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Lyapunov Functions, Stability and Input-to-State Stability
Subtleties for Discrete-Time Discontinuous Systems

Mircea Lazar, W. P. Maurice H. Heemels, and Andy R. Teel

Abstract—In this note we consider stability analysis of discrete-time dis-
continuous systems using Lyapunov functions. We demonstrate via simple
examples that the classical second method of Lyapunov is precarious for
discrete-time discontinuous dynamics. Also, we indicate that a particular
type of Lyapunov condition, slightly stronger than the classical one, is re-
quired to establish stability of discrete-time discontinuous systems. Fur-
thermore, we examine the robustness of the stability property when it was
attained via a discontinuous Lyapunov function, which is often the case
for discrete-time hybrid systems. In contrast to existing results based on
smooth Lyapunov functions, we develop several input-to-state stability tests
that explicitly employ an available discontinuous Lyapunov function.

Index Terms—Discontinuous systems, discrete-time, input-to-state sta-
bility, Lyapunov methods, stability.

I. INTRODUCTION

Discrete-time discontinuous systems, such as piecewise affine
(PWA) systems, form a powerful modeling class for the approximation
of hybrid and non-smooth nonlinear dynamics [1], [2]. Many numer-
ically efficient tools for stability analysis and stabilizing controller
synthesis for discrete-time PWA systems have already been developed,
see, for example, [3]–[7] for static feedback methods and [8]–[11] for
model predictive control (MPC) techniques. Most of these methods
make use of classical Lyapunov methods [12]. The first contribution
of this note is to illustrate the precariousness of the second method of
Lyapunov, as presented in [12], for discontinuous system dynamics.
We illustrate via a simple example that existence of a Lyapunov
function in the sense of Corollary 1.2 of [12] (and hence, a continuous
function) does not necessarily guarantee global asymptotic stability
(GAS) for discrete-time discontinuous systems. In the presence of
discontinuity of the dynamics one needs stronger properties, e.g., the
one-step difference of the Lyapunov function should be upper bounded
by a class �� function with a minus sign in front, to attain GAS.

The second contribution of this note concerns robustness of stability
in terms of input-to-state stability (ISS) [13]. First, we present a simple
example inspired from [14] (see also [15] for a similar example in
MPC) to illustrate that even the global exponential stability (GES)
property is precarious for discrete-time discontinuous systems affected
by arbitrary small perturbations. The severe lack of inherent robust-
ness is related to the absence of a continuous Lyapunov function.
This example establishes that there exist GES discrete-time systems
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that admit a discontinuous Lyapunov function, but not a continuous
one. Notice that previous results on stability of discrete-time PWA
systems [3]–[7] only indicated that continuous Lyapunov functions
may be more difficult to find than discontinuous ones, while in fact a
continuous Lyapunov function might not even exist. As such, a valid
warning regarding nominally stabilizing state-feedback synthesis
methods for discrete-time discontinuous systems, including both static
feedback approaches [3]–[7] and MPC techniques [8]–[11] arises.
These synthesis methods lead to a stable, possibly discontinuous
closed-loop system and often rely on discontinuous Lyapunov func-
tions. For example, in MPC the most natural candidate Lyapunov
function is the value function corresponding to the MPC cost, which
is generally discontinuous when PWA systems are used as prediction
models [10]. Hence, these controllers may result in closed-loop
systems that are GAS, or even GES, but may not be ISS to arbitrarily
small perturbations, which are always present in practice.

This brings us to the second contribution of this note: for discrete-
time systems for which only a discontinuous Lyapunov function is
known, we propose several robustness tests that can establish ISS solely
based on the available discontinuous Lyapunov function.

II. PRELIMINARIES

A. Nomenclature and Basic Definitions

Let , �, and � denote the field of real numbers, the set of non-
negative reals, the set of integer numbers and the set of non-negative
integers, respectively. For every subset � of we define � �� �� �
�� � �� and � �� �� � �� � ��. Let � � � denote an arbitrary

norm on � and let � � � denote the absolute value of a real number.
For a sequence � �� �������� with ���� � �, � � �, let
��� �� ������������ � �� and let ���� �� �������� . For a
set � 	 �, we denote by 	
���� the interior, by �� the boundary and
by ���� the closure of � . For two arbitrary sets � 	 � and
 	 �,
let � � 
 �� �� � ��� � �� � � 
� denote their Minkowski sum.
The distance of a point � � � from a set 
 is denoted by ����
� ��
	
���� �����. For any	 � ����� we define� �� �� � ����� �
	�. A polyhedron (or a polyhedral set) in � is a set obtained as the
intersection of a finite number of open and/or closed half-spaces. The

-norm of a vector � � � is defined as ���� �� �����

� � � � � �
����

����� for 
 � ����� and ���� �� ���		��


�� ��	�, where �	,
� � �� � � � � � is the �-th component of �. For a matrix  � 
��

let ��� �� �����	����������, 
 � ����� or 
 � � denote
its induced matrix norm. A function � � ��� � belongs to class
� (� � �) if it is continuous, strictly increasing and ���� � �. A
function � � ��� � belongs to class �� (� � ��) if � � �
and 	����� ���� � �. A function � � � � ��� � belongs
to class �� (� � ��) if for each fixed � � �, ���� �� � � and for
each fixed � � �, ���� �� is decreasing and 	����� ���� �� � �.

B. Stability and Input-to-State Stability

To study robustness, we will employ the ISS framework [13], [16].
Consider the discrete-time perturbed nonlinear system

��� � �� � ������� ������ � � � (1)

where � � ���
� is the state trajectory, � � ���

 is an
unknown disturbance input trajectory and � � � �  �� � is a
nonlinear, possibly discontinuous function. For simplicity, we assume
that the origin is an equilibrium for (1) with zero disturbance, i.e.,
���� �� � �.

Definition II.1: A set 
 	 � with � � 	
��
� is called a robustly
positively invariant (RPI) set with respect to 	  for system (1)
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if for all � � � it holds that ���� �� � � for all � � . A set � � �

with � � ������ is called a positively invariant (PI) set for system (1)
with zero input if for all � � � it holds that ���� �� � � .

Definition II.2: Let with � � ���� � be a subset of �. We call
system (1) with zero input (i.e., ���� � � for all � � �) asymptot-
ically stable in , or shortly ��� �, if there exists a ��-function 	

such that, for each 
��� � it holds that �
���� � 	��
����� ��,
�� � �, where 
��� is the state trajectory corresponding to 
��� and
zero disturbance input. If the property holds with 	��� �� �� ���

for some � � ����� and  � ����� we call system (1) with zero
input exponentially stable in ���� ��. We call system (1) with
zero input globally asymptotically (exponentially) stable if it is
��� ������ ���.

Definition II.3: Let and be subsets of � and � , respectively,
with � � ���� �. We call system (1) input-to-state stable in for
inputs in , or shortly ���� � �, if there exist a ��-function 	 and
a �-function � such that, for each initial condition 
��� � and all
� � 	����
�� with ���� � for all � � �, it holds that the
corresponding state trajectory of (1) with initial state 
��� and input
trajectory � satisfies �
���� � 	��
����� �� 	 ����������� for all
� � �����. The system (1) is globally ISS if it is ISS( �� � ).

Throughout this article we will employ the following sufficient con-
ditions for analyzing ISS.

Theorem II.4: [13], [17] Let ��� ��� �� � ��, � � � and let
be a subset of � . Let with � � ���� � be a RPI set with respect
to for system (1) and let � � �� � be a function with � ��� � �.
Consider the following inequalities:

������� � � ��� ��������� (2a)

� ����� ���� � ��� � � ������� 	 ������� (2b)

If inequalities (2) hold for all � � and all � � , then system (1) is
���� � �. If inequalities (2) hold for all � � � and all � � � ,
then system (1) is globally ISS. If with � � ���� � is a PI set for
system (1) with zero input and inequalities (2) hold for all � �
(� � �) and � � � 	�
, then system (1) with zero input is AS( )
(GAS).

A function � that satisfies the hypothesis of Theorem II.4 is called
an ISS Lyapunov function. Note the following aspects regarding The-
orem II.4. (i) The hypothesis of Theorem II.4 allows that both � and
� are discontinuous. The hypothesis only requires continuity at the
point � � �, and not necessarily on a neighborhood of � � �. (ii)
If the inequalities (2) are satisfied for ����� � ���, ����� � ���,
����� � ���, for some �� �� �� � � 	����, then the hypothesis of The-
orem II.4 implies exponential stability of system (1) with zero input
[18]; (iv) A counter part of these results for continuous-time discon-
tinuous dynamical systems and non-differentiable ISS Lyapunov func-
tions can be found in [19].

C. Lyapunov Functions

As an extension of classical Lyapunov functions (see Corollary 1.2
and Corollary 1.3 of [12]), which are assumed to be continuous and
only required to have a negative one step forward difference, we will
introduce the following known types of Lyapunov functions for the zero
input system corresponding to (1), i.e., 
��	
� � ��
���� ��, � � �.
Let � � be a positively invariant set for 
��	
� � ��
���� ��with
� � ���� �, let ��� ��� �� � ��, let � � �� � denote a possibly
discontinuous function with � ��� � �, and consider the inequalities

������� � � ��� ��������� �� � � (3a)

� ����� ���� � ��� � �� �� � � (3b)

� ����� ���� � ��� � �� �� �  	�
� (3c)

� ����� ���� � ��� � � �������� �� � � (3d)

Definition II.5: A function � that satisfies (3a) and (3b) is called a
Lyapunov function. A function � that satisfies (3a) and (3c) is called a
strict Lyapunov (SL) function. A function � that satisfies (3a) and (3d)
is called a uniformly strict Lyapunov (USL) function.

For continuous � and discrete-time continuous system dynamics it
is known that SL functions and USL functions can be related and both
imply asymptotic stability and inherent robustness (ISS, under certain
conditions); see, for example, [14], [18], [20]. In the following section
we will investigate whether these properties still hold when either the
system dynamics or the Lyapunov function is discontinuous, or both.

III. ILLUMINATING EXAMPLES

Consider the following discrete-time PWA systems, which form one
of the simplest classes of discontinuous systems and will serve as a
support for setting up the examples:


�� 	 
� ���
����

����
��� 	 �� �� 
��� � �� (4a)

�� 	 
� � ��
���� �����

����

��� 	 �� 	 ���� �� 
��� � �� (4b)

with ���� � �� for some small � � 	����, � � �, and where
�� � ���, �� � � for all � � � (a finite set of indexes) and
	�� �

��� � �
 defines a partition of , meaning that������ �
and �	 � �� � �, with the sets �� not necessarily closed. First, we
present a simple one-dimensional example of a discontinuous system
that admits a continuous SL function but it is not GAS.

Example 1: Consider the discrete-time system (4a) with � � � ��
	
� �
, �� � �� � �, �� � ���, �� � ��� and the partition given by
�� � 	� � �� � 

, �� � 	� � �� � 

. One can easily check
that ������� 
��� � 
 for any 
��� � 	���� � �� and thus, this
system is not GAS. Consider the function � ��� �� ���. Clearly, for � �
��	�
we have � �������� ��� � �� ��� � � and, for � � �� we
have � �������� ��� � �����	
����� � ������� � �. Hence, � is
a continuous SL function. However, � is not a USL function, as for any
�� � �� it holds that ���
�� �� ������� � ���� � ���
�������� 	

� � �� � � � ����
�.

As illustrated above, the system of Example 1 admits a continuous SL
function but the trajectories do not converge to the origin globally. This
indicates that SL functions (even continuous ones), which are not USL
functions, do not necessarily guarantee GAS for discrete-time discon-
tinuous systems. Hence, one must strive for a USL function to guarantee
GAS of a discrete-time discontinuous system. For a proof that (discon-
tinuous) USL functions imply GAS see, for example, [18]. The inter-
ested reader is also referred to [20] for a proof that a GAS discrete-time
system always admits a (possibly discontinuous) USL function.

Example 2: Consider now the discrete-time system (4a) with � �
� �� 	
� �
, �� � �� � �, �� � �, �� � 
 and the partition
given by �� � 	� � �� � 

, �� � 	� � �� � 

. Fig. 1
shows the values of the function �. One can easily observe that any
trajectory 
 of system (4a) starting from an initial condition 
��� �

satisfies �
���� � �
���� (even �
���� � �
���� when 
��� �� �)
and converges exponentially to the origin. Actually, any trajectory 


reaches the origin in 2 discrete-time steps or less. Furthermore, it can be
proven that � ��� �� �

	
� 
� �� is a USL function, where 
 denotes
the trajectory of system (4a) obtained from initial condition 
��� �
� � . Indeed, since � ��� � �

	
� 
� �� � 
���� 	 
�
�� for any

��� � � � , it holds that � ������ � � ��� � �������� for all
� � , where ����� �� ��. An explicit expression for � is

� ��� �

�

	
�


� �� � 
���� 	 
�
�� �
�� 	 
� if � � 
�

��� if � � 


which shows that � is discontinuous at � � 
.
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Fig. 1. Function � for the system of Example 2.

Next consider the case when ���� � � � ����� for all � � �

in (4b). Then, the origin of the perturbed system (4b) corresponding to
the nominal system (4a) is not ISS, as � � � is an equilibrium of (4b)
to which all trajectories with initial conditions ���� � ����� � ��

converge. Hence, no matter how small � � ����� is taken, the system
(4b) is not ISS( ���).

The following conclusions can be drawn from Example 2: (i) GES
discrete-time discontinuous systems are not necessarily ISS, even to
arbitrarily small inputs; (ii) existence of a discontinuous USL function
does not guarantee ISS, even to arbitrarily small inputs. This indicates
that additional conditions must be imposed on USL functions to attain
ISS. For example, continuity of the USL function is known to guarantee
inherent ISS [18], but this condition is too restrictive for discrete-time
discontinuous systems such as PWA systems. Thus, in the next sec-
tion we will propose ISS tests that can deal with discontinuous USL
functions.

Remark III.1: The GES discrete-time system of Example 2 also ad-
mits a continuous SL function, namely � ��� �� ���, which satisfies
� ������ � � ��� 	 � for all � �� �. However, as it was the case in
Example 1, � ��� � ��� is not a USL function, as for any 
� � ��
it holds that 	
���� �� ������� � ���� � 	
������ � �� � � �

�
����. Hence, the existence of a continuous SL function does not
necessarily guarantee any robustness for discontinuous systems.

Remark III.2: By Theorem 14 of [14], Example 2 implies that there
exist GES discrete-time systems that do not admit a continuous USL
function. However, as shown above, the PWA system of Example 2
does admit a discontinuous USL function, which is conform with the
converse stability result for discrete-time discontinuous systems pre-
sented in [20].

IV. ISS TESTS BASED ON DISCONTINUOUS USL FUNCTIONS

In this section we consider piecewise continuous (PWC) nonlinear
systems of the form

��� � �� � ������� �� �������� 
� ���� � �� � � � � (5)

where each �� � �� ��
�, � � � , is assumed to be a continuous

function. PWA systems are obtained as a particular case by setting
����� � �� � �� . Consider also a perturbed version of the above
system, by including additive disturbances, i.e.

��� � �� � ������� �����

��������������� 
� ������� � �� �� (6)

Furthermore, we consider discontinuous USL functions � �
��� �, with � ��� � �

� ��� �� ����� 
� � � ��� � � 	 (7)

where for each � � 	 , �� � ��� � is a continuous function that
satisfies

������� ������ 
 ������ ���� ��� � � �	���� (8)

for some �� � �. Examples of functions that satisfy this property in-
clude uniformly continuous functions on compact sets and Lipschitz
continuous functions. This captures a wide range of frequently used
Lyapunov functions for PWA systems, such as piecewise quadratic
(PWQ), PWA or piecewise polyhedral functions (i.e., functions defined
using the infinity norm or the 1-norm), including the value functions
that arise in model predictive control of PWA systems.

In (5) and (7), �� �� � �� and ���� � 	 � with � �� �� � � � � ��
and 	 �� �� � � � ��� finite sets of indices, denote partitions of �.
More precisely, we assume that ������ � �, �� � �� � � for
� �� �� ��� �� � � � � and 
������ �� � for all � � � and likewise for
the regions ��, � � 	 . Suppose that a discontinuous USL function of
the form (7) is available for system (5). We have seen from Example 2
in the previous section that this does not guarantee anything in terms
of ISS. However, the goal is now to develop tests for ISS of system (6)
based on the discontinuous USL function (7).

The first result is based on examining the trajectory of the PWC
system (5) with respect to the set of states at which � may be discon-
tinuous. Let � � ����� and let � � � with � � 
����� be a RPI
set for system (6) with respect to ��, i.e., ����� � �� � � , where
����� �� ������ � �� is the one-step reachable set for system
(5) from states in � . Let � � � denote the set of all states in � at
which � is not continuous. If one can verify that any state trajectory
������� of (5) is a distance � � ����� away from the set � for
all ���� � � and all � � �����, then it can be proven that ISS(� , ��)
is achieved, as formulated in the following result. Its proof is given in
Appendix A.

Theorem IV.1: Suppose that the PWC system (5) admits a discon-
tinuous 1 USL function of the form (7) and consequently, (5) is GAS.
Furthermore, suppose that there exist a � � ����� and a set � � �

with � � 
����� such that

���� �� � � ��� �		 � � ����� (9)

and � is a RPI set 2 for system (6) with respect to ��. Then, the PWC
system (6) is ISS(� , ��).

The constant � can be chosen as follows:

�	� 
 �
� ���
�

���

��

	�	 ���
	�
���������� � (10)

If the set � is the union of a finite number of polyhedra, the sets �� ,
� � � and � are polyhedra, each �� , � � � is an affine function
and the infinity norm (or the 1-norm) is used in (10), a solution to the
optimization problem in (10) can be obtained by solving a finite number
of linear programming problems (quadratic programming problems if
the 2-norm is used). If the optimization problem in (10) yields a strictly
positive ��, then �� � ����� can be considered as a measure of the
(worst case) inherent robustness of system (5). The sufficient condition
(9) can be relaxed, as shown by the next result, in the sense that the
trajectory ������� of system (5) is now allowed to intersect the
set � .

Proposition IV.2: Let � � � with � � 
����� be a RPI set for
system (6) with respect to �� for some � � �����. Suppose that the
PWC system (5) admits a function of the form (7) that satisfies (3a) for
all � � � . Furthermore, suppose that there exists 
� � �� such that

���
���

��������� � ��� 
 �
������� �� � �� (11)

Then, the PWC system (6) is ISS (� , ��).

1Note that the result also holds for continuous USL functions, as then �

�.
2Observe that � � is a possible choice of a RPI set with respect to �

for any � � .
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The above result is based on a stronger, more conservative extension
of the stabilization conditions from [3]–[7], as it requires that the Lya-
punov function is decreasing irrespective of which dynamics might be
active at the next step. The proof of Proposition IV.2 follows from the
proof of the less conservative result formulated next in Theorem IV.3.

The sufficient condition (11) can be significantly relaxed, as follows.
Consider the set � �� �� � �� ������ ��� � � 	� 
� and define
for � � �

���� �� �� �  ����� 	� ��� ������ ��� � �� 	� 
��

Theorem IV.3: Suppose that the PWC system (5) admits a (dis-
continuous) USL function of the form (7). Furthermore, suppose that
there exist a � � �����, a ��-function ��� and a set � � � with
� � �	
��� such that

��
������

��������� � ��� � ���������� �� � � (12)

and � is a RPI set for system (6) with respect to ��. Then, the PWC
system (6) is ISS(� , ��).

The proof of Theorem IV.3 is presented in Appendix B. Observe that
(9) amounts to an a posteriori check that must be performed on a given
USL function of the form (7). In contrast, condition (11) can be a priori
specified when computing a USL function of the form (7), and it can be
casted as a semidefinite programming problem for piecewise quadratic
(PWQ) functions and PWA systems, provided that the regions �� are
chosen (see [18], Chapter 4, for an example). On the same issue, con-
dition (12) involves the set � and hence, amounts to an a posteriori
check that must be performed on a given USL function of the form (7).
Under certain reasonable assumptions (e.g., � is the union of a finite
number of polyhedra, the regions �� , 	 � � and ��, � � � are poly-
hedra, the system is PWA, the USL function is convex) checking (12)
amounts to solving a finite number of convex optimization problems.

Remark IV.4: The result of Theorem IV.3 also holds when condition
(12) is replaced by

��
������

��������� � ������ � 
�������� �� � � (13)

for some 
 � �����, which might be easier to check than (12).
Remark IV.5: The tests developed in this section require that for

each � �  , �� is a continuous function that satisfies (8), and as such
must be defined on ������ and, furthermore, it is defined on: (i)� � �

for Proposition IV.2 and (ii) ������ � �� for some � � ����� for
Theorem IV.3. These are additional requirements with respect to USL
functions, which in principle, only require that each �� is defined on
��. An alternative to the tests presented in this section is to directly
check condition (2b), which for PWA dynamics and PWQ candidate
ISS Lyapunov functions can lead to tractable optimization problems,
as shown recently in [21].

V. CONCLUSION

In this note we analyzed two types of Lyapunov functions in terms of
their suitability for establishing stability and input-to-state stability of
discrete-time discontinuous systems. Via examples we exposed certain
subtleties that arise in the classical Lyapunov methods when they are
applied to discrete-time discontinuous systems, as follows:

• The existence of a continuous SL function does not necessarily
imply GAS—Example 1;

• The existence of a continuous SL function or discontinuous USL
function does not necessarily imply ISS, even to arbitrarily small
inputs—Example 2;

• GES does not necessarily imply the existence of a continuous USL
function—Example 2 (see also [14]).

These results, together with the fact that existence of a possibly discon-
tinuous USL function is equivalent to GAS [18], [20], issue a strong
warning regarding existing nominally stabilizing state-feedback syn-
thesis methods for discrete-time discontinuous systems, including both
static feedback approaches [3]–[7] and MPC techniques [8]–[11]. This
warning motivates the recent results on global input-to-state stabiliza-
tion of discrete-time PWA systems [21] and input-to-state stabilizing
(sub-optimal) MPC of discontinuous systems [22].

To render the many available procedures for obtaining Lyapunov
functions, which typically yield discontinuous Lyapunov functions
(e.g., value functions in MPC or PWQ Lyapunov functions), applicable
to discontinuous systems, we presented several ISS tests based on
discontinuous Lyapunov functions. These tests can be employed to
establish ISS of nominally asymptotically stable discrete-time PWC
systems in the case when a discontinuous USL function is available.

APPENDIX

Proof of Theorem IV.1: First, we will prove that there exists a
�-function � (independent of �) such that for all � and for any two
points �� �� � ����� �� it holds that �� ���� � ����� � ���� � ����.

By (8), for each � �  and any two points �� �� � ������ there
exists a �-function �� such that ������� ������� � ����� � ����. The
inequality (9) implies that � is continuous on the set ���� � �� for
any � � � . For any two points �� �� � ���� � �� consider the line
segment ��� ��� �� �� � ���� � ���� � � � �� between � and
��. We will construct a set of points ���� � � � � ��� � ��� ��� with
� � � on this line segment such that: (i) �� � �; �� � �� and
(ii) ��	��� �	� � ����� � � ����� � for some �	�� �  , for all
� � �� � � � �� . To construct this set, take �� �  such that �� � � �
����� �, �� � � and �� �� ���� � ��� ������������ � ����� ��.
Note that due to closedness of ����� � the maximum is attained and
�� �� � � ����� � �� � ����� �. In addition, for all � � ���� �� it
holds that � � ���� � �� 	� ����� �. If �� � � (and thus �� � ����� �)
the construction is complete. If �� 	� �, then there is an �� �  � ����
with �� � ����� �. Take �� �� ���� � ���� ���� � ���� � �� �
����� �� and observe that �� �� � � ����� � �� � ����� � and for all
� � ���� �� we have that � � ���� � �� 	� ����� � � ����� �. If �� �
� the construction is complete. Otherwise, continue the construction.
This construction will terminate in at most � steps as the number of
regions ������, � � �� � � � �� , is finite and �� lies in at least one of them.
At termination, we arrived at the set of points ���� � � � � ��� with the
mentioned properties. Due to continuity of � in the region �������,
continuity of ��, � � �� � � � �� in � and �	 � ����� � � ����� �,
� � �� � � � �� , we have that � ��	� � �� ��	� � �� ��	�. Then,
for any �� �� � ���� � ��, it follows that:

�� ���� � ����� �
�

	��

�� ��	���� � ��	��

�
�

	��

�� ��	���� � ��	��

�

�

	��

��� ��	���� �� ��	��

�
�

	��

�� ���	�� � �	��

�
�

	��

�� ��� � �����

Letting ���� �� � ����� ����� � �, one obtains �� ����� ����� �
���� � ���� for any �� �� � ���� � ��.
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Since for any � � �� it holds that ���� �� � ������ � �������,
it follows that:

� ����� ���� � ������ � ��������� � �� �� � ��� (14)

As by the hypothesis � is a USL function for the PWC system (5), we
have that 	������ � � ��� � 	������ for all � � � and

� ������� � ��� � �	������� �� � � (15)

for some 	�� 	�� 	� � 	�. Adding (14) and (15) yields

� ����� ���� � ��� � �	������ � ��������� � �� �� � ���

Hence, � is an ISS Lyapunov function for the PWC system (6). The
statement then follows from Theorem II.4.

Proof of Theorem IV.3: As done in the proof of Theorem IV.1,
we will show that � satisfies the ISS inequalities (2). For any � � �
only the following situations can occur: (A) ������ ��� 
 � � �
or (B) � � � . In case (A), as shown in the proof of Theorem IV.1, by
continuity of � on ������� and (8), there exists a � � 	 (indepen-
dent of �) as constructed in the proof of Theorem IV.1 such that

� ����� ���� � ��� � �	������ � ������� �� � ��� (16)

In case (B), suppose that � � �� is such that ���� � �� and ���� �
� � �� for some 
 �  . In this case 
 �� ����. Then, since
� ������ � �������� and � ����� � �� � ������� � ��, by conti-
nuity of �� and (8), inequality (16) holds with the same 	-function �

constructed in the proof of Theorem IV.1.
Otherwise, if � � �� is such that ���� � �� and ���� � � � ��

for some 
� � �  , 
 �� �, we have that � ������ � ��������,
� ������ �� � �������� �� and � �����. Then, by continuity of
��, (8) and inequality (12) we obtain

� ����� � ��� � ���

�������� � ��� � ���

����������� �����������������������

� ���
������

��������� � ��� � �������

�� 		������ � ������

with �� and � as defined in the proof of Theorem IV.1. Letting

	���� �� ���	����� 		����� gives 
	� � 	� and

� ����� ���� � ��� � � ����� � ��� � ��� � �
	���� � ������

for all � � � and � � ��. Therefore, � is an ISS Lyapunov function
for system (6). The statement then follows from Theorem II.4.
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