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We consider simulations of a two-dimensional gas of hard disks in a rectangu-

lar container and study the Lyapunov spectrum near the vanishing Lyapunov

exponents. To this spectrum are associated “eigen-directions”, called Lyapunov

modes. We carefully analyze these modes and show how they are naturally

associated with vector fields over the container. We also show that the Lyapu-

nov exponents, and the coupled dynamics of the modes (where it exists) follow

linear laws, whose coefficients only depend on the density of the gas, but not

on aspect ratio and very little on the boundary conditions.

KEY WORDS: Nonlinear dynamics; Hamiltonian dynamics; extended systems;

Lyapunov spectrum.

1. INTRODUCTION

In this paper, we study the Lyapunov spectra of two-dimensional hard-disk

systems and, in particular, the associated “Lyapunov modes”.(1,2) Recently,

this topic has received considerable attention,(3–8) and a lot of progress

has been made in the understanding of the issues involved. In the present

work, we synthesize and expand the results found earlier. In particular, we

completely classify these modes and give a simple interpretation of their

dynamics, in particular for systems with arbitrary aspect ratio. We further-

more present new simulations in support of this classification.

The Lyapunov exponents describe the rates of exponential growth,

or decay, of infinitesimal phase-space perturbations, and are taken to be
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ordered according to λ(1) > λ(2) > · · · > λ(ℓ).4 Because of the Hamiltonian

nature of the problem, they come in conjugate pairs,

λ(j) =−λ(ℓ−j+1) .

As is well-known, 0 is always a Lyapunov exponent for such systems

and therefore, as a consequence, ℓ is odd. At any point ξ in phase space,

the tangent space T X(ξ) decomposes into a sum

T X(ξ)=E(1)(ξ)⊕· · ·⊕E(ℓ)(ξ) ,

where E(j)(ξ) is the (linear) space of those perturbations of the initial con-

dition ξ whose growth rate is λ(j) for the forward dynamics, and −λ(j)

for the time reversed dynamics. This decomposition is called the Oseledec

splitting.

We say that the Lyapunov exponent λ(j) is d-fold degenerate if

dim E(j)(ξ)=d. It should be noted that, when the Lyapunov exponents are

d-fold degenerate, only the subspace corresponding to all d of them is well

defined5. The main idea of our full classification of Lyapunov exponents

and their modes is based on this simple observation.

The Lyapunov modes are defined as follows: at time t = 0, we

take n orthogonal tangent vectors at ξ and, by applying to them the

tangent-space dynamics6 for a long-enough time t , map them onto n vec-

tors which, generally, are not orthogonal but still span an n-dimensional

subspace Sn(t). If, instead of n, we consider only n−1 vectors, they simi-

larly span an n−1 dimensional subspace Sn−1(t), such that Sn−1(t)⊂Sn(t).

The Lyapunov mode is a unit vector in Sn(t) which is orthogonal to the

space Sn−1(t). We will give a precise definition in the next section, explain

the algorithmic aspects in Section 3.1 and relate the modes to Oseledec’s

subspaces in Section 3.2

The study of Lyapunov modes(2,8) has revealed interesting spatial

structures which we will define later but which come in two types: local-

ized structures associated with the large positive and negative Lyapunov

exponents, and smooth delocalized structures of wave-like type for expo-

nents close to zero.(1,8) The exponents associated with the latter are degen-

erate and give rise to a step-like appearance of the Lyapunov spectrum as

is shown, for example, in Fig. 1.

4ℓ is at most the dimension of the phase space. Note that λ(j) stands for different Lyapunov

exponents, while we will use λi when we consider them with multiplicity.
5In this, and many other aspects, the theory of Lyapunov exponents is very similar to that of

matrices.
6See Section 2 for details.
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Fig. 1. Lyapunov spectrum for N = 780 hard disks at a density ρ ≡ N/(LxLy) = 0.8 in a

rectangular periodic box with an aspect ratio Ly/Lx =0.867. The insert provides a magnified

view of the mode regime. l is the Lyapunov index numbering the exponents.

The discovery of these structures has led to several studies(3–7) which

go some way in explaining their origin and their dynamics. In this paper,

we show how they are related to the symmetries of the container in which

the particles move (including the boundary conditions). At the same time

we obtain a classification of the degeneracies of the Lyapunov exponents

near zero. This classification allows to view the so-called “mode dynamics”

from a new geometrical perspective.

The paper starts with a summary of results, passes through a pre-

cise definition of the Lyapunov modes, and then describes them as vector

fields. In Section 4 these vector fields are classified, and their dynamics is

studied in Section 5. The last sections deal with the density dependence

and with possible hydrodynamic aspects.

2. NOTATION AND SUMMARY OF RESULTS

We consider a system of N hard disks of diameter σ and mass m

moving in a two-dimensional rectangular container with sides of lengths

Lx and Ly . At this point, we do not need to specify the boundary condi-

tions.7 The phase space of such a system is

X =R2N × ([0,Lx ]× [0,Ly ])N ,

7We will consider reflecting and periodic boundary conditions.
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and a phase point ξ in X is

ξ = (p, q)= (p1, . . . , pN , q1, . . . , qN ).

When necessary, we will write qi = (qi,x, qi,y) to distinguish the two

position components of particle i, and similarly for the momenta. The

dynamics of the system is that of free flight, interrupted by elastic binary

collisions. If ξ0 is the state of the system at time 0, then ξt =�t (ξ0) is the

state at time t , where �t :X →X defines the flow.

Apart from issues of differentiability, which will be addressed when

we describe the numerical implementation in Section 3, we call D�t the

tangent flow. Informally speaking, it is a 4N ×4N matrix of partial deriv-

atives and can be thought of as the first-order term (in ε) in an expansion

of the perturbed flow,

�t (ξ0 + εδξ)=�t (ξ0)+ ε D�t
∣

∣

ξ0
· δξ +O(ε2).

The vector δξ lies in the tangent space T X (at ξ0) to the manifold X; in

our case T X(ξ0)=R4N . We next invoke the multiplicative ergodic theorem

of Oseledec(9,10). To do so, we need ergodicity of the Liouville measure.

Without further knowledge, we assume this for our case.

Theorem. There exist an integer ℓ and numbers λ(j), j = 1, . . . , ℓ

such that for almost every ξ ∈ X (with respect to the Liouville measure)

the tangent space splits into

T X(ξ)=E(1)(ξ)⊕E(2)(ξ)⊕· · ·⊕E(ℓ)(ξ),

with the property:

lim
t→±∞

1

|t |
log ‖ D�t

∣

∣

ξ
δξ‖=±λ(j)

for δξ ∈ E(j)(ξ). The spaces E(j)(ξ) are covariant: D�t
∣

∣

ξ
E(j)(ξ) =

E(j)(�t (ξ)).

The dimension d(j) of E(j)(ξ) is called multiplicity of the exponent λ(j).

In general the E(j) are not orthogonal to each other.

We also use the notation

λ1 �λ2 � · · ·�λi � · · ·�λ4N
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to denote the Lyapunov exponents repeated with multiplicities, where the

index is referred to as the Lyapunov index. This notation is more adequate

for describing numerical methods of measurement, in which tangent-space

dynamics is probed by a set of vectors. With these notations the relation

between the λ(j) and the λi is given by

λ(j) =λf (j−1)+1 =· · ·=λf (j) ,

where f (j) = d(1) + · · · + d(j). Choosing j ∈ {1, . . . , ℓ} and letting F (j) =

E(1) ⊕· · ·⊕E(j), we define the d(j) Lyapunov modes associated with λ(j)

as any orthogonal spanning set of the space

M(j) ≡ (F (j−1))⊥ ∩F (j). (1)

A finer decomposition of this spanning set will be obtained when we

describe the algorithm used, see Section 3.1. The subspaces M(j) are very

similar to the subspaces E(j): they have the same dimension and also sat-

isfy F (j) = M(1) ⊕ · · · ⊕ M(j). However, they are not identical, because of

the orthogonality constraint in (1). This will be explained in Section 3.2.

In this summary, we focus on rectangular boxes with periodic bound-

ary conditions. Narrow systems (Ly < 2σ ) or systems with reflecting

boundaries have a very similar Lyapunov spectrum, but some exponents

found in the periodic case are either absent, or appear with smaller mul-

tiplicities. We shall treat such systems in Section 4.3 but concentrate, until

then, on the “general” periodic case. However, it should be noted that sys-

tems with reflecting boundaries give important information on the rela-

tion between the vanishing and the small Lyapunov exponents (see Ex. 3

below).

The Lyapunov exponents near zero are found to be proportional to

the wave numbers of the system,

k(nx ,ny ) =

√

(

2π
Lx

nx

)2
+

(

2π
Ly

ny

)2
, nx, ny =0,1, . . . . (2)

Remark. This result, as well as all results mentioned below, are to

be understood in the limit of an infinite number of disks, at fixed den-

sity. In particular, we omit higher order terms (in k) in most of our

statements.
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The Lyapunov exponents have the following properties:

Lyapunov Spectrum: For gases of hard disks, the Lyapunov exponents

near zero are fully determined by two (positive) constants, cL and cT. For

small-enough n = (nx, ny), these exponents lie on two straight lines.8

(1) Transverse branch (T): λ=±cTkn, with multiplicity 4 (2 if either

nx or ny is zero)

(2) Longitudinal branch (L): λ = ±cLkn, with multiplicity 8 (4 if

either nx or ny is zero)

The multiplicities of both branches will be explained by simple geo-

metric observations in Section 4.2. While the linear laws resemble the

square roots of the eigenvalues of a Laplacian in the box, we have no

explanation beyond those already given in ref. 3. (The square root is

related to the symplectic nature of the problem.) Additional degenera-

cies arise in square systems and may accidentally appear also for specific

aspect ratios Ly/Lx .

We next explain how to visualize a mode.(8,11) Fix ξ = (p, q)∈X, and

let δξ be a Lyapunov mode of T X(ξ). The vector δξ = (δp, δq) has 4N

components, 2N associated with the momenta and 2N with the positions.

Consider, for example, the q components, δq1, . . . , δqN , where each δqj

is in R2 (corresponding to the infinitesimal x and y displacements of qj ,

j =1, . . . ,N). By drawing the perturbation vectors δqj at the positions qj

of the particles in the box, one obtains a field of vectors as is shown in

Fig. 2. For dense-enough fluids we obtain a vector field in every point of

the box by interpolating between the particles.

It has been observed that for those Lyapunov exponents close to

zero, this vector field is well approximated by trigonometric functions of

the spatial coordinates x and y.(1,8) In particular, the number of nodes

(nx, ny) of the vector field determines a wave number kn. We then say that

δξ is a mode of wave number kn. Our second main result is:

Mode Classification: The subspaces M(j)(ξ) (defined in (1)) belonging

to Lyapunov exponents λ(j) close to zero fall into two categories:

(1) Transverse branch: modes associated with a Lyapunov exponent

±cTkn are divergence-free periodic fields of wave number kn.

8For both the longitudinal and transverse modes the linear k dependence of λ is only the first

term of an expansion in powers of k(8), λ = ck + c2k
2 · · · . For positive λ, c2 is positive, but

small. For a second order calculation in k, see ref. 7.
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Fig. 2. Modes for the 780-disk system with periodic boundaries characterized in Fig. 1.

Left: Transverse mode T(1,1) belonging to λ1549. Right: Longitudinal mode for λ1535 belong-

ing to an LP pair LP(1,1).

(2) Longitudinal branch: The modes associated with the Lyapunov

exponent ±cLkn are of two types:

(i) Half of them are irrotational periodic vector fields of wave

number kn (called L-modes);

(ii) The others are scalar modulations with wave number kn of

the momentum field, (called P or momentum modes).

The L and the P-modes turn out to be paired: the P-mode has com-

ponents piA(qi) and the corresponding L-mode has components ∇A(qi),

where A is a scalar function, see Eq. (9). In the following, we refer to an

L-mode and its corresponding P-mode as an LP pair. We will give more

details on this relation below. Results in this direction have been obtained

in refs. 4,6,7.

An interesting question, which is related to some hydrodynamic

aspects of the fluid, is an apparent propagation of the L and P-modes

in physical space. It is a consequence of the motion of the tangent vec-

tors in the subspaces M(j)(ξt ), to which we refer as mode dynamics. It

will be described in detail in Section 5. We note that this motion is not

only determined by the tangent flow, but also by the re-orthonormaliza-

tion process part of the algorithm for the simulation. Mode dynamics was

observed early on,(2,11) but attempts to compute the propagation velocities

are still scarce and, at present, only work for low densities.(5,7) Here, we

give a more precise definition and provide numerical results.

Mode Dynamics: In an M(j) space of Longitudinal and P-modes, the

mode dynamics couples LP pairs. When restricted to the two-dimensional
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subspace spanned by a given LP pair, it reduces to a rotation at constant

angular velocity ωn which is proportional to the wave number kn,

ωn =vkn,

where v has the dimension of a velocity.

In the remainder of the paper we state these results more precisely

and give details about how they are obtained. They are of two types: First,

a theoretical description of the modes, which is based on the symmetries

of the system. Second, a detailed account of the numerical algorithms

necessary to substantiate our claims (the difficulty being the decomposi-

tion of the d(j) dimensional spaces M(j)(ξ)).

3. TANGENT-SPACE DYNAMICS

The dynamics of hard disks consists of phases of free flight inter-

rupted by instantaneous elastic collisions. We denote the map for free

flights of duration τ by F τ , and the collision map by C. Then, the evo-

lution of an initial state, ξ0, is given by

ξt =F τn ◦ · · · ◦C ◦F τ2 ◦C ◦F τ1 ξ0, (3)

where τ1, . . . , τn are the time intervals between successive collisions. The

tangent-space dynamics of an infinitesimal perturbation δξ0 of ξ0 is given

by the tangent map of the flow (3):

δξt = DF τn
∣

∣

ξ+
n

· · · DC |ξ−
2

· DF τ2
∣

∣

ξ+
1

· DC |ξ−
1

· DF τ1
∣

∣

ξ0
δξ0,

where ξ−
k denotes the state just before the kth collision, and ξ+

k = C(ξ−
k )

is the state immediately after.9 Here, DF τ |ξk
and DC |ξk

are 4N × 4N

symplectic matrices. For the sake of simplicity, the flow is also called �t :

namely �t (ξ0)=ξt , and we often write δξt = D�t
∣

∣

ξ0
·δξ0. By convention, if

t is a collision time, δξt denotes a tangent vector immediately before that

collision.

9We disregard problems of differentiability which appear for the (rare) tangent collisions.
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3.1. Numerical Procedure and Lyapunov Modes

Extensive numerical simulations are used to establish the classification

and dynamics of the modes. Here, we briefly summarize our algorithm

described in detail in refs. 2,12 and provide a precise definition of the

Lyapunov modes we observe. It is well known that the exponential growth

rate of a typical k-dimensional volume element is given by λ1 +· · ·+λk,

λ1 +· · ·+λk = lim
t→∞

1

t
log ‖δξ1

t ∧· · ·∧ δξ k
t ‖. (4)

If the tangent vectors δξ1, . . . , δξ k are linearly independent at time zero,

they will remain so, because the tangent flow is time reversible. Orthog-

onality is not preserved by the tangent flow, because, generally, D�t

is not an orthogonal matrix. However, (4) still holds if the vectors

δξ1
t , . . . , δξ k

t are replaced by a (Gram-Schmidt) orthogonalized set of vec-

tors δη1
t , . . . , δηk

t .10 It takes thus the simpler form

λ1 +· · ·+λk = lim
t→∞

1

t

k
∑

i=1

log ‖δηi
t‖. (5)

Since (5) holds for every k�4N , the exponent λk turns out to be equal to

the growth rate of the kth orthogonalized vector δηk
t .

The numerical method of Benettin et al.(13) and Shimada et al.(14) –

and indeed any algorithm – is based on this construction, although its

basic objects are not the δηk
t vectors. As time increases, they all would

get exponentially close to the most-unstable direction, become numeri-

cally indistinguishable, and diverge. Instead of orthogonalizing once at

time t , the tangent dynamics is applied to a set of tangent vectors, which

are periodically replaced by an orthogonalized set, that we denote by

δγ 1
t , . . . , δγ k

t . The modified dynamics is therefore that of an orthogonal

frame.(2,12) One assumes that (5) is still valid if δηk
t is replaced by δγ k

t . The

kth Lyapunov mode (or Lyapunov vector) at time t is, by definition, the

vector δγ k
t , and it is associated with the exponent λk.

Our study starts with the observation that we consider a system

with non-trivial Lyapunov exponents. To guarantee the convergence of the

numerical algorithm, additional properties of the dynamical system are

needed: Namely, that the system has well-defined local stable and unsta-

ble subspaces associated with every Lyapunov exponent (close to zero).

10δη
j
t = δξ

j
t −

∑j−1
i=1 (δξ

j
t · δξ i

t )/(‖δξ
i
t ‖

2)δξ i
t .
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Results in this direction have been obtained for hard-disk systems in refs.

15–17. A stronger property, hyperbolicity, has been recently proved for

hard disk systems with randomly chosen masses in refs. 18–20. We assume

here that these results hold for our system as well. As already advocated in

ref. 10, what matters from a physicist’s point of view is that the numerical

studies behave as if this were true. Under the above assumptions, the kth

mode will align with the corresponding unstable subspace. In other words,

measured modes will be orthogonal spanning sets of the M(j) subspaces

defined in Eq. (1).

The algorithm we use in our numerical work(2,12) is based on the

principles just outlined. We restrict our considerations to hard-disk sys-

tems without external interaction. Since there is no potential energy, the

dynamics is the same at any (total) energy, up to a rescaling of time. The

natural unit of time of the system is ((mσ 2N)/K)1/2. Throughout, reduced

units are used, for which the particle mass m, the disk diameter σ , and

the kinetic energy per particle, K/N , are unity. The density, defined by

ρ = N/V and the aspect ratio, defined by A = Ly/Lx , are the only rele-

vant macroscopic parameters. Here, V =LxLy is the area of the (rectangu-

lar) simulation box whose sides are Lx and Ly in the x and y directions,

respectively. All our numerical examples are for densities ρ �0.8 character-

istic of dense or dilute (if ρ � 0.1) hard disk gases. The results are insen-

sitive to the time between successive Gram-Schmidt re-orthonormalization

steps.

3.2. Modes and Oseledec Subspaces

We have remarked in Section 2 that the spaces E(j) of Oseledec’ the-

orem are in general not identical to the spaces of the modes M(j) defined

in the Eq. (1). Here, we explain this difference.

The covariant subspaces E(1), . . . ,E(ℓ) of the Oseledec splitting are

obtained as follows(10): the multiplicative ergodic theorem (for reversible

systems) states that the matrices

�±(ξ)≡ lim
t→±∞

(D�±t
∣

∣

T

ξ
D�±t

∣

∣

ξ
)

1
2|t |

exist with probability one. The eigenvalues of �+ are exp(λ(1)) > · · · >

exp(λ(ℓ)) and the eigenvalues of �− are exp(−λ(ℓ))> · · ·>exp(−λ(1)). Since

both �+ and �− are symmetric, their eigenspaces define two orthogonal

decompositions of the tangent space

T X =U
(1)
± ⊕· · ·⊕U

(ℓ)
± ,
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where U
(j)
± is the eigenspace of �± associated to exp(±λ(j)). Note that the

U
(j)
± subspaces are pairwise orthogonal but in general not covariant. How-

ever, for j ∈{1, . . . , ℓ}, the subspaces

U
(j)
+ ⊕· · ·⊕U

(ℓ)
+ and U

(1)
− ⊕· · ·⊕U

(j)
−

are covariant. They are, respectively, the subspace of the ℓ−j +1 most sta-

ble directions of �+ and the subspace of the j most unstable directions of

�− (or equivalently its j most stable directions in the past). For every ξ ,

the invariant subspaces E(j) are then given by

E(j) =
(

U
(1)
− ⊕· · ·⊕U

(j)
−

)

∩
(

U
(j)
+ ⊕· · ·⊕U

(ℓ)
+

)

.

The E(j) spaces are covariant but in general not orthogonal. One can

show that

U
(1)
− ⊕· · ·⊕U

(j)
− =E(1) ⊕· · ·⊕E(j) ≡F (j),

where F (j) was introduced in Section 2. Using the definition (1), one eas-

ily verifies that M(j) =U
(j)
− .

Remark 1. In our numerical method, the modes are obtained at the

phase points �t (ξ0) for large t , i.e., at the end of integrated trajectories. It

is therefore consistent that they should contain information about the past

and not the future, that is about �− and not �+.

In general, U
(j)
− , U

(j)
+ and E(j) are different. Hard-disk systems have

a special property: the three spaces coincide for the Lyapunov exponent

λ(m) =0, where m≡ 1
2
(ℓ+1) is the middle index. We shall denote by N the

covariant subspace N =E(m), also called the null subspace. In Section 4.1,

we give the explicit form of N . Using the explicit Jacobians for the parti-

cle collisions and for the free-streaming motion, as given in refs. 2, 12, 21

one can check that the orthogonal complement to the null subspace, N ⊥,

is also covariant. From this statement, one can show that N =U
(m)
+ =U

(m)
− .

Our measured modes M(m) =U
(m)
− therefore span the null space. Since this

argument seems to fail for j = m, we can only conclude that modes of

M(j) are perturbations whose exponential growth rate is at least λ(j).
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3.3. Two Simplifications

Two additional properties greatly simplify the classification of the

modes: the symplecticity of the tangent flow and an observed property “δq

is proportional to δp”. The symplecticity of the tangent flow means that

D�t
∣

∣

T

ξ
J D�t

∣

∣

ξ
=J, (6)

where the 4N ×4N matrix J is defined as11

J :

(

δp

δq

)

�→

(

0 −1
1 0

)(

δp

δq

)

=

(

−δq

δp

)

.

As a consequence of (6), both �+ and �− are symplectic (see e.g., ref. 21)

and, as is well known, Lyapunov exponents of Hamiltonian systems come

in pairs λ(j), λ(ℓ−j+1) = −λ(j) of equal multiplicity. The matrix J relates

the U
(j)
± subspaces by

U
(j)
± (ξ)=JU

(ℓ−j+1)
± (ξ). (7)

Therefore, it is sufficient to measure the Lyapunov exponents and the

modes for the positive part of the spectrum. Note that J is not the (deriv-

ative of the) velocity reversal (δp, δq) �→ (−δp, δq) and does not change the

sign of time.

The simulations of our system exhibit an additional structure which

considerably simplifies the analysis of Lyapunov modes near zero. Unsta-

ble perturbations (λ>0) have the (approximate) form

δp =C(ξ, λ)δq, C >0,

while the stable (λ<0) perturbations are of the form

−C′(ξ, λ)δp = δq, C′ >0.

Here, C and C′ are numbers. In Figure 3 we demonstrate that the pertur-

bations δq and δp associated with each Lyapunov mode are nearly paral-

lel or anti-parallel for large N . Equation (7) also suggests C =C′, which is

well verified by the simulations.

11With the reduced units defined above, positions and velocities are dimensionless.
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Fig. 3. Value of cos(�) = (δq · δp)/(|δq| · |δp|), as a function of the Lyapunov index l for

an instantaneous configuration of the system characterized in Fig. 1. Here, � is the angle

between the 2N -dimensional vectors of the perturbation components of all particle positions

and velocities for a Lyapunov vector ξl . For the small positive exponents, for which l <2N −

2=1558, this angle vanishes, for the small negative exponents, for which l >2N +3=1563, it

is equal to π . For the six zero modes, 1558 � l � 1563, the angle lies between these limiting

values.

We can therefore restrict our classification to the δq part of the modes

corresponding to positive exponents. If we can associate every measured

exponent λ to a given δq, then we will know that the exponents λ and −λ

correspond to the modes (δp, δq) with δp=Cδq and δp=−C−1δq, respec-

tively.

3.4. Tangent Vectors as Vector Fields

The components of a tangent vector δξ = (δp, δq) are the perturbation

components of the positions and velocities of all particles. As a graphi-

cal representation of such a vector, we show in the left panel of Fig. 4

the instantaneous positional perturbations of all particles at their positions

in physical space, where the arrows indicate the directions and strengths.

It belongs to a Lyapunov exponent λ1546 indicated by the enlarged circle

in Fig. 5. A qualitatively identical figure is obtained, if the positional dis-

placements of all particles are replaced by their momentum displacements,

as explained in Section 3.3. Thus, this figure is a complete representation
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Fig. 5. Lyapunov spectrum and “dispersion relations” for the 780-disk system characterized

in Fig. 1, and the density ρ =0.8. Left: Lyapunov exponents are ordered by size and repeated

with multiplicities. The specially marked point corresponds to the transverse mode shown in

Fig. 4. Right: Lyapunov exponents as a function of their wave number. The respective labels

L and T refer to the longitudinal and transverse branches.

of the Lyapunov vector δξ = (δp, δq) belonging to λ1546 in Fig. 5. The

transverse modes for λ1549 on the left panel of Fig. 2, and for λ1548 at

the bottom left panel of Fig. 6, are other examples of transverse modes

belonging to the same degenerate exponent.

We interpret the left panel of Fig. 4 as a two-dimensional vector field

ϕ which – up to a constant phase – is well described by

(

ϕx(x, y)

ϕy(x, y)

)

=

(

α1 cos(kxx) sin(kyy)

−α2 sin(kxx) cos(kyy)

)

,
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Fig. 6. Snapshots of Lyapunov modes for the periodic 780-disk system of Section 4. Left,
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with the respective exponents λ1553, λ1545 and λ1535, of Fig. 5.



828 Eckmann et al.

where kx = 2π
Lx

and ky = 2π
Ly

, and α1, α2 are two constants. For this reason,

we assign the node numbers (nx, ny)= (1,1) to this mode.

To be more precise, let r = (x, y)∈ [0,Lx)× [0,Ly). We say that a two-

dimensional smooth vector field ϕ = (ϕx, ϕy) over the position space, is

sampled by the infinitesimal displacements δq of the N disks at their ref-

erence positions q, when

ϕ(qj )= δqj , for all j =1, . . . ,N.

Thinking of a tangent vector in terms of an associated vector field is

meaningful if there are “sufficiently” many particles to sample the field on

a typical length scale of its variation. Once this condition breaks down

for larger exponents, as it will for large-enough k, the modes disappear12,

and so do the steps in the Lyapunov spectrum. In the following we use

a notation which does not distinguish between tangent vectors and their

two-dimensional vector fields.

4. OBSERVATION AND DESCRIPTION OF THE MODES

In this section, we describe the Lyapunov spectrum near 0 and the

corresponding modes, as they are measured in numerical experiments. In

the two following subsections, we will explain how these modes can be

understood on the basis of symmetry breaking of “zero modes”.

We illustrate our assertions with the system already introduced in

Fig. 1, which contains N =780 particles in a rectangular periodic box with

an aspect ratio Ly/Lx = 0.867. It corresponds to a hard-disk gas with a

density ρ =0.8, slightly below the fluid-to-solid phase transition density.(12)

The left panel of Fig. 5 provides a magnified view of the smallest positive

Lyapunov exponents for this system.13 The exponents, ordered by size and

repeated with their multiplicities, are plotted as a function of their index.

Degenerate exponents with a multiplicity d �2 appear therefore as “steps”.

To account for the wave-like appearance of the modes, we associate with

each Lyapunov vector a wave number k(nx ,ny ), as in (2), where the non-

negative integers n= (nx, ny) count the nodes in the respective directions.14

When the small Lyapunov exponents are plotted as a function of their

corresponding wave number, they all lie on two curves, sometimes referred

12And the sampled vector field is ill-defined.
13The conjugate negative exponents are not shown, see refs. 2, 8.
14In many cases, the number of nodes is easy to determine, as in Fig. 4. To facilitate an

objective identification of the wave vectors modes associated with larger exponents, which

are noisier, Fourier-transforms are used.
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Table I. Central Subspace for the Vanishing Lya-

punov Exponents. Notation: 1 = (1, 1,. . . ,1), and

0 = (0, 0,. . . ,0). All vectors have 4N components

Transformation Generator

(p, q) �→ (px + ε1, py , qx , qy) δξ1 = (1,0,0,0)

(p, q) �→ (px , py + ε1, qx , qy) δξ2 = (0,1,0,0)

(p, q) �→ (px , py , qx + ε1, qy) δξ3 = (0,0,1,0)

(p, q) �→ (px , py , qx , qy + ε1) δξ4 = (0,0,0,1)

(p, q) �→ (px + εpx , py + εpy , qx , qy) δξ5 = (px , py ,0,0)

(p, q) �→ (px , py , qx + εpx , qy + εpy) δξ6 = (0,0, px , py)

to as “dispersion relations”.(2,8) This is demonstrated on the right panel

of Fig. 5. On this plot, degenerate exponents are represented by a single

point. For reasons discussed below, the upper branch is called longitudi-

nal (L), and the lower transverse (T). It is experimentally found that for a

given wave number, the multiplicity of the L branch is twice that of the T

branch, as mentioned already in Section 2.

4.1. Vanishing Lyapunov Exponents

We start our description with the six modes associated with the six

vanishing Lyapunov exponents, commonly referred to as zero modes. Four

of them are induced by the homogeneity of space, and two are conse-

quences of the homogeneity of time. They span a six-dimensional subspace

N (ξ) of the tangent space, T X(ξ), at any phase point ξ .15 These 6 zero

modes play a fundamental role in understanding the nature of the modes

associated with Lyapunov exponents close to zero.

In order to show which symmetries give rise to the zero modes, we list

in Table I the six corresponding elementary transformations. This defines

the six zero modes δξ1 to δξ6 in a notation that separates the x and y

components of δp and δq. The vectors δξ1 and δξ2 correspond to a per-

turbation of the total momentum in the x and y directions, δξ3 and δξ4

to an (infinitesimal) uniform translation of the origin, δξ5 to a change of

energy, and δξ6 to a change of the origin of time.

One can explicitly check that the subspace Span{δξ1, . . . , δξ6} is

covariant and that its vectors have a sub-exponential growth (or decay).

It thus coincides with the null space N (ξ) of Section 3.2.

Remark 2. The space N (ξ) can be further decomposed into three

covariant subspaces Nx = Span{δξ1, δξ3}, Ny = Span{δξ2, δξ4} and Np =

15It is important to keep in mind that N (ξ) really depends on ξ , see below.



830 Eckmann et al.

Span{δξ5, δξ6}, each of which independently satisfies the properties listed

for N (ξ). In systems with reflecting boundaries, only Np is present, while

Nx and Ny are absent, because they are related to translation invariance.

If only the x direction is periodic,(6) the space of zero modes is reduced

to Nx ⊕Np.

4.2. Longitudinal, Transverse and P-Modes

Following our argument of Section 3.3, we need only describe the δq

part of the modes. Therefore, we consider the three transformations (see

Table I)

δξ3 : (qx,j , qy,j ) �→ (qx,j + ε, qy,j )

δξ4 : (qx,j , qy,j ) �→ (qx,j , qy,j + ε) (8)

δξ6 : (qx,j , qy,j ) �→ (qx,j + εpx,j , qy,j + εpy,j ),

associated to zero modes, and claim the following:

Modes Classification I: Modes of wave number kn are scalar modu-

lations of (8) with wave number kn. More precisely, they are obtained by

replacing ε with εA(qx,j , qy,j ) in (8), where the real scalar function A is

of the form

A(x, y)=
∑

|ℓ|=nx ,|m|=ny

cℓ,m exp
(

i(ℓkxx +mkyy)
)

.

The space of such modulations has dimension 4 in general and

dimension 2 if either nx or ny vanishes.

Example 1. We consider n = (1,0), (0,1) and (1,1). We use the

notation cx = cos(kxx), sx = sin(kxx), cy = cos(kyy) and sy = sin(kyy). A

basis of the space of functions with wave number kn is shown in Table II.

Of course, this choice fixes a constant phase for the sine and cosine func-

tions.

Table II. Functions with Wave Number kn

n Function A dim

(1,0) cx , sx 2

(0,1) cy , sy 2

(1,1) cxcy , sxcy , cxsy , sxsy 4



Lyapunov Modes in Hard-Disk Systems 831

If the Lyapunov exponent were a function of kn only, we would

expect 12-fold degeneracy in Fig. 5, (resp. 6-fold if either nx or ny = 0),

since each of the three perturbations of (8) can be modulated by the four

(resp. two) functions of Table II. However, this degeneracy is broken into

an 8 + 4 (resp. 4 + 2) structure:

Mode Classification II: The Lyapunov vectors of wave number kn

have two possible Lyapunov exponents: |λ| = cT|kn| or |λ| = cL|kn|, corre-

sponding to the Transverse or Longitudinal branch of Fig. 5. The modes

for these two branches are obtained as follows:

(1) Transverse branch: transverse modes are obtained by combining

the modulations of δξ3 and δξ4 in a divergence-free vector field. We denote

by T(n) the space of such vector fields.

(2) Longitudinal branch:

(i) Longitudinal modes are irrotational vector fields one obtains

by combining the modulations of δξ3 and δξ4. We denote the corre-

sponding space by L(n).

(ii) P-modes are modulations of δξ6, and we denote the corre-

sponding subspace by P(n).

The three subspaces T(n), L(n) and P(n) have dimension 4 (or dimension

2 if either nx or ny vanishes). We denote by LP(n)≡L(n)⊕P(n) the sub-

space corresponding to the Longitudinal branch. It has dimension 8 (4 if

either nx or ny vanishes).

Remark 3. The divergence and curl of a vector field ϕ = (ϕx, ϕy) are,

of course,

∇ ·ϕ = ∂xϕx + ∂yϕy, ∇ ∧ϕ = ∂xϕy − ∂yϕx .

Since every two-dimensional vector field uniquely decomposes into a sum

of a divergence-free and an irrotational vector field, the spaces L(n) and

T(n) span all possible two-dimensional vector fields of wave number kn.

There is a simple way to build P(n), L(n) and T(n) from the scalar

modulations of Table II. If A is a modulation of wave number kn, then

we have

pA∈P(n), ∇A∈L(n), ∇ ∧A∈T(n), (9)
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where by definition

∇A=

(

∂xA

∂yA

)

, ∇ ∧A=

(

∂yA

−∂xA

)

.

This construction is also useful because it naturally defines what we shall

call LP pairs, by which we denote a field of L(n) and a field of P(n) orig-

inating from the same scalar modulation, as in (9). We show below that

LP pairs play an important role. Indeed, when only some of the modes

are present because of the boundary conditions, LP pairs are never bro-

ken: both fields are present, or both are missing (see Section 4.3). We shall

also see in Section 5 that the dynamics of the modes mostly takes place

between LP pairs.

Example 2. For the three modes of lowest wave number, Table III

lists a basis of T(n), L(n) and P(n). Fields are given in a non-normalized

form to keep notation short. Corresponding L(n) fields and P(n) fields are

LP pairs. Figure 6 provides examples for T- and L-modes.

Modes of L(n) and T(n) are wavelike perturbations of the position

space, and, therefore, are similar to the modes that appear in hydrodynam-

ics (see Section 7). In particular, when either nx or ny vanish, the fields

of L(n) and T(n) are, respectively, longitudinal and transverse to the wave

vector. This observation is the reason for the names of the two branches in

Fig. 5. To stay in line with this now-accepted terminology, we keep it also

for the case nx ·ny =0. P-modes are more complex than the other modes,

because they depend not only on the positions of the perturbed particles

but also on their velocities.

Table III. Decomposition of n-Modes for Rectangular Systems with Periodic

Boundaries

n Basis of T(n) Basis of L(n) Basis of P(n)

(1,0)

(

0

cx

)

,

(

0

sx

) (

cx

0

)

,

(

sx
0

) (

px

py

)

sx ,

(

px

py

)

cx

(0,1)

(

cy

0

)

,

(

sy
0

) (

0

cy

)

,

(

0

sy

) (

px

py

)

sy ,

(

px

py

)

cy

(1,1)

(

1
kx

cxsy

− 1
ky

sxcy

)

,

(

1
kx

sxcy

− 1
ky

cxsy

) (

1
ky

cxsy
1
kx

sxcy

)

,

(

1
ky

sxcy

1
kx

cxsy

)

(

px

py

)

sxsy ,

(

px

py

)

cxcy

(

1
kx

sxsy
1
ky

cxcy

)

,

(

1
kx

cxcy

1
ky

sxsy

) (

1
ky

sxsy

− 1
kx

cxcy

)

,

(

1
ky

cxcy

− 1
kx

sxsy

)

(

px

py

)

cxsy ,

(

px

py

)

sxcy
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At this point we are able to characterize the spectrum and its mul-

tiplicities with only two constants, cL and cT, which have the physical

dimension of velocities. We shall see in Section 6 that these velocities

depend on the density of the system, but are insensitive to the system

size, the boundary type, and the aspect ratio. Therefore, it is tempting to

think of cL and cT as thermodynamic velocities. However, as discussed in

Section 6, no obvious interpretation could be found so far.

4.3. Other Aspect Ratios and Boundary Conditions

We summarize here some observations which concern different bound-

ary conditions and degeneracies.

(i) The Lyapunov spectrum is more degenerate for square systems,

for which k(nx ,ny ) = k(ny ,nx ). In this case the multiplicities are doubled

with respect to the general case, for which nx = ny . Other “accidental”

degeneracies may occur: for instance, parameters can be found for which

cT|k(1,1)|= cL|k(1,0)|.

(ii) Systems with reflecting boundaries(6) develop only a subset of the

modes encountered so far, which can be found by the following simple,

and obvious, rules:

• The fundamental wave vectors are kx = π
Lx

and ky = π
Ly

(not

2π ). Here, Lx and Ly are the effective box sizes, obtained from the

actual side lengths by subtracting one particle diameter σ .

• The fields of T(n) and L(n) have to satisfy Dirichlet conditions,

namely to be tangent to the boundary:

ϕx(0, y)=ϕx(Lx, y)=0 and ϕy(x,0)=ϕy(x,Ly)=0.

If expressed in terms of sines and cosines, this means that ϕx may con-

tain sin(kxx) but not cos(kxx), and so on.

• As for periodic boundary conditions, when an L-mode is pres-

ent, its paired P-mode is always present.

(iii) Hybrid systems with reflecting boundaries in one direction and

periodic boundaries along the other behave as expected:(6) the fundamen-

tal wave vectors are chosen according to the boundary type, and the

Dirichlet conditions are only applied to one component of the field.
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Table IV. Mode Decomposition for Rectangu-

lar Systems with Reflecting Boundaries

n T(n) L(n) P(n)

(1,0) none

(

sx
0

) (

px

py

)

cx

(0,1) none

(

0

sy

) (

px

py

)

cy

(1,1)

(

sxcy

−cxsy

) (

sxcy

cxsy

) (

px

py

)

cxcy

(iv) Narrow systems, for instance those with σ < Ly < 2σ and Lx ≫

σ ,16 only develop modes with ny = 0.(23) This follows, since a vector field

varying along the y axis cannot be sampled by a single particle. There-

fore, the Lyapunov spectrum of such a system is greatly simplified, since

the modes are restricted to L(nx,0) and T(nx,0).

Example 3. Table IV shows which modes of Table III satisfy the

Dirichlet condition and are thus present in a system with reflecting bound-

aries.17 We stress that such a system has only two vanishing Lyapunov

exponents which are associated with δξ5 and δξ6 of Table I. Therefore,

modes appear which are not modulations of zero modes of the system. The

crucial observation here is that even if one of the fundamental symme-

tries is broken by the boundary condition, the modulation, as defined in

Eq. (9), may still satisfy that boundary condition. For example, if we have

reflecting boundaries on the walls {x = 0} and {x = Lx}, then any per-

turbation A(x, y) = sin(mkxx)B(y) will be acceptable, whereas, of course,

A(x, y)= cos(mkxx)B(y) would not.

Systems with reflecting boundaries and narrow systems are easier to

study numerically, because the multiplicities of the L, P and T spaces are

smaller than in the periodic rectangular case. In particular, the LP(1,1)

space has only dimension 2 when the boundaries are reflecting. For that

reason, we illustrate some of the issues below also with the “reflecting-wall

version” of the 780-disk system introduced in Fig. 8.

16Recall that σ is the diameter of the disks.
17For such a choice of basis vectors the origin of the coordinate system is at the bottom-left

corner of the simulation box.
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4.4. How to Measure P-Modes

Contrary to L(n) and T(n), the tangent subspace P(n) depends on the

state that it perturbs. Moreover, modes of P(n) are not really vector fields,

because the velocities of the particles in a typical configuration do not

depend smoothly on position. In order to “see” a P-mode, we face two

problems:

(i) A typical measured vector of an LP(n) space is a superposition of

vectors of L(n) and P(n).

(ii) Even when a mode of P(n) is isolated, it is not smooth and does

not “look like” a vector field over the box.

We explain our solution to the first problem with the simplest pos-

sible example: the LP(1,0) space for a rectangular system with reflecting

boundaries (see Section 4.3). This space has dimension two and is defined

by the two normalized spanning vectors

(

ϕL
x

ϕL
y

)

=
1

z1

(

sx
0

)

,

(

ϕP
x

ϕP
y

)

=
1

z2

(

px

py

)

cx, kx =
π

Lx

, (10)

where z1 and z2 are normalization constants. At any time t , we have two

measured modes, ψ1 and ψ2 (vectors with 2N components, since only the

δq part is observed), whose span is (numerically very close to) LP(1,0).

Therefore, there are constants a, b, c, d with

ϕL =ψ1a +ψ2b,

ϕP =ψ1c+ψ2d. (11)

Since all these vectors are normalized, one should also have a2 +b2 =c2 +

d2 = 1. However, Eq. (11) is over-determined: four constants have to sat-

isfy 4N equations. Numerically, we use a least-square method to find the

best values for a, b, c and d, which we denote by α, β, γ , δ.18 Thus, the

measured modes, ψ1 and ψ2, are decomposed according to

ϕ̃L =ψ1α +ψ2β,

ϕ̃P =ψ1γ +ψ2δ,

18It is also possible to use a simple projection α =ϕL ·ψ1, etc. This method assumes that ϕL

and ϕP are orthogonal vectors, which they only are approximately.
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where the vectors ϕ̃L and ϕ̃P are the best-possible LP-pair, ϕL and ϕP,

reconstructed from experimental data.

Now we can deal with our second problem: whereas the vector ϕ̃L is

easily recognized as a vector field, the vector ϕ̃P is not. However, from (10)

we deduce that

(

ϕP
x /px

ϕP
y /py

)

=

(

cx

cx

)

,

or, more precisely,

(

ϕP
x,j/px,j

ϕP
y,j/py,j

)

=

(

cos(kxqx,j )

cos(kxqx,j )

)

, j =1, . . . ,N. (12)

Therefore, both ϕP
x /px and ϕP

y /py are smooth functions and can be easily

visualized.

Remark . (i) This procedure readily extends to higher-dimensional

LP(n) spaces, for instance to the four-dimensional LP(1,1) space of a peri-

odic system. We take this case as an example to illustrate in Fig. 7 our

method of mode reconstruction: from the four measured modes the ana-

logue to Eq. (11) generates four spanning vectors, namely two L-modes

(one of which is shown at the top-right position of Fig. 4) and two P-

modes. The x and y components of one of the P-modes, namely ϕ̃P ≈psx,

are shown in the top row of Fig. 7. No smooth functions are recognized.

However, after dividing by the momentum components, px,j and py,j , as

required by (12), the figures for the fields ϕ̃P
x /px and ϕ̃P

y /py in the bottom

row of Fig. 7 clearly display the expected sx-dependence.

(ii) Division by px,j or py,j in (12) is numerically unstable when par-

ticle j has a very small momentum along a coordinate axis. We avoid this

by multiplying instead by px,j/(p
2
x,j + ε), where ε ≪ 1. One could also

ignore particle j in this case and only sample the field at those points

where both px,j and py,j are not too small.

5. DYNAMICS OF THE MODES

Remark . The interested reader can look up animated pictures on

the web at the address http://theory.physics.unige.ch/modes/.

In this section we turn to the “dynamics of the modes” and study

what has been called the velocity of the longitudinal modes.(2,5,7) This

might clarify hydrodynamic theories,(4,5) which are mostly based on a par-

tial classification of the modes. In numerical simulations, the transverse
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Fig. 7. Example for the P-mode reconstruction for the four-dimensional LP(1,0) space of a

system with periodic boundaries. Only half of the components are shown, namely those corre-

sponding to sx . The cx components are similar. Top row: x and y components of the recon-

structed P-mode ϕ̃P ≈psx . Bottom row: the fields ϕ̃P
x /px and ϕ̃P

y /py are wavelike again. Note

that in the top row one can recognize the sinusoidal envelope.

modes are stationary in space and time: although the particles move, the

vector-field of the mode does not. In other words, at any instant of time,

the vector field of a T-mode does not move (up to a small jitter due to

numerical noise).

For longitudinal modes, however, one seems to observe(24) a propaga-

tion in the direction of the wave vector.19 Using the geometrical picture

developed above, we can interpret this motion and also explain why no

propagation is observed for the LP dynamics in systems with reflecting

boundaries as demonstrated in Fig. 8 below.

Since multiplicities are not so essential here, we illustrate the interpre-

tation for the (simpler) LP(1,1) space of a rectangular system with reflect-

ing boundaries (dimension 2). In Section 4.4 we pointed out that at any

19When either nx or ny vanish, for instance in the L(1,0) or L(0,1) space.
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Fig. 8. LP(1,1) dynamics for a system of 780 disks in a box with an aspect ratio 0.867, a

density 0.8, and with reflecting boundaries. Left: coordinates of the measured fields in the

“standard basis” of LP(1,1). The (unit) circle is nearly reached, showing that indeed ψ1 and

ψ2 span the same subspace as ϕL and ϕP. Center and right: the measured fields ψ1(t) and

ψ2(t). The rows from top to bottom are consecutive snapshots separated by time steps of

�t =3.20, which corresponds to a phase shift of π/2 in the LP(1,1) rotation. (A color figure

is available online.)
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given time t , where the state is ξt , the measured modes ψ1(t) and ψ2(t)

are combinations of the two spanning vectors ϕL(ξt ) and ϕP(ξt ). We re-

write Eq. (11) in matrix form, but now with explicit time dependence:

(

ϕL(ξt ), ϕ
P(ξt )

)

=
(

ψ1(t),ψ2(t)
)

·Q(t), Q(t)=

(

a(t) b(t)

c(t) d(t)

)

.

Therefore, the dynamics of the modes reduces to that of the 2 × 2

matrix Q(t). In our simulations we keep the spanning vectors orthonor-

mal. Since (in the experiment) the two fields ϕL and ϕP are also (nearly)

orthogonal20, the matrix Q(t) is close to a rotation matrix (that is c≃−b,

d ≃ a, and a2 + b2 ≃ 1). Therefore, the dynamics in the two-dimensional

subspace is well described by a phase φ(t)=arctan(b(t)/a(t)).

LP-dynamics in 2 dimensions: The matrix Q(t) is a rotation with con-

stant angular velocity ωn. This velocity is proportional to the wave number

kn, namely

φ(t)=ωnt =vknt.

Here, v is the product of a frequency and a wavelength and, therefore, is

a velocity. According to the simulations, v depends only on the density of

the system.

Example 4. In Fig. 8 we demonstrate this rotation in the LP(1,1)

space of a system with reflecting boundaries. Snapshots of the two mea-

sured fields at consecutive times show the rotation of the two vectors

between the L and the P direction.

A similar rotation has been found in narrow systems in ref. 6 and

explained in refs. 5, 7 in the low density limit using a Boltzmann-equation

approach.

Remark 4. The velocity v=ωn/|kn| has been interpreted earlier(24) as

the phase velocity of a traveling wave in physical space. In Appendix A we

demonstrate how the two interpretations can be reconciled. The definitions

given above allow us to apply the same concepts also to the LP-dynamics

of systems with reflecting boundaries, although they do not show traveling

but standing waves.

20The scalar product ϕL ·ϕP =�
N
j=1 cos(kxqj,x) sin(kxqj,x)pj,x a priori does not vanish. How-

ever, as the simulations show, it is of the same order as �
N
j=1 cos(kxqj,x) sin(kxqj,x), which

is also small and non-vanishing due to the uneven spacing of the particles.
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Fig. 9. Rotations of various LP pairs for the 780-disk system of Fig. 1. Left: Time depen-

dence of the phase. For clarity, the phases for different modes are separated by multiples of

2π/|kn|. Right: The fluctuations around the constant velocity (in percent of 2π ). For details

we refer to the main text.

Next, we consider the dynamics for the general case of a 2d-fold

degenerate LP(n) space. As explained in Section 4, an LP(n) space is

defined by a spanning set of d longitudinal modes, ϕL
1 , . . . , ϕL

d , and d

P-modes, ϕP
1 , . . . , ϕP

d , where each pair (ϕL
k , ϕP

k ) is an LP pair. The follow-

ing description is valid for any type of boundary conditions:

Dynamics in LP(n). The dynamics in LP(n), when restricted to a two-

dimensional subspace spanned by an LP pair

Span{ϕL
k , ϕP

k },

is a two-dimensional rotation at a constant angular velocity ±ωn, where

ωn =vkn, with v independent of n.

Example 5. The LP dynamics for higher-dimensional spaces is illus-

trated in Fig. 9. In the following we concentrate on LP(1,1). This space

has dimension 8, that is four LP pairs. Generically, a measured mode

has a non-vanishing projection onto all four LP pairs, and four different

phases can be defined. The four time series of phases for LP(1,1) in Fig. 9

belong to different projections of the same mode.

6. INFLUENCE OF GEOMETRY AND SYSTEM SIZE

In this section, we study what influence the density, aspect ratio, and

boundary conditions have on cT, cL, and v. The density dependence is

significant. Unfortunately, we do not have any explanation for this fact.

In particular, comparisons with the sound velocity,(25) with the mean free
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Fig. 10. Slopes of the transverse and longitudinal branches cT and cL of Fig. 5, and of

phase velocity v. The simulations are for a system containing N =780 particles in a rectangu-

lar periodic box with a fixed aspect ratio Ly/Lx =0.867. Left: cT and cL as a function of the

particle density ρ. The smooth lines are polynomial fits added to guide the eyes. Although

the fits have no theoretical basis, we provide the fit parameters for convenience: cL =0.790+

0.970ρ + 0.785ρ2 + 6.24ρ4, and cT = 0.902 + 1.050ρ − 0.053ρ2 + 3.85ρ4. Right: Almost linear

relations between all three quantities.

path, and with similar quantities, do not suggest simple relationships.

Thus, these questions have to await further studies.

The results of our simulations are summarized in Fig. 10. In the left

panel, cL and cT, defined in Section 2, are shown as functions of ρ, and

on the right panel v and cT are plotted as functions of cL. There are two

observations which are of interest: First, as seen in the left panel, cT and

cL cross for lower densities. Thus, the intuitively natural conjecture, cL �

cT, is not supported by the numerical evidence. Second, the three “veloc-

ities” cT, cL, and v are almost linearly related. In particular, the phase

velocity v agrees rather well with cL for fluid densities ρ <0.6 (see the full

line in the right panel of Fig. 10), thus lending support to referring to the

curves λ(k) as “dispersion relations”.

On the left panel of Fig. 11 we plot the longitudinal and transverse

dispersion relations for a moderately-dense gas with a density ρ =0.4. The

full and open points are for systems with periodic and reflecting bound-

aries, respectively. In all cases, λ was determined from the lowest step of

the Lyapunov spectrum for the system, for which the aspect ratio varied

between 0.5 and 1, and the particle number between 400 and 800. The fig-

ure demonstrates that periodic and reflecting boundary conditions give the

same λ(k). We have experimentally verified (but not shown here) that the

same is true also for larger and lower densities.

The situation becomes a little more complicated when we consider the

dependence of the slopes, cL and cT, on the aspect ratio A, as we do in
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Fig. 11. Simulation results for a hard-disk gas with a density ρ = 0.4. The full and open

points refer to periodic and reflecting boundary conditions, respectively. Left: The smallest

positive Lyapunov exponent for T- and L-modes, respectively, as a function of the wave-num-

ber k. The curves for periodic and reflecting boundary conditions agree. To the second order

in k, a fit to the data gives cL =1.422k +0.55k2 and cT =1.412k +0.086k2. Right: The slopes,

cL and cT, are plotted as a function of the aspect ratio A of the simulation box. For a given

A we compare points with the same k to eliminate the influence of the nonlinearity of the

dispersion relations. This means that for periodic boundaries the linear extensions of the sim-

ulation box, Lx and Ly , are twice those of the respective reflecting box. The data for periodic

and reflecting boundaries agree to within numerical accuracy.

the right panel of Fig. 11. The dispersion curves are not strictly linear in

k, as we have pointed out already in a footnote in Section 2. A fit to the

points in the left panel of Fig. 11 reveals that the term proportional to k2

is much larger for L than for T. To eliminate this nonlinearity in a com-

parison of the slopes for reflecting and periodic systems with a given A,

modes with the same values for k21 are used in the right panel of Fig. 11.

With this precaution the figure demonstrates that the slopes of the dis-

persion relations do not depend on the boundary conditions in any sig-

nificant way, as long as the box does not degenerate to a narrow chan-

nel.(23) Except for this particular case, the nonlinearity of the dispersion

curves has no noticeable influence on the classification and description of

the Lyapunov modes in this paper and has been accordingly ignored.

7. HYDRODYNAMIC EQUIVALENT OF THE MODES

There is a general expectation that the Lyapunov modes should be

related to the hydrodynamic behavior of the system, and several papers

21The smallest wave number k for periodic boundaries is given by 2π/L, where L is a dimen-

sion of the box. For reflecting boundaries, k is given by π/L, where L is an effective box

size, namely the size reduced by a particle diameter σ .
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Table V. Modulations of the Hydrodynamic

Fields (Multiplicative Constants are Omitted)

mode δξ δρ δu δE

T ∇ ∧A 0 ∇ ∧A 0

L ∇A �A ∇A �A

P vA 0 ∇A A

point in this direction.(3–6) It should be noted, however, that none of these

studies has reached a totally convincing interpretation, and, furthermore,

it is obvious from this body of work that the LP-modes are more diffi-

cult to explain than the T-modes. Here, we add to this a simple calculation

which might be helpful in the future: we determine how the modes per-

turb the hydrodynamic fields or, in other words, what would be the hydro-

dynamic equivalent of the modes we measure. The results, given in Table V,

have quite a simple form, but do not reproduce the usual modes of hydro-

dynamics.

Consider a general transformation T of the one-particle phase space

µ≡ [0,Lx)× [0,Ly)×R2 given by

T :

{

r �→ r ′ = r + εδξ(r, v)

v �→ v′ =v + εδη(r, v)
,

and f a probability density over µ. If ε is infinitesimal, then the new

probability density is f ′ =f + εδf , where

δf =−f
(

∇r · δξ +∇v · δη
)

−∇rf · δξ −∇vf · δη, (13)

see Appendix B. Since we study equilibrium dynamics, we assume, further-

more, that f is the Boltzmann distribution.22 By Section 3.3 we also have

δη=Cδξ , and, therefore, (13) simplifies to

δf =−f
(

∇r · δξ +C∇v · δξ −Cv · δξ
)

.

We define the variations of the three hydrodynamic fields (density ρ,

momentum u, and energy E) by

δρ(r)=

∫

dvδf (r, v), δu(r)=

∫

dvδf (r, v)v, δE(r)=

∫

dvδf (r, v)|v|2.

22With kBT =1 as in the simulations.
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For each of the three types of modes, one can compute these quanti-

ties as a function of the scalar modulation A introduced in (9). The results

are given in Table V. Since �A=−k2
nA, we note that the scalar fields δρ

and δE are proportional to the initial scalar modulation A. Note also that

the energy field is only affected by the L and P-modes but not by the

T-mode.

8. CONCLUSIONS

The picture developed in this paper is for two-dimensional hard disks,

but the method is sufficiently geometric and general to allow easy exten-

sions to other systems:

For example, the generalization to three-dimensional hard disks is

straightforward. The existence of L- and T-modes for this case has

been confirmed by computer simulation.(25) Recently, Lyapunov modes

were also found for two-dimensional soft-particle systems interacting

either with a Weeks-Chandler-Anderson potential(26) or a Lennard–Jones

potential.(27,28) It would also be interesting to extend the work to, say,

circular geometries. Another extension concerns linear molecules such as

hard dumbbells in a periodic box.(1,11) In this case two qualitatively differ-

ent degrees of freedom play a role, translation and rotation. The existence

of modes has already been demonstrated in this case.

We have ended our wanderings through the rich landscape of Lyapu-

nov modes. To summarize, we have carefully identified and analyzed the

modes, giving a beginning of a theoretical classification. Furthermore, we

have seen that the Lyapunov exponents and the phase velocity of the LP-

modes seem to be functions of the density alone. In particular, they are

practically independent of the aspect ratio of the box (and, where applica-

ble, also insensitive to the boundary conditions).

APPENDIX A: TRAVELING WAVES OF LP DYNAMICS

We consider the LP(1,0) space of a rectangular system with periodic

boundary conditions, defined by the four spanning vectors

ϕL
sin =

(

sx
0

)

, ϕP
cos =

(

px

py

)

cx, ϕL
cos =

(

cx

0

)

, ϕP
sin

=

(

px

py

)

sx .

We take an initial tangent vector

δξ0 =aϕL
sin +bϕP

cos. (A.1)



Lyapunov Modes in Hard-Disk Systems 845

After a time τ =2π/(4ωn), the vector is transformed to

δξτ =aϕP
cos +bϕL

sin. (A.2)

Assume that a and b are more or less equal. Then (A.1) will resemble a

sinus, with much “noise” due to the P component, while (A.2) will look

more like a cosine. In the dynamics leading from (A.1) to (A.2) a kind

of “traveling wave” is therefore visible, which seems to cover a distance

2π |kn|
−1 in a time 2πω−1

n , thus “moving” at velocity v=ωn/|kn|. In actual

simulations, we cannot expect typical vectors to have a phase difference of
π
2

between their ϕL
sin

and ϕL
cos components, as in our example. Therefore,

the observed wave displacement as seen in refs. 24, 25 has the shape of

“steps” in a space–time diagram, with an average slope equal to v.

APPENDIX B: TRANSFORMATION OF THE ONE-PARTICLE

DISTRIBUTION

Let f be a given distribution. For Ŵ ⊂µ, we have

F(Ŵ)≡Prob(one particle ∈Ŵ)=

∫

Ŵ

dr dvf (r, v).

The transported probability F ′ is defined by F ′(Ŵ′) = F(Ŵ), where Ŵ′ =

T (Ŵ). We shall compute its density f ′. In the integral

F(Ŵ)=

∫

T −1(Ŵ′)

dr dv f (r, v), (B.1)

we change the variables to (r ′, v′)=T (r, v). To first order in ε, we have

T −1 :

{

r ′ �→ r = r ′ − εδξ(r ′, v′)

v′ �→ v =v′ − εδη(r ′, v′)
,

so (B.1) becomes

F(Ŵ)=

∫

Ŵ′

dr ′ dv′det
[

DT −1|r ′,v′

]

f (r ′ − εδξ(r ′, v′), v′ − εδη(r ′, v′)). (B.2)

The determinant is

det
[

DT −1|r ′,v′

]

=det

(

Id − εDrδξ −εDvδξ

−εDrδη Id − εDvδη

)∣

∣

∣

∣

r ′,v′
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=1− ε
[

∇r · δξ +∇v · δη
]

r ′,v′ . (B.3)

To first order in ε, we obtain with (B.2) and (B.3)

F(Ŵ)=F(Ŵ′) −ε
∫

Ŵ′ dr ′dv′f (r ′, v′)
[

∇r · δξ +∇v · δη
]

r ′,v′

−ε
∫

Ŵ′ dr ′dv′
[

∇rf · δξ +∇vf · δη
]

r ′,v′ ,

which is equivalent to (13).
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