest because the behavior of df along a regular trajectory with non-zero Lyapunov

exponents is hyperbolic although the hyperbolicity is non-uniform (for an interesting

discussion on this subject, see [9], § i). To overcome non-uniformity, Pesin elaborated

some technique which we reproduce partly in § 2 of this paper.

3. We apply the combined approach mentioned above to two special problems:

(i) relationships between the Lyapunov exponents and the entropies of/ (the topological

entropy h{f) and the measure-theoretical entropies h^(f) where pi is a Borel probability

/-invariant measure), and (ii) connections between the properties of exponents and the
periodic points of/.

The first problem was solved for C2 diffeomorphisms when the measure [L is equiv-

alent to a Riemannian volume. Namely, let ^(x}^ S k • ( x } y •(V) Then-
i:Xi(x)>0 t v 7Atv /

(0-2) W)=f^{x)d^

This result consists of two parts. The inequality

(o-3) W)^XW^

was proved in 1968 by G. A. Margulis for any C1 diffeomorphism. This inequality was

generalized to any Borel probability/invariant measure; a similar estimation for h(f)

has also been found ([i6], [17]).

The estimation of the entropy from below is a more delicate undertaking. It was

proved for [L equivalent to a Riemannian volume by Pesin ([9], § 5, another proof is

in [10]) who used hard machinery developed in [8] including the absolute continuity

of systems of invariant manifolds. Pesin's proof essentially works for a C1"1'0' diffeo-

morphism (a>o) and for any measure (JL such that the conditional measures on expanding

manifolds are absolutely continuous with respect to the Riemannian volumes on those
manifolds ([22]).

Let us denote for a regular point xeM through E^ the subspace of T^M corre-

sponding to the positive Lyapunov exponents (see details in § 2), and through ^{x)

the Jacobian of df^ restricted to the subspace E^ (we assume that some Riemannian
metric on M is fixed). Then:

^^^j^l^'v^i

and consequently:

J^W^Jinj^Wl^.

With this remark we can rewrite (0.3) as a kind of variational inequality:

^(/)-J^ln|^M|^^o.
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140 A . K A T O K

Note that the function ^(x) is defined on a set which has measure i with respect

to any Borel probability/-invariant measure (1). Measures with absolutely continuous

conditional measures on unstable manifolds play the role of equilibrium states for the

"potential" \^
u
{x)\. After the previous discussion it seems natural that the following

relation

s^p(^(/)-^ln|^M|^)=o,

is true always. However, it can be shown that it is false. The counterexample was

suggested by R. Bowen (an oral communication of D. Ruelle) and by the author. Let
me describe this example.

Let/be a diffeomorphism of the two-dimensional sphere S2 with three expanding

fixed points ̂ 1,^25 ? ̂ d one saddle point r. Suppose that the stable and unstable mani-

folds of the point r form two loops Yi, T2 which divide S2 into three regions A^, Ag, B (see

the picture, where q is a point at infinity). As n-> + oo every point from Ai\{j&i} tends

to YI? from AgV^g} to Y2 ^d from B\{q} to YlUyg. Every probability invariant

measure (JL is concentrated on the four fixed points so that \J
P
[x)d^>c>o while:

U/)=o and A(/)=o.

This example shows that the Lyapunov exponents of measures concentrated on

periodic orbits may not have any influence on the entropy (2). However, except for

this case such an influence exists.

Corollary (4.2). — If a C14^ (a>o) diffeomorphism f of a compact manifold has a Borel

probability continuous (non-atomic) invariant ergodic measure with non-zero Lyapunov exponents

then A(/)>o.

4. Let us proceed now to the discussion about the exponents and periodic points.

Let us denote by Per/the set of all periodic points of/and by P^(/) the number of

periodic points with period n, i.e. the number of fixed points for /n.

(1) If the subspace Eg is empty it is convenient to set ^(x)== i.
(2) M. Misiuzewicz observed (personal communication) that this diffeomorphism can be approximated in

the C^ topology k = i, 2, ... by a diffeomorphism with the topological entropy bigger than —°— —e, where a is
a bigger eigenvalue at the point r and s is any positive number. h
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LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS FOR DIFFEOMORPHISMS 141

In the uniformly hyperbolic situation, i.e. for Axiom A diffeomorphisms, Bowen [i]

proved that the asymptotical exponential growth of the number of periodic points was

determined by the topological entropy:

(0.4) Hm1111^^/).v -/ n->ao -M 'J fn-^oo ^

In § i we give a new definition of the measure-theoretical entropy h^{f) of a

homeomorphism of a compact metric space. This definition is similar to the Bowen-

Dinaburg definition of the topological entropy ([i8], [19]). Using this definition we

prove:

Theorem (4.3). — For a G1^9' (oc>o) dijfeomorphism f of a compact manifold and any

Borel probability /-invariant measure [L with non-zero Lyapunov exponents'.

iini-LW >„,(/).
n-^oo ^ — tAvl/ /

The upper bound of h^{f) is equal to h{f). In the two-dimensional case

any measure with positive entropy has non-zero Lyapunov exponents. Therefore,

Theorem (4.3) implies the following relation between periodic points and topological

entropy.

Corollary (4.4). — For any C14'0' (a>o) dijfeomorphismf of a two-dimensional manifold

(0.5) Hm111^^^^/).
v J / n->oo ^ — VJ /

5. In the multi-dimensional case inequality (0.5) is not true for arbitrary diffeo-

morphism. Indeed it might be true generically, i.e. for any f from some dense G§ set in

the space DifT^M) of all Gr diffeomorphisms of M with C7 topology {r>_ i). Note that

even in the two-dimensional case the answer is not known for r = i.

M. Herman asked whether, for diffeomorphisms, positive topological entropy was

compatible with minimality or strict ergodicity. Corollary (4.4) gives negative answers

to both questions in dimension 2. Recently Herman constructed a remarkable example

of a minimal (but not strictly ergodic) diffeomorphism with positive topological entropy.

6. Let me mention one more result which like Corollary (4.4) does not include

any mention of the Lyapunov exponents or even of measures.

Corollary (4.3). — V f ls a C14^ (oc>o) diffeomorphism of a compact two-dimensional

manifold and h{f)>o then/has a hyperbolic periodic point with a transversal homoclinic point

and consequently there exists an f-invariant hyperbolic set F such that the restriction off into F is

topologically conjugate to a topological Markov chain (subshift of finite type) and h{f\y)>Q.
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142 A . K A T O K

This fact may be considered as a topological counterpart for the following statement

which is an immediate corollary of Theorems (7.2), (7.9)3 (8. i) from Pesin's work [9]:

If/ is a G2 diffeomorphism of a compact two-dimensional manifold with smooth

invariant measure [L and A^(/)>o then there exists a set F of positive measure such

that/[p is metrically isomorphic to an ergodic Markov chain, i.e. a Markov chain which

is ergodic as a measure-preserving transformation.

7. The relationships between the statements in this paper may be represented by
the following diagram:

Proposition (2.1)

Proposition (2.3)

Proposition (2.5) / \^

\ / \
N. Corollary (2.2) Proposition (2.4)

Proposition (2.2)

,\ /
Main Lemma (§ 3)

Theorem (4.2) Theorem (4.1)

\
Corollary (4.1)

/ \
Corollary (4.2) Corollary (4.3)

Corollary (2.1) Theorem f i . i )

Theorem (4 •3)

Corollary (4.4) Corollary (4.5)

i. Definition of measure-theoretical entropy through d^ metrics.

Let X be a compact metric space with the distance function 6?(-, • ) , /: X->X a

homeomorphism of X, and d[ an increasing system of metrics on X defined by:

d^y}= max d^x^y).
0_0^n—l

Dinaburg [19] and Bowen [18] showed independently that the topological entropy h(f)

can be described through asymptotic behavior of the s-entropy of the space X provided

by the metrics d^ namely:

Lf r\ r ,—lnN/%,£)h(f)==hm lim ——' 'w / e->0 n-^oo ^

where N^TZ, s) is a minimal number of e-balls in the d[ metric covering the space X.

We are going to define the entropy h^(f) with respect to Borel probability/-invariant
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LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS FOR DIFFEOMORPHISMS 143

ergodic measure pi by a similar manner. The metric entropy turns out to be the asymp-

totic value of the same kind with some subsets of positive measure instead of the whole

space X. Namely, for s>o, 8>o, let us denote by Ny(7z, s, 8) the minimal number of

e-balls in the ^-metric which cover the set of measure more than or equal to i — 8.

Theorem (1.1). — For every 8>o:

In N^, e, S) —— In U(n, e, 8)
h^{f)=hm hm ——'-———- =hm hm ——'-———-.

s-»0w->oo 71 e->0 w-^oo U

Proof. — The easy part of the proof is to show that the quantity in the right part

of the formula does not exceed h^{f). To prove this it is enough to show that:

(,,) ,^lnN,(,,,.,8)
V 1 n-^oo n — ^

for every s>o, 8>o.

Let us choose a finite measurable partition ^ of X such that the maximal diameter of

elements of^ is less than £/2. Then, each element of the partition

S-n=Sv/-^V...V/-n+^

lies inside some s-ball in the metric d^. Let:

An^-^eX^E^.^Me^, ^(^))>exp-^(/,^)+Y)}.

Since f is ergodic with respect to the measure (JL then by Macmillan's theorem, for

every y^o, ^.(A^g )->i as n->oo. Consequently, for sufficiently large TZ, we have

{ j i ( A ^ g ^ ) > i — 8 . The set A^ g ̂  contains at most exp n(h^{f^ ^)+y) elements of the

partition i;_^ and can be covered by the same number of s-balls in the metric ^.

Thus, for every -^>o:

.i.m'-^^W.O+T.
_fy_^

n->oo n

Since y can be taken arbitrarily small and fi^{f, ̂ ^h^f) we obtain (1.1).

For the second half of the theorem we have to recall several definitions and facts

about Hamming metrics.

Let:

^,n=={^=^o. ...,^-i) : ^e{i, . . . ,N},z=o, i, ...,^-1}

where N and n are positive integers. The Hamming metric p§ ^ on i^n18 defined by:

_ i n"1

PU^ ^) = ̂ s/T - ̂ -z)

where 8^ is a Kronecker symbol:

to if k^l

^[i if k=f.
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144 A . K A T O K

For coeQ^ ̂ , r>o, we denote by B^co, r) the closed r-ball in the metric p§ „ with

the center in co. The standard combinatorial arguments show that the number of

points in B^co, r) depends only on r, N5 n and is equal to:

(1.2) B^N^-^N-i)-^).
w=0

N — i
It is easy to show using Stirling's formula that for o<r<———

(1.3) l im^^^^^rl^N-^-rlnr-^-^ln^-r).
n ->oo ^

If ^ == (<:i, . . . , ̂ ) is a finite ordered measurable partition of X we can, for every

positive integer n, define the map <p^ : X-^il^n by 9^ W ==(^0(^)3 • • • ? ^n-iW) ^ere

y^w
The pre-image of the metric p§ „ defines a semi-metric on X which we denote

by<e.

Now we proceed to the proof of the inequality:

(,.4) ^(/jSUmlim"1^"-8'.
e -> 0 n -> oo /fr

Obviously, the theorem follows from inequalities ( i . i) and (1.4).

We can assume that the measure (JL is everywhere dense in X, i.e., the measure

of any non-empty open subset of X is positive. The general case is reduced to this parti-

cular case by replacing X by its closed subset supp (JL.

For a partition ^ of X, let us denote by ^ the union of the boundaries Sc of all

elements ce^ and let:

u,(^=U^(u^)),

where y ls a positive number and:

V,(c)=={xec: 3j;eXV,^,^)<y}.

Since HU^^^ then Urn pL(U^))= ̂ S).

Let us fix some finite ordered measurable partition ^ of X such that [JL(^)=O.

£2

Let s>o be small and find ye(o, s) such that pi(U^(^))<—. If A:,j^eX and d^{x,y)<.^

then for every i : O ^ Z ^ T Z — i either the points f^ x andjP^ belong to the same element

of i; or both of them belong to the set U^(^). Let us denote for brevity the characteristic

functions of the set U^(^) by ^ and let:

B^={^X:S^(A)<^j.

144



LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS FOR DIFFEOMORPHISMS 145

r e2

Since ^ d[L<— and/preserves the measure u. we have:
Jx 4

we2 r n""1 r n""1

T^U^^L,.2.̂ ^

^(X\B,J

so that ^X\\,)<^.

If ^fine and ^(^J^Y ^en ^(^J^8; z.<?., an intersection of any y-ball

in the metric d[ with the set B^g is contained in some c/2-ball in the semi-metric d^.

Let us consider a system U of y-balls in the ^-metric containing N^n, y, 8) balls,

and covering the set ̂  such that (i(FJ^i-8. Then ^(F^nB^^i-S-2. Suppose

that s<—^— so that (A(F^nB^J>——. Since the intersection of every ball from U

with Bn,s is contained in some s/2-ball in d^ then there exists a system ofN^(n, y, 8) balls

in d^ ^ of radius s/2 which covers a set of measure bigger than ̂ —. Using Macmillan's

theorem we deduce that for a sufficiently large n some part of that set of measure bigger
1—8

than —— consists of elements of ^-n and the measure of each element is less than

exp — n{h^{f, S) — c). Consequently, the number of such elements is more than:

(i-8)exp(^(/,g)-s))

4

Thus, we have:

(,.„ .̂...̂ ^•(W^)-') .(-^

4^1,.) l 4 /

Combining (1.5) and (1.3) we obtain:

,. lnN,(%, Y, 8)
Jim——'^——^^(/.^-^i+l^N-i))^-^ In £+(i-s) In(i-s).

Since y^8 ^d £ can be chosen arbitrarily small we have:

^^^v^^^" ' 9

s->0 n->-co U

for every partition ^ such that [ji(^)==o. We can find a partition with this property

and with sufficiently small diameter (recall that every open set has positive measure)

and consequently with the entropy h^f, ̂ ) arbitrarily close to ̂ (/). Inequality (1.4)
is proved. •

145
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146 A. K A T O K

Remark. — M. Misiurewicz suggested another proof of Theorem (1.1) similar in

ideas to his proof of the variational principle. This proof avoids the use of combina-

torial arguments (formulae (1.2) and (1.3)).

2. Behavior of a diffeomorphism near regular trajectories.

In the first half of this section we collect preparatory material about the behavior of

any C14'" (for some a>o) diffeomorphism in a neighborhood of a regular trajectory with

non-zero Lyapunov exponents. The main conclusion is that after some non-autonomous

change of coordinates the diffeomorphism becomes uniformly hyperbolic in a neigh-

borhood of the trajectory and the size of this neighborhood oscillates very slowly

(Proposition (2.3)). Actually, we slightly modify notations, definitions and results from

Section i of Pesin's work [8], especially Theorems (1.5.1) and (i .6. i). In the second

half of the section we derive some consequences from the hyperbolicity.

Let / be a C14^ (a>o) (
1
) diffeomorphism of a compact Riemannian ^-dimensional

manifold M. Let us denote for ^>o, f>\ by A^ the set of all points xeM with the

following properties: there exists a decomposition T^M=E^®E^ such that for every
neZ

+
, meZ we have for all vectors vedf^^

\\df^v\\<_l exp-^ exp^ocio-^ + H))1H|

li^>[l^-lexp^exp(-^IO-3^+[m|))ll^/l|

for vedf^:

ll^^ll^-lexp^exp(-7aIO-3(7^+l^l))|lyll

\\KV\\ <,^xp-n^exp{^io-\n+\m\))\\v\\

and for the angle y(A:) between the subspaces E^ and E^:

YC/^^-'exp-a^io--3^]

(cf. [8], (i.3.5)-(i.3.7)).

Let for an integer k with o<_k<_s:

A^f={xeA^f: dimE^==A}.

Obviously if ^^, t^i^ then A^D A^.

Proposition (2.1) (cf. [8], Theorem (1.3.1)):

(i) The sets A^ are closed'^

(ii) The subspaces E^, E^ depend on x continuously on the set A^ ^

(iii) For every integer q and f>_\ there exists L=L(y,/') such that /^A^CA^.

(1) If/belongs to the class 07, r^2, we will take a == i in all formulas including a.
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The statement (i) is obvious from the definitions. The proofs of statements of

Theorem (1.3.1) in [8], similar to (ii) and (iii), work automatically in our case.
Let us denote:

U A^A^, UA^A.
f>l

 x '1 x5 fc,% %

Proposition (2.2). — Let x be a regular point for f with the Lyapunov exponents

XiW? • • • . X r ( ^ W different from zero, ^{x)== min \^{x)\ and k{x)= S k,{x) be the
l^^^r(a;) »:Xi(a;)<0

number of negative exponents with their multiplicities. Then xeA^ ^ for some l^i.

The proof is the same as in [8], Theorem (1 .2 .1 ) and below. This proposition

and the multiplicative ergodic theorem imply the following statement.

Corollary (2.1). — For any Borel probability f-invariant measure \L with non-zero Lyapunov

exponents pi(A)=i. If moreover (JL is an ergodic measure, then (Ji(^)=i, where:

( 2 .1 ) )c-m.in[^|, k== 2: .̂
1 » :x^<o

The next step is the definition of the so-called Lyapunov Riemannian metric

near regular points which allows us to consider the linear parts of/along the trajectory

of such a point as uniformly hyperbolic operators. This construction is contained in

Theorems (1.5.1) and (i .6. i) of [8]. We summarize their content in a slightly modi-
fied way:

Proposition (2.3). — There exists a number ro>o which depends only on f such that for

every point xeA^ we can find a neighborhood B(^) and a dijfeomorphism 0^ : B^ xB^-^B^)

(B^ — Euclidean r-b all around the origin in If) with the following properties.

(i) The image of the standard Euclidean metric in B^ x B^ is a Riemannian metric < •, • >^

in B(^) which generates the norm [[ [[^ in each tangent space TyM, jyeK{x) connected with the

norm [ j [[, generated by the given Riemannian metric, by the following inequalities:

KI^'-J^K.AW

where Ki, Kg are absolute constants and A{x) is a Borel function of x such that for any integer m:

(2.2) A(/^)<AM.Lin^jy1^ exp s^a. lo-^m}}}.

and:

(2.3) sup A(A;)==A^<OO.
.£A^

(ii) The map:

L=^°f°^ B^xB^-^xR^^R8
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has the form'.

f^u, v)=={A^ti+h^u, v), ̂ v+h^{u, v))

where A^(o, o)=A^(o, o)=o, dh^{o, o)=dh^{o, o)=o and:

(a-4)

HAJ|<exp-^x

ll^H-^P^X

(^// norms here and below in this section are Euclidean).

YI —99 \
Let us set X(%)==max -, exp——7 . Then, for z=={u,v), h^{z)=={h^{z), h^{z)):

\2 100 j

(2.5) IK^-WJI^MXGOII^-^H",

with an absolute constant M.

(iii) The metric <( • , • )̂  depends on x continuously on any set A^ ^.

(iv) 2w ̂  zeM. the decomposition

T, M = rfO^R^ x d^R
8 - fc

depends continuously on x for such xeA^f that ze'B{x).

Although the last two statements are not contained in the cited theorems they

follow easily from the definition of the metrics < >^ ([8], formula (1.5.8)) and Prop-

osition (2.1) (ii).

Now we are going to diminish the size of the neighborhoods ~K{x) to provide

the hyperbolicity of f in the reduced neighborhoods. The new neighborhood C{x)

for xeA^f has the form C(A")==Oa.(B^xB^) where:sw = ̂ ^y (^-^(Aw)-1/61.
We shall call the neighborhood C{x) the standard ^-box. From inequality (2.2)

we have for any integer m:

(2.6) £(/^)^M(min((3) , exp 2x. lo-3^]]).
V \\2/ //

Furthermore, for z =={u, v)e(S>^
l
{C{x)) we obtain from (2.5) the following estima-

tion of the non-linear part of^:

(2.7) IK^Ii^MA^II.II^1-^2.

For xeA^f we have from (2.3):

/T_ \ (y } } 2^

(2.8) e(x)^ ^) (2M)-l/o•(A^)-l/g=e(^ %^)>0.

148



LYAPUNOV EXPONENTS, ENTROPY AND PERIODIC ORBITS FOR DIFFEOMORPHISMS 149

We shall need the following uniformly shrinked version of the standard boxes.
Namely, let us fix a number h:o<h<_i and set for xeJ^ f.

.C(A?,A)=<I>,(B^)XB^).

Let us denote by U^8-" (o<y<i, 8^0, o<h<_\) the following class of
[s— ̂ -dimensional submanifolds of the neighborhood C{x, h):

^'''^{^(graph y) : yeC^B^, B^)), l|<p(o)[jS8, [\d<?\\^}.

Obviously if Yi^Y2» 8^82 then UJl•s-'>^U^•8'•k. We define in a similar way
the class SJ'8''1 of ^-dimensional submanifolds of C(x, h):

SJ-^^graph <p) : y6Cl(B,^„ B^), H<p(o)l|^8, H^ll^y}.

The following proposition shows that for a properly chosen number y and for any
sufficiently small 8 the classes UJ'8''' are/-invariant and every manifold from such a

class is expanding with respect to the Lyapunov metric < •, • >^. For %>o, let:

i-^(x)
T(X)=-

20

h^x)
Proposition (2.4). — Suppose that xeA^{, 8^ v / and NeUJ^-8'". Then:

(i)/NnC(/W)eUXS)•Y(x)•8•(I±^))•A;(i)/NnC(/M)6U;;S'-
(ii) for any two points J'n^sN:

W^A^>^+^)d^,^)

where <4'('» •) " the distance function generated by the metric < •, • >^.

Remark. — We can assume that the constant M is large enough so that

/(CM)CB(/M).

Proof. — It is more convenient to work in the Euclidean space R8 rather than in

the neighborhoods C{x) and C{f(x)). So, we take a map yeG^B^, B^)) such

that 9(0)^8, I j< /y | j^Y(%) ^d show that the set

/,(graph<p)n(B^)XB^))

can be represented in the form graph ,̂ where:

yeC^B^B^,),

IWI^(X).Y(%) and ^(o^^^).

This fact implies the statement (i) of the proposition. To prove the second state-
ment we shall show that for any ^, ^eB^;?:

ll/̂ i), ̂ i)-/,(y(^), ̂ )ll>(^+^)ll9(z'i)-y(y2), vi-v^)\\.
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Let w= (;»i, w^) be a tangent vector to the manifold graph y at the point (<p(o), v).

Then:

(2.9) l l" ' i l l^Y(x). | |^ll .

Let us consider the vector:

(<^)«P(»), «)(WD "'2)=(A^i+(^)(^^)(!»i, w^), B,a;2+(^)(^)^(i»i, wa))

==(Wi,Wa).

From (2.7), (2.9) and (2.4) we have:

ll^H^^ll^ill+^'.^^dl^ii+ii^ji)
1 UU

(
/ T _ X f v ^ 2 \

^ ^X).Y(X)+^-^^(I+Y(%)))11^11;

ll^ll^^^^ll^ll-^'^y^dl^ll+H^II)

^(^(^-^^^^(i+yto))!!^!!.

We want to show that:

(2.10) l lS ' i l l<^%).Y(x) .n^jI .

To do that it is enough to prove the following inequality:

^.Tto+^^^^i+YCx))

^^^(^(^^^-^"^^(i+YM))^

Let us omit the dependence of X and y on ^ in the subsequent computation. We

have ( recall that y==——h
\ 20 /

lO^x) (^f/ ^^M,̂ ) (,^)^,_^/ , A
20 100 \ 20 / 20 50 20 \ 5 /

<I^(x+3(I-X))=I^(I-2(I-X))
20 \ ' 5 / 20 \ 5 /

_i—\ ( i—X)2

— 20 — 5 0

<-^_(^)-(,+1_1)
20 100 \ 20 /

<J•^Vx--(•^)2(,+•-=l)).
\ 20 / \ 100 \ 20 / /
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Inequality (2.10) shows that the tangent space to the manifold f^ (graph 9) at
every point belongs to the cone:

^(XMX)-^^) : ll^ill^Oc).T(x). 1 1 ^ 1 1 } .

Thus ^ (graph 9)= graph ̂  where ^ is a map defined on some subset of the ball B
s
y~

k

(see remark) and Ij^ll^z) •r(x)-
We want to show that the domain of the map ^ contains the ball B^y^. It is

easy to see that this domain coincides with the image of the map:

^=^o/,o(9Xid): B^R8-^

where:
__ , ffs "0 ̂  \/ "0 s — k < "0 s — k
TTg. K ==K X.K —>s\

is the natural projection. The explicit expression for TT^ is:

( 2 . 1 1 ) 7^y=B^+^(<p(y), y).

The map TCq, is expanding since we have, from (2.4) and (2.7) (^i, ^eB^^):

ll^yi-^^ll^IIB^yi-^)!!-11^(9(^1)^1)-^(9(^)^2)11

^^(^ll^-^ll-^^^^ll^-^ll+llyfa)-?^)!!)

^(---(•^))')||-^>0^)||—||
>\\Vl-V2\\'

Suppose that ye^B^g^, z.^., | [y[[=A£(^) . Then the substitution of v-^==v, v^==o

gives us:

||^||^(x-l(x)-(I~^x))2)l|^|>(x(x))-l/495||^||

==(exp 2^IO~3)£(A:)A

so that by (2.6):

I[^.I[>A£(/W).
On the other hand, it follows from (2.11), (2.7) and (2.6) that:

||7r,o|l<^(/W)

so that the image of the boundary of the disc Bj^ lies outside the disc B^(^) while the

image of its center lies inside. Since T^ is an expanding map we can conclude that:

^(BLT^f) D ̂ /(S))

i.e., the domain of the map ^ contains the ball B^y/^.

Let VQ be the solution of the equation:

f.{M,Vo)=(^{o),o).
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The equation can be rewritten in the form 7^0= o or:

^--B;'1^^)^))-

Let us omit the dependence of X and y on X as above.

From (2.4) and (2.7) we obtain the following estimation of \\VQ\\:

INI^^^S+^+Y)!)..,!))

or:

(-3) IMS8-̂ .

Furthermore:

?(o)=A;,(tp(»o))+U9("o)> "o)

so that we can estimate ||y(o)l|, namely:

ll?(o)l|^(|l<p(o)||+Y|[^'oII)+-(I^)-2(I|y(o)l|+(I+Y)ll^ll)

^/. , ̂ -^Y , (l-^)2 , X(l-X)(l+y)^
^o I A -(- ———————— -f- —————— -|- ———————————— I
— \ 100 100 100 /

/ I — X / X 2 Y i — ^ ^ ( i+Y) \ \
=8 X + — — — — + — — + — — — -

\ • 2 \50 ' 50 • 50 / /

<8(x+I^)=8(I±-x).
— \ 1 2 / \ 2 /

For these estimations we used inequalities (2.4), (2.7)5 (2.10) and (2.13).

To finish the proof of (i) we have to show only that for yeB^^:

11W)1|^(/W).

For:

IIWIISIWMII+IWIHHI^^'^+W/t*))

^Y^m^,.

We used the inequalities XY=—^———-
<

^- and ———->-•
^ 2 0 — 8 0 s(A') 3
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Let us proceed to the proof of (ii). We have:

11/.(V(^1)-/,(<P(^2)|J

^l|B^i-^)[|-liA,(<p(^)-y(^))[|-j|A,(<p(^),^)-A,(<p(^),^)|l

^X-1([^-^[|-XY||^-^||-(I-X)-2(I+Y)1[^-^[|
100

^-•-^-'•^^^-•-•^-.ll
>(^x+5+Iz^)l'^-^ll>(^+^)(I+T)ll^-^il

^(^+^)il(9(^)^i)-(9(^)^2)Il. •

We do not formulate explicitly the result similar to Proposition (2.4) for the

classes SJ^'8^. In the next section we will use both of these results.

In general we do not guarantee that the number e{x) and the map €^ depend

on x continuously on the sets A^. Indeed, Proposition (2.3) (iii) and (iv) provide

continuous dependence of the classes UJ'8'^ and SJ'8^ on these sets if we consider instead
of manifolds from the classes their pieces of fixed size.

Let us denote the neighborhood:

^x(fths(k, x, f)f2 x %(fc, x, ̂ )/2)

of a point xeA^^ by C{x, h, k, ̂  1} (cf. (2.8)). Sometimes for convenience of notation

(if the numbers A, ^, t are fixed) we shall write s instead of e{k, 7,1) and C{x, h) instead

ofC(^M,X,0.

Furthermore, we shall call any manifold of the form NnC(A:, h) where:

NeU:^^

an admissible (u, h)-manifold near x and any manifold of the form:

NnC(^, h) where NeS^'^''

an admissible (j, ^-manifold near x.

Let rf ( - , •) be the distance function generated by the given Riemannian metric

on M. We have from Propositions (2.1) and (2.3):

Corollary (2.2). — For any k, y>o, l>o, p<l, o<A<i there exists a
4 ~

number x=x(^,/ , ^, (B, A) such that if A^eA^, d{x^)<x, NeU4^^'71^ (resp.

NeSf^^^^} then:

NnC(^, h, k, ̂  £)

is an admissible (u, h)-mamfold (resp. (j, h)-manifold) near x.

153
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Proposition (2.5). — Let ^eA^, o<h<^i. Then any admissible (.y, h)-manifold near

the point x intersects any admissible (u, h) -manifold near that point at exactly one point and the

intersection is transversal.

Proof. — (i) Existence. Let K=0^ (graph 9), L=0^ (graph ^) be an admissible

(.5-, A)-manifold and an admissible {u, h) -manifold near x, respectively, with:

^(B^B^) and ^(B^, B^,).

Let us consider the map:

^ 0 9 : B^->B^.

Since this map is continuous it has a fixed point UQ (by the Brower fixed point

theorem). Thus, ^(9(^0)) "^o or:

(2.14) {UQ, 9W)=(+(?M). <P(0).

But {UQ, 9(^o))egraph9, ^ Wuo))^{uo))e graph ̂  so that (2.14) implies that:

O^o.^o^KoL.

(ii) Uniqueness. Let (^o, yo)egraph 90 graph ^p. Then if {u, y)egraph 9 the

following inequality is true:

(2.15) lh-^II^Yll«-"ol I

and similarly for {u, y)egraph ^:

(2.16) ll^oll^Y-1^-^!.

Since y^1 inequalities (2.15) and (2.16) are satisfied simultaneously only for
U==UQ, V==VQ.

(iii) Transversality. Once more let:

(^o? ̂ g^P11 90 graph ^.

If ^ = (•/], ^) ET(^ ̂  graph 9 then:

(^.17) imi^Tthll.

If ^ ==(7],^)eT^^ graph ^ then:

Jl^l^Y-1!!^!.

Thus if ^eT^ ^ graph 90 T(^^) graph ^ then by (2.16) and (2.17) we have ^==0.

This means that the intersection is transversal. •

3. Approximation of recurrent regular point by periodic point.

Main Lemma. — Let f be a C14'0' (a>o) dijfeomorphism of a compact s-dimensional

Riemannian manifold M. Then for any k == o, ..., s and any positive numbers ,̂ f, 8 there

U4
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exists a number ^=^, %, ^, 8)>o such that if for some point xeA^^ and for some

integer n one has

(3.1) r^^t
and

(3.2) d^f-x)^

then there exists a point z==z(^x) such that:

(i)/^=.;

(ii) d^ z)<S;

(iii) the point z is a hyperbolic periodic point for f and its local stable and unstable manifolds are

the admissible (j, i) -manifold and admissible {u, i) -manifold near the point x, respectively.

Let us fix some numbers (B>———m and h: o<h<_i and assume that:
8

(3.3) ^,/^)<min(x(A, /, t, (B, A), x(A, ̂  i, (B, i))

where the number x is found from Corollary (2.2).

Moreover, by Proposition (2.3) (iii) we can find for every O<T<I the

number ^=^(^, ̂  r) such that if xeA^f and conditions (3.1) and (3.2) are satisfied
then for every J^J^C^, i):

(3.4) ,<^^)<^.
^(^1^2)

We assume that ^ in (3.2) is chosen to satisfy (3.4) with T sufficiently close to i$

particular choice of T will be specified below (cf. (3.9), remark after (3.20), (3.25)).

Other conditions on ^ will occur explicitly in the course of the proof (cf. (3.6), remark
after (3.12)).

During the proof of the Main Lemma we shall use the following simplified notations:

s instead of s(^, ^, f) and C{x, h) instead of C{x, h, k, 7, ^). Also, we shall omit the
dependence of y and X on ^.

All other constructions here and below will be effected for the chosen number h

(which may be very small if 8 is small, cf. (3.36)) and for A=i . Obviously for h=i

some of the notations become simpler.

We shall use this second version of the constructions only in the final step of the
proof dealing with assertion (iii).

Step 2. — Let us denote by \ and B^ the following manifolds:

Ao=:(0^(B^x{o}))nC(^A)

Bo=^({o}xB^).
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Obviously, Bo is an admissible {u, h) -manifold near the point x. Since
<I)/..(B^)X{o})eS^O'fc

then by Corollary (2.2) the manifold \ is an admissible [s, A)-manifold near x.

Let us define the manifolds A^, B^, z = = i , ..., n—i in the following way:

A^/^AonC^-1;^)

A^y-^^-^C^-^A) z=2,...,n-i

B^/Bo

B^yiB^nCC/'1-1^)) z=2, ...,TZ-I.

We can conclude from Proposition (2.4) (i) that each manifold B^ is a part of a

manifold from the class U^°'71 (or maybe the whole such manifold). Similarly, A^ is

a part of a manifold from S^0^. Now let:

Ai^-^r'nC^A)

Bi^/B^nC^).

Applying once more Proposition (2.4) (i) we can conclude that the manifold A^

is a part of an admissible (J, h) -manifold near the point x and B^ is a part of a manifold

from the class U^'0^. Thus Corollary (2.2) and (3.3) guarantee that B^ is part of an
admissible (u^ A)-manifold near x.

We shall show that ifd^Xy^x) is small enough then B^ actually does coincide with some

admissible {u, h)-manifold near x. This statement is a particular case of a statement that

will be proved in Step 2. So the reader can either omit the subsequent proof and

proceed directly to Step 2 or try to understand the idea of both proofs (which is basi-

cally the same) on the particular case which is technically easier.

Suppose that B^ is the proper part of an admissible (u, A)-manifold near A:. Then

we can extend B() to a manifold BoCUJ'°'\ apply inductively Proposition (2.4) (ii),

then Corollary (2.2) and construct manifolds N.eU^'0'^ i==o, . . . , T Z — I , and an

admissible (u, A)-manifold B^ near x such that for some point j^eBo\Bo:

/^eN,, Z = I , . . . , T Z — I and /^eB^Bi.

Since j^eBo\Bo we have:

(3.5) d^y)>^.

Let:

/^=(D^^)

/^-^(^^

and assume that:

(3.6) ^,/^)<^.
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Then:

(3.7) W^./"y)^ll"i-"2ll+ Jl^-^IISllfill + 1 1 ^ 1 1 + Y ^ . s
As he

^(^/"0+^+Y^^(i+3Y).

It follows from Proposition (2.3) (i) that (3.6) can be fulfilled if^is chosen small
enough.

On the other hand it follows from Proposition (2.4) (ii) that:

WV^^+^d^).(3.3)

Suppose that in (3.4) T is chosen so that:

i — X
!+•

(3.9) T>

!+•

I—X

2X

Then we have combining (3.4)-(3.9):

i — X
i+-As

:(I+3Y)>^(/"^/")')>-
l — X

!+•

W^j^)

2X

^ / l—X\ „, . As/ l—X\
^[I+^)d^>^{I+-^-)

^(i-^)=3Y(%)>^(i-X)

which is a contradiction.

Thus we have proved that B^ is an admissible {u, h) -manifold near x. Similar

arguments show that A^ is an admissible (^ A)-manifold near the same point.

Step 2. — Let us define by induction the manifolds:

Aw, A^, . . . , A^~\ B^, B^, . . . , B^"1, m== i, 2, . . .

in the following way

A^y-^nC^-1^)

(3.10) < A^y-^^nC^-^A) z=2,...,;z-i

.^^/-^r^C^A)

B^yB,
(3.11) < B^B^nC^-1^)), ,==2,...^-i

B^i^/B^-^C^A).

257
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We shall apply arguments similar to those that were used in Step i to prove that:

For every m == i, 2, . . ., B^ is an admissible {u, h)-manifold near x and A^ is an admissible

(.$•, h)-manifold near x.

We shall use induction in m. Let us assume that B^ is an admissible {u, h) -manifold

near x. Then, by (3. n) and Proposition (2.4) (i), B^^ is a part of a manifold from
^(Ui^V.^

the class U^ v 2 / 4 ' and, consequently by Corollary (2.2), B^i is a part of

{u, h) -admissible manifolds near the point x. Let B^==0^ (graph 9) where

^eG^B^.B^).

Let us extend B^, to a manifold:

^ ,,
T ' » ~T » "

B^eU^' 4 • , B,=graph ̂ , ^eC^B^, B^)),

ll?(o)f|^

In other words, 9 == ̂  [ _ .

IIWfl^, ll^ll^y.

Tis-k
"Ae/2

Let us define the manifolds B^, z=i , . . . , T Z — I and B^i by formulas similar
to (3.n):

B^X

(3.12) B^^B^nC^-^A)), z=2,... ,7z-i

B.+l=/(B^-lnC(/n-l^A))nC(/^,A).

Obviously, if d^x.x} is small enough then S^^DB^^. Applying Prop-

osition (2.4) (i) inductively we conclude that for z= i, ..., n—-i:

-• . Xt'Y^-f1-^^1 h
B,nG(/^,A)CU^^ ̂  ^

h

and:

B CU'"^-^"'"
^n+l^ ^PX

In other words:

B,nC(/^,A)=$/,,(graph%)

B.=0^(graph^)

where for i=i, ..., n:

^eC^B^^B^^),

(3.13) ll̂ o)!!̂ 1^

il^H^xv

J^
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Let us consider the point:

^-^(^(o^o)

and set:
^=/1-^ i=o, i, . . . , T Z - I .

Since ^eB^ we can represent these points in the form:

^-WiW^i)

where by (3.13):

(3.M) [|%(..)[|^l[%(o)jl+Yj|^lls(-[^)t^+yl|..l[.

Now let us consider a ^-dimensional manifold:

N=<D^(B^,)X{o})eS^°'''

which contains the points fx and ,?„ and apply to that manifold inductively the statement

similar to Proposition (2.4). We can conclude from that statement that ^eN^ for
some N.eS^0-'1 and, consequently:

(3.15) IHI^Yll?<("i)|l

Combining (3.14) and (3.15) we obtain:

, /i+^V

(3-*6)

form:

-/ M,^ \ 2 / „ ,,^ Y^6 /^^V

^^^(TT^' Iloi^4(7+r-)(^-)•

Since B^nG(/^, ^CB^nC^A:, A) we can represent the first manifold in the

B^C(/^A)=0^(graph% ).
Di-

ll follows from (3.16) that ^Km and consequently ^eB^nG(/^, A).

In other words, y,eD^. The arguments from the proof of Proposition (2.4)
(esp. (2.11) and (2.12)) show that:

(3.17) A+i=^D,nB^^

where:

(3.i3) ^W=B^^+^(%(^), v).

Obviously:

Do=B^.

Every map 7 .̂ is expanding on B^-^ (and consequently on D,) and by (2.12) the

coefficient of expansion is bigger than ^+-1-. Thus (3.16), (3.17) and (3.18) imply
the following statement:

1.59
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T^D, contains a ball around y, of radius r then D,.̂  contains a ball around y,+i of radius:

r'=rnm((l-+-^\r,h^f^)--^-(l-^\i+l\.
\\22\r u ' 4(I+T2)\ 2 / 1

Since s(^e and, by (2.6), s(/w)^max(2, X495^1^, we have:
</W)^ /2 ,i^I+^

£^^ \3 / 2

(T-L'XV+1

.(/•^)> -4-) .M

whence:

(3.19) r'^min^+^)r, ̂ i-^s^^^)^.

Applying inequality (3.19) inductively and using the fact that Do contains a ball

around VQ of radius ( i — y ) — (what follows from (3.16) for i=o) we obtain that

D^ contains a ball around the origin (recall that ^ = o) of radius:

min((i-Y).^+^)^^(i-y)s(/^)).min | (i — y) • I -
V u \2 • 2X/ 2

This number is bigger than:

he/i i\1!2

{3f20) 7(2+2-J •

This means that if T in (3.4) is close enough to i then:

^x 1 ̂ {graph ̂  ) == graph ̂
D»

where the domain of <p^ covers the ball B^^.

In other words, since:

^m +1 = ̂ (graph ̂  ) n C {x, h)
Dn

this manifold is an {u, A)-admissible manifold near the point x.

Step 3. — By Proposition (2.5) every manifold A^ intersects every B^, k, i ==o, i, . . .

at exactly one point. We denote this point of intersection by ^ ,.. Obviously:

x == z!, 0 J
x == ^O, 1 •

Let us prove that if k>_i^ f>_o then:

(3.21) /X^^-i^+r

In other words, we are to prove that:

/X^-i and f^k^+r
The first inclusion follows directly from the definition of ^ ( and (3.10) because:

/^e/^C/^A^C ... CA,_,.
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To prove the second inclusion it is enough to show that for i== i, . .., TZ— i:

(3.22) r^CB}

because in this case:

(3.23) rh^w^w
and since:

(3.^4) /^CA^CC(^A)

we have from (3.23), (3.24) and (3.11) that:

/^eB^,.

Now we proceed to the proof of (3.22) by induction in i. Suppose that:
/-l-l cW~

1

J h^^^l •

Then: ^ __i
J ^t^-J^t

and by (3.10):

f^^CfA^^A^fC^x^)

i.e., by ( 3 . 1 1 ) :

/^C/B^n/CC/1-1^ ̂ /(B^nCV1-^, A))=B^.

Step 4, — Let us assume that in (3.4) we have chosen:

(
T T \-1/100'̂ » T>.+^) •

We shall prove that for every k^,k^i, f^o:

(3.26) d'^z^t, ^,/)^X'</;(^_^/+i, %,_i , /+i)

( I I \-"+1/100

where \' =\'{•/_, n) == - + —T-T ) ^ i • The following inclusion follows from (3.22)

and (3. n): 2 2X(Z)/

(3.27) /*^=/-V+l^)e/-lB•,+l=B^nC(/^A).

Since B^ is an admissible (^, A)-manifold near the point x it follows from Prop-

osition (2.4) (i) that the manifold B^nC(y^, h) is a part of a manifold from the class:

u^?^)^u/^

Therefore, we have from Proposition (2.4) (ii) and (3.27) using (3.25) and (3.4):

^(%i-l , /+l5 ^-l^+l^^/^^i-l^+l? ^2-1,/'+l)

^(^y^'^
^'d^f, 2^).

(Recall that s-f^^)^*<s(/^).)

J6J
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Similarly, we have for k>_Q, ^.,^2^1;

(3.28) <(^, ̂ )^^;(^^_,, ̂ +1,^-1)

*Ŝ  5. — Now we are going to prove that:

(3.29) ^<(%,,-i, %-i,,)-o

and:
00

(3.30) ^d^^z^<^.

We have:

^(^-1. %-l,fe)^€(^,/c-l. ^-l,fc-l)+<(^-l,fe-l5 ^-l.fc)-

We shall estimate each term in the right-hand part of this inequality.

The points z^ __ ̂  and % -1 ̂  _ i belong to the manifold \ _ i. From (3.21) we have:
fn(k-l) y _ -D

J ~ /c—l,A;—l—• ^ 0,2fe—2 e • D 2&—2

J %,A-1=='^1,2A;-2E•D2A;-2•

For every i = o, .... k — 2 inequality (3.26) gives:

^(^-l-t^-l+t? %-^,fe-l+i)^x /e(^-2-^,&+^5 %-l-i,fc+»)

and consequently:

(3.31) <(^-1, ^-l,fe-l)^Mfc--l<(^,2.-2, ^^.-^^^^(X^-1.

Similarly, using (3.28) instead of (3.26) we obtain:

(3.32) <(^-i,,-i, ̂ -i^^T'"1^^-^ ^-2,0)
^2£A(X /)fc- l.

Since X'<i (3.29) follows immediately from (3.31) and (3.32). The same two
inequalities imply (3.30) because:

^(^+1,^ ^fc-l)^^^^^!,^ %,fc)+^(%,^ ̂ -l)

^4£A(X/)fe.

It follows from (3.30) that the sequence ^-D ^=i? 2, ... converges as yfe->oo to some
point zeC{x,h).

Since by (3.21) ^-i,^/^-! we have from (3.29):

fz^lim f
n
z ^ ^ _ = lim ^ i f c = H m ^ f e i^^-l' TC-XX)" K>K ± fc->-oo « ;— l^" ; fe-^oo ^^—l

Thus, we have proved (i).

Since f1 is a continuous map then by (3.27):

(3-33) /^-Hm/^^eCV^, A)

^
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and consequently:

(3.34) W^z^h^x^hr,.

It follows from. the compactness of M and Proposition (2.3) (i) that there exists

a constant K>o such that for every point yeA== U A^ and every two points

w^eC{y, i):

(3-35) dy{w^)>Kd{w^).

Therefore, from (3.34) and (3.35):

d^x,z)< max d(fixJi2)<2hr^-l.n\ 5 / _Q^^_^ \J ->J /_ u

Taking:

(3.36) h<^
^'0

we obtain the statement (ii).

Step 6. — In this section we shall prove that df^ is a hyperbolic linear operator.

For o<(B<i let us denote by Kp and Lp the following cones in R8:

K^^^eR^xR8-^ IMI^P ||^||}

L^^w^eI^xR8^: \\w,\\^\\w,\\}.

It follows from the proof of Proposition (2.4) (the section starting from (2.9)

through (2.10) and below) that for xeA^f, {u, z^eB^xB^:

(3.37) {df^^CK^.

Moreover, for we'K^:

)̂'HI-(3.38) iiw.)i.,.i«'iî +,y]Mi.
The proof of (3.38) is similar to the proof of part (ii) of Proposition (2.4). Since

weKy we have [[wll^i—Y)"1!!^)). Furthermore, we have from (2.4) and (2.7):

1 1 Wx) («.»)('»!» "^IMKA^WI, B.,W2)+(<ftJ(^.)(Wi, W^\\

^||B,^|[-||A^[|-||(^,)^J|.||w|[

^x-^i-^.ll^ll-xyll^ll-^1^2!!^!!

.(^-(x3Irx)_x(Irx)_(Irx)a))||,ll
\ \ 20 20 100 / / " "

^^-
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similarly, we have for f~1
:

(3.39) (^-^L.CL^

and for weii^:

(3.40) IK^-^^l^d+^ll^ll.

Let us now consider the periodic point z constructed in the previous section.

Inclusion (3.33) shows that, for ;=o, ...,n—i, we have f
i
z=<S>^ (M,, o,) for some

(a,,y.)eB^xB^. Let us set:

F^=(^-IJ(^,^)° ... °(^)(^).

Applying (3.37) inductively for (M(), "o)> («i> ^)=f^Uy, Vy), etc., we obtain:

(3.41) F^K,CK^

and from (3.37) and (3.38) we can see that for weK^:

(3.42) im'>ii>(^+^)"iHi.
Similarly, from (3.39) and (3.40) we have:

(3.43) (F^-^CL^

and for z^eL^:

(3.44) IITO-^II^+^TIHI.

The following equalities follow directly from the definition of <!>„ and,/,; (cf. Prop-
osition (2.3) (ii)):

e'=wj^,^°F^o(</<D,-1),
=W".)(«„,^<>(^-1).°(^)(«„,.,)°F^(^-1),.

Let us denote for o<(3<i:

K,=(d^)^K,

4=(^)(uo,.,)L3•

Since rfO^ transforms the Euclidean norm in R8 into the norm 1 1 • 11^ the properties

similar to (3.4i)-(3.44) with the cones K^ and T^ instead of K^ and Ly and with the

norm || ||^ instead of the Euclidean norm in K
1 take place for the operator:

TO^oF^O,-1),: T,M->T,M.

The operator

(rf(D^)^^o(^-1),: T,M-^M
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transforms the norm | |- | |^ into ||-1|^ and the decomposition

W^R^xW^R8-6

into (^/»x)(^, ̂ R'X (rf0/j(^, ̂ R'-'.

It follows from Proposition (2.3), parts (iii) and (iv) that if the number ^ in (3.2)

is chosen sufficiently small then:

(3 • 45 ) (^/"J (»n, <>„)K^ c K^2 Y

(3.46) (rf<D/»J(^^,L^CL^/^

and consequently:

(3.47) ^»K^ CK,,/,,

(3.48) ^-"L^^.

Moreover, (3.9) together with (3.42) and (3.44) guarantee that for weKy:

(3.49) ||̂ >||,>(i+^)l|̂

and for weii :

(3.50) ||^-^||,>(i+^)l ^

Standard arguments (which we do not reproduce) show that:

H,=J^»K^)

and:

H^n^»r^)
are respectively an {s-k) -dimensional subspace and a A-dimensional subspace of

T^M invariant with respect to df^. Since HinHg={o} we have:

T,M=HiCH2.

Obviously H^CK^, HgCL^y) so we can apply (3.49) and (3.50) and conclude

that the spectrum of df^ lies outside the unit circle A and the spectrum of df^ lies
Hi Hg

inside A. Therefore, df^ is a hyperbolic linear operator.

Step 7. — Finally we shall prove the statement about local stable and unstable

manifolds. We explain in detail the case of stable manifolds; unstable manifolds are

treated similarly. Let us construct the manifolds A^ and B^;, k==o, i, . . . for A = = i .

Obviously, they are extensions of corresponding manifolds constructed for smaller h.

The set S^ of all (j, i)-admissible manifolds near x can be provided a G°-topology

in the following way. Let W^W^eS^:

w^== ̂ (g^P11 9z) ? l
 •==

 1. 2.
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Then the distance:

Po(Wi,W2)= max ||9i(^-92^)||.
^^2

Obviously, the closure S^ in this topology consists of all G°-manifolds W of the form:

W={0,graph9: 9^C°(B^,B^), 119(0)11^',
4

ll9^i)-9(^)II^Tl|^-^II.V^,^eB^}.

This closure is a compact set. Consequently, the sequence {A^}, m== i, 2, . . . contains

a subsequence {A^}, {=1,2, . . . ^->oo, such that A converges in the C°-topology

to some manifold A C S^.

Let we A. I shall prove that

(*) f^weC^, i) for m=i,2, . . . ;

(**) for some constants K>o, ^<i:

^(/^w, z)<K{^)mnd{w, z).

Let us fix m and find a sequence of points w^eA^ such that w== lim w..
^ /'-^oo

If m^>_m then by (3.10):

(3.51) /^eA^C 0(^,1)

which implies (*).

We have from the statement similar to Proposition (2.4) (ii), Proposition (2.3) (i)

and (3.9):

d(fmnw, z) == d{fmnw,fmnz)<^K^ld^fmnw,fmnz)

(
y _ ^ \ —m

(3.52) ^K,-1 i+-^-) d-^w,z).

(
Y _ ^ \ —m

^K^K^x) i+-^) d(x,z).

( j_x \ - l

To verify (**) it is enough to set in (3.52) K^K^KgA^) ^= i + — — ) . It

follows from (*) and (**) that A is contained in the local stable manifold V'(^) of the

point z for /n
.

Since T^V5^) = Hg and (^O^^^Hg C Ky we can conclude that locally near z the

manifold Vs
 {z) has the following form:

V^)= digraph 9)

where 9 is a G1 function defined in a neighborhood of UQ with the values from R
s
~

k and

IKII^T.

2(5(5
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Since the manifold O^1 A has the same form we conclude that, locally, A coincides

with V s
' {z) . Since the extension of any arbitrarily small piece of the local stable mani-

fold is unique we come to the conclusion that A is a local stable manifold. •

Remark. — The above arguments actually show that the sequence {A^}, 772== i, 2, . . .

converges in the G°-topology because any limit point of that sequence may serve as the

manifold A in that argument and the local stable manifold is unique.

4. Proof of the main results.

Theorem (4.1). — Let f be a C14^ (oc>o) dijfeomorphism of a compact manifold M, and

\L a B orel probability f-invariant measure with non-zero Lyapunov exponents. Then Per/3 supp pi.

Proof. — Let us fix some smooth Riemannian metric on M with distance function

d{ , ) and denote by B(^, r) the r-ball around the point xeM. To prove the theorem we

shall show how to find a periodic point in the ball B(^o, s) for a given point ^esupp [L

and a number £>o.

First, we can find numbers k, /, f such that:

^(B(^)nA^)>o

(cf. Corollary (2.1)) and define the number:

^=^,X,^)>o

satisfying the assertion of the Main Lemma. Let B be a subset of the intersection

B(A:o,-)nA^ such that pi(B)>o and the diameter of B is less than ^. By the

Poincare recurrence theorem, for almost every point xe^ there exists a positive integer

n(x) such that f^xeB and consequently d{x,f
n(x}

x)<^. Since BCA^ we can apply

the Main Lemma and find a point z of period n{x) such that d(x, z)<-. Obviously:
4

d{xo, z)<d{xo,x)+d{x, z ) < . •

Let us set Per^(/) ={xePerf: x is hyperbolic and has a transversal homoclinic

point}.

Theorem (4.2). — If in addition to the assumptions of Theorem (4 .1) the measure [L is

ergodic and not concentrated on a single periodic trajectory then Per^/D supp [JL.

Proof. — First, let us show that the Lyapunov exponents of [L cannot be of the same

sign. If so we can suppose (taking/"1 instead of/, if necessary) that all exponents are

negative. Suppose that x is a recurrent point of f {i.e. f^x-^x for some sequence 7^-^00)
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and that xeA^^ for k, ^ from (2.1) and some L Then there exists a positive integer m

and ^>o
 suctl that/^ maps the disc B(.y, s^) into itself and/^ is a contracting

B(a-,£i)

map. Consequently the points f^x tend to some point y as ^ tends to infinity.

Obviously f^^y. If j/+/^ for some integer j then x is not a recurrent point.

Consequently in this case almost all recurrent points are periodic. But since almost all

points are recurrent and [L is an ergodic measure it has to be concentrated on a single
periodic trajectory.

Now we are able to follow the line of the proof of theorem (4.1) but instead of

a single set B we take two different points ^, x^eM with the following properties:

(i) ^^B^o^);
\ 4/

(ii) there exists t such that for any 8>o (JL(A^nB(^, 8))>o, i==i , 2,

(iii) d{x^ A;2)<-min(-, x (^ , ^,/ ' ,——o-—^l) where the number x is found from
2 \4 \ o / /

Corollary (2.2) .

Such two points exist because p. is a continuous measure.

Let us now take subsets:

R^ n-R^r d{xlLX2L\ R F A ^ ^L d^llxA\
^l^^Sc^015^ ———jQ———^

 £ )2CAx^nIJ^25———^——I

such that for z = = i , 2 , (JL(B,)>O and:

diamB^^^x,/,^^).

Using the Poincare recurrence theorem we can find points ^eB^, y^eK^ and

positive integers n{y^, n{y^ such that f^y^^, /^^^eBg. Therefore, we can apply

the Main Lemma and find periodic points ^, z^ such that:

,^(^1^2)

^ ^ 1 0 0 ) l==l)2'

Let us estimate the distance between ^ and ^g. Evidently:

fi?(^, ̂ )—rf(^i, ̂ l)—^^^!)—^^? ^2)—^(^2^2)

^(^, ̂ )

^^i, ^2) + d{y^ ^i) + ̂ (^1,^1) + d{y^ x^) + d { z ^ y ^ )

whence:

^d{x^ x^<d{z^ ^)<j^i5 ^2)-

The inequality on the left shows that ^=)= ^3, the one on the right together with (iii)

and the last statement of the Main Lemma guarantee that the stable manifold W8^)
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has a point of transversal intersection with W^g) and the unstable manifold W"(^)

with W8^). Indeed, local pieces of W5^) and W^g) are (s, inadmissible manifolds

near the point j^, and local pieces ofW"^) and W^g) are {u, i)-admissible manifolds

near the same point. By Proposition (2.5), W^i) has a point of transversal intersection

with W5^), and W5^) with W^g). It is well known that the existence of such two

points of transversal intersection guarantees the existence of transversal homoclinic

points for z^ and z^. •

Corollary (4.1). — Under the assumptions of Theorem (4.2) the dijfeomorphism f has a

closed invariant hyperbolic set F such that the restriction off to F is topologically conjugate to a

topological Markov chain (subshift of finite type) and A(/[p)>o.

This fact follows immediately from Theorem (4.2) and the existence of such a

set r in any neighborhood of the trajectory of any transversal homoclinic point [20].

As an immediate consequence of this fact we obtain something like an estimation

of the topological entropy from below:

Corollary (4.2). — If a Gl+'x dijfeomorphism f of a compact manifold has a Borel probability

invariant continuous non-atomic ergodic measure with non-zero Lyapunov exponents then h{f)>o.

If d imM==2 then the converse of Corollary (4.2) is true. Combining this

remark with Corollary (4.1) we obtain the following result:

Corollary (4.3). — Any C1"^ dijfeomorphism of a two-dimensional manifold with positive

topological entropy has an invariant set as described in Corollary (4.1).

Proof. — Since h(f)=s\iph^{f) where sup is taken over the set of all Borel

probability ̂ -invariant measures (or only over the set of ergodic measures) we can find

an ergodic invariant measure pi with positive entropy. Such a measure is obviously conti-

nuous. Let ^i^ 72 be the Lyapunov exponents of (JL. Since the entropy is less than or

equal to the sum of positive Lyapunov exponents then 7i>o. Since h^f'^^h^f^o

then —7.2^°^
 ^

'
e
" ) 7,2^°' Consequently we can apply Corollary (4.1). •

The presented results give some rather qualitative information about the set of

periodic points. The next theorem gives an estimation of the asymptotic growth of the

numbers of periodic points.

Theorem (4.3). — With the assumptions of Theorem (4.1):

maxfo, iim^^^Am.
\ 5 n-^oo n J~ V " J '

Proof. — We can assume that [L is an ergodic measure. In this case we shall

construct for every positive numbers s, I and every positive integer n a finite set

169
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K^K^s, f) satisfying the following four properties (for some n the set K^(e, f) may be
empty):

1. K^eA^, where ^ and k are defined by (2.1).

2. If x,yeK^ and x^y then d^x,y)>^k, ̂ £)^-
1 (cf. (2.8)).

3. For every ^eK^ there exists a number TTI(^): ^w(A:)<^(i+e)n such that
f^xeA^f and:

^r^^+^x^,'^0).
4. For every s>o:

.nC^K,.,,)

f->ao n-^oo 7Z

To proceed to the construction of the sets K^ let us choose a finite measurable
partition ^ such that:

diam S<^, x, ̂  '̂ ^Tc^1) and ^A^ M^)-

The last condition means that every element of ^ either belongs to the set A^ ^ or is

disjoint from this set. Let us set:

A^=={^eA^: 3 m : n<m<_{\ + e)^ such that the points A: and ^x

belong to the same element of ^}.

We define the set K^ as a maximal subset of the set A^ satisfying the separation

property 2. The properties i, 2, 3 are true by definition. Let us check 4.

Lemma. — Hrn^ [i(A^)= (i(A^).

Proo/' 0/' ̂  lemma. — We fix an element ce^ belonging to the set A^ and set:

( n~l I s\ ^^^ / op\ ^
^,=(^:^x,(/^)<^(.)(i+^, ^S Xc(/^)>^M(i+-)j

where ^g is a characteristic function of the set c.

Obviously ^ g C A^n c. By the ergodic theorem we have ^{c\c^ g) -^o. Applying

these arguments to every element ce?, belonging to A^ we obtain that

(x(A^)->pL(A^). •

Since K^ is a maximal subset of A^ having the property 2, the union of
8 (^3 X) ^) .^"^balls in the d^-metric around points of K^ covers the set A^. Otherwise

we could add any uncovered point of A^ to K^ and produce the greater set with the

same property. Consequently by the definition of the numbers N^TZ, s, 8) (see § i) we
have:

(4.1) GardK^N^^,x^).r\i-(x(A^)).
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Using the lemma we conclude that for every 8>i—(Ji(A^):

^lnGardK,(e,^ ̂  In N^, s(^ x,f> .r^ 8)

n->- oo ^ n-»-oo ^

Thus the property 4 follows from Theorem (1.1).

Having the sets K^(e, I ) we can finish the proof of the theorem. For every point

xeK.^ we can by the Main Lemma find a periodic point z=z{x) of period m{x), If

x,ye'K^ and x^y then:

4W, ̂ )^(^)-^ ̂ ))-^ ̂ ))
(4.2) 2

^>J^x^K-1

so that the points z{x) and 2'(j/) are different. Consequently:

t(l+e)n]

S PJ/)^CardKJs^)
w=n

and:

„,„ p.(/)>ca^dK•M.
n<_m<^l+€)n TOV•/ /— en

Thus, we can find a sequence of integers m^: ̂ ^<^1 +£)7^^ suc!1 lhat:

lun111^-7'^ lun ̂ (InCard^(^)-ln^
»->-oo m^ n->aom^Y n j

(4'3) ^—(̂ ••̂ •".M^
I+S^-9 '00 ^ / I + S

where by the property 4:

limcpf/'Xo. •
f ->ao • ' '——

Corollary (4.4). — For every G14'" (a>o) dijfeomorphism f of a 2-dimensional manifold:

maxLiiml^pn(/))>A(/).
\ 5 n-^oo n /— VJ /

Proof.—We can suppose that h(f)>o since if h{f)=o the inequality is obviously

true. Then for every e>o we can find a Borel probability y-invariant ergodic measure (JL

such that A^(y)>A(y)(i—e)>o. In the proof of Corollary (4.3) we have shown that

one of the Lyapunov exponents of [L is positive and the other is negative. So we can

apply Theorem (4.3) and conclude that for every s>o:

J^1"^^/')^/)^-^ •
777
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The next fact shows that we can approximate the entropy of any "good95 invariant

measure by the entropies of limit distributions of periodic points. Let us set:

LnM={^): ^K,(S^)}.

Thus, !*„ (£,/') is a set of periodic points with periods between n and (i+e)^. Let

further (JL^(£,/') be a uniform measure concentrated on the set L^e,/').

Corollary (4.5). — For any condensation point p. of the sequence of measures (JL^(£, f) in

the weak topology we have:

W)^W)-9M.

(For the definition of the function 9^) see (4.3)J

Proof. — Let ^ be a finite measurable partition of M such that:

(i) diam^^^

and

(ii) W)=o.

Condition (i) and inequality (4.2) show that every element of the partition ^_^

contains at most one point of the set L^(e,/'). Therefore:

(4.4) HJSLJ=ln Card L,(s, ^)=ln Card K,(., ^).

Suppose that ^ ->p. in the weak topology. Property (ii) implies that for every

positive integer m\

(4.5) hm^H^_,)=H^_J.

If m<^n^ then:

n^-J ^ n^-n^

Combining (4.4), (4.5)3 (4-6) with the property 4 of the sets K^(£,/') we have:

H-(^ J In Card K^(£, ^)
^ ^lim——————^LL^A(y)_^). B

yyz fc-^oo ^
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