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LYAPUNOV METHODS FOR TIME-INVARIANT DELAY
DIFFERENCE INCLUSIONS∗

R. H. GIELEN† , M. LAZAR† , AND I. V. KOLMANOVSKY‡

Abstract. Motivated by the fact that delay difference inclusions (DDIs) form a rich modeling
class that includes, for example, uncertain time-delay systems and certain types of networked control
systems, this paper provides a comprehensive collection of Lyapunov methods for DDIs. First, the
Lyapunov–Krasovskii approach, which is an extension of the classical Lyapunov theory to time-delay
systems, is considered. It is shown that a DDI is KL-stable if and only if it admits a Lyapunov–
Krasovskii function (LKF). Second, the Lyapunov–Razumikhin method, which is a type of small-
gain approach for time-delay systems, is studied. It is proved that a DDI is KL-stable if it admits a
Lyapunov–Razumikhin function (LRF). Moreover, an example of a linear delay difference equation
which is globally exponentially stable but does not admit an LRF is provided. Thus, it is established
that the existence of an LRF is not a necessary condition for KL-stability of a DDI. Then, it is shown
that the existence of an LRF is a sufficient condition for the existence of an LKF and that only under
certain additional assumptions is the converse true. Furthermore, it is shown that an LRF induces
a family of sets with certain contraction properties that are particular to time-delay systems. On
the other hand, an LKF is shown to induce a type of contractive set similar to those induced by
a classical Lyapunov function. The class of quadratic candidate functions is used to illustrate the
results derived in this paper in terms of both LKFs and LRFs, respectively. Both stability analysis
and stabilizing controller synthesis methods for linear DDIs are proposed.

Key words. stability theory, Lyapunov functions and stability, time-delay systems, invariant
sets
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1. Introduction. Systems affected by time delay can be found within many
applications in the control field; see, e.g., [25] for an extensive list of examples. Delay
difference inclusions (DDIs) form a rich modeling class that includes, for example,
uncertain systems, time-delay systems, and certain types of networked control systems
[14, 45]. However, while stability analysis of delay-free systems is often based on the
existence of a Lyapunov function (LF) (see, e.g., [1]), for systems affected by delays
the classical Lyapunov theory does not apply straightforwardly. This is due to the fact
that the influence of the delayed states can cause a violation of the monotonic decrease
condition that a standard LF obeys. To solve this issue, two types of functions were
proposed: the Lyapunov–Krasovskii function (LKF) [27], which is an extension of the
classical LF to time-delay systems, and the Lyapunov–Razumikhin function (LRF)
(see, e.g., [16]), which is a function that is constructed based [40] on a type of small-
gain condition for time-delay systems. The main focus of this paper is on discrete-
time systems. Therefore, for continuous-time systems, we give only a brief account of
some Lyapunov theorems and refer the reader to [15, 16, 25, 27, 36] and the references
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therein for further reading. Theorem 4.1.3 in [25] establishes that a time-delay system
is globally exponentially stable (GES) if and only if it admits an LKF. Furthermore,
Theorem 5.19 in [15] establishes that any linear delay differential equation that is GES
admits a quadratic LKF. This result was partially extended to linear delay differential
inclusions in [24]. However, for LRFs such converse results are missing. Moreover,
LRFs can be considered [25] as particular cases of LKFs. Also, it is known [23] that
any quadratic LRF yields a particular quadratic LKF.

It is not immediately clear how the Lyapunov–Razumikhinmethod and Lyapunov–
Krasovskii approach are to be used for stability analysis of discrete-time systems. One
of the most commonly used approaches [2] to stability analysis of DDIs is to augment
the state vector with all delayed states/inputs that affect the current state, which
yields a standard difference inclusion of higher dimension. Thus, stability analysis
methods for difference inclusions based on Lyapunov theory (see, e.g., [1, 21]), become
applicable. Recently, in [17] it was pointed out that such an LF for the augmented
state system provides an LKF for the original system affected by delay. Moreover, in
[17] it was also shown that all existing methods based on the Lyapunov–Krasovskii
approach provide a particular type of LF for the augmented state system. As such, an
equivalent notion of LKFs for discrete-time systems was obtained. Examples of con-
troller synthesis methods based on this approach can be found in, among many others,
[7, 8, 12, 26, 43]. However, converse results for the Lyapunov–Krasovskii approach,
such as the ones mentioned above for continuous-time systems, are missing. For LRFs
the situation is more complicated. The exact translation of this approach to discrete-
time systems yields a noncausal constraint [11, 44]. An alternative, Razumikhin-like
condition for discrete-time systems was proposed in [33], where the LRF was required
to be less than the maximum over its past values for the delayed states. Stability
analysis and controller synthesis methods based on the existence of an LRF can be
found in, e.g., [13, 32, 34]. For discrete-time systems, a result on the connection be-
tween LKFs and LRFs is missing. Moreover, for both continuous- and discrete-time
systems, it remains an open question whether there exist systems that are KL-stable
or even GES but do not admit an LRF.

Given that DDIs form a rich and relevant modeling class (that was recently shown
to include networked control systems) while an overview of the corresponding counter-
part of the Lyapunov methods for delay differential inclusions is missing, the purpose
of this paper is to provide a comprehensive collection of Lyapunov methods for DDIs.
To this end, first, using the augmented state system, a converse Lyapunov theorem
for the Lyapunov–Krasovskii approach is established. Second, for the Lyapunov–
Razumikhin method, the results of [11] and [33] are extended to DDIs. Third, via
an example of a linear delay difference equation that is GES but does not admit an
LRF, it is shown that the existence of an LRF is a sufficient condition but not a
necessary condition for KL-stability of DDIs. Then, it is established that the exis-
tence of an LRF is a sufficient condition for the existence of an LKF and that only
under certain additional assumptions is the converse true. Furthermore, it is shown
that an LRF induces a family of sets with certain contraction properties that are
particular to time-delay systems. On the other hand, an LKF is shown to induce a
standard contractive set for the augmented state system, similar to the contractive
set induced by a classical LF. The class of quadratic candidate functions is used to
illustrate the application of the results derived in this paper to both stability analysis
and stabilizing controller synthesis for linear polytopic DDIs in terms of LKFs as well
as LRFs.

The remainder of the paper is organized as follows. Section 2 contains some useful
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preliminaries. Sections 3.1 and 3.2 present stability conditions in terms of LKFs and
LRFs, respectively. In section 4 relations between LKFs and LRFs are discussed.
Next, section 5 deals with contractive sets for DDIs. In section 6 synthesis techniques
are provided for quadratic LKFs and LRFs, respectively. Moreover, in section 6.1
these techniques are illustrated via an example. Conclusions are drawn in section 7,
and the two appendices contain the proof of a technical lemma and some numerical
data, respectively.

2. Preliminaries.

2.1. Notation and basic definitions. Let R, R+, Z, and Z+ denote the field
of real numbers, the set of nonnegative reals, the set of integers, and the set of
nonnegative integers, respectively. For every c ∈ R and Π ⊆ R, define Π≥c := {k ∈ Π |
k ≥ c} and similarly Π≤c. Furthermore, RΠ := Π and ZΠ := Z ∩Π. For a vector x ∈
R

n, let [x]i, i ∈ Z[1,n] denote the ith component of x and let ‖x‖p := (
∑n

i=1 |[x]i|p)
1
p ,

p ∈ Z>0, denote an arbitrary p-norm. Moreover, let ‖x‖∞ := maxi∈Z[1,n]
|[x]i| denote

the infinity norm. Let x := {x(l)}l∈Z+ with x(l) ∈ Rn for all l ∈ Z+ denote an
arbitrary sequence and define ‖x‖ := sup{‖x(l)‖ | l ∈ Z+}. Furthermore, x[c1,c2] :=
{x(l)}l∈Z[c1,c2]

, with c1, c2 ∈ Z, denotes a sequence that is ordered monotonically with

respect to the index l ∈ Z[c1,c2]. Similarly, col({x(l)}l∈Z[c1,c2]
) := [ x(c2)� ... x(c1)

� ]
�

is also ordered monotonically (albeit in a decreasing fashion from top to bottom)
with respect to the index l. For a symmetric matrix Z ∈ Rn×n, let Z � 0 (Z ≺ 0)
denote that Z is positive (negative) definite and let λmax(Z) (λmin(Z)) denote the
largest (smallest) eigenvalue of Z. Moreover, ∗ is used to denote the symmetric part
of a matrix, i.e.,

[
a b�
b c

]
= [ a ∗

b c ]. Let In ∈ Rn×n denote the identity matrix and let

0n×m ∈ Rn×m denote a matrix with all elements equal to zero. Let Sh := S×· · ·×S for
any h ∈ Z≥1 denote the h-times cross-product of an arbitrary set S ⊆ Rn. Moreover,
let int(S) denote the interior of S, let ∂S denote the boundary of S, and let cl(S) denote
the closure of S. For a λ ∈ R define λS := {λx | x ∈ S}. Let co(·) denote the convex
hull. A continuous function ϕ : R[0,a) → R+, for some a ∈ R>0, is said to belong to
class K if it is strictly increasing and ϕ(0) = 0. Moreover, ϕ ∈ K∞ if ϕ : R+ → R+,
ϕ ∈ K, and limr→∞ ϕ(r) = ∞. A continuous function β : R[0,a) × R+ → R+, for
some a ∈ R>0, is said to belong to class KL if for each fixed s ∈ R+, β(r, s) ∈ K with
respect to r and for each fixed r ∈ R[0,a), β(r, s) is decreasing with respect to s and
lims→∞ β(r, s) = 0.

2.2. DDIs. Consider the DDI

x(k + 1) ∈ F (x[k−h,k]), k ∈ Z+,(2.1)

where x[k−h,k] ∈ (Rn)h+1, h ∈ Z≥1 is the maximal delay, and F : (Rn)h+1 ⇒ Rn

is a set-valued map with the origin as equilibrium point, i.e., F (0[k−h,k]) = {0}.
Next, consider the following standing assumption, which is a common assumption for
difference inclusions without delay as well; see, e.g., [21].

Assumption 1. The set F (x[−h,0]) ⊂ Rn is compact and nonempty for all x[−h,0] ∈
(Rn)h+1.

Note that while the DDI (2.1) is time invariant, uncertain time-varying delays
can be incorporated, similarly as in, e.g., [17]. It is worth pointing out that the
aforementioned technique does not introduce any conservatism since the map F is
not required to be convex.
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Let S(x[−h,0]) denote the set of all trajectories of (2.1) that correspond to initial

condition x[−h,0] ∈ (Rn)h+1. Furthermore, let Φ(x[−h,0]) := {φ(k,x[−h,0])}k∈Z≥−h
∈

S(x[−h,0]) denote a trajectory of (2.1) such that φ(k,x[−h,0]) = x(k) for all k ∈ Z[−h,0]

and φ(k + 1,x[−h,0]) ∈ F (φ[k−h,k](x[−h,0])) for all k ∈ Z+. Above, the notation
φ[k−h,k](x[−h,0]) := {φ(l,x[−h,0])}l∈Z[k−h,k]

was used.
Definition 2.1. (i) System (2.1) is called a linear delay difference equation

(DDE) if F (x[k−h,k]) := {∑0
θ=−hAθx(k + θ)} where Aθ ∈ Rn×n for all θ ∈ Z[−h,0].

(ii) System (2.1) is called a linear DDI if F (x[k−h,k]) := {∑0
θ=−hAθx(k + θ) |

Aθ ∈ cl(Mθ)} with Mθ ⊂ Rn×n and Mθ bounded for all θ ∈ Z[−h,0].
Definition 2.2. System (2.1) is called D-homogeneous of order t, t ∈ Z+, if for

any s ∈ R it holds that F (sx[−h,0]) = stF (x[−h,0]) for all x[−h,0] ∈ (Rn)h+1.
Definition 2.3. Let λ ∈ R[0,1). A convex and compact set X ⊂ Rn with 0 ∈

int(X) is called λ-D-contractive for the DDI (2.1) if F (x[−h,0]) ⊆ λX for all x[−h,0] ∈
Xh+1.

Moreover, consider the following notions of stability.
Definition 2.4. (i) The origin of the DDI (2.1) is called globally attractive if

limk→∞ ‖φ(k,x[−h,0])‖ = 0 for all x[−h,0] ∈ (Rn)h+1 and all Φ(x[−h,0]) ∈ S(x[−h,0]).
(ii) The origin of (2.1) is called Lyapunov stable (LS) if for every ε ∈ R>0

there exists a δ(ε) ∈ R>0 such that if ‖x[−h,0]‖ ≤ δ, then ‖φ(k,x[−h,0])‖ ≤ ε for all
Φ(x[−h,0]) ∈ S(x[−h,0]) and all k ∈ Z+.

(iii) System (2.1) is called globally asymptotically stable (GAS) if its origin is
both globally attractive and LS.

Definition 2.5. (i) System (2.1) is called KL-stable if there exists a function
β : R+ × R+ → R+, β ∈ KL, such that ‖φ(k,x[−h,0])‖ ≤ β(‖x[−h,0]‖, k) for all

x[−h,0] ∈ (Rn)h+1, all Φ(x[−h,0]) ∈ S(x[−h,0]), and all k ∈ Z+.
(ii) System (2.1) is called GES if it is KL-stable with β(r, s) := crμs for some

c ∈ R≥1 and μ ∈ R[0,1).
Note that the above definitions define global and strong properties, i.e., properties

that hold for all x[−h,0] ∈ (Rn)h+1 and all Φ(x[−h,0]) ∈ S(x[−h,0]). The following
lemma relates DDIs that are GAS to DDIs that are KL-stable.

Lemma 2.6. The following two statements are equivalent:
(i) The DDI (2.1) is GAS, and δ(ε) in Definition 2.4 can be chosen to satisfy

limε→∞ δ(ε) = ∞.
(ii) The DDI (2.1) is KL-stable.
The proof of Lemma 2.6 can be obtained mutatis mutandis from the proof of

Lemma 4.5 in [22], a result for continuous-time systems without delay. The relevance
of the result of Lemma 2.6 comes from the fact that KL-stability, as opposed to mere
global asymptotic stability, is a standard assumption in converse Lyapunov theorems;
see, e.g., [1, 21, 38]. Note that if the DDI (2.1) is upper semicontinuous [20], then it
can be shown, similarly to Proposition 6 in [20], that global asymptotic stability is
equivalent to KL-stability.

With the above equivalence established, in the next section various conditions
under which a DDI is KL-stable are established.

3. Stability of DDIs.

3.1. The Lyapunov–Krasovskii approach. As pointed out in the introduc-
tion, a standard approach for studying stability of delay discrete-time systems is to
augment the state vector and then to obtain an LF for the resulting augmented state
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system. Hence, let ξ(k) := col({x(l)}l∈Z[k−h,k]
) and consider the difference inclusion

ξ(k + 1) ∈ F̄ (ξ(k)), k ∈ Z+,(3.1)

where the map F̄ : R(h+1)n ⇒ R(h+1)n is obtained from the map F in (2.1), i.e.,
F̄ (ξ) = col({x(l)}l∈Z[−h+1,0]

, F (x(−h), . . . , x(0))), with ξ = col({x(l)}l∈Z[−h,0]
). There-

fore, F̄ (ξ) is compact and nonempty for all ξ ∈ R(h+1)n and F̄ (0) = {0}. We use S̄(ξ)
to denote the set of all trajectories of (3.1) from initial condition ξ ∈ R(h+1)n. Let
Φ̄(ξ) := {φ̄(k, ξ)}k∈Z+ ∈ S̄(ξ) denote a trajectory of (3.1) such that φ̄(0, ξ) = ξ and
φ̄(k + 1, ξ) ∈ F̄ (φ̄(k, ξ)) for all k ∈ Z+.

Definition 3.1. A function g : Rl ⇒ Rp, possibly set valued, is called homoge-
neous (positively homogeneous) of order t, t ∈ Z+, if g(sx) = stg(x) (g(sx) = |s|tg(x))
for all x ∈ R

l and all s ∈ R.
Definition 3.2. Let λ ∈ R[0,1). A convex and compact set X̄ ⊂ R(h+1)n with

0 ∈ int(X̄) is called λ-contractive for system (3.1) if F̄ (ξ) ⊆ λX̄ for all ξ ∈ X̄.
Remark 1. Throughout this paper, uniformly strict Lyapunov conditions are

sought, as opposed to classical Lyapunov conditions. Such conditions yield uniformly
strict LFs, which in turn induce contractive sets, as opposed to merely invariant sets.
The reader interested in more details on uniformly strict LFs is referred to [31].

The following lemma relates stability of the DDI (2.1) to stability of the difference
inclusion (3.1). Thus, stability of the set-valued map F : (Rn)h+1 ⇒ R

n is related to
stability of the set-valued map F̄ : R(h+1)n ⇒ R(h+1)n.

Lemma 3.3. The following claims are true:
(i) The DDI (2.1) is GAS if and only if the difference inclusion (3.1) is GAS.
(ii) The DDI (2.1) is KL-stable if and only if the difference inclusion (3.1) is

KL-stable.
(iii) The DDI (2.1) is GES if and only if the difference inclusion (3.1) is GES.
The proof of Lemma 3.3 can be found in Appendix A. In the standard approach,

as in, e.g., [7, 8, 12, 14, 17, 26, 43], an LF for the difference inclusion (3.1) is obtained.
This LF is then used to conclude that the DDI (2.1) is KL-stable. Lemma 3.3 enables
a formal characterization of this conjecture. Moreover, the converse is also obtained.

Theorem 3.4. Let ᾱ1, ᾱ2 ∈ K∞. The following statements are equivalent:
(i) There exist a function V̄ : R(h+1)n → R+ and a constant ρ̄ ∈ R[0,1) such that

ᾱ1(‖ξ‖) ≤ V̄ (ξ) ≤ ᾱ2(‖ξ‖),(3.2a)

V̄ (ξ+) ≤ ρ̄V̄ (ξ)(3.2b)

for all ξ ∈ R(h+1)n and all ξ+ ∈ F̄ (ξ).
(ii) The difference inclusion (3.1) is KL-stable.
(iii) The DDI (2.1) is KL-stable.
Proof. The equivalence of (i) and (ii) was proved in [21, Theorem 2.7], under the

additional assumptions that the map F̄ is upper semicontinuous and the function V
is smooth. However, these assumptions were used only to prove certain robustness
properties and can therefore be omitted. Alternatively, this equivalence can be shown
following mutatis mutandis the reasoning used in the proof of Lemma 4 in [38], which
is a result for difference equations. Furthermore, the equivalence of (ii) and (iii) follows
from Lemma 3.3.

A function V̄ that satisfies the hypothesis of Theorem 3.4 is called an LKF for
the DDI (2.1). From Theorem 3.4 the following two corollaries are obtained.
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Corollary 3.5. Let c1 ∈ R>0 and let c2 ∈ R≥c1 . Suppose that the DDI (2.1) is
a linear DDE and hence also that the corresponding system (3.1) is a linear difference
equation. Then the following statements are equivalent:

(i) There exist a quadratic function V̄ (ξ) := ξ�P̄ ξ, for some symmetric matrix
P̄ ∈ R

(h+1)n×(h+1)n, and a constant ρ̄ ∈ R[0,1) such that

c1‖ξ‖22 ≤ V̄ (ξ) ≤ c2‖ξ‖22,(3.3a)

V̄ (ξ+) ≤ ρ̄V̄ (ξ)(3.3b)

for all ξ ∈ R
(h+1)n and all ξ+ ∈ F̄ (ξ).

(ii) The linear difference equation (3.1) is GES.
(iii) The linear DDE (2.1) is GES.
Corollary 3.6. Let c1 ∈ R>0, c2 ∈ R≥c1 and let p ∈ Z≥(h+1)n. Suppose that

the DDI (2.1) is a linear DDI and hence also that the corresponding system (3.1) is
a linear difference inclusion. Then the following statements are equivalent:

(i) There exist a polyhedral function V̄ (ξ) := ‖P̄ ξ‖∞, for some P̄ ∈ Rp×(h+1)n,
and a constant ρ̄ ∈ R[0,1) such that

c1‖ξ‖∞ ≤ V̄ (ξ) ≤ c2‖ξ‖∞,(3.4a)

V̄ (ξ+) ≤ ρ̄V̄ (ξ)(3.4b)

for all ξ ∈ R(h+1)n and all ξ+ ∈ F̄ (ξ).
(ii) The linear difference inclusion (3.1) is GES.
(iii) The linear DDI (2.1) is GES.
The proof of Corollary 3.5 follows from Corollary 3.1* in [19] and Lemma 3.3. Fur-

thermore, the proof of Corollary 3.6 follows from the corollary in [3] and Lemma 3.3.
Note that the set cl(Mθ) is closed and bounded by assumption but not necessarily con-
vex, which is exactly what is required for the corollary in [3]. A function V̄ (ξ) = ξ�P̄ ξ
that satisfies the hypothesis of Corollary 3.5 is called a quadratic Lyapunov–Krasovskii
function (qLKF). Moreover, a function V̄ (ξ) = ‖P̄ ξ‖∞ that satisfies the hypothesis
of Corollary 3.6 is called a polyhedral Lyapunov–Krasovskii function (pLKF). The
following example illustrates the results derived above.

Example 1. Consider the linear DDE

x(k + 1) = ax(k) + bx(k − 1), k ∈ Z+,(3.5)

where x[k−1,k] ∈ R× R and a, b ∈ R. Let ξ(k) := [x(k), x(k − 1)]
�
, which yields

ξ(k + 1) = Āξ(k), k ∈ Z+,(3.6)

where Ā = [ a b
1 0 ]. Note that for all b ∈ R with |b| < 1 and all a ∈ R with |a| < 1 − b,

the spectral radius of Ā is strictly less than one and hence (3.6) is GES; see, e.g., [19].
Therefore, it follows from Corollary 3.5 that if a, b ∈ R with |b| < 1 and |a| < 1 − b,
then there exist a ρ̄ ∈ R[0,1) and a symmetric P̄ ∈ R2×2 such that

Ā�P̄ Ā− ρ̄P̄ ≺ 0, P̄ � 0.(3.7)

Moreover, it also follows from Corollary 3.5 that if a, b ∈ R with |b| < 1 and |a| < 1−b,
then (3.5) is GES and admits a qLKF. For example, let a = 1 and b = −0.5. As
ρ̄ = 0.95 and P̄ =

[
1.3 −0.5
−0.5 0.7

]
is a solution to (3.7), system (3.6), with a = 1 and
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b = −0.5, is GES. Hence, the linear DDE (3.5), with a = 1 and b = −0.5, is GES.
Moreover, the function V̄ (ξ) = ξ�P̄ ξ is a quadratic LF for (3.6) and the function
V̄ (ξ) = V̄ (x[−1,0]) = 1.3x(0)2 − x(0)x(−1) + 0.7x(−1)2 is a qLKF for (3.5).

Unfortunately, the sublevel sets of an LKF do not provide a contractive set in the
original state space, i.e., Rn, but rather a contractive set in the higher dimensional
state space corresponding to the augmented state system, i.e., R(h+1)n or equivalently
(Rn)h+1. Moreover, as the LKF is a function of the current state and all delayed states,
it becomes increasingly complex when the size of the delay, i.e., h ∈ Z≥1, increases.
Therefore, it would be desirable to construct a function satisfying particular Lyapunov
conditions that involve the nonaugmented system, rather than the augmented one.

3.2. The Lyapunov–Razumikhin approach. The Razumikhin approach is a
Lyapunov technique for time-delay systems that satisfies Lyapunov conditions that
directly involve the DDI (2.1), as opposed to the augmented state system (3.1).

Theorem 3.7. Let α1, α2 ∈ K∞ and let π : R+ → R+ be a function such
that π(s) > s for all s ∈ R>0 and π(0) = 0. Suppose that there exist a function
V : Rn → R+ and a constant ρ ∈ R[0,1) such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ R
n,(3.8a)

and, for all x[−h,0] ∈ (Rn)h+1, if π(V (x+)) ≥ maxθ∈Z[−h,0]
V (x(θ)), then

V (x+) ≤ ρV (x(0)) ∀x+ ∈ F (x[−h,0]).(3.8b)

Then, the DDI (2.1) is KL-stable.
The proof of the above theorem, which is omitted here for brevity, is similar in

nature to the proof of Theorem 6 in [11] by replacing mutatis mutandis the difference
equation with the difference inclusion as in (2.1). It is obvious that the LRF defined in
Theorem 3.7 is noncausal; i.e., (3.8b) imposes a condition on V (x+) if V (x+) satisfies
some other condition. Note that the corresponding Lyapunov–Razumikhin theorem
for continuous-time systems, e.g., Theorem 4.1 in [16], is causal, because it imposes
a condition on the derivative of V (x) if V (x) satisfies a certain condition. Next,
an extension of Theorem 3.2 in [33], which provides a causal sufficient condition for
stability of the DDI (2.1), will be presented.

Theorem 3.8. Let α1, α2 ∈ K∞. If there exist a function V : Rn → R+ and a
constant ρ ∈ R[0,1) such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) ∀x ∈ R
n,(3.9a)

V (x+) ≤ ρ max
θ∈Z[−h,0]

V (x(θ))(3.9b)

for all x[−h,0] ∈ (Rn)h+1 and all x+ ∈ F (x[−h,0]), then the DDI (2.1) is KL-stable.
Proof. Suppose that ρ �= 0. Let ρ̂ := ρ

1
h+1 ∈ R(0,1) and let

θopt(k,φ[k−h,k](x[−h,0])) := arg max
θ∈Z[−h,0]

ρ̂−(k+θ)V (φ(k + θ,x[−h,0])),

U(k,φ[k−h,k](x[−h,0])) := max
θ∈Z[−h,0]

ρ̂−(k+θ)V (φ(k + θ,x[−h,0])),(3.10)

where x[−h,0] ∈ (Rn)h+1, Φ(x[−h,0]) ∈ S(x[−h,0]), and k ∈ Z+. Next, it will be proved
that

U(k + 1,φ[k−h+1,k+1](x[−h,0])) ≤ U(k,φ[k−h,k](x[−h,0]))(3.11)
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for all x[−h,0] ∈ (Rn)h+1, all Φ(x[−h,0]) ∈ S(x[−h,0]), and all k ∈ Z+. There-

fore, suppose that θopt(k + 1,φ[k−h+1,k+1](x[−h,0])) = 0 for some x[−h,0] ∈ (Rn)h+1,
Φ(x[−h,0]) ∈ S(x[−h,0]), and k ∈ Z+. Then, (3.9b) yields

U(k + 1,φ[k−h+1,k+1](x[−h,0])) = ρ̂−(k+1)V (φ(k + 1,x[−h,0]))

≤ ρ̂−(k+1) max
θ∈Z[−h,0]

ρ̂(h+1)V (φ(k + θ,x[−h,0]))

≤ max
θ∈Z[−h,0]

ρ̂−(k+θ)V (φ(k + θ,x[−h,0])) = U(k,φ[k−h,k](x[−h,0])).(3.12)

Furthermore, if θopt(k + 1,φ[k−h+1,k+1](x[−h,0])) ∈ Z[−h,−1], it holds that

U(k + 1,φ[k−h+1,k+1](x[−h,0])) = max
θ∈Z[−h,−1]

ρ̂−(k+θ+1)V (φ(k + θ + 1,x[−h,0]))

= max
θ∈Z[−h+1,0]

ρ̂−(k+θ)V (φ(k + θ,x[−h,0]))

≤ U(k,φ[k−h,k](x[−h,0])).(3.13)

Therefore, from (3.12) and (3.13) it follows that (3.11) holds. Applying (3.11) recur-
sively yields

U(k,φ[k−h,k](x[−h,0])) ≤ U(0,φ[−h,0](x[−h,0])) ≤ max
θ∈Z[−h,0]

V (x(θ)).(3.14)

Next, combining (3.10) and (3.14) yields

V (φ(k,x[−h,0])) ≤ ρ̂kU(k,φ[k−h,k](x[−h,0])) ≤ ρ̂k max
θ∈Z[−h,0]

V (x(θ))

for all x[−h,0] ∈ (Rn)h+1, all Φ(x[−h,0]) ∈ S(x[−h,0]), and all k ∈ Z+. Observing that
maxθ∈Z[−h,0]

α2(‖x(θ)‖) = α2(‖x[−h,0]‖) and applying (3.9a) yields

‖φ(k,x[−h,0])‖ ≤ α−1
1 (ρ̂kα2(‖x[−h,0]‖))(3.15)

for all x[−h,0] ∈ (Rn)h+1, all Φ(x[−h,0]) ∈ S(x[−h,0]), and all k ∈ Z+. As β(r, s) :=

α−1
1 (α2(r)ρ̂

s) ∈ KL, it follows that (2.1) is KL-stable.
Suppose that ρ = 0. Then, it follows from (3.9b) and (3.9a) that ‖x+‖ = 0 for

all x[−h,0] ∈ (Rn)h+1 and all x+ ∈ F (x[−h,0]). Hence, ‖φ(k,x[−h,0])‖ ≤ ‖x[−h,0]‖ 1
2

k

for all x[−h,0] ∈ (Rn)h+1, all Φ(x[−h,0]) ∈ S(x[−h,0]), and all k ∈ Z+. Observing that

β(r, s) := r 1
2

s ∈ KL completes the proof.
A function that satisfies the hypothesis of Theorem 3.7 is called a noncausal LRF

and one that satisfies the hypothesis of Theorem 3.8 is called an LRF. The following
corollary follows directly from (3.15).

Corollary 3.9. Let c1 ∈ R>0, c2 ∈ R≥c1 , and λ ∈ Z>0. If there exist a function
V : Rn → R+ and a constant ρ ∈ R[0,1) that satisfy the hypothesis of Theorem 3.8

with α1(s) = c1s
λ and α2(s) = c2s

λ, then the DDI (2.1) is GES.
Next, Example 1 is used to show that the converse of Theorems 3.7 and 3.8 is not

true in general.
Proposition 3.10. Consider the linear DDE (3.5) and suppose that b ∈ R(−1,0)

and a = 1. Then, the following statements are true:
(i) The linear DDE (3.5) is GES.
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(ii) The linear DDE (3.5) does not admit a noncausal LRF.
(iii) The linear DDE (3.5) does not admit an LRF.
Proof. It was shown in Example 1 that the DDE (3.5) with a, b ∈ R and such that

|b| < 1 and |a| < 1 − b admits a qLKF. Hence, the DDE (3.5) with b ∈ R(−1,0) and
a = 1 admits a qLKF. Therefore, it follows from Corollary 3.5 that the DDE (3.5)
with b ∈ R(−1,0) and a = 1 is GES. The proofs of claims (ii) and (iii) proceed by
contradiction.

To prove claim (ii), suppose that there exists a noncausal LRF V : R → R+

for the DDE (3.5) with b ∈ R(−1,0) and a = 1. Let x(0) = 1, x(−1) = 0 and let
π : R+ → R+ be any function such that π(s) > s for all s ∈ R>0 and π(0) = 0.
Hence, (3.5) yields that x(1) = 1. As

π(V (x(1))) = π(V (1)) ≥ max
θ∈Z[−1,0]

V (x(θ)) = V (1),

it follows from (3.8b) that

V (x(1)) = V (1) ≤ ρV (x(0)) = ρV (1).

Obviously, as ρ ∈ R[0,1) a contradiction has been reached, and hence V is not a
noncausal LRF for the DDE (3.5). As the functions V and π and the constant ρ
were chosen, with the restriction that π(s) > s for all s ∈ R>0 and that ρ ∈ R[0,1),
arbitrarily, it follows that the second claim has been established.

The same initial conditions as those used in the proof of claim (ii) can be used to
establish, by contradiction, claim (iii).

While it can be verified using the conditions in Theorem 3.7 whether a function is
a noncausal LRF, these conditions cannot be reformulated into an optimization prob-
lem which can be used to obtain a noncausal LRF. The conditions in Theorem 3.8, on
the other hand, can be reformulated as a semidefinite programming problem whose
solution yields an LRF, as will be shown in section 6. Therefore, in what follows, we
will focus on LRFs and disregard noncausal LRFs. The interested reader is referred
to [33] for a detailed discussion on LRFs and noncausal LRFs and their differences.
Therein, it is indicated why LRFs form a less conservative test for stability when com-
pared to noncausal LRFs, which provides another reason for disregarding noncausal
LRFs. In the next section, it will be shown that the existence of an LRF implies
the existence of an LKF and that only under certain additional assumptions is the
converse true.

4. Relations between LKFs and LRFs. For delay differential equations, i.e.,
delay continuous-time systems, it was shown in [25, section 4.8] that LRFs form
a particular case of LKFs, when only Lyapunov stability (see Definition 2.4) rather
than KL-stability is of concern. A similar reasoning as that used in [25] can be applied
to DDIs as well. Suppose that the function V satisfies the hypothesis of Theorem 3.8
with ρ = 1. Then, it can be easily verified that

V̄ (x[−h,0]) = max
θ∈Z[−h,0]

V (x(θ))

satisfies the hypothesis of Theorem 3.4 with ρ̄ = 1. Thus, it follows from (3.2b) that

V̄ (φ[k−h,k](x[−h,0])) ≤ V̄ (x[−h,0]) ∀x[−h,0] ∈ (Rn)h+1, ∀Φ(x[−h,0]) ∈ S(x[−h,0]),

and for all k ∈ Z+. From this observation one can show, using (3.2a), that (2.1) is LS.
However, the same candidate LKF does not satisfy the assumptions of Theorem 3.4



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LYAPUNOV METHODS FOR TIME-INVARIANT DDIs 119

for ρ̄ ∈ R[0,1), i.e., when KL-stability is imposed. Furthermore, in [23] an example was
provided where the above result was generalized to ρ̄ ∈ R[0,1) for quadratic candidate
functions and continuous-time systems. Next, it will be shown how the continuous-
time result of [25] can be extended for DDIs to allow for ρ̄ ∈ R[0,1), via a more complex
candidate LKF.

Theorem 4.1. Suppose that V : Rn → R+ satisfies the hypothesis of Theo-
rem 3.8. Then,

V̄ (x[−h,0]) := max
θ∈Z[−h,0]

ρh+1+θV (x(θ)),(4.1)

where ρi :=
ρ+i
i+1 , i ∈ Z[1,h], and ρh+1 := 1 satisfy the hypothesis of Theorem 3.4.

Proof. First, it is established that

ρ < ρ1 < · · · < ρh < ρh+1 = 1.(4.2)

As ρ < 1 it holds that ρ < 1 = (i + 1)2 − (i + 2)i, which is equivalent to

(i+ 2)(ρ+ i) < (i+ 1)(ρ+ (i + 1)).

Therefore, it follows that ρi < ρi+1 for all i ∈ Z[1,h]. Obviously, ρi <
1+i
i+1 = 1, which

establishes that (4.2) holds. Next, let πi :=
ρi−1

ρi
, i ∈ Z[1,h+1], and let ρ0 := ρ. Then,

as ρi−1 < ρi it follows that πi <
ρi

ρi
= 1. Letting π := maxi∈Z[1,h+1]

πi yields π < 1.

Next, consider any x[−h,0] ∈ (Rn)h+1. Then,

V̄ ({x[−h+1,0], x
+}) = max{ρh+1V (x+), max

θ∈Z[−h+1,0]

ρh+θV (x(θ))}

≤ max{ max
θ∈Z[−h,0]

ρV (x(θ)), max
θ∈Z[−h+1,0]

ρh+θV (x(θ))}

= max{ρV (x(−h)), max
θ∈Z[−h+1,0]

ρh+θV (x(θ))}

= max
θ∈Z[−h,0]

πh+θ+1ρh+θ+1V (x(θ)) ≤ πV̄ (x[−h,0])

for all x+ ∈ F (x[−h,0]). Let ρ̄ := π, ᾱ1(s) := ρ1α1(s), and ᾱ2(s) := α2(s). As
ᾱ1, ᾱ2 ∈ K∞ and ρ̄ < 1, it follows that V̄ satisfies the hypothesis of Theorem 3.4.

Next, it is established under what conditions the existence of an LKF implies the
existence of an LRF.

Proposition 4.2. Suppose that V̄ : R(h+1)n → R+ satisfies the hypothesis of
Theorem 3.4. Moreover, let α3, α4 ∈ K∞ be such that α3(s) ≤ α4(s) and α3(ρs) ≥
ρ̄α4(s) for some ρ ∈ R[0,1) and all s ∈ R>0. If there exists a function V : Rn → R+

satisfying (3.9a) and

0∑
θ=−h

α3(V (x(θ))) ≤ V̄ (x[−h,0]) ≤
0∑

θ=−h

α4(V (x(θ))),(4.3)

then V satisfies the hypothesis of Theorem 3.8.
Proof. Applying (4.3) in (3.2b) yields

α3(V (x+))− ρ̄α4(V (x(−h))) +

0∑
θ=−h+1

α3(V (x(θ))) − ρ̄α4(V (x(θ))) ≤ 0(4.4)
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for all x+ ∈ F (x[−h,0]). Note that α3(s) > ρ̄α4(s) for all s ∈ R+ and hence

0∑
θ=−h+1

α3(V (x(θ))) − ρ̄α4(V (x(θ))) > 0.(4.5)

The inequality (4.5) in combination with V (x(−h)) ≤ maxθ∈Z[−h,0]
V (x(θ)) yields that

(4.4) is a sufficient condition for

α3(V (x+))− ρ̄α4

(
max

θ∈Z[−h,0]

V (x(θ))
)
≤ 0(4.6)

for all x+ ∈ F (x[−h,0]). Then, using that there exists a ρ ∈ R[0,1) such that ρs ≥
α−1
3 (ρ̄α4(s)) yields

V (x+)− ρ max
θ∈Z[−h,0]

V (x(θ)) ≤ 0

for all x+ ∈ F (x[−h,0]). Hence, the hypothesis of Theorem 3.8 is satisfied and the
proof is complete.

The following corollary is a slight modification of Proposition 4.2.
Corollary 4.3. Suppose that the hypothesis of Proposition 4.2 holds with (4.3)

replaced by

max
θ∈Z[−h,0]

α3(V (x(θ))) ≤ V̄ (x[−h,0]) ≤ max
θ∈Z[−h,0]

α4(V (x(θ))).(4.7)

Then V satisfies the hypothesis of Theorem 3.8.
Proof. Using the bounds (4.7) in (3.2b) yields

max
{

max
θ∈Z[−h+1,0]

α3(V (x(θ))), α3(V (x+))
}
− ρ̄ max

θ∈Z[−h,0]

α4(V (x(θ))) ≤ 0(4.8)

for all x+ ∈ F (x[−h,0]). As max{s1, s2} ≥ s2 for any s1, s2 ∈ R+, (4.8) is sufficient for

α3(V (x+))− ρ̄α4

(
max

θ∈Z[−h,0]

V (x(θ))
)
≤ 0

for all x+ ∈ F (x[−h,0]). Hence, (4.6) is recovered, which completes the proof.
The hypotheses and conclusions of Theorem 4.1, Proposition 4.2, and Corol-

lary 4.3 might not seem very intuitive. However, when quadratic or polyhedral candi-
date functions are considered, these results do provide valuable insights. For example,
suppose that V (x) = ‖Px‖∞ is a polyhedral Lyapunov–Razumikhin function (pLRF).
Then, it follows from Theorem 4.1 that

V̄ (x[−h,0]) = max
θ∈Z[−h,0]

ρh+1+θ‖Px(θ)‖∞ =

∥∥∥∥∥
[

ρh+1P 0

. . .
0 ρ1P

]
ξ

∥∥∥∥∥
∞

(4.9)

is a pLKF. Conversely, suppose that the function (4.9) is a pLKF for some ρ̄ ∈ R[0,1)

such that ρ̄ < ρ1. Then, it follows from Corollary 4.3, i.e., by taking α3(s) = ρ1s and
α4(s) = s, that V (x) = ‖Px‖∞ is a pLRF.

In contrast, given a quadratic Lyapunov–Razumikhin function (qLRF), Theo-
rem 4.1 does not yield a qLKF but rather a more complex LKF, i.e., the maximum
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(1) is KL-stable (2) is KL-stable

(1) is GAS (2) is GAS

(1) is GES (2) is GES

A2

A3

A4

A4

A1 A1

A2

(1) admits
a LRF

(1) admits
a LKF

(1) admits
a pLKF

(1) admits
a pLRF

(1) admits
a qLRF

(1) admits
a qLKF

Fig. 4.1. A schematic overview of all relations established in this paper. B → C means that B

implies C, B � C means that B does not necessarily imply C, and B
A−→ C means that B implies

C under the additional assumption A. The employed assumptions are as follows: (A1)—δ(ε) in
Definition 2.4 can be chosen to satisfy limε→∞ δ(ε) = ∞; (A2)—the DDI (2.1) is a linear DDE;
(A3)—the DDI (2.1) is a linear DDI; (A4)—the LKF has certain structural properties.

over a set of quadratic functions. On the other hand, Proposition 4.2 can provide a
qLRF constructed from a qLKF. Indeed, consider the qLKF

V̄ (x[−h,0]) =

0∑
θ=−h

x(θ)�Px(θ) = ξ�
[

P 0

. . .
0 P

]
ξ;

then it follows from Proposition 4.2 that V (x) = x�Px is a qLRF.
Figure 4.1 presents a schematic overview of all results derived in sections 2, 3.1,

3.2, and 4.
Interestingly, the existence of a qLRF implies the existence of a qLKF under

the additional assumption that the system under study is a linear DDE only. The
existence of an LRF and the existence of a pLRF, on the other hand, do imply the
existence of an LKF and a pLKF, respectively, for general DDIs (as opposed to for
linear DDEs only).

In the next section results on contractive sets for DDIs will be established.

5. Contractive sets for DDIs. Contractive sets are at the basis of many con-
trol techniques (see, e.g., [5]), and it is well known that the sublevel sets of an LF
are λ-contractive sets. Next, it is established that the existence of a λ-contractive
set and a λ-D-contractive set is equivalent to the existence of an LKF and an LRF,
respectively. Both results are established via the sublevel sets of an LKF and an LRF,
respectively. Recall that a contractive set is by assumption a convex and compact set
with the origin in its interior; see Definitions 2.3 and 3.2.

Proposition 5.1. Suppose that system (3.1) is homogeneous1 of order 1. The
following two statements are equivalent:

(i) The difference inclusion (3.1) admits a continuous and convex LF that is
positively homogeneous of order t for some t ∈ Z≥1.

(ii) The difference inclusion (3.1) admits a λ-contractive set for some λ ∈ R[0,1).
The proof of Proposition 5.1 can be obtained from the results derived in [4, 5,

37]. Note that the most common LF candidates, such as quadratic and norm-based
functions, are inherently continuous and convex. Moreover, continuity is a desirable

1For example, linear difference inclusions are homogeneous of order 1.
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property, as continuous LFs guarantee that the corresponding type of stability does
not have zero robustness; see, e.g., [31].

Unfortunately, it remains unclear what a contractive set V̄ ⊂ R(h+1)n implies for
the DDI (2.1) and for the trajectories Φ(x[−h,0]) ∈ S(x[−h,0]) in the original state
space R

n, in particular. The above observation indicates an important drawback of
LKFs. While the DDI (2.1) admits an LKF if and only if the system is KL-stable,
an LKF does not provide a contractive set in the original, nonaugmented state space.
An LRF is based on particular Lyapunov conditions that involve the nonaugmented
system, rather than the augmented one. As such, in contrast to an LKF, an LRF,
if it exists, provides a type of contractive set for the nonaugmented system. The
above discussion indicates, apart from a lower complexity, another advantage of the
Lyapunov–Razumikhin method over the Lyapunov–Krasovskii approach.

Proposition 5.2. Suppose that the DDI (2.1) is D-homogeneous2 of order 1.
The following two statements are equivalent:

(i) The DDI (2.1) admits a continuous and convex LRF that is positively homo-
geneous of order t for some t ∈ Z≥1.

(ii) The DDI (2.1) admits a λ-D-contractive set for some λ ∈ R[0,1).
Proof. First, the relation (i)⇒(ii) is proved. Consider a sublevel set of V , i.e.,

V := {x ∈ Rn | V (x) ≤ 1}. As V : Rn → R+ is continuous and convex the set V is [6]
closed and convex, respectively. Moreover, boundedness follows from the K∞ upper
bound on the function V . Furthermore, if maxθ∈Z[−h,0]

V (x(θ)) ≤ 1, then it follows

from (3.9b) that V (x+) ≤ ρ. Hence, as V is positively homogeneous, V (ρ−
1
t x+) ≤ 1,

which yields x+ ∈ ρ
1
t V for all x[−h,0] ∈ Vh+1 and all x+ ∈ F (x[−h,0]). Hence, V is a

λ-D-contractive set with λ := ρ
1
t for the DDI (2.1).

Next, the relation (ii)⇒(i) is proved. Let V denote a λ-D-contractive set for the
DDI (2.1) and consider the Minkowski function (see, e.g., [35]) of V, i.e.,

V (x) := inf{μ ∈ R>0 | x ∈ μV}.(5.1)

Then, it follows from claim 4 and claims 2 and 3 of Lemma 5.12.1 in [35] that
the function V is continuous and convex, respectively. Furthermore, letting a1 :=
maxx∈V ‖x‖ > 0 and a2 := minx∈∂V ‖x‖ > 0 yields

a−1
1 ‖x‖ ≤ V (x) ≤ a−1

2 ‖x‖.

Next, consider any ν ∈ R>0 and let x[−h,0] ∈ (νV)h+1. Then, ν−1x[−h,0] ∈ Vh+1 and
therefore F (ν−1x[−h,0]) ⊆ λV. As the DDI (2.1) is assumed to be D-homogeneous of
order 1, it follows that F (x[−h,0]) = νF (ν−1x[−h,0]) ⊆ λ(νV). Thus, it was shown that
if V is a λ-D-contractive set, then νV is a λ-D-contractive set as well. As the set νV is
λ-D-contractive for all ν ∈ R>0, it follows that if x

+ ∈ ∂(μV), for some μ ∈ R>0 and
some x+ ∈ F (x[−h,0]), then there exists a θ ∈ Z[−h,0] such that x(θ) ∈ ∂(μ(λ−1V)).
The above implies that

V (x+) = inf{μ ∈ R>0 | x+ ∈ μV}
≤ max

θ∈Z[−h,0]

inf{μ ∈ R>0 | x(θ) ∈ μ(λ−1
V)} = max

θ∈Z[−h,0]

λV (x(θ))

for all x[−h,0] ∈ (Rn)h+1 and all x+ ∈ F (x[−h,0]). Therefore, the candidate function

(5.1) satisfies the hypothesis of Theorem 3.8 with α1(s) := a−1
1 s ∈ K∞, α2(s) :=

2For example, linear DDIs are D-homogeneous of order 1.
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a−1
2 s ∈ K∞, and ρ := λ ∈ R[0,1). As (5.1) satisfies V (sx) = sV (x) for all s ∈ R+, the

proof is complete.
Note that the assumptions under which the statements of Propositions 5.1 and 5.2

were proved, i.e., regarding the properties of the contractive sets and the homogeneity
of the systems, are standard assumptions for the type of results derived in this section;
see, e.g., [4, 5, 37]. Furthermore, Proposition 5.2 recovers Proposition 5.1 and similar
results in [4, 5, 37] as a particular case, i.e., for h = 0.

Suppose that the DDI (2.1) and system (3.1) are D-homogeneous and homoge-
neous of order 1, respectively. Moreover, suppose that the DDI (2.1) admits a set
V ⊂ Rn which is λ-D-contractive. Then, it follows from Proposition 5.2 that the
DDI (2.1) admits an LRF. Moreover, it follows from Theorem 4.1 that the DDI (2.1)
admits an LKF which in turn, via Proposition 5.1, guarantees the existence of a
λ-contractive set for the augmented state system (3.1).

Suppose again that the DDI (2.1) is D-homogeneous of order 1 and it admits an
LKF that satisfies the hypothesis of Proposition 4.2 or Corollary 4.3. Then, from
Proposition 4.2 or Corollary 4.3 it follows that there exists an LRF and hence a
V ⊂ Rn which is λ-D-contractive.

In the next section we proceed to the illustration of the applicability of the devel-
oped Lyapunov methods to stability analysis and stabilizing controller synthesis for
linear polytopic DDIs.

6. Synthesis of quadratic Lyapunov functions. The synthesis problem for
a quadratic LF can be solved efficiently via semidefinite programming. Therefore, in
what follows we restrict ourselves to this class of candidate functions. However, the
results derived in the preceding sections are not restricted to a particular type of LF
candidate. In fact, since the augmented state system (3.1) is a standard difference
inclusion, synthesis techniques for LF candidates such as polyhedral LFs [5, 30], com-
posite LFs [18], and polynomial LFs [39] can be applied directly to obtain an LKF of
a corresponding type. In what follows we consider the linear DDI

x(k + 1) ∈
{

0∑
i=−h

(Aix(k + i) + Biu(k + i))

∣∣∣∣(Ai, Bi) ∈ Mi, i ∈ Z[−h,0]

}
,(6.1)

with k ∈ Z+ and where Mi := co({(Âi,li , B̂i,li)}li∈Z[0,Li]
) ⊂ Rn×n ×Rn×m, Li ∈ Z≥1,

and i ∈ Z[−h,0].
Remark 2. Linear DDIs, such as (6.1), can be found within many fields. Apart

from the obvious class of uncertain linear systems, networked control systems can be
modeled [14, 45] by linear DDIs as well.

Next, several hypotheses which include a linear matrix inequality that yields, if
feasible, an LKF for system (6.1) will be presented. First, stability analysis of system
(6.1) with zero input, i.e., u(k) = 0 for all k ∈ Z≥−h, is discussed. Therefore, let

Āl0,...,l−h
:=

[
Â0,l0 . . . Â−h+1,l−h+1

Â−h,l−h

Ihn 0hn×n

]

and let ρ̄ ∈ R[0,1). Recall that In ∈ Rn×n and 0n×m ∈ Rn×m denote the nth di-
mensional identity matrix and a rectangular matrix with all elements equal to zero,
respectively.
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Proposition 6.1. If there exists a symmetric matrix P̄ ∈ R(h+1)n×(h+1)n such
that [

ρ̄P̄ ∗
P̄ Āl0,...,l−h

P̄

]
� 0 ∀li ∈ Z[0,Li], ∀i ∈ Z[−h,0],(6.2)

then system (6.1) with zero input is GES.
Proof. Letting ξ(k) = col({x(l)}l∈Z[k−h,k]

) yields

ξ(k + 1) ∈ {
Āξ(k) | Ā ∈ M̄}

, k ∈ Z+,(6.3)

where M̄ := co(
{
Āl0,...,l−h

}
(l0,...,l−h)∈Z[0,L0]

×···×Z[0,L−h]
). Applying the Schur comple-

ment to (6.2) yields P̄ � 0 and

Ā�
l0,...,l−h

P̄ Āl0,...,l−h
− ρ̄P̄ ≺ 0 ∀li ∈ Z[0,Li], ∀i ∈ Z[−h,0].

As all Ā ∈ M̄ are a convex combination of Āl0,...,l−h
, li ∈ Z[0,Li], i ∈ Z[−h,0], it

follows that the candidate LKF V̄ (x[−h,0]) = V̄ (ξ) = ξ�P̄ ξ satisfies (3.2b) for system
(6.3). Moreover, this candidate LKF also satisfies (3.2a) with α1(s) := λmin(P̄ )s2 and
α2(s) := λmax(P̄ )s2. From Corollary 3.5 it then follows that system (6.1) with zero
input, i.e., u(k) = 0, k ∈ Z≥−h, is GES.

When stabilizing controller synthesis is of concern, different augmentations of
the state vector lead to different controller synthesis problems. First, let ρ̄ ∈ R[0,1),

ξ(k) = col({x(l)}l∈Z[k−h,k]
) and let Ãi,li := Âi,liG+ B̂i,liY .

Proposition 6.2. Suppose there exist a symmetric matrix P̄ ∈ R(h+1)n×(h+1)n,
a matrix G ∈ Rn×n, and a matrix Y ∈ Rm×n such that⎡
⎢⎢⎢⎢⎢⎢⎣

ρ̄P̄ ∗⎡
⎢⎢⎢⎣
Ã0,l0 . . . Ã−h+1,l−h+1

Ã−h,l−h

G 0 0
. . .

...
0 G 0

⎤
⎥⎥⎥⎦
� ⎡

⎢⎣
G 0

. . .

0 G

⎤
⎥⎦+

⎡
⎢⎣
G 0

. . .

0 G

⎤
⎥⎦
�

−P̄

⎤
⎥⎥⎥⎥⎥⎥⎦
� 0

for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. Then, system (6.1) in closed loop with the
controller u(k) = Kx(k), k ∈ Z+, where K = Y G−1, is GES.

Proof. Substituting Y = KG, transposing, and using Theorem 1 in [10] or Theo-
rem 3 in [9] yields P̄ � 0 and

⎡
⎢⎢⎢⎢⎣

(Â0,l0 + B̂0,l0K)�
... Ihn
...

(Â−h,l−h
+ B̂−h,l−h

K)� 0n×hn

⎤
⎥⎥⎥⎥⎦ P̄

⎡
⎢⎢⎢⎢⎣

(Â0,l0 + B̂0,l0K)�
... Ihn
...

(Â−h,l−h
+ B̂−h,l−h

K)� 0n×hn

⎤
⎥⎥⎥⎥⎦

�

− ρ̄P̄ ≺ 0

for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. The remainder of the proof can then be obtained
from the proof of Proposition 6.1.

Augmenting the state vector with the delayed states and the delayed inputs, i.e.,
ξ(k) = col({u(l)}l∈Z[k−h,k−1]

, {x(l)}l∈Z[k−h,k]
), yields

ξ(k + 1) ∈
{
Āξ(k) + B̄u(k) | (Ā, B̄) ∈ M̃

}
, k ∈ Z+,(6.4)
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where M̃ := co({(Ãl0,...,l−h
, B̃l0)}(l0,...,l−h)∈Z[0,L0]

×···×Z[0,L−h]
) and

Ãl0,...,l−h
:=

⎡
⎢⎢⎣
Â0,l0 . . . Â−h,l−h

B̂−1,l−1 . . . B̂−h,l−h

Ihn 0hn×n 0hn×hm

0hm×(h+1)n
0m×m 0(h−1)m×m

I(h−1)m 0(h−1)m×m

⎤
⎥⎥⎦ , B̃l0 :=

⎡
⎢⎢⎣

B̂0,l0

0hn×m

Im
0(h−1)m×m

⎤
⎥⎥⎦ .

Proposition 6.3. Let ρ̄ ∈ R[0,1). Suppose there exist a matrix Y ∈ Rm×((h+1)n+hm)

and a symmetric matrix Z ∈ R
((h+1)n+hm)×((h+1)n+hm) such that[

ρ̄Z ∗
Ãl0,...,l−h

Z + B̃l0Y Z

]
� 0

for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. Then, system (6.4) in closed loop with the
controller u(k) = Kξ(k), k ∈ Z+, where K = Y Z−1, is GES.

Proof. Substituting Y = KZ, applying a congruence transformation with a matrix
that has Z−1 on its diagonal and zero elsewhere, and applying the Schur complement
yields Z−1 � 0 and

(Ãl0,...,l−h
+ B̃l0K)�Z−1(Ãl0,...,l−h

+ B̃l0K)− ρ̄Z−1 ≺ 0

for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. Let V̄ (ξ) = ξ�Z−1ξ. Pre- and postmultiplying

the above inequality with ξ� and ξ, respectively, yields that V̄ (ξ+) − ρ̄V̄ (ξ) ≤ 0 for
all ξ+ ∈ {(Ā + B̄K)ξ | (Ā, B̄) ∈ M̃}. Standard Lyapunov arguments can then be
used to show that system (6.4) is GES.

As ξ(k) is also a function of u(k), Lemma 3.3 cannot be used and hence it is
established only that the augmented state system (6.4) is GES. To establish stability
of the DDI (6.1) requires a modified version of Lemma 3.3 which is omitted here for
brevity.

Next, a controller synthesis algorithm based on the existence of an LRF will be
presented. Note that therein both the stability analysis and the controller synthesis
problem are equivalent, as opposed to the LKF setup presented above. Let ρ ∈ R[0,1).

Proposition 6.4. Suppose there exist δi ∈ R+, i ∈ Z[−h,0], a symmetric matrix

Z ∈ Rn×n, and a matrix Y ∈ Rn×m such that
∑0

i=−h δi ≤ 1 and⎡
⎢⎢⎢⎣

ρδ0Z 0 ∗
. . .

0 ρδ−hZ ∗
Â0,l0Z + B̂0,l0Y . . . Â−h,l−h

Z + B̂−h,l−h
Y Z

⎤
⎥⎥⎥⎦ � 0(6.5)

for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. Then system (6.1) in closed loop with controller
u(k) = Kx(k), k ∈ Z+, where K = Y Z−1, is GES.

Proof. Applying a congruence transformation with a matrix that has Z−1 on its
diagonal and zero elsewhere, substituting Z−1 = P , Y Z−1 = K, and applying the
Schur complement to (6.5) yields P � 0 and

⎡
⎢⎣
ρδ0P 0

. . .

0 ρδ−hP

⎤
⎥⎦−

⎡
⎢⎢⎢⎢⎣

(
Â0,l0 + B̂0,l0K

)�

...(
Â−h,l−h

+ B̂−h,l−h
K
)�

⎤
⎥⎥⎥⎥⎦P

⎡
⎢⎢⎢⎢⎣

(
Â0,l0 + B̂0,l0K

)�

...(
Â−h,l−h

+ B̂−h,l−h
K
)�

⎤
⎥⎥⎥⎥⎦

�

�0
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for all li ∈ Z[0,Li] and all i ∈ Z[−h,0]. Next, consider the candidate LRF V (x) :=

x�Px. As for all i ∈ Z[−h,0] all (Ai, Bi) ∈ Mi are a convex combination of (Âi,li , B̂i,li),
li ∈ Z[0,Li], it follows that system (6.1) satisfies

V (x+)− ρ

0∑
i=−h

δiV (x(i)) ≤ 0(6.6)

for all (Ai, Bi) ∈ Mi and all i ∈ Z[−h,0]. As

0∑
i=−h

δiV (x(i)) ≤ max
θ∈Z[−h,0]

V (x(θ)),

it is obtained that the candidate LRF V (x) = x�Px satisfies (3.9b) for system (6.1).
Moreover, the above candidate LRF also satisfies (3.9a) with α1(s) := λmin(P )s2

and α2(s) := λmax(P )s2. Thus, it follows from Corollary 3.9 that system (6.1) is
GES.

The matrix inequality (6.5) is bilinear in the scalars δi and the matrix Z. The
set Rh+1

[0,1], where the sequence of scalar variables {δi}i∈Z[−h,0]
is allowed to take values,

can be discretized using a gridding technique. Then, solving (6.5) for each point in
the resulting grid amounts to solving a linear matrix inequality. Thus, a feasible
solution to (6.5) can be obtained by solving a sequence of linear matrix inequalities.

Observe that if Z, Y , and {δi}i∈Z[−h,0]
satisfy (6.5) with

∑0
i=−h δi < 1, then there

exist {δ̂i}i∈Z[−h,0]
such that

∑0
i=−h δ̂i = 1 and such that Z, Y , and {δ̂i}i∈Z[−h,0]

also satisfy (6.5). Therefore, it suffices to consider only those points in the grid

such that
∑0

i=−h δi = 1. Alternatively, also after defining a grid for the scalars δi,
i ∈ Z[0,h], branch and bound optimization algorithms [29] can be used to obtain a
computationally more efficient solution to the matrix inequality (6.5).

6.1. Illustrative example. Next, the various synthesis techniques presented in
this section are applied to control a DC motor over a communication network. This
is a benchmark example for networked control systems, taken from [42]. We examine
a network which introduces uncertain time-varying input delays, which yields[

i̇a(t)
ω̇(t)

]
=

[−27.47 −0.09
345.07 −1.11

] [
ia(t)
ω(t)

]
+

[
5.88
0

]
ea(t),

ea(t) = u(k) ∀t ∈ [tk + τ(k), tk+1 + τ(k + 1)),

(6.7)

where ia is the armature current, ω is the angular velocity of the motor, and the input
signal is the armature voltage ea. Furthermore, tk = kTs, k ∈ Z+, is the sample time,
Ts ∈ R+ denotes the sampling period, and u(k) ∈ Rm is the control action generated
at time t = tk. τ(k) ∈ R[0,τ̄ ] denotes the input delay at time k ∈ Z+ and τ̄ ∈ R[0,Ts]

is the maximal delay induced by the network. It is assumed that τ̄ ≤ Ts; i.e., the
delay is always smaller than or equal to the sampling period. Furthermore, it is
assumed that u(t) = uinitial for all t ∈ R[0,τ(0)), where uinitial ∈ Rm is a predetermined
constant vector. Note that, as all controllers in this section are time invariant, both
delays on the measurement link and delays on the link from the controller to the plant
can be lumped [45] into a single delay on the latter link and hence output delays are
implicitly taken into account. For a sampling time Ts = 0.01s the matricesAd ∈ Rn×n,
Bd ∈ Rn×m, which define the corresponding discrete-time model of the system, were
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obtained, and their numerical values can be found in Appendix B. Moreover, the
time-varying delay can be overapproximated by a polytope [14] which yields

x(k + 1) ∈ {Adx(k) +B0u(k) +B−1u(k − 1) | B0 ∈ Bd −Δ, B−1 ∈ Δ} ,(6.8)

with k ∈ Z+, where Δ := co({Δ̂l}l∈Z[0,L]
). The matrices Δ̂l were obtained using the

Cayley–Hamilton technique presented in [14], and numerical results for various values
of τ̄ can be found in Appendix B.

Using Proposition 6.1, it can be established3 that system (6.8) is open-loop stable
and an LKF can be obtained for ρ̄ ≥ 0.956. For ρ̄ < 0.956, no LKF could be obtained
using Proposition 6.1. Therefore, ρ = 0.8 is chosen to impose a faster convergence via
controller synthesis. First, taking τ(k) ∈ R[0,0.48Ts] and using Proposition 6.2 yields
the qLKF matrix and corresponding controller matrix

PLKF =

⎡
⎢⎢⎣
25.1650 3.3515 17.2159 1.8791
3.3515 0.5249 2.3463 0.3022
17.2159 2.3463 51.7357 6.9770
1.8791 0.3022 6.9770 1.1497

⎤
⎥⎥⎦ ,

KLKF =
[−14.9462 −1.7247

]
.

However, for τ̄ > 0.48Ts Proposition 6.2 no longer provides a feasible solution. Second,
taking τ(k) ∈ R[0,0.424Ts], Proposition 6.4 yields the LRF matrix and corresponding
controller matrix

PLRF =

[
7.0084 0.5100
0.5100 0.0380

]
,

KLRF =
[−10.9567 −0.8047

]
,

along with δ = 0.75. However, for τ̄ > 0.424Ts Proposition 6.4 no longer provides a
feasible solution. Thirdly, using Proposition 6.3 for τ(k) ∈ R[0,Ts] we find the LKF
matrix and corresponding controller matrix

PLKF,[x;u] =

⎡
⎣78.6145 8.4224 5.9068
8.4224 1.5622 0.7916
5.9068 0.7916 1.0523

⎤
⎦ ,

KLKF,[x;u] =
[−5.7555 −0.6024 −0.0886

]
.

Hence, for the Lyapunov–Krasovskii approach, it can be concluded that the stabiliz-
ing controller synthesis conditions presented in Proposition 6.2 are more conservative
than those presented in Proposition 6.3. For the Lyapunov–Razumikhin method,
it is worth pointing out that for δ = 0.5 and τ̄ > 0.35Ts no stabilizing controller
is obtained via Proposition 6.4. This indicates the additional freedom provided by
the introduction of δ as a free variable. Furthermore, it can also be observed from
the example that the Lyapunov–Krasovskii approach can be used to find a stabi-
lizing controller, i.e., via Proposition 6.2, for a larger range of time-varying delays
when compared to the Lyapunov–Razumikhin approach, i.e., via Proposition 6.4.
This observation confirms the results that were derived in this paper. Obviously,
this does not discard the Lyapunov–Razumikhin method as a valuable technique,
as the Lyapunov–Razumikhin method has a smaller computational complexity when
compared to Lyapunov–Krasovskii approach and provides a contractive set that is
particular to time-delay systems.

3Numerical results were obtained using the Multi-Parametric Toolbox v.2.6.2 and SeDuMi v.1.1.
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7. Conclusions. A comprehensive collection of Lyapunov techniques that can
be used for stability analysis of DDIs was presented. Both the Lyapunov–Krasovskii
approach and the Lyapunov–Razumikhin method were discussed. It was shown that
a DDI is KL-stable if and only if it admits an LKF. Moreover, it was shown that
the existence of an LRF is a sufficient condition but not a necessary condition for
KL-stability. Furthermore, it was shown that the existence of an LRF is a sufficient
condition for the existence of an LKF and that only under certain additional assump-
tions is the converse true. Then, it was shown that an LRF induces a family of sets
with certain contraction properties that are particular to time-delay systems, while
the LKF was shown to induce a type of contractive set similar to those induced by
a classical LF. For linear DDIs, the class of quadratic Lyapunov functions was used
to illustrate the application of the results derived in this paper in terms of stability
analysis and controller synthesis for both LKFs and LRFs, respectively.

While time-invariant DDIs were considered in this paper, uncertain time-varying
delays can be incorporated, without any conservatism, similarly as in, e.g., [17]. A
further extension of the results in this paper to time-varying systems can be attained,
under some additional assumptions, using the techniques explained in, e.g., [41].

Appendix A. Proof of Lemma 3.3. First, some preliminary results are de-
rived. Let x[−h,0] ∈ (Rn)h+1 and let ξ := col({x(l)}l∈Z[−h,0]

). On a finite dimensional
vector space Rn all norms are equivalent [28]; i.e., for any two norms ‖ ·‖p1 and ‖ ·‖p2 ,
there exist constants c, c ∈ R>0 such that c‖x‖p1 ≤ ‖x‖p2 ≤ c‖x‖p1 for all x ∈ R

n.
Hence, for any norm ‖ · ‖p1 there exist constants c1, c2 ∈ R>0 such that

‖x[−h,0]‖p1 =

∥∥∥∥∥∥
⎡
⎣ ‖x(0)‖p1

...
‖x(−h)‖p1

⎤
⎦
∥∥∥∥∥∥
∞

≥
∥∥∥∥∥c1

[ ‖x(0)‖∞
...

‖x(−h)‖∞

]∥∥∥∥∥
∞

= c1‖ξ‖∞ ≥ c1c2‖ξ‖p1 .(A.1)

Similarly, there exist constants c3, c4 ∈ R>0 such that

‖x[−h,0]‖p1 =

∥∥∥∥∥∥
⎡
⎣ ‖x(0)‖p1

...
‖x(−h)‖p1

⎤
⎦
∥∥∥∥∥∥
∞

≤
∥∥∥∥∥c3

[ ‖x(0)‖∞
...

‖x(−h)‖∞

]∥∥∥∥∥
∞

= c3‖ξ‖∞ ≤ c3c4‖ξ‖p1 .(A.2)

Furthermore, the definition of the p-norm yields

‖ξ‖pp =

(h+1)n∑
i=1

|[ξ]i|p =

0∑
i=−h

n∑
j=1

|[x(i)]j |p ≥
n∑

j=1

|[x(0)]j |p = ‖x(0)‖pp.(A.3)

From (A.3) and the fact that f : R+ → R+ with f(s) := s
1
p and p ∈ Z>0 is strictly

increasing, it follows that ‖x(0)‖p ≤ ‖ξ‖p for all p ∈ Z>0. It is straightforward to see
from the definition of the infinity norm that ‖x(0)‖∞ ≤ ‖ξ‖∞ holds as well. In what
follows, let Φ̄(ξ) ∈ S̄(ξ) correspond to Φ(x[−h,0]) ∈ S(x[−h,0]).

Proof of claim (i). Suppose that the DDI (2.1) is GAS. As the DDI (2.1) is
globally attractive, it follows from (A.1) that there exists a c5 ∈ R>0 such that

lim
k→∞

‖φ̄(k, ξ)‖ ≤ lim
k→∞

c5‖φ[k−h,k](x[−h,0])‖ = 0

for all ξ ∈ R(h+1)n and all Φ̄(ξ) ∈ S̄(ξ). Thus, we obtain that the origin of (3.1) is
globally attractive. Furthermore, as the DDI (2.1) is LS, it follows from (A.1) that
for all ε ∈ R>0 there exist δ, c5 ∈ R>0, with δ ≤ ε, such that if ‖x[−h,0]‖ ≤ δ, then

‖φ̄(k, ξ)‖ ≤ c5‖φ[k−h,k](x[−h,0])‖ ≤ c5ε
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for all Φ(x[−h,0]) ∈ S(x[−h,0]) and all k ∈ Z+. Moreover, it follows from (A.2) that
there exists a c6 ∈ R>0 such that ‖x[−h,0]‖ ≤ c6‖ξ‖. Therefore, we conclude that for

every ε̄ := c5ε ∈ R>0 there exists a δ̄ := 1
c6
δ ∈ R>0 such that if ‖ξ‖ ≤ δ̄, and hence

‖x[−h,0]‖ ≤ δ, then

‖φ̄(k, ξ)‖ ≤ c5‖φ[k−h,k](x[−h,0])‖ ≤ c5ε = ε̄

for all Φ̄(ξ) ∈ S̄(ξ) and all k ∈ Z+. Thus, it was shown that (3.1) is LS and hence
that (3.1) is GAS.

Next, suppose that system (3.1) is GAS. As the difference inclusion (3.1) is glob-
ally attractive, it follows from (A.3) that

lim
k→∞

‖φ(k,x[−h,0])‖ ≤ lim
k→∞

‖φ̄(k, ξ)‖ = 0

for all x[−h,0] ∈ (Rn)h+1 and all Φ(x[−h,0]) ∈ S(x[−h,0]). Thus, we obtain that the
origin of (2.1) is globally attractive. Furthermore, using (A.3) and as (3.1) is LS, it
follows that for all ε̄ ∈ R>0 there exists a δ̄ ∈ R>0 such that if ‖ξ‖ ≤ δ̄, then

‖φ(k,x[−h,0])‖ ≤ ‖φ̄(k, ξ)‖ ≤ ε̄

for all Φ̄(ξ) ∈ S̄(ξ) and all k ∈ Z+. Moreover, it follows from (A.1) that there
exists a c7 ∈ R>0 such that ‖ξ‖ ≤ c7‖x[−h,0]‖. Therefore, we conclude that for every

ε := ε̄ ∈ R>0 there exists a δ := 1
c7
δ̄ ∈ R>0 such that if ‖x[−h,0]‖ ≤ δ, and hence

‖ξ‖ ≤ δ̄, then

‖φ(k,x[−h,0])‖ ≤ ‖φ̄(k, ξ)‖ ≤ ε̄ = ε

for all Φ(x[−h,0]) ∈ S(x[−h,0]) and all k ∈ Z+. Thus, it was shown that (2.1) is LS
and hence that (2.1) is GAS, which proves claim (i).

Proof of claim (ii). Suppose that the DDI (2.1) is KL-stable. Then, it follows
from Lemma 2.6 that the DDI (2.1) is GAS and that for δ(ε), limε→∞ δ(ε) = ∞ is an
admissible choice. Hence, as δ̄ = 1

c6
δ and ε̄ := c5ε with c5, c6 ∈ R>0, it follows that

limε̄→∞ δ̄(ε̄) = ∞ is an admissible choice as well. Thus, using Lemma 2.6 again, it
follows that system (3.1) is KL-stable.

Conversely, suppose that system (3.1) is KL-stable. Then, Lemma 2.6 yields that
system (3.1) is GAS and that limε̄→∞ δ̄(ε̄) = ∞ is an admissible choice. Hence, as
δ = 1

c7
δ̄ with c7 ∈ R>0 it follows that limε→∞ δ(ε) = ∞ is an admissible choice as

well. Thus, using Lemma 2.6 again, it follows that the DDI (2.1) is KL-stable.
Proof of claim (iii). Suppose that (2.1) is GES. Then

‖φ(k,x[−h,0])‖ ≤ c‖x[−h,0]‖μk ∀x[−h,0] ∈ (Rn)h+1, ∀Φ(x[−h,0]) ∈ S(x[−h,0]),

for all k ∈ Z+, and for some c ∈ R≥1 and μ ∈ R[0,1). It then follows from (A.1) and
(A.2) that there exist c1, c2 ∈ R>0 such that

‖φ̄(k, ξ)‖ ≤ c1‖φ[k,k−h](x[−h,0])‖ ≤ c1c2c‖ξ‖μk−h ∀ξ ∈ R
(h+1)n,

for all Φ̄(ξ) ∈ S̄(ξ), and for all k ∈ Z+. As c̄ := cc1c2μ
−h ∈ R≥1 and μ̄ := μ ∈ R[0,1),

it follows that (3.1) is GES.
Conversely, suppose that (3.1) is GES. Then

‖φ̄(k, ξ)‖ ≤ c̄‖ξ‖μ̄k ∀ξ ∈ R
(h+1)n, ∀Φ̄(ξ) ∈ S̄(ξ), ∀k ∈ Z+,
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and for some c̄ ∈ R≥1 and μ̄ ∈ R[0,1). It then follows from (A.3) and (A.1) that there
exists a c3 ∈ R>0 such that

‖φ(k,x[−h,0])‖ ≤ ‖φ̄(k, ξ)‖ ≤ c3c‖x[−h,0]‖μ̄k ∀x[−h,0] ∈ (Rn)h+1,

for all Φ(x[−h,0]) ∈ S(x[−h,0]), and for all k ∈ Z+. As c := c3c̄ ∈ R≥1 and μ := μ̄ ∈
R[0,1), it follows that (2.1) is GES, which completes the proof.

Appendix B. Numerical values of Δ. The matrices Ad and Bd can be
computed via MATLAB, which yields

Ad = eAcTs =

[
0.7586 −0.0008
2.9984 0.9876

]
, Bd =

∫ Ts

0

eAc(Ts−θ)dθBc =

[
0.0514
0.0924

]
.

For τ̄ = 0.48Ts the Cayley–Hamilton method presented in [14] yields

Δ̂1 =

[
0.0229
0.0663

]
, Δ̂2 =

[−0.0053
0.0663

]
, Δ̂3 =

[
0.0282

0

]
, Δ̂4 =

[
0
0

]
.

Note that these are the generators of the polytope denoted by equation (9) in [14].
Letting τ̄ = 0.424Ts yields

Δ̂1 =

[
0.0201
0.0605

]
, Δ̂2 =

[−0.0048
0.0605

]
, Δ̂3 =

[
0.0249

0

]
, Δ̂4 =

[
0
0

]
,

and letting τ̄ = Ts yields

Δ̂1 =

[
0.0514
0.0924

]
, Δ̂2 =

[−0.0074
0.0924

]
, Δ̂3 =

[
0.0588

0

]
, Δ̂4 =

[
0
0

]
.
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