
Ann. Henri Poincaré 12 (2011), 1081–1108
c© 2011 Springer Basel AG
1424-0637/11/061081-28
published online April 6, 2011
DOI 10.1007/s00023-011-0100-9 Annales Henri Poincaré

Lyapunov Exponents, Periodic Orbits
and Horseshoes for Mappings
of Hilbert Spaces

Zeng Lian and Lai-Sang Young

Abstract. We consider smooth (not necessarily invertible) maps of
Hilbert spaces preserving ergodic Borel probability measures, and prove
the existence of hyperbolic periodic orbits and horseshoes in the absence
of zero Lyapunov exponents. These results extend Katok’s work on diffe-
omorphisms of compact manifolds to infinite dimensions, with potential
applications to some classes of periodically forced PDEs.

1. Introduction

For finite-dimensional dynamical systems, there is a fairly well-developed
smooth ergodic theory. We focus here on the theory of nonuniformly hyperbolic
systems, see e.g. [3,6,11–14]. The body of results contained in these and other
papers1 provides a firm foundation for understanding chaotic phenomena on
a theoretical level. The present paper is a step in a program to extend these
results to infinite dimensions, so they can be applied, among other things, to
systems defined by evolutionary PDEs.

Central to nonuniform hyperbolic theory is the idea of Lyapunov expo-
nents, which measure the infinitesimal rates at which nearby orbits diverge.
Given a diffeomorphism of a finite-dimensional manifold, almost everywhere
with respect to an invariant measure there is a decomposition of the tangent
space into an expanding, a neutral and a contracting subspace corresponding
to positive, zero and negative Lyapunov exponents. In infinite dimensions, this
decomposition continues to make sense provided the system is asymptotically
contracting in all but a finite number of directions. (This is not a requirement

This research was supported in part by NSF Grant DMS-0600974.
1 Other topics of hyperbolic theory not discussed here include, e.g. Axiom A, piecewise
hyperbolic and partially hyperbolic systems.
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for uniform hyperbolicity.) The systems we consider will be assumed to have
this property.

The purpose of the present paper is to generalize the results of Katok
[3] to mappings of Hilbert spaces. Katok’s results assert the following: Let f
be a C2 diffeomorphism of a compact Riemannian manifold, and let μ be an
f -invariant Borel probability measure. Assume that (f, μ) has nonzero Lyapu-
nov exponents and positive metric entropy. Then horseshoes are present, imply-
ing in particular an abundance of hyperbolic periodic points. Katok’s results
were proved for diffeomorphisms of compact manifolds. In this paper, we
extend these results to mappings of Hilbert spaces without any assumptions on
the invertibility of f or its Fréchet derivative Dfx. Our main results are stated
as Theorems A–D in Sect. 2. Along the way we make a point of isolating and
properly formulating for future use a number of basic facts which we extend
to infinite dimensions.

In the paragraphs to follow, we will review previously known results, elab-
orate on the facts alluded to at the end of the last paragraph, and discuss what
Theorems A–D will and will not tell us about systems defined by evolutionary
PDEs.

1.1. Previously Known Results in Ergodic Theory of Infinite-Dimensional
Systems

On the infinitesimal level, i.e. with regard to the asymptotic properties of Dfn
x ,

generalizations of Oseledets’ Multiplicative Ergodic Theorem [11] to cocycles
of linear maps of Hilbert and Banach spaces have been known for some time:
a version of this result for compact operators of Hilbert spaces was proved
in [15]; Banach space operators permitting nontrivial essential spectra were
treated in [7,10,18]. These results are cited without proof in the present paper
as Theorem 1 (see Sect. 3.1).

Turning to local results, i.e. dynamical properties in neighborhoods of
typical orbits, the existence of local stable and unstable manifolds was proved
for Hilbert and Banach space maps in e.g. [7,15]. These results also follow
from Propositions 5 and 6 of the present paper and are stated as Corollary 7
in Sect. 5.1, but they are not the reason for our work in Sect. 5 nor do we
claim priority for them.

On a more nonlocal level, we know of few results. Closer to the work dis-
cussed here are [18], which contains, among other things, an entropy inequality,
and [9], which proves the existence of SRB measures in a special situation.

1.2. Techniques Borrowed from Finite-Dimensional Hyperbolic Theory

Our main results are stated in Sect. 2. We do not repeat them here, but would
like instead to mention two sets of techniques used in the proofs of Theo-
rems A–D that are of a foundational nature and are certain to be useful in
future works.
1. Lyapunov charts. In nonuniform hyperbolic theory, it simplifies the esti-

mates greatly to work in coordinates in which the values of Lyapunov
exponents, which are by definition asymptotic quantities, are reflected
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in single iterations of the map. In finite dimensions, such coordinates
were introduced in [12] and are known as Lyapunov charts. These point-
dependent changes of coordinates were used extensively in [3,6] and in a
number of subsequent papers. Infinite-dimensional versions of Lyapunov
charts had not been introduced before; their construction is carried out
in Sect. 3.2.

2. Exploiting uniform hyperbolicity on noninvariant sets. In nonuniform-
ly hyperbolic systems, there are, by definition, positive measure sets on
which hyperbolic estimates are uniform. These sets are, in general, not
invariant, and one’s ability to effectively exploit the uniform hyperbo-
licity on such sets is key to success. Ideas of this type have been used
extensively in virtually all papers in the subject in finite dimensions. In
Sects. 5 and 6, we isolate and extend to infinite dimensions some of the
relevant estimates.
Tempting as it may be at times, one must not pass from finite to infinite

dimensions casually: even when the statements turn out not to be very dif-
ferent, many parts of the proofs often need to be reworked. Noninvertibility
of the map, as manifested in the absence of inverse images for many phase
points, infinitely large contractions, and the lack of local compactness in the
phase space—these are some of the issues one has to contend with.

1.3. Application to Systems Defined by PDEs

While infinite-dimensional dynamical systems are interesting in their own
right, the main applications we have in mind are to certain evolutionary PDEs,
and the conditions in Sect. 2 are tailored to this application. Specifically, the
setting of this paper is consistent with those of systems defined by dissipative
parabolic PDEs, such as reaction-diffusion type equations including the (2D)
Navier–Stokes equations. In a program to extend finite-dimensional hyperbolic
theory to infinite dimensions, it is natural to begin with systems of this kind,
for they have attractors that are finite dimensional in character (even though
these attractors do not live in any finite-dimensional space). For our results
to be applicable, we add a periodic forcing to the equations above. This is
necessary because the main dynamical assumption in this paper, namely the
absence of zero Lyapunov exponents, is violated by time-t maps of semiflows
arising from time-independent equations.

The time-independent case is treated in a forthcoming paper [8], which
builds upon the present work and proves results analogous to Theorems A–D
for semiflows on Hilbert spaces under the assumption that the system has at
most one zero Lyapunov exponent.

Having asserted that our results are potentially applicable to systems
defined by PDEs of certain types, we must now clarify the nature of this appli-
cation: Theorems A–D are dynamical systems results. As with most results
from nonuniform hyperbolic theory, they are intended to help build a concep-
tual picture, to describe the qualitative behaviors of “typical” solutions once
certain conditions are met. They offer no concrete information or estimate on
any specific equation or specific solutions of any equation, as analytical results
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for PDEs often do. A case in point: Assuming the absence of zero Lyapu-
nov exponents, Theorem D says that dynamical complexity (in the sense of
entropy) implies the existence of infinitely many periodic solutions, and The-
orem C compares the diversity of time evolutions to the flipping of a coin.
Checking the no-zero-exponent and positive-entropy conditions for a specific
invariant measure of a concrete PDE is difficult if not impossible, yet these
results paint a qualitative picture—they contribute to an improved under-
standing on a theoretical level—for a very large class of equations.

2. Setting and Results

2.1. Setting

In this paper, (H, < ·, · >) is a separable Hilbert space with norm | · |. We
consider a C2 map f : H → H, and let Dfx denote the Fréchet derivative of f
at x. Let A ⊂ H be a compact subset. The following are assumed throughout:
(D1) f(A) = A, and f is one-to-one in a neighborhood of A;
(D2) For all x ∈ A,Dfx is (i) injective, and (ii) compact;
(D3) μ is an ergodic f -invariant Borel probability measure on A. All of our

results are in fact valid with (D2)(ii) replaced by:
(D2) (ii′) For all x ∈ A,

κ(x) := lim
n→∞

1
n

log κ0(Dfn
x ) < 0

where for an operator T, κ0(T ) is the Kuratowski measure of noncom-
pactness of T .

Recall that κ0(T ) is defined to be the infimum of the set of numbers
r > 0 where T (B), B being the unit ball, can be covered by a finite number of
balls of radius r. Since κ0(T1 ◦ T2) ≤ κ0(T1)κ0(T2), the limit in the definition
of κ(x) is well defined by subadditivity.

2.2. Results

Under the conditions above, positive and zero Lyapunov exponents of (f, μ)
are well defined, see Sect. 3.1.

Theorem A. Assume (f, μ) has no Lyapunov exponents ≥ 0. Then μ is sup-
ported on a stable periodic orbit.

In this paper, a stable periodic point is one that is linearly stable in a
strict sense, meaning if fp(x) = x, then the spectrum of Dfp

x is contained in
{|z| < 1}. Likewise, by an unstable periodic point, we refer to one that is line-
arly unstable in a strict sense, meaning the spectrum of Dfp

x meets {|z| > 1}.

Theorem B. If (f, μ) has no zero Lyapunov exponents, then one of the follow-
ing holds:
(a) μ is supported on a single periodic orbit, stable or unstable; or
(b) μ is supported on the closure of a set of infinitely many unstable periodic

orbits.
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Our next result gives conditions that imply the existence of a complex
dynamical structure called a horseshoe.

Horseshoes in Infinite-Dimensional Spaces. Since f is generally not invertible,
we think it is natural to have a notion of horseshoes that involves only forward
time in addition to the usual definition in finite dimensions. Let k ∈ Z

+. We
say σ : Π∞

0 {1, . . . , k} → Π∞
0 {1, . . . , k} is a one-sided full shift on k symbols if

for a = (a0, a1, a2, . . . ) ∈ Π∞
0 {1, . . . , k}, σ(a) = (a1, a2, . . . ). The correspond-

ing two-sided full shift on Π∞
−∞{1, . . . , k} is defined similarly. We also let D

be the open unit disk in a separable Hilbert space, and let Emb1(D, H) be the
space of C1-embeddings of D into H.

We say f has a forward-invariant horseshoes with k symbols if there is
a continuous map Ψ : Π∞

0 {1, . . . , k} → Emb1(D, H) such that for each a ∈
Π∞

0 {1, . . . , k},
(i) Ψ(a)(D) is a stable manifold of finite codimension,
(ii) f(Ψ(a)(D)) ⊂ Ψ(σ(a))(D).
We sometimes refer to ∪aΨ(a)(D) as “the horseshoe”.

We say f has a bi-invariant horseshoe with k symbols if there is a contin-
uous embedding Ψ : Π∞

−∞{1, . . . , k} → H such that if Ω = Ψ(Π∞
−∞{1, . . . , k}),

then
(i) f |Ω is one-to-one and is conjugate to σ;
(ii) f |Ω is uniformly hyperbolic.
We sometimes refer to the set Ω as “the horseshoe”.

By the uniformly hyperbolicity of f |Ω, we refer to the fact that there is
a splitting of the tangent space of x ∈ Ω into Eu(x) ⊕ Es(x) such that Eu(x)
and Es(x) vary continuously with x,Dfx(Eu(x)) = Eu(fx),Dfx(Es(x)) ⊂
Es(fx), and there exist N ∈ Z

+ and χ > 1 such that for all x ∈ Ω,
‖DfN

x |Es(x)‖ ≤ χ−1 and |DfN
x (v)| ≥ χ|v| for all v ∈ Eu(x).

Let hμ(f) denote the metric entropy of f with respect to μ, and htop(·)
the topological entropy of a map. Recall that if σ is the full shift on k symbols,
then htop(σ) = log k.

Theorem C. Suppose hμ(f) > 0 and (f, μ) has no zero Lyapunov exponents.
Then given ε > 0, there exist m,n ∈ Z

+ with
1
n

log m > hμ(f) − ε

such that the map fn has both forward-invariant and bi-invariant horseshoes
with m symbols. This implies in particular that htop(f |Ω̂) > hμ(f) − ε where
Ω is the bi-invariant horseshoe for fn and Ω̂ = ∪n−1

i=0 f i(Ω).

For E ⊂ H, we use |E| to denote the cardinality of E.

Theorem D. Suppose hμ(f) > 0 and (f, μ) has no zero Lyapunov exponents.
For n ∈ Z

+, let Pn(f) = {x ∈ H : fn(x) = x}. Then

lim sup
n→∞

1
n

log |Pn(f)| ≥ hμ(f).
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Theorem D follows immediately from Theorem C together with the fact
that |Pn(σ)| = kn where σ is the full shift on k symbols.

Remark. As discussed in the Introduction, for diffeomorphisms of compact
(finite-dimensional) manifolds, the theorems above were first proved by Katok
[3]. (The analog of Theorem C in [3] asserts only that htop(fn|Ω) > 0, but the
conclusion of Theorem C is easily deduced from the arguments in that paper.)

Remarks on Applications to Systems Defined by PDEs. The setting above is
consistent with those of systems defined by periodically driven nonlinear dissi-
pative parabolic PDEs. Let {f t, t ≥ 0} denote the family of time-t maps of such
a system, i.e. f t(u0) = u(t), where u(t) is the solution with u(0) = u0. Assum-
ing the forcing has time-period T , the evolution of the system is captured by
iterating fT , which we take to be the mapping f in this paper. Choosing our
function space appropriately, we may assume that f maps a Hilbert space H

into itself and is Cr for r ≥ 2. It is well known that many equations of the type
above have absorbing balls and compact attracting sets; we assume the set A
at the beginning of this section is the attractor or is contained in one. Injec-
tivity of f (and of Dfx) is the backward uniqueness property; it and condition
(D2)(ii) or (ii′) are typically satisfied for parabolic equations. These issues
are discussed in e.g. [4,16,17]. With regard to our dynamical assumption of
nonzero Lyapunov exponents, this is what causes us to consider systems that
are periodically forced: PDEs with time-independent coefficients give rise to
semiflows with zero Lyapunov exponents (see our forthcoming paper [8]), but
there is no such constraint for time-T maps of periodically forced systems with
forcing period T . Finally, periodic orbits of f = fT (the existence of which
is asserted in Theorems A–D) correspond to periodic solutions of the original
continuous-time system.

3. Lyapunov Exponents and Lyapunov Charts

3.1. The Multiplicative Ergodic Theorem (Mostly Review)

The multiplicative ergodic theorem (MET) for finite-dimensional maps or
matrix-valued cocycles was first proved by Oseledets [11]. This result has since
been generalized, with the matrices in Oseledets’ theorem replaced by linear
maps of Hilbert and Banach spaces, see [7,10,15,18]. We state below a version
that will be used in this paper. It is a simplified version, in which one distin-
guishes only between Lyapunov exponents of different signs, i.e. positive, zero,
or negative.

Theorem 1 (Version of MET used in this paper). Let (f, μ) be as in Sect. 2.1.
Then there is an invariant Borel subset Γ ⊂ A with μ(Γ) = 1 and a number
λ0 > 0 such that for every x ∈ Γ, there is a splitting of the tangent space Hx

at x into

Hx = Eu(x) ⊕ Ec(x) ⊕ Es(x)

(some of these factors may be trivial) with the following properties:
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1. (a) for τ = u, c, s, x �→ Eτ (x) is Borel;
(b) dim Eτ (x) < ∞ for τ = u, c;
(c) DfxEτ (x) = Eτ (fx) for τ = u, c, and DfxEs(x) ⊂ Es(fx).

2. For u ∈ Eτ (x), τ = u, c, and n > 0, there is a unique v ∈ Eτ (f−nx),
denoted Df−n

x u, such that Dfn
f−nxv = u.2

(a) For u ∈ Eu(x)\{0},

lim
n→±∞

1
n

log |Dfn
x u| ≥ λ0.

(b) For u ∈ Ec(x)\{0},

lim
n→±∞

1
n

log |Dfn
x u| = 0.

(c) For u ∈ Es(x)\{0},

lim sup
n→∞

1
n

log ‖Dfn
x |Es(x)‖ ≤ −λ0.

3. The projections πu
x , πc

x, πs
x with respect to the splitting Hx = Eu(x) ⊕

Ec(x)⊕Es(x) are Borel, and if for closed subspaces E,F ⊂ H, we define

�(E,F ) = inf
{ |u ∧ v|

|u||v|
}

u∈E\{0},v∈F\{0}
,

then for (E,F ) = (Eu, Ec), (Ec, Es), (Eu, Ec ⊕ Es) and (Eu ⊕ Ec, Es),
we have

lim
n→±∞

1
n

log �(E(fn(x)), F (fn(x))) = 0.

Clarification. The decomposition into Eu⊕Ec⊕Es as well as the finite dimen-
sionality of Eu and Ec depends crucially on condition (D2)(ii) or (D2)(ii′) in
Sect. 2.1 and on the invertibility of f |A : A → A. We elaborate on these
important points:
1. Since μ is ergodic, there exists κ̄ < 0 such that κ(x) = κ̄μ-a.e. It is

proved that for every ε > 0, there are at most finitely many Lyapunov
exponents ≥ κ̄+ε, each with finite-dimensional associated subspaces. For
more detail, see e.g. [7].

Lyapunov exponents ≤ κ̄ are undefined; all one can say is that there is a closed
subspace on which the norm of Dfn

x grows at rate κ̄. In infinite dimensions, κ̄
can be > −∞, and this subspace can, in general, be all of H (whereas in finite
dimensions, κ̄ = −∞, with the associated subspace being trivial in the case of
diffeomorphisms).

In this paper, (D2)(ii) implies κ̄ = −∞, and (D2)(ii′) implies κ̄ < 0. The
latter is both necessary and sufficient for our purposes, namely to distinguish
between positive, zero and negative Lyapunov exponents, to conclude that

2 Throughout this paper, “u” is used both to denote the unstable direction, as in Eu, and
as the generic name for a vector in H. We apologize for the abuse of notation but do not
think it will lead to confusion.
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positive and zero exponents have at most finite multiplicities, and to have a
well defined contracting subspace Es.

2. Decompositions of the type Hx = Eu(x)⊕Ec(x)⊕Es(x) relies on knowl-
edge of backward orbits of f , without which one can get only a filtration
of the form Es ⊂ Ecs ⊂ H. Invertibility for f on H is not required.

Thus, the condition in Theorem A is Eu = Ec = {0}, the condition in
Theorem B is Ec = {0}, and so on.

3.2. Lyapunov Metrics

Lyapunov exponents are, by definition, asymptotic quantities. It simplifies the
proofs greatly to work in coordinates in which these values are reflected in a
single iteration of the map. In finite dimensions, Lyapunov metrics were intro-
duced for that purpose. These metrics were first used in [12] and later in e.g.
[3,6], see also the exposition in [19]. In this section, we carry out the corre-
sponding constructions in Hilbert spaces. The adaptation is straightforward,
but we include it for completeness, since the coordinate changes (or chart
systems) constructed here will be used heavily in the rest of the paper.

Let δ0 be such that 0 < δ0 < 1
100λ0. This number denotes an accepted

margin of error for the Lyapunov exponents and will be fixed throughout.
There is another number, called δ, on which our chart system will depend: δ
is a measure of the nonlinearity in charts and variation of chart sizes along
orbits (for simplicity we group these two into a single constant). We will need
this number to be small enough depending on the purpose at hand, and will
specify conditions on δ each time a chart system is used.

Let λ = λ0 − 2δ0. We begin with the following point-dependent changes
of inner products. Recall that the (original) inner product and norm on H are
denoted by < ·, · > and | · |.

Lemma 2. For μ-a.e. x, there is an inner product < ·, · >′
x on Hx with induced

norm | · |′x such that

(i) |Dfxu|′fx ≥ eλ|u|′x for all u ∈ Eu(x).
(ii) e−2δ0 |u|′x ≤ |Dfxu|′fx ≤ e2δ0 |u|′x for all u ∈ Ec(x).
(iii) |Dfxu|′fx ≤ e−λ|u|′x for all u ∈ Es(x).
(iv) Identifying Hx with H, the function x �→< u, v >′

x is Borel for any fixed
u, v ∈ H.

(v) For all p ∈ Hx,
√

3
3

|p| ≤ |p|′x ≤ K(x)|p|

for some Borel function K with

lim
n→±∞

1
n

log K(fnx) = 0.
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Proof. For x ∈ Γ, define < ·, · >′
x by

< u, v >′
x=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑0
n=−∞

<Dfn
x u,Dfn

x v>

e2n(λ0−2δ0) for u, v ∈ Eu(x),∑+∞
n=−∞

<Dfn
x u,Dfn

x v>

e4|n|δ0 for u, v ∈ Ec(x),∑+∞
n=0

<Dfn
x u,Dfn

x v>

e2n(−λ0+2δ0) for u, v ∈ Es(x),

0 for u ∈ Eτ1(x), v ∈ Eτ2(x), τ1 �= τ2.

(1)

(i)–(iii) follow from straightforward computations using the definitions above,
and (iv) follows Lemma 1. Part of (v) is also immediate: Let p = u + w + v
where u ∈ Eu(x), w ∈ Ec(x) and v ∈ Es(x). Then

|p|2 ≤ 3(|u|2 + |w|2 + |v|2) ≤ 3{(|u|′x)2 + (|w|′x)2 + (|v|′x)2} = 3(|p|′x)2.

It remains to bound |p|′x above by a quantity related to |p|.
By 2(a)–(c) of Theorem 1, there is a Borel function R(x) ≥ 1 with

lim
n→±∞

1
n

log R(fnx) = 0

such that for u,w, v as above,

|Df−n
x u| ≤ R(x)e−n(λ0−δ0)|u| for n ≥ 0,

(R(x)e|n|δ0)−1|w| ≤ |Dfn
x w| ≤ R(x)e|n|δ0 |w| forn ∈ Z,

|Dfn
x v| ≤ R(x)e−n(λ0−δ0)|v| for n ≥ 0.

Thus,

(|u|′x)2 =
0∑

n=−∞

|Dfn
x u|2

e2n(λ0−2δ0)
≤

0∑
n=−∞

(R(x)en(λ0−δ0)|u|)2
e2n(λ0−2δ0)

=
R(x)2

1 − e−2δ0
|u|2,

with similar estimates for w and v. Also, we have

|u + w + v|2 ≥ θ(x)2(|u|2 + |w|2 + |v|2)
where θ(x) = 1

2�(Eu(x), Ecs(x)) · �(Ec(x), Es(x)). From these two sets of
inequalities, we deduce that

(|u + w + v|′x)2 ≤ R(x)2(1 + e−2δ0)
θ(x)2(1 − e−2δ0)

|u + w + v|2.

The function K(x) defined by the inequality above inherits its subexponential
growth property from R and θ. �

We introduce next a family of point-dependent coordinate changes {Φx}
where for each x,Φx is an affine map taking a neighborhood of 0 in H to a
neighborhood of x in H. Noting that the dimensions of Eu and Ec and the
codimension of Es are constant μ-a.e., we fix orthogonal subspaces Ẽu, Ẽc and
Ẽs of H such that dim Ẽu = dimEu, dim Ẽc = dim Ec and codim Ẽs = codim
Es. For a.e. x, we let Lx : Hx → H be such that

(i) Lx(Eτ (x)) = Ẽτ , τ = u, c, s; and
(ii) < Lxu,Lxv > = < u, v >′

x for all u, v ∈ Hx.
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Such a linear map exists and can be chosen to vary measurably with respect
to x (see e.g. [2]). For r > 0, let B̃(0, r) = B̃u(0, r) × B̃c(0, r) × B̃s(0, r) where
B̃τ (0, r) is the ball of radius r centered at 0 in Ẽτ . The coordinate patches
{Φx} are then given by

Φx : B̃(0, δl(x)−1) → H, Φx(u) = Expx(L−1
x (u))

where Expx : Hx → H is the exponential map (the usual identification of the
tangent space Hx at x with {x} + H), δ is the constant at the beginning of
this subsection, and l is a function to be determined. Maps connecting charts
along orbits are denoted by

f̃x = Φ−1
fx ◦ f ◦ Φx.

Since Φ−1
fx is extendible to an affine map on all of H, we sometimes view f̃x as

f̃x : B̃(0, δl(x)−1) → H.
Properties of Φx and f̃x are summarized in Proposition 4. To be consis-

tent with earlier notation, D(f̃x)0 means the derivative of f̃x evaluated at the
point 0 in the chart, and so on. To control the nonlinearity in charts, we will
need the following bound which follows easily from the conditions in Sect. 2:

Lemma 3. There exist M2 > 0 and r0 > 0 such that ‖D2fx‖ < M2 for all
x ∈ H with dist(x,A) < r0.

Proposition 4. Given δ ∈ (0,
√

3
3 r0), there is a measurable function l : Γ →

[1,+∞) with e−δl(x) ≤ l(f(x)) ≤ eδl(x) such that the following hold at
μ-a.e. x:

(a) For all y, y′ ∈ B(0, δl(x)−1),

l(x)−1|y − y′| ≤ |Φx(y) − Φx(y′)| ≤
√

3|y − y′|.
(b) D(f̃x)0 maps each Ẽτ , τ = u, c, s, into itself, with

|D(f̃x)0u| ≥ eλ|u|, e−2δ0 |w| ≤ |D(f̃x)0w| ≤ e2δ0 |w|,
and |D(f̃x)0v| ≤ e−λ|v|

for u ∈ Ẽu, w ∈ Ẽc and v ∈ Ẽs.
(c) The following hold on B(0, δl(x)−1):

(i) Lip(f̃x − D(f̃x)0) < δ;
(ii) Lip(Df̃x) ≤ l(x).

Proof. From Lemma 2(v), it follows that

1
K(x)

|v| ≤ |L−1
x v| ≤

√
3|v|, v ∈ H, (2)

so (a) holds if l(x) ≥ K(x). (b) is nothing more than a rephrasing of Lemma 2,
(i)–(iii), together with property (ii) of Lx.
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Proceeding to (c), since D(f̃x)y = DΦ−1
fx ◦ DfΦx(y) ◦ DΦx, we have

‖D(f̃x)y − D(f̃x)z‖ = ‖DΦ−1
fx · (DfΦx(y) − DfΦx(z)) · DΦx‖

≤ ‖Lfx‖ · M2|L−1
x y − L−1

x z| · ‖L−1
x ‖

≤ 3M2K(fx)|y − z|,
i.e. Lip(Df̃x) < 3M2K(fx). Here, M2 is the constant in Lemma 3 , and in using
this lemma we have taken for granted that |Φx(y) − x| and |Φx(z) − x| < r0

where r0 is in Lemma 3. Thus, (c)(ii) holds if these conditions are valid and
l(x) ≥ 3M2K(fx).

Finally, to estimate (c)(i), we use

Lip(f̃x − D(f̃x)0) ≤ sup
y∈B̃(0,l(x)−1δ)

‖D(f̃x − D(f̃x)0)y‖

and for y ∈ B̃(0, l(x)−1δ), provided that Lip(Df̃x) < l(x), we have

‖D(f̃x − D(f̃x)0)y‖ ≤ ‖D(f̃x)y − D(f̃x)0‖ ≤ Lip(Df̃x) · |y| ≤ δ.

Let B(x, r0) denote the ball of radius r0 centered at x. Letting l̃(x) =
max{K(x), 3M2K(fx), 1} and noting that

√
3δ < r0, we have Φx(B̃(0, δl̃

(x)−1)) ⊂ B(x, r0). All of the conditions required of l are thus satisfied by
l̃ – except for one: l̃ need not fluctuate slowly along orbits. To finish, observe
that

lim
n→±∞

1
n

log l̃(fn(x)) = 0

since K has this property (Lemma 2(v)). For such an l̃, it is a standard fact (see
e.g. Sect. 4.3 of [1]) that there exists l ≥ l̃ with e−δl(x) ≤ l(f(x)) ≤ eδl(x).
Since increasing l̃ cannot spoil any of the estimates, this is an acceptable
function. �

Noninvariant sets with uniform estimates. For l0 >0, let Γl0 ={x ∈ Γ|l(x)≤ l0}
where l is the function in Proposition 4. The sets Γl are generally not invariant,
but since Γ = ∪l≥1Γl has full measure, μ(Γl) > 0 for all large enough l. Notice
that for each (fixed) l, we have uniform bounds for the domains of the charts
B̃(0, l(x)−1δ), ‖Φx‖, and Lip(Df̃x) for all x ∈ Γl.

4. Proof of Theorem A

Let δ > 0 be such that e−λ + δ < e−δ. We fix a chart system as in Sect. 3.2
using this δ, and begin with the following easy but important observation: In
the setting of Theorem A, where Eu = Ec = {0}, we have at a.e. x that f̃x

maps B̃(0, δl(x)−1) into B̃(0, δl(fx)−1) and is a contraction with Lip(f̃x) <
e−λ + δ. This follows immediately from l(fx) < eδl(x) and property (c)(i) in
Proposition 4.

Let Γl be as in the last paragraph of Sect. 3.2. We claim that to prove
the theorem, it suffices to find l0, x and n such that
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(i) x, fn(x) ∈ Γl0 , and x is in the support of μ (i.e. every open neighborhood
of x has positive μ-measure);

(ii) x and fn(x) are sufficiently close that if we let

F̃ = Φ−1
x ◦ Φfnx ◦ f̃fn−1x ◦ · · · ◦ f̃x,

then F̃ is defined on all of B̃(0, δl−1
0 ) and maps B̃(0, δl−1

0 ) into itself with
|F̃ (0)| < 1

3δl−1
0 ;

(iii) Lip(F̃ ) < 1
3 .

We first finish the proof assuming (i)–(iii) can be arranged: From (ii)
and (iii), it follows that F̃ has a unique fixed point z̃ ∈ B̃(0, δl−1

0 ). Clearly,
z = Φx(z̃) satisfies fn(z) = z, and μ|Φx(B̃(0,δl−1

0 )), which is nonzero by design,
is necessarily concentrated at z. Since μ is ergodic, it follows that the entire
measure is supported on the orbit of z, which is what the theorem asserts.

To justify (i)–(iii), we first fix l0 with μ(Γl0) > 0. Next we choose
U ⊂ Γl0 such that μ(U) > 0 but U is small enough that for all y ∈ U,U ⊂
Φy(B̃(0, 1

3δl−1
0 )); this is possible by Proposition 4(a). We then pick x ∈ U

with the property that its orbit returns to U infinitely often; this is feasible
by the Poincaré Recurrence Theorem. Finally, let n be a large enough return
time for x so that

√
3l0(e−λ + δ)n < 1

3 . Then fn(x) ∈ U ⊂ Φx(B̃(0, 1
3δl−1

0 )),
implying |F̃ (0)| < 1

3δl−1
0 . (iii) follows from the fact that ‖Φfnx‖ ≤ √

3 and
‖(Φx)−1‖ ≤ l0. �

5. Stable and Unstable Manifolds

This section contains the main technical preparation for the proofs of Theo-
rems B and C. The results needed are stable and unstable manifold theorems,
of which many versions with different technical assumptions have been proved
in the literature. In this section, we develop a version that will be very useful
in much of nonuniform hyperbolic theory.

The following notation is used throughout: For linear spaces X and
Y,L(X,Y ) denotes the set of all bounded linear maps from X to Y .

5.1. Setting and Statement of Results

The setting and conclusions in Propositions 5, 6 and 8 are independent of the
material in previous sections, though the setting is clearly motivated by chart
maps {f̃fix, i ∈ Z}.

Setting. Let λ1 > 0 be fixed, and let δ1 and δ2 > 0 be as small as need be
depending on λ1. We assume there is a splitting of H into orthogonal sub-
spaces H = Eu ⊕Es with dim(Eu) < ∞. For i ∈ Z, let ri be positive numbers
such that ri+1e

−δ1 < ri < ri+1e
δ1 for all i, and let Bi = Bu

i × Bs
i where

Bτ
i = Bτ (0, ri), τ = u, s. We consider a sequence of differentiable maps

gi : Bi → H, i = . . . ,−1, 0, 1, 2, . . . ,
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such that for each i, gi = Λi + Gi where Λi and Gi are as follows:
(I) Λi ∈ L(H, H) and splits into Λi = Λu

i ⊕ Λs
i where Λu

i ∈ L(Eu, Eu),Λs
i ∈

L(Es, Es), and ‖(Λu
i )−1‖, ‖Λs

i ‖ ≤ e−λ1 ;
(II) |Gi(0)| < δ2ri+1, and ‖DGi(x)‖ < δ2 for all x ∈ Bi.
For slightly stronger results, we assume also
(III) there are positive numbers �i with �i+1e

−δ1 < �i < �i+1e
δ1 such that

Lip(DGi) < �i.
Orthogonal projections from H to Eu and Es are denoted by πu and πs,
respectively.

Proposition 5 (Local unstable manifolds). Assume (I) and (II), and let δ1 and
δ2 (depending only on λ1) be sufficiently small. Then for each i there is a
differentiable function hu

i : Bu
i → Bs

i depending only on {gj , j < i}, with
(i) |hu

i (0)| < 1
2ri and

(ii) ‖Dhu
i ‖ ≤ 1

10

such that if Wu
i = graph(hu

i ), then
(a) gi(Wu

i ) ⊃ Wu
i+1;

(b) for x, y ∈ Wu
i such that gix, giy ∈ Bi+1,

|πu(gix) − πu(giy)| > (eλ1 − 2δ2)|πux − πuy|.
If (III) holds additionally, then hu

i ∈ C1+Lip with Lip(Dhu
i ) < const·�i.

Proposition 6 (Local stable manifolds). Assume (I) and (II), and let δ1 and
δ2 (depending only on λ1) be sufficiently small. Then for each i there is a
differentiable function hs

i : Bs
i → Bu

i depending only on {gj , j ≥ i}, with
(i) |hs

i (0)| < 1
2ri and

(ii) ‖Dhs
i ‖ ≤ 1

10

such that if W s
i = graph(hs

i ), then
(a) giW

s
i ⊂ W s

i+1;
(b) for x, y ∈ W s

i , |πs(gix) − πs(giy)| < (e−λ1 + 2δ2)|πsx − πsy|.
If (III) holds additionally, then hs

i ∈ C1+Lip with Lip(Dhs
i ) < const·�i.

We remark that the C1+Lip property of hu
i and hs

i in Propositions 5 and
6 can be replaced by C1+α with the Lip(DGi) condition in (III) replaced by
one on the Cα-norm of DGi. Notice also that δ1 and δ2 do not depend on ri

or �i.
The following result, which gives local stable and unstable manifolds

μ-a.e. in the context of Sect. 2, is an immediate corollary of Propositions 5
and 6. Various versions of this result have been proved before, see e.g. [7,15].

Corollary 7. In the setting of Sect. 2 with Ec = {0}, consider a chart system
with δ ≤ min{δ1, δ2} where δ1 and δ2 are as in Propositions 5 and 6 with
λ1 = λ. Then the results above apply to the chart maps {f̃fix, i ∈ Z} for μ-a.e.
x, giving

W̃ s
x = graph(h̃s

x) and W̃u
x = graph(h̃u

x)
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where h̃s
x : B̃s(0, δl(x)−1) → B̃u(0, δl(x)−1) and h̃u

x : B̃u(0, δl(x)−1) →
B̃s(0, δl(x)−1) satisfy

h̃s
x(0) = 0, (Dh̃s

x)0 = 0 and h̃u
x(0) = 0, (Dh̃u

x)0 = 0

and have the properties in Propositions 5 and 6.

The Φx-images of W̃ s
x and W̃u

x are called the local stable and unstable
manifolds at x.

Finally, we will also need the following result, which tells us how hs
0 and

hu
0 vary in the C1-topology with {gi} in the setting at the beginning of this

subsection.

Proposition 8. Let λ1, δ1 and δ2 be as in Proposition 6, and let r0 and �0 be
fixed. Given ε > 0, there exists N = N(ε) such that if {gi} and {ĝi} are two
sequences of maps satisfying Conditions (I)–(III) and gi = ĝi for all 0 ≤ i ≤ N ,
then ‖hs

0 − ĥs
0‖C1 < ε where hs

0 and ĥs
0 are as in Proposition 6 for {gi} and

{ĝi}, respectively.
Analogous results hold for hu

0 provided gi = ĝi for −N < i < 0 for
sufficiently large N .

5.2. Proof of Proposition 6

The proofs of Propositions 5 and 6 are quite similar to the corresponding proofs
for a fixed map at a fixed point. We give only the stable manifolds proof, which
illustrates how one deals with the noninvertibility of the maps. The proof of
Proposition 5 proceeds similarly, and is simpler in that graph transforms for
gi and Dgi(x) for fixed x are defined (but not those for g−1

i or Dg−1
i (x)). See

the remark following the statement of Lemma 9.
We have divided the proof of Proposition 6 into three main steps.

Step 1. Proof of existence of a Lipschitz hs
i with properties (i), (ii), (a) and (b)

in Proposition 6. (Our arguments here follow [5].) Define

Wi =
{

wi : Bs
i → Bu

i | |wi(0)| ≤ 1
2
ri, Lip(wi) ≤ 1

10

}
.

Equipped with the C0 norm, Wi is a complete metric space. We begin by
defining what is effectively a graph transform by g−1

i —in spite of the fact that
gi is not invertible.

Lemma 9. Given any wi+1 ∈ Wi+1, there is a unique wi ∈ Wi such that

gi(graph(wi)) ⊂ graph(wi+1).

Remark on unstable manifolds case. If Vi is the analog of Wi with u and
s interchanged, then given vi ∈ Vi, vi+1 is simply the map whose graph is
gi(graph(vi)) ∩ Bi+1.

Proof. Let wi+1 ∈ Wi+1 be fixed throughout. For wi : Bs
i → Bu

i to have the
property in the lemma, it is sufficient that for every η ∈ Bs

i ,

wi+1(Λs
i η + πsGi(η, wi(η))) = Λu

i wi(η) + πuGi(η, wi(η)),



Vol. 12 (2011) Lyapunov Exponents, Periodic Orbits and Horseshoes 1095

equivalently,

wi(η) = (Λu
i )−1 [wi+1(Λs

i η + πsGi(η, wi(η))) − πuGi(η, wi(η))] . (3)

For wi ∈ Wi, we let w̃i+1(wi) be the mapping from Bs
i to Eu where

w̃i+1(wi)(η) is given by the right side of (3). The problem then becomes finding
wi ∈ Wi with w̃i+1(wi) = wi. We do this in two steps.

(i) We show that w̃i+1(wi) ∈ Wi for every wi ∈ Wi. First,

|w̃i+1(wi)(0)|
≤ e−λ1 ·

[
|wi+1(0)| +

1
10

|πsGi(0, wi(0))| + |Gi(0, 0)| + Lip(Gi) · |(0, wi(0))|
]

< e−λ1 ·
[
1
2
ri+1 +

11
10

δ2ri+1 + δ2 · 1
2
ri

]

which is < 1
2ri if δ1 and δ2 are small enough.

Next we estimate the Lipschitz constant of w̃i+1(wi). Let η, ξ ∈ Bs
i . Using

Lip(wi), Lip(wi+1) ≤ 1
10 , we have

|(w̃i+1(wi)) η − (w̃i+1(wi)) ξ|
≤ ‖(Λu

i )−1‖ · [ |wi+1(Λs
i η + πsGi(η, wi(η))) − wi+1(Λs

i ξ + πsGi(ξ, wi(ξ)))|
+ ‖πu‖ · |Gi(η, wi(η)) − Gi(ξ, wi(ξ))| ]

≤ e−λ1

{
1
10

|Λs
i (η − ξ)| +

(
1 +

1
10

)
Lip(Gi)|(η, wi(η)) − (ξ, wi(ξ))|

}

< e−λ1
1
10

(e−λ1 + 2δ2)|η − ξ|

which is < 1
10 |η − ξ| with δ2 sufficiently small.

The two estimates above imply that | (w̃i+1(wi)) η| < ri for all η ∈ Bs
i ,

completing the proof of w̃i+1(wi) ∈ Wi.

(ii) We prove w̃i+1 : Wi → Wi is a contraction. Let w1
i , w2

i ∈ Wi. Then∣∣(w̃i+1(w1
i ))η − (w̃i+1(w2

i ))η
∣∣

≤ ‖(Λu
i )−1‖ · (Lip(wi+1) + 1) · ∣∣Gi

(
η, w1

i (η)
)− Gi

(
η, w2

i (η)
)∣∣

< e−λ12δ2

∣∣w1
i (η) − w2

i (η)
∣∣ .

The unique fixed point of w̃i+1 is the wi in the lemma. �
For each i, we let Γi : Wi+1 → Wi be the mapping defined by Γi(wi+1) =

wi where wi and wi+1 are related as in Lemma 9. For k ∈ Z
+, let Γk

i : Wi+k →
Wi denote the composition Γi ◦ · · · ◦ Γi+k−1.

Lemma 10. There is a unique sequence w∗
i , i ∈ Z, such that for all i, w∗

i ∈ Wi

and Γi(w∗
i+1) = w∗

i .

Proof. Let i be fixed throughout. First we show Γi is a contraction: Let w1
i =

Γi(w1
i+1) and w2

i = Γi(w2
i+1). Proceeding as above, we obtain for η ∈ Bs

i ,

|w1
i (η) − w2

i (η)| ≤ e−λ1 · (‖w1
i+1 − w2

i+1‖ + 3δ2|w1
i (η) − w2

i (η)|).
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Thus,

‖w1
i − w2

i ‖ ≤ c‖w1
i+1 − w2

i+1‖ where c =
e−λ1

1 − 3δ2e−λ1
.

Inductively, we obtain diam(Γk
i (Wi+k)) ≤ 2ckri+k where

diam(Γk
i (Wi+k)) = sup

w1,w2∈Γk
i (Wi+k)

‖w1 − w2‖.

Since ri+k < rie
kδ1 and c < e−δ1 , it follows that diam(Γk

i (Wi+k)) → 0 as
k → ∞. From the completeness of Wi, we have that ∩k>0Γk

i (Wi+k) (where Ω
denotes the closure of Ω) contains exactly one point. This is our w∗

i . �

It is an easy exercise to check that if we let hs
i = w∗

i , then Lip(hs
i ) ≤ 1

10 ,
and properties (a) and (b) in Proposition 6 hold.

Step 2. Proof of differentiability of hi = hs
i .

Fix x ∈ Bi for the moment. Identifying the tangent spaces Hx and Hgi(x)

with H = Eu ⊕ Es, we now define the surrogate for the graph transform by
the linear map (Dgi)−1

x :

Lemma 11. Given x ∈ Bi and si+1 ∈ L(Es, Eu) with ||si+1|| ≤ 1
10 , there is a

unique si ∈ L(Es, Eu) with ||si|| ≤ 1
10 such that

(Dgi)x(graph(si)) ⊂ graph(si+1).

The setup is a special case of Lemma 9, with gi taken to be linear (and
globally defined on Hx). We omit the proof; the only point that needs to
be checked is that with s̃i+1 defined analogously to w̃i+1, s̃i+1(si) is also lin-
ear, and that is obvious from Eq. (3). Let Γ̃i,x denote the mapping given by
Γ̃i,x(si+1) = si.

Returning to the problem at hand, namely the regularity of hi, we let

Zi =
{

σi ∈ B(Bs
i ,L(Es, Eu)) : ||σi|| ≤ 1

10

}

where B(X,Y ) is the set of bounded maps from X to Y , and ‖ · ‖ is the sup
norm. For each σi ∈ Zi and η ∈ Bs

i , we consider the graph of σi(η) as a trial
tangent plane for the graph of hi at x = (η, hi(η)). From Lemma 11, we obtain
immediately the following:

Lemma 12. Given any i and σi+1 ∈ Zi+1, there is a unique σi ∈ Zi such that
for all η ∈ Bs

i , if x = (η, hi(η)), then

(Dgi)x(graph(σi(η))) ⊂ graph(σi+1(πs(gi(x)))).

We let Γ̃i : Zi+1 → Zi be given by Γ̃i(σi+1) = σi where σi and σi+1 are
as above. Equivalently, for η ∈ Bs

i , if x = (η, hi(η)), then

Γ̃i(σi+1)(η) = Γ̃i,x(σi+1(πsgi(x))).
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We also record for later use (in the Proof of Lemma 12) the following: For
v ∈ Es,

(σi(η))v = (Λu
i )−1[(σi+1(πsgi(x)))(Λs

i v + πs(DGi)x(v, (σi(η))v))]
−(Λu

i )−1[πu(DGi)x(v, (σi(η))v)]. (4)

Lemma 13. There is a unique sequence σ∗
i , i ∈ Z, such that for all i, σ∗

i ∈ Zi

and Γ̃i(σ∗
i+1) = σ∗

i .

Proof. As an immediate consequence of the contractive property of the indi-
vidual Γ̃i,x, we have

‖Γ̃i(σ1
i ) − Γ̃i(σ2

i )‖ ≤ c′‖σ1
i − σ2

i ‖
for some c′ < 1. From this we conclude that for each i,

∩k>0Γ̃k
i (Zi+k) = {σ∗

i }.

�

It remains to show that Dhi = σ∗
i . Let Δhi(η) = hi(η +Δη)−hi(η), and

define

Mi(σi) = sup
η∈Bs

i

(
lim sup
|Δη|→0

|Δhi(η) − σi(η)Δη|
|Δη|

)
.

Lemma 14. There is c′′ < 1 such that for all i and for all σi+1 ∈ Zi+1,

Mi(Γ̃i(σi+1)) ≤ c′′Mi+1(σi+1).

It follows that Mi(σ∗
i ) = 0, i.e. Dhi = σ∗

i .

Proof. Let σi = Γ̃i(σi+1). Using Lip(hi), Lip(hi+1) < 1
10 and (4), we obtain

after a straightforward computation that

|Δhi(η) − σi(η)Δη| ≤ e−λ

(
e−λ +

11
10

δ2

)
(1 + o(|Δη|))Mi+1(σi+1)|Δη|

+
11
10

e−λδ2|Δhi(η) − σi(η)Δη| + o(|Δη|).

This proves the inequality in the lemma. Together with the fact that Mi(σi) ≤
1
5 for all σi ∈ Zi, it gives Mi(σ∗

i ) = 0. �

Step 3. Proof of Lipschitzness of Dhi.
Let η1, η2 ∈ Bs

i with xj = (ηj , hi(ηj)). Assuming condition (III) in
Sect. 5.1, we obtain, after a computation similar to previous ones, that

‖(Dhi)η1 − (Dhi)η2‖ ≤ 2�i|η1 − η2| + q‖(Dhi+1)πsgi(x1) − (Dhi+1)πsgi(x2)‖
where q = (e−2λ1 + 11

10e−λ1δ2)/(1 − 11
10e−λ1δ2) ≈ e−2λ1 assuming δ2 is small

enough. We also have the estimate

|πsgi(x1) − πsgi(x2)| ≤ p|η1 − η2|
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where p = e−λ1 + 2δ2 ( Proposition 6(b)). Combining, one shows inductively
that

‖(Dhi)η1 − (Dhi)η2‖ ≤
⎛
⎝2

∞∑
j=0

(pq)j�i+j

⎞
⎠ |η1 − η2| ,

which is < const · �i|η1 − η2| where const = 2
∑

(pqeδ1)j .
This completes the proof of Proposition 6.

5.3. Proof of Proposition 8

Let ε > 0 be given. For any two admissible sequences {gi} and {ĝi}, let hs
i

and ĥs
i be the functions whose graphs are stable manifolds for {gi} and {ĝi}

respectively.

C0-bound for hs
0 − ĥs

0: Let c be as in Lemma 10, and let N be such that
2r0(ceδ1)N < ε. Then since ‖hs

N − ĥs
N‖C0 < 2rN < 2r0e

Nδ1 and gi = ĝi for
i = 0, 1, . . . , N − 1, we have ‖hs

0 − ĥs
0‖C0 < ε.

C0-bound for Dhs
0 −Dĥs

0: Here we assume gi = ĝi for i = 0, 1, . . . , N −1 where
N = N1 + N2, N1 and N2 to be specified at the end of the proof.

We first estimate ‖Dhs
i − Dĥs

i ‖C0 for 0 ≤ i ≤ N1 − 1. Let xi =
(η, hs

i (η)), x̂i = (η, ĥs
i (η)) for η ∈ Bs(0, ri). Recall that for 0 ≤ i ≤ N − 1

and any v ∈ Es,

(Dhs
i )ηv = (Λu

i )−1[(Dhs
i+1)πsgi(x)(Λs

i v + πs(DGi)x(v, (Dhs
i )ηv))

−πu(DGi)x(v, (Dhs
i )ηv)],

with Dĥs
i satisfying an analogous equation. Let Is ∈ L(Es, Es) denote the

identity map. We then have

‖(Dhs
i )η − (Dĥs

i )η‖ ≤ e−λ1{(a) + (b) + (c)}
where

(a) = ‖(Dhs
i+1)πsgi(x)(Λs

i + πs(DGi)x(Is, (Dhs
i )η))

−(Dhs
i+1)πsgi(x)(Λs

i + πs(DGi)x̂(Is, (Dĥs
i )η))‖,

(b) = ‖(Dhs
i+1)πsgi(x)(Λs

i + πs(DGi)x̂(Is, (Dĥs
i )η))

−(Dĥs
i+1)πsgi(x̂)(Λs

i + πs(DGi)x̂(Is, (Dĥs
i )η))‖

(c) = ‖πu(DGi)x(Is, (Dhs
i )η) − πu(DGi)x̂(Is, (Dĥs

i )η)‖.

A computation similar to those in Sect. 5.2 gives

(a) + (c) ≤ 11
10

(
δ2‖(Dhs

i )η − (Dĥs
i )η‖ +

11
10

li|hs
i (η) − ĥi(η)|

)
,

(b) ≤
(

e−λ1 +
11
10

δ2

)
(‖(Dhs

i+1)πsgi(x) − (Dĥs
i+1)πsgi(x)‖

+δ2Lip (Dĥs
i+1)|hs

i (η) − ĥs
i (η)|).

In (b) we used that |πsgi(x) − πsgi(x̂)| ≤ δ2|hs
i (η) − ĥs

i (η)|.
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Summarizing, we have

‖Dhs
i − Dĥs

i ‖C0 ≤ c1‖Dhs
i+1 − Dĥs

i+1‖C0 + (c2li + c3li+1)‖hs
i − ĥs

i ‖C0

where

c1 =
e−λ1(e−λ1 + 11

10δ2)
1 − 11

10δ2e−λ1
, (5)

and c2 and c3 are constants depending only on λ1, δ1 and δ2.
Applying the formula above for successive i, we obtain

‖Dhs
0 − Dĥs

0‖C0

≤ cN1
1 ‖Dhs

N1
− Dĥs

N1
‖C0 +

N1−1∑
k=0

ck
1(c2lk + c3lk+1)‖hs

k − ĥs
k‖C0

≤ cN1
1 ‖Dhs

N1
− Dĥs

N1
‖C0 +

N1−1∑
k=0

(c1e
δ1)k(c2l0 + c3l1)‖hs

k − ĥs
k‖C0

≤ 1
5
cN1
1 +

c2l0 + c3l1
1 − c1eδ1

· (2r0e
Nδ1 · cN2).

In the last inequality, we have used c1e
δ1 < 1, which is true provided δ1

and δ2 are small enough. The quantity in parenthesis is an upper bound for
‖hs

k − ĥs
k‖C0 for all k < N1.

Finally, we specify N1 and N2 as follows: First we choose N1 large enough
that 1

5cN1
1 < 1

2ε. With N1 fixed, we choose N2 to ensure that the second term
in the last displayed inequality is < 1

2ε; this is made possible by the fact that
ceδ1 < 1. �

6. Switching Charts

In the proof of Theorem A, we considered a sequence of chart maps in which
we “switched charts” periodically from the one at fn(x) to the one at x where
fn(x) and x are nearby points. The proofs of Theorem B and C will involve
similar concatenations in a hyperbolic setting. In this section, we dispose of
the more technical estimates.

6.1. Desired Technical Result

Returning to the setting of Sect. 2 and the notation of Sect. 3, we assume that
• Eu, Es �= {0} and Ec = {0};
• δ and a chart system {Φx} has been fixed; and
• l0 with μ(Γl0) > 0 is chosen.

The result we need is the following:

Proposition 15. Given ε > 0, there exists δ3 > 0 (depending on ε and the chart
system above) such that the following holds for all x, y ∈ Γl0 with |x − y| < δ3:
Let x′ be such that f(x′) = x, and let

g : B̃
(
0, δe−δl−1

0

)→ H be given by g = Φ−1
y ◦ Φx ◦ f̃x′ .
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Then we have the following estimates:
(1) If Λ = Λu ⊕ Λs where for τ = u, s,Λτ = π̃τ

y (Dg)0|Ẽτ ∈ L(Ẽτ , Ẽτ ), then
‖Λs‖, ‖(Λu)−1‖ ≤ (1 + ε)e−λ.

(2) If G = g − Λ, then
(i) |G(0)| < ε,
(ii) ‖DG‖ ≤ (1 + ε)δ, and
(iii) Lip(DG) ≤ (1 + ε) Lip(Df̃x′).

This proposition is deduced from the following: Let Jx,y = Φ−1
y ◦Φx, view-

ing Φx and Φy as affine maps defined on all of H. Then confusing (deliberately)
u ∈ Hx with u + x ∈ H, we get

Jx,yv = (Ly ◦ Exp−1
y ◦ Expx ◦ L−1

x )v

= Ly(−y + x + L−1
x v)

= LyL−1
x v + Ly(x − y).

That is to say, Jx,y is an affine map with Jx,y(0) = Ly(x − y) and DJx,y =
LyL−1

x . Since |Ly(x − y)| ≤ l0|x − y| for x, y ∈ Γl0 , we can arrange to have
|G(0)| as small as we wish by letting |x − y| → 0.

Thus, it suffices to focus on the linear part of the map, namely LyL−1
x .

Notice that LyL−1
x is a linear isomorphism. In the next subsection, we will

prove a result (Proposition 17) which says that it is very close to a linear isom-
etry which carries Ẽu to a subspace near Ẽu and Ẽs to a subspace near Ẽs.

6.2. Continuity of Splitting on Γl0

The main ingredient behind the result we need is the continuity of the Eu ⊕Es

splitting on Γl0 . Since this is a very basic fact which is likely to be useful else-
where, we will prove it in a more general setting:

In this subsection, we assume the setting is as in Sect. 3.2, and that
δ, {Φx}, and l0 have been fixed (and we do not assume Ec = {0}). In what
follows, tangent spaces are identified with H, so it makes sense to write u − v
where u ∈ Hx and v ∈ Hy, x �= y.

Proposition 16. For x ∈ Γl0 , the subspaces Eu(x), Ec(x) and Es(x) vary con-
tinuously with x, as do the corresponding projections.

Proof. First we prove the continuity of x �→ Es(x) on Γl0 . Let x, y ∈ Γl0 , and
consider a unit vector v ∈ Es(y). We will estimate |πuc

x v| in terms of |y − x|
where πuc

x is the projection onto Euc(x) = Eu(x) ⊕ Ec(x). Using the fact that
πcu

fn(x)Dfn
x = Dfn

x πcu
x , we have

|πuc
x v| = |(Dfn

x )−1πcu
fn(x)Dfn

x v|
≤ |(Dfn

x )−1πcu
fn(x)Dfn

y v| + |(Dfn
x )−1πcu

fn(x)(Dfn
x v − Dfn

y v)|. (6)

To estimate the quantities above, we use Proposition 4, remembering that
l(fnx) ≤ l0e

δn and ‖πcu
fn(x)‖ ≤ √

3l(fnx). The first term above is

≤ (
√

3l0e
−δne2δ0n)(

√
3l0e

δn)(
√

3l0e
−λn) = 3

√
3l30e

−n(λ−2δ0−2δ),
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while the second term is

≤ 3l20e
n(2δ0+2δ)‖Dfn

x − Dfn
y ‖.

For a given ε, we fix an n so that

3
√

3l30e
−n(λ−2δ0−2δ) ≤ 1

2
ε.

Since f is C1, there exists Δ such that if |x − y| ≤ Δ, then

3l20e
n(2δ0+2δ)‖Dfn

x − Dfn
y ‖ ≤ 1

2
ε.

Note that n and Δ depend on l0, δ0, δ and ε only; they do not depend on x, y
or v. This proves the continuity of x �→ Es(x) on ΓL0 .

The continuity of Ecs is proved similarly: Let v be a unit vector in Ecs(y).
By an argument entirely parallel to that above, we get

|πu
xv| ≤ 3

√
3l30e

−n(λ−2δ0−2δ) + 3l20e
−n(λ−2δ)‖Dfn

x − Dfn
y ‖,

and we finish as before.
To prove the continuity of Eu, we again consider x, y ∈ Γl0 and a unit

vector v ∈ Eu(y), but estimate |πcs
x v| by iterating backwards, obtaining

|πcs
x v| = |πcs

x Dfn
f−n(y)Df−n

y v|
≤ |πcs

x Dfn
f−n(x)Df−n

y v| + |πcs
x (Dfn

f−n(y) − Dfn
f−n(x))Df−n

y v|
= |Dfn

f−n(x)π
cs
f−n(x)Df−n

y v| + |πcs
x (Dfn

f−n(y) − Dfn
f−n(x))Df−n

y v|
≤ 3

√
3l30e

−n(λ−2δ0−2δ) + 3l20e
−nλ‖Dfn

f−n(y) − Dfn
f−n(x)‖. (7)

As before, given ε > 0, we fix n large enough that 3
√

3l30e
−n(λ−2δ0−2δ) < 1

2ε.
Since x �→ f−n(x) is continuous on A and f is C1, there exists Δ > 0 such
that if |x− y| ≤ Δ, then 3l20e

−nλ‖Dfn
f−n(x) −Dfn

f−n(y)‖ ≤ 1
2ε. This proves the

continuity of Eu.
The proof for Euc is entirely analogous.
It remains to deduce the continuity of Ec from the above: Since Ec(·) =

Euc(·) ∩ Ecs(·), we have, for a unit vector v ∈ Ec(y),

|v − πus
x v| ≤ |πs

xv| + |πu
xv|,

which tends to 0 as |y − x| → 0 by the continuity of Euc and Ecs.
The assertions for the projections follow immediately. �

For x, y ∈ Γl0 and τ, τ ′ = u, s, c, we define Jτ,τ ′
x,y to be the linear map

Jτ,τ ′
x,y = π̃τ ′

y (LyL−1
x )|Ẽτ ∈ L(Ẽτ , Ẽτ ′

).

Proposition 17. For any ε > 0, there exists Δ such that the following hold for
any τ, τ ′ = u, s or c: If |x − y| < Δ, then for v ∈ Ẽτ ,

(i) (1 − ε)|v| < |Jτ,τ
x,y v| ≤ (1 + ε)|v|;

(ii) |Jτ,τ ′
x,y | < ε|v| when τ ′ �= τ .
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We first prove a technical lemma:

Lemma 18. For given ε > 0, there exists Δ > 0 such that if x, y ∈ Γl0 with
|x − y| ≤ Δ, then for any z ∈ H and τ = u, c, s,∣∣|Lyπτ

yz| − |Lxπτ
xz|∣∣ ≤ ε|z|. (8)

Proof. Consider first the case τ = s, and let |z| = 1. Notice that

|Lxπs
xz| = |πs

xz|′x =

( ∞∑
i=0

|Dfn
x πs

xz|2
e−2nλ

) 1
2

,

and for x ∈ Γl0 , ‖Dfn
x πs

x‖ ≤ 3l20e
−n(λ+2δ). Let ε > 0 be given. Then for

x, y ∈ Γl0 , there exists N > 0 such that
∞∑

i=N+1

‖Dfn
y πs

y − Dfn
x πs

x‖2

e−2nλ
≤

∞∑
i=N+1

36l40e
−2n(λ+2δ)

e−2nλ
≤ 1

2
ε2.

For x and y close enough, we have also that the sum from 0 to N is ≤ 1
2ε2,

since x �→ Dfn
x πs

x is continuous on Γl0 . Thus

∣∣|Lyπs
yz| − |Lxπs

xz|∣∣ =

∣∣∣∣∣∣
(

+∞∑
i=0

|Dfn
y πs

yz|2
e−2nλ

) 1
2

−
(

+∞∑
i=0

|Dfn
x πs

xz|2
e−2nλ

) 1
2
∣∣∣∣∣∣

≤
( ∞∑

i=0

(|Dfn
y πs

yz| − |Dfn
x πs

xz|)2
e−2nλ

) 1
2

≤
( ∞∑

i=0

‖Dfn
y πs

y − Dfn
x πs

x‖2

e−2nλ

) 1
2

|z|

≤ ε|z|.
The case of τ = u is proved similarly using the fact that for any fixed

n ≥ 1, x �→ Df−n
x πu

x is continuous on Γl0 . For τ = c, we treat the positive and
negative parts of the bi-infinite sum separately. �

Proof of Proposition 17. Let v ∈ Ẽτ , and let us suppress x, y in Jτ,τ
x,y . Since

Jτ,τ
x,y v = Lyπτ

yL−1
x v and Lxπτ

xL−1
x v = v, we have∣∣ |Jτ,τ

x,y v| − |v| ∣∣ = ∣∣|Lyπτ
y (L−1

x v)| − |Lxπτ
x(L−1

x v)|∣∣ ,
which by Lemma 18 and ‖L−1

x ‖ ≤ √
3 can be made < ε|v| by taking x and

y sufficiently near each other. For τ �= τ ′, the bound for |Jτ,τ ′
x,y v| is proved

similarly, except that here Lxπτ ′
x L−1

x v = 0. �

7. Proofs of Theorems B and C

7.1. Proof of Theorem B

We assume for definiteness that Eu, Es �= {0} and Ec = {0}, and that μ is
not supported on a periodic orbit. Let x0 be an arbitrary point in the support
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of μ, and let ε0 > 0 be given. We will show that B(x0, ε0), the ball of radius
ε0 centered at x0, contains a periodic point.

Let λ1 = 99
100λ where λ is as in Sect. 3.2, and let δ1 and δ2 be given by

Propositions 5 and 6. We let δ < 1
2 min{δ1, δ2}, and fix a chart system {Φx}

using this δ. We then pick l0 so that μ(Γl0 ∩ B(x0,
1
2ε0)) > 0 where the sets Γl

are as in Sect. 3.2.
By an argument similar to that in the proof of Theorem A, we can find

x ∈ Γl0 ∩B(x0,
1
2ε0) and n ∈ Z

+ such that fnx ∈ Γl0 ∩B(x0,
1
2ε0) and |x−fnx|

is smaller than any prescribed number. Our plan is to (a) introduce a periodic
sequence of maps {gi} which are mostly chart maps along the orbit segment
from x to fn(x), (b) show that {gi} satisfies the conditions in Sect. 5.1, and
(c) use the local stable and unstable manifolds given by Propositions 5 and 6
to produce a periodic point.

(a) The maps in question are, for i ∈ Z,

gi : B̃u(0, ri) × B̃s(0, ri) → H, gi+n = gi and ri+n = ri,

defined by

gi = f̃fix, i = 0, 1, . . . , n − 2,

gn−1 = Φ−1
x ◦ Φfnx ◦ f̃fn−1x,

and

ri = min
{

1
2
√

3
ε0, δl−1

0 , δl(f ix)−1

}
.

The purpose of the constant 1
2
√

3
ε0 in the preceding line is to ensure that

for every z ∈ B̃u(0, r0) × B̃s(0, r0),Φx(z) ∈ B(x, 1
2ε0) ⊂ B(x0, ε0), so this is

where we will look for our candidate periodic point.
(b) To check that {gi} satisfies the conditions in Sect. 5.1, first we show

that {ri} satisfies rie
−δ < ri+1 < rie

δ for all i. Since the function l(·) has such
a property along orbits, and this property is not spoiled by taking the minimum
with a constant, we need only be concerned about the relation between rn−1

and rn = r0, where the switching of charts occurs. Here we have l(x) ≤ l0,
so rn = min{ 1

2
√

3
ε0, δl−1

0 }, while l(fn−1x)−1 > e−δl(fnx)−1 ≥ e−δl−1
0 , so

e−δrn ≤ rn−1 ≤ rn.
Next we check that conditions (I), (II) and (III) hold for gi: For i =

0, 1, . . . , n − 2, these conditions are satisfied with Gi(0) = 0 and �i = l(f ix).
Again, the main concern is for gn−1. This is where Proposition 15 is needed:
Condition (I) is assured by item (1) in Proposition 15 if ε is small enough that
(1 + ε)e−λ < e− 99

100 λ. Condition (II) is given by item (2) if ε < δ2l−1
0 ≤ δrn,

and Condition (III) is satisfied if we take �i = (1 + 4ε)l(f i(x)).
(c) Proposition 6 then gives for each i, a local stable manifold W s

i ⊂
B̃u(0, ri) × B̃s(0, ri). Since gi contracts points on W s

i (Proposition 6(b)) and
gn(W s

0 ) ⊂ W s
0 where gn ≡ gn−1 ◦ · · · g1 ◦ g0 (Proposition 6(a)), we obtain by

the Contraction Mapping Theorem a fixed point z ∈ W s
0 of gn. (Alternately,

we may take W s
0 ∩ Wu

0 = {z}.)



1104 Z. Lian and L.-S. Young Ann. Henri Poincaré

Finally, gn(z) = z implies that fn(Φx(z)) = Φx(z). That z is a hyperbolic
fixed point of gn of saddle type follows immediately from the estimates in
Sect. 5. These hyperbolic properties are passed directly to Φx(z). As noted
earlier, Φx(z) ∈ B(x0, ε0), completing the proof. �
7.2. Proof of Theorem C

Preliminaries on entropy. Let T : X → X be a continuous map of a compact
metric space with metric d(·, ·), and let ν be a T -invariant Borel probability
measure on X. For n ∈ Z

+, we define the dT
n -metric on X by

dT
n (x, y) = max

0≤i<n
d(T i(x), T i(y)),

and for α, β > 0, let N (n, α;β) denote the minimum number of α-balls in the
dT

n -metric needed to cover a set of measure ≥ β in X. The following result,
first proved in [3], is by now a standard fact:

Assume (T, ν) is ergodic. Then given β ∈ (0, 1),

hν(T ) = lim
α→0

lim inf
n→∞

1
n

ln N (n, α;β). (9)

A set E ⊂ X is called (n, α)-separated if for every x, y ∈ E, dT
n (x, y) > α.

We use |E| to denote the cardinality of E. A version of the following lemma
is proved in [3].

Lemma 19. Assume (T, ν) is ergodic, and hν(T ) > 0. Given γ > 0 and β ∈
(0, 1

2 ), there exists α0 > 0 such that the following holds for all α ≤ α0: Let
S ⊂ X be any Borel subset with ν(S) ≥ 2β, and let N > n0 be given. Then
there exist n ≥ N and an (n − n0, α)-separated set E such that
(a) E, Tn(E) ⊂ S,
(b) 1

n ln |E| ≥ hν(T ) − γ.

Proof. We begin with the following general observation: For a Borel set S ⊂ X,
let χS denote the indicator function of S, and define

Sε
k =

{
x ∈ S :

∣∣∣∣∣
1
k

k−1∑
i=0

χS(T i(x)) − ν(S)

∣∣∣∣∣ ≤
ε

3
ν(S)

}
.

Then for ε small enough and k large enough depending on S and ε, we have
(i) ν(Sε

k ∩ Sε
(1+ε)k) > 1

2ν(S), and
(ii) for each x ∈ Sε

k ∩ Sε
(1+ε)k, there exists m(x) ∈ (k, (1 + ε)k] such that

Tm(x)(x) ∈ S.
Here Sε

ρ = Sε
[ρ] where [ρ] is the integer part of ρ. (i) above follows from

the Birkhoff Ergodic Theorem, and (ii) follows from the definition of Sε
k.

We now turn to the setting of the lemma. For a given γ > 0 and β ∈
(0, 1

2 ), let α be small enough that the lim inf in (9) is > hν(T ) − 1
3γ, and let

S,N and n0 be given. Other conditions on ε and k will be specified later.
For now, we require that ε be small enough and k ≥ N large enough that
(i) and (ii) above are satisfied. Let E′ be a maximal (k − n0, α)-separated
set in Sε

k ∩ Sε
(1+ε)k. Since Sε

k ∩ Sε
(1+ε)k ⊂ ∪x∈E′BdT

k−n0
(x, α) where BdT

k−n0
is
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the ball with respect to the dT
k−n0

-metric, and ν(Sε
k ∩ Sε

(1+ε)k) > β by (i),
it follows that |E′| ≥ N (k − n0, α;β). By (ii), every x ∈ E′ makes a return
to S in the time interval (k, (1 + ε)k]. Let n ∈ (k, (1 + ε)k] be such that at
least 1

εk of the points in E′ return to S at time n. We claim that for this
n,E = {x ∈ E′ : Tn(x) ∈ S} is the desired (n − n0, α)-separated set. Notice
that

|E| ≥ 1
εk

N (k − n0, α;β). (10)

The conditions we needed to impose on ε and k are now clear: First, ε
should be small enough that

1
1 + ε

(
hν(T ) − 2

3
γ

)
> hν(T ) − γ. (11)

Then k is chosen large enough to satisfy, in addition to the condition imposed
earlier,

1
k

ln
(

1
εk

N (k − n0, α;β)
)

> hν(T ) − 2
3
γ. (12)

Assertion (b) in the lemma then follows from (10), (11) and (12), together
with the fact that n ≤ (1 + ε)k. �

We now return to the setup and notation of Theorem C. We will proceed
as in the proof of Theorem B, but instead of concatenating a fixed sequence of
charts along an orbit segment of a single point, we concatenate charts following
orbit segments starting from all possible points in a small (n, α)-separated set.
Following the charts of two points that are (n, α)-separated will not guarantee
that the resulting stable manifolds are disjoint, however: take, for example, x
and y in the same stable manifold with |x − y| > α. The next lemma is used
to remedy the situation.

Assume that a chart system is fixed. We let f̃ i
x = f̃fi−1x ◦ · · · ◦ f̃x, and

define Cn(x) = Φx(C̃n(x)) where

C̃n(x) =
{

y : f̃ i
x(y) ∈ B̃u

(
0, δl(f ix)−1)

)× B̃s

(
0,

1
2
δl(f ix)−1)

)
, 0 ≤ i ≤ n

}
.

Lemma 20. Given α > 0, there exists N0 = N0(α) such that for all x and
n > 2N0,

diam(fk(Cn(x))) <
1
2
α for all k ∈ [N0, n − N0].

Proof. Since real distance is ≤ 3 times distances in charts (Proposition 4), it
suffices to show that f̃k

x (C̃n) has diameter < 1
6α.

We foliate C̃0(x) with planes P having the same dimension as Ẽu and
parallel to Ẽu. From the proof of Proposition 5 (see the Remark following
Lemma 9), we have that for each P, P1 := f̃x(P ) ∩ B̃(0, δl(fx)−1) is the graph
of a function from B̃u(0, δl(fx)−1) to B̃s(0, 1

2δl(fx)−1) with slope < 1
10 . The

same holds true for P2 := f̃fx(P1) ∩ B̃(0, δl(f2x)−1), P3, . . . , Pn. Moreover,
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Proposition 5(b) tells us that the diameter of f̃−i
fn−ix(Pn) decreases with i

faster than a fixed exponential rate.
For z ∈ C̃n, let z′ be the unique point of intersection between the P that

contains z and W̃ s
x where W̃ s

x is the local stable manifold (in the chart of x)
given by Corollary 7. Since |f̃ i

x(z′)| also decreases with i faster than a fixed
exponential rate (Proposition 6(b)), and the boxes B̃(·, δl(·)−1) are uniformly
bounded in diameter, an N0 with the desired property clearly exists. �

Proof of Theorem C. From the hμ(f) > 0 hypothesis, it follows that Eu �= {0}
(Theorem A). We let λ1, δ1, δ2 and δ be as in Sect. 7.1, fix a chart system Φx,
an l0 with μ(Γl0) > 0, and a set U ⊂ Γl0 with μ(U) > 0 small enough to
permit the switching of charts for points in Γl0 as in the proof of Theorem B.

Capturing entropy: Let ε > 0 in the statement of Theorem C be given. With
β = 1

2μ(U), we let α be such that the lim inf in (9) is > hμ(f) − 1
2ε. Let N0

be a number given by Lemma 20 for this α, and let S = fN0(U). With S here
playing the role of S in Lemma 19, α as above, γ = ε and n0 = 2N0, we let
E ⊂ S be given by Lemma 19, and let Ê = f−N0(E). We have thus found a
finite set Ê = {z1, . . . , zm} and an n ∈ Z

+ with the properties that

(i) Ê, fn(Ê) ⊂ U ⊂ Γl0 ,
(ii) 1

n log |Ê| > hμ(f) − ε, and
(iii) for all x, y ∈ Ê, |fk(x) − fk(y)| > α for some k ∈ [N0, n − N0].

Forward-invariant horseshoe for fn: For each a = (aj) ∈ Π∞
0 {1, . . . , m}, we

define {gi, i ≥ 0} as follows: For k = 0, 1, 2, . . ., let

gkn+i = f̃fizak
for i = 0, 1, . . . , n − 2, (13)

g(k+1)n−1 = Φ−1
zak+1

◦ Φfnzak
◦ f̃f(n−1)zak

. (14)

The domains are as in the proof of Theorem B (without the 1
2
√

3
ε0 factor in the

definition of ri). This sequence gi is admissible with regard to the conditions in
Sect. 5 for the same reasons as before. For each a ∈ Π∞

0 {1, . . . , m}, let W s
0 =

W s
0 (a) be the stable manifold given by Proposition 6, and let Φza0

(W s
0 (a)) =

Ψ(a)(D) where D is the unit disk in the definition of horseshoes in Sect. 2.2.
It then follows from the invariance of stable manifolds (Proposition 6) that
fn(Ψ(a)(D)) ⊂ Ψ(σ(a))(D) where σ is the shift map on Π∞

0 {1, . . . ,m}.
To check that Ψ(a)(D) ∩ Ψ(a′)(D) = ∅ for a �= a′, we consider

Ψ(σi(a))(D) and Ψ(σi(a′))(D) if ai �= a′
i. Since Ψ(a)(D) ⊂ Cn(zj) for a = (ai)

with a0 = j, it suffices to show Cn(zj)∩Cn(zk) = ∅ for j �= k. That is guaran-
teed by (iii) above together with Lemma 20. (Since U is very small compared
to the domains of the charts at zj , the slight discrepancy with the statement
of Lemma 20 due to the changing of charts is easily absorbed.) Proposition 8
tells us that the family Ψ(a)(D) varies continuously in the C1 topology.

Bi-invariant horseshoe for fn: We extend gi to all i ∈ Z in the obvious way,
and let Ψ(a) = Φza0

(Wu
0 (a) ∩ W s

0 (a)) where Wu
0 is given by Proposition 5.
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That fn(Ψ(a)) = Ψ(σ(a)) follows from the invariance of stable and unsta-
ble manifolds (Propositions 5 and 6), and the continuity of Ψ follows from
Proposition 8. Letting Ω = Ψ(Π∞

−∞{1, . . . , m}), we have proved that Ψ is at
least a semi-conjugacy between f |Ω and σ. To prove that Ψ is a conjuga-
cy, i.e. that it is one-to-one, consider a = (ai) and a′ = (a′

i) with a �= a′.
If ai �= a′

i for some i ≥ 0, the proof is as in the forward-invariant case. If
a−i �= a′

−i for some i > 0, then Ψ(σ−i(a)) �= Ψ(σ−i(a′)), and by the injectivity
of f on a neighborhood of A (Condition (D1) in Sect. 2) we conclude that
Ψ(a) = f in(Ψ(σ−i(a))) �= f in(Ψ(σ−i(a′))) = Ψ(a′). Finally, fn|Ω is uniformly
hyperbolic because the maps gi are: the stable and unstable subspaces at Ψ(a)
are exactly the DΦza0

-images of the subspaces tangent to Wu
0 (a) and W s

0 (a)
at Wu

0 (a) ∩ W s
0 (a). �
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