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Abstract—In this paper, Lyapunov stability and strong passivity

are defined for nonlinear descriptor systems. The new concepts fa-
cilitate the formulation of the relationship between the stability

and passivity of nonlinear descriptor systems. ALyapunov stability

theoremwhich describes a sufficient condition for the systems to be
globally asymptotically stable and of index one is derived. By the

Lyapunov stability theorem, the connection betweenLyapunov sta-

bility and strong passivity is established. Furthermore, strong pas-
sivity of feedback systems is discussed and two passivity theorems

are given. Using the given passivity theorems, strongly absolute sta-

bility of Lur’e type descriptor systems is discussed. The obtained
strongly absolute stability criterion is shown to be more general

and less conservative than the existing methods. Finally, two ex-

amples are used to illustrate the advantages and effectiveness of
the obtained methods.

Index Terms—Lyapunov stability, nonlinear descriptor systems,

strong passivity.

I. INTRODUCTION

D ESCRIPTOR systems (also referred to as singular, dif-

ferential-algebraic equation, or generalized state-space

systems) have attracted much attention for their extensive

applications in the areas of chemical engineering, circuits, eco-

nomics, mechanical systems, etc. [1], [2]. Many fundamental

system theories developed for standard state-space systems

have been successively generalized to its counterparts for

descriptor systems, for example, controllability and observ-

ability [3], LQ problem [4], control [5], etc. However,

stability and passivity of nonlinear descriptor systems and the

relationship between them are open problems.
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Stability plays a central role for most of the analysis and syn-

thesis problems of dynamic systems. Lyapunov direct method

(LDM) has been the most popular and efficient approach for

stability analysis. However, for descriptor sytems, because of

the inherent mixed differential-algebraic nature, the selection of

Lyapunov function candidate (LFC) and the calculation of the

derivative of the LFC along the motions of the systems are more

difficult than those for standard state-space systems, which re-

sults in a challenging task for researchers. For linear descriptor

systems, the so-called generalized LFC and LDM have been

proposed. The related stability criteria are usually expressed by

matrix rank conditions and matrix inequalities [6]–[8]. How-

ever, LDM is premature for nonlinear descriptor systems.

For nonlinear descriptor systems, stability results based on

LFCs, which are positive definite with respect to the full state

, are not easy to use [9]. The existing stability results for

nonlinear descriptor systems can be roughly divided into two

classes. One class of the presented stability conditions, which

concern stability properties of partial state or functions of state

, i.e. , are derived by using LFCs relating to

rather than the full state (see, e.g., [10]–[14]). The other class

of the existing stability results deal with stability properties

of the full state and are derived by using LFCs relating to

the dynamic state and the relationship between the static and

dynamic states (see, e.g., [15]–[19]).

It is known that a descriptor system may contain impulse

modes which are undesirable since they tend to destroy the sys-

tems [6]–[8]. Impulse modes have been widely studied in the

analysis and synthesis problems of linear descriptor systems

(see, e.g., [1], [5]). The notion of index one for nonlinear de-

scriptor systems can be thought of as the generalization of the

impulse-free property of linear descriptor systems. Taking into

account the importance of stability and index one, some inves-

tigations have considered them simultaneously. In [16], a suf-

ficient condition for nonlinear descriptor systems to be locally

asymptotically stable and of index one was proposed. In [18],

[19], strongly absolute stability of Lur’e type descriptor systems

was defined to be globally stable and of index one and some cri-

teria were proposed.

Passivity relates nicely to stability of systems [20]–[22]. On

one hand, storage functions induced by passivity are usually re-

lated with system energy and thus provide natural candidates for

Lyapunov functions, on the other hand, passivity is expected to

be preserved under feedback interconnection, which provides a

useful tool for stability analysis of feedback systems. Passivity

and passive control problems for linear descriptor systems have

been widely considered [23]–[26]. However, few works have

dealt with passivity of nonlinear descriptor systems except for

1549-8328/$31.00 © 2012 IEEE
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[28], [29], where some basic concepts and theorems on dissipa-

tivity were generalized to nonlinear descriptor systems.

In this paper, we will consider full state stability and passivity

of nonlinear descriptor systems, propose corresponding criteria

for them and establish connection between them. First, based

on the characteristics of descriptor systems, the classical con-

cept on Lyapunov stability is refined for descriptor systems. A

Lyapunov stability theorem which describes a sufficient con-

dition for the system to be globally asymptotically stable and

of index one is derived. Then, under the framework of dissi-

pativity, strong passivity is defined for descriptor systems. The

connection between Lyapunov stability and strong passivity is

established by the proposed Lyapunov stability theorem. Fur-

thermore, strong passivity of feedback systems is discussed and

two passivity theorems are given. Finally, strongly absolute sta-

bility of Lur’e type descriptor systems (LDS) is investigated by

using the given passivity theorems. It is shown that the pro-

posed results are more general and less conservative than the

existing ones. Two examples are presented to illustrate the ob-

tained results.

The notations used here are standard in most respects. We

use to denote the set of real numbers. and are the

obvious extensions to vectors and matrices of the specified di-

mensions. Let or denote the identity matrix of appropriate

dimension. For matrix , stands for the transpose of .

and denote the real part and the imaginary part of

a complex number, respectively. denotes the determinant

of amatrix. represents the degree of a polynomial. de-

notes the Euclidean norm of a vector or matrix. For an arbitrary

matrix and two symmetric matrices and , the symmetric

term in a symmetric matrix is denoted by , that is,

II. STABILITYANALYSIS OFNONLINEARDESCRIPTOR SYSTEMS

In this section, we will refine the classical concept on Lya-

punov stability and propose a Lyapunov stability theorem for

nonlinear descriptor systems.

A. Definitions of Stability for Nonlinear Descriptor Systems

Consider a linear time-invariant descriptor system

(1)

where is the state variable, are constant

matrices and .

We state here some basic definitions which will be used in

the sequel and can be found in [1] and [7]. If

for some complex number , then the pair is said to

be regular. Regularity of guarantees the existence and

uniqueness of the solutions to system (1). A regular pair

is called impulse-free if . If all

roots of lie in , is called

stable. And the pair is called admissible if it is regular,

impulse-free and stable. It is proved in [6] that is regular

if and only if there exist two nonsingular matrices and

such that can be transformed into the Weierstrass canon-

ical form

(2)

where is a nilpotent matrix, .

And system is impulse-free if and only if .

Consider the nonlinear descriptor system

(3)

where is smooth enough and .

Definition 2.1: [30] System (3) is of index one if the constant

coefficient system

(4)

is regular and impulse-free for all in a neighborhood of the

equilibrium point , where is the Jacobian matrix

.

Solutions to descriptor systems are very complex because of

the existence of algebraic constraints. This paper considers con-

tinuous solutions of system (3), although distributional solutions

are also important. The initial conditions for continuous solu-

tions are required to be consistent.

Definition 2.2: [31] The initial condition is con-

sistent at if there exists a solution to system (3), such

that .

As illustrated by [16], [32], knowledge of is sufficient

to completely determine the solution of system (3) for

. Thus we introduce the following assumption on the existence

and uniqueness of solutions to system (3).

Assumption 2.1: For any with being a consistent ini-

tial condition, system (3) has unique continuous solution over

.

In the sense of Lyapunov stability: an equilibrium point is

stable if all solutions starting at nearby points stay nearby; oth-

erwise, it is unstable. It is asymptotically stable if all solutions

starting at nearby points not only stay nearby, but also tend to the

equilibrium point as time approaches to infinity [20]. One can

see that Lyapunov stability describes certain continuous depen-

dence of the solutions on initial conditions. Motivated by this

idea, we define the following stability concepts for system (3).

Definition 2.3: The equilibrium point of system (3) is

i) stable if, for each , there is such that

(5)

where denotes arbitrary consistent initial condition.

ii) locally asymptotically stable if it is stable and can be

chosen such that

where denotes arbitrary consistent initial condition.
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iii) globally asymptotically stable if it is stable and for any

consistent initial condition , it holds that

Remark 2.1: When , system (3) is reduced to a stan-

dard state-space system and Definition 2.3 coincides with the

corresponding stability definitions for a standard state-space

system [20].

Remark 2.2: For a time-invariant descriptor system (1),

asymptotical stability defined by Definition 2.3 is equiv-

alent to the widely used definition, that is, all roots of

satisfying . To show this,

we take Laplace transformation for system (1). Then we have

. Consequently, Assumption 2.1 is

equivalent to requiring the system to be regular. Thus without

loss of generality, we can assume that system (1) is in the

Weierstrass canonical form

(6)

where is a nilpotent matrix, .

The solution of system (6) is given by

(7)

Thus, the consistent initial condition is given by

. Therefore, according to Def-

inition 2.3, system (6) is asymptotically stable if and only if

every eigenvalue of has negative real part.

Remark 2.3: In [16], [28], the classical Lyapunov stability of

nonlinear descriptor systems was studied. Specifically, system

(3) is stable if for each , there is such that

(8)

where denotes arbitrary consistent initial condition. It can

be seen that (5) implies (8). The inverse is also true if system

(3) is of index one. To show this, without loss of generality, we

assume that system (3) is in the following form

(9)

When system (9) is of index one, there exists a unique solu-

tion in some neighborhood of the equilibrium

satisfying with . Then,

. Hence, for any , there is , such

that , which shows

that (8) implies (5). Thus the stability concept defined by Defi-

nition 2.3 is equivalent to the classical Lyapunov stability [16],

[28] if the system is of index one. But the new concept facil-

itates the formulation of the relationship between the stability

and passivity of nonlinear descriptor systems, as will be shown

in the next section.

B. Lyapunov Stability Theorem for Nonlinear Descriptor

Systems

In [16], [28], a sufficient condition was proposed for system

(3) to be of index one and locally asymptotically stable in the

sense of classical Lyapunov stability. According to the discus-

sion in Remark 2.3, the stability in the sense of Definition 2.3

is equivalent to the classical Lyapunov stability if system (3) is

of index one. Hence, the result is also valid in the sense of Def-

inition 2.3. The following lemma recalls the above mentioned

result.

Lemma 2.1: [16] Let be a neighborhood of .

Suppose that there exists a function vanishing

at and positive elsewhere which satisfies the following

properties

i) for some function

;

ii) ;

iii) , where denotes the

Jacobian of .

Then the equilibrium of system (3) is locally asymp-

totically stable and the nonlinear descriptor system is of index

one.

To establish Lyapunov stability Theorem for nonlinear de-

scriptor systems, we recall the following well-known definition

and lemma.

Definition 2.4: [20] A continuous function

is said to belong to class if it is strictly increasing

and . A class function is said to belong to class

if as .

Lemma 2.2: [20] Let be a continuous positive

definite function. Then, there exist class functions and ,

such that

Moreover, if is radially unbounded, then and can

be chosen to belong to class .

Now we are ready to propose the Lyapunov stability theorem

for nonlinear descriptor system (3).

Theorem 2.1: Suppose that there exists a function

with , satisfying the following properties:

i) ;

ii) is continuously differentiable in and twice contin-

uously differentiable in a neighborhood of the origin;

iii) ;

iv) for some function ;

v) ;

vi) , where denotes the Jacobian of

;

vii) .

Then system (3) is globally asymptotically stable and of index

one.

Proof: Using Lemma 2.1, conditions i)–vi) imply that

the equilibrium is locally asymptotically stable and the

nonlinear descriptor system is of index one. Consequently,

according to Definition 2.3, the globally asymptotical stability

is guaranteed if, for any small , there exists , such
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that . Thus, to show the globally asymptotical

stability, it sufficient to prove .

For any given , let . Condition vii)

implies that for any , there exists such that

whenever . Thus .

Denote . It follows from condition v) that

Then any trajectories starting in at stay there for all

.

Condition iii) and v) indicates that is monotonically

decreasing and bounded from below by zero, which shows that

To show , we use a contradiction argument. Suppose

. By continuity of , there is with such that

. Then

implies that .

By Lemma 2.2, it follows from conditions i)–iv) that there

exist class functions , and class functions

such that

Since , we have

Since the right-hand side will eventually become nega-

tive, the inequality contradicts the assumption that .

Therefore, we have which shows that

and system (3) is globally asymptoti-

cally stable and of index one.

Remark 2.4: Theorem 2.1 generalizes and extends some of

the existing stability results for descriptor systems.

� Consider the case that system (3) is a linear system in

the form of (1). Define a generalized quadratic Lyapunov

function ,

where satisfying ,

, is a matrix of full

column rank such that and .

Then satisfies conditions i), ii), iii), iv), vi), and

vii) of Theorem 2.1. And condition v) is equivalent to

. Therefore, The-

orem 2.1 reduces to the Lyaponov stability theorem given

by [8] if system (3) is a linear time-invariant descriptor

system.

� Compared with the stability results for nonlinear descriptor

systems in [16], [28], Theorem 2.1 introduces condition

vii). Such a condition is necessary to guarantee the global

stability of nonlinear descriptor systems.

III. PASSIVITY ANALYSIS OF NONLINEAR

DESCRIPTOR SYSTEMS

In this section, strong passivity is defined for descriptor sys-

tems by specializing the storage function and supply rate of

dissipativity [28], [29]. The connection between stability and

strong passivity is established. Furthermore, strong passivity of

feedback systems is discussed and two passivity theorems are

given.

A. Definitions of Passivity for Nonlinear Descriptor Systems

Consider the nonlinear descriptor system

(10)

where is smooth enough,

is continuous and , .

Definition 3.1: [28], [29] System (10) is said to be dissipative

if there exists a storage function and a scalar supply

rate such that the dissipation inequality

(11)

holds along all possible trajectories of system (10) starting at

, for any .

If the storage function is differentiable, then in-

equality (11) is equivalent to

Passivity is dissipativity with the supply rate

. Furthermore, if there exists a positive definite function

, such that

then system (10) is called strictly passive.

Throughout the paper, we will consider the passivity with ad-

ditional properties.

Definition 3.2: System (10) is said to be strongly passive if it

is strictly passive and the storage function , where ,

satisfies

i) is continuously differentiable in and twice contin-

uously differentiable in a neighborhood of the origin;

ii) is positive definite and radially unbounded with

respect to . That is,

;

iii) , where such that

and denotes the Jacobian of .

Remark 3.1: When , Definition 3.2 reduces to the con-

cept of strong passivity of standard state-space systems given

by [33]. The assumptions i), ii), and iii) posed on the storage

function facilitate to establish the connection between the strong

passivity and stability of nonlinear descriptor systems. These as-

sumptions are always satisfied for linear descriptor systems be-

cause linear passive systems have quadratic storage functions

[26].
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Fig. 1. Feedback connection.

Definition 3.3: [20] A function is passive if

.

B. Passivity Theorem for Nonlinear Descriptor Systems

Using Theorem 2.1, we have the following result which es-

tablishes the connection between stability and strong passivity

of nonlinear descriptor systems.

Theorem 3.1: The origin of is globally

asymptotically stable and of index one if system (10) is

strongly passive.

Now we discuss strong passivity of feedback descriptor sys-

tems. Consider the feedback connection of Fig. 1, where each

of the feedback components and is either a descriptor

system of the following form

(12)

or a function represented by

(13)

The interconnection is assumed to be well-defined.

When both components and are nonlinear descriptor

systems, the closed-loop system takes the form of (10) with

In this case, the interconnection is well-defined if equation

(14)

has a unique solution for every .

When one component, say is a nonlinear descriptor

system, while the other one is a function, the closed-loop

system takes the form of (10) with

In this case, the interconnection is well-defined if equation

(15)

has a unique solution for every .

Theorem 3.2: The feedback connection of two strongly pas-

sive descriptor systems is strongly passive.

Fig. 2. Lur’e type descriptor systems.

Proof: Suppose that and are strongly passive. Then

there exist storage functions and and posi-

tive definite functions and satisfying conditions

i)–iii) of Definition 3.2 and .

From the feedback connection of Fig. 1, we have

Let and

, we can show that satisfies conditions i)–iii) of

Definition 3.2 and is positive definite. Furthermore,

Hence, the feedback connection is strongly passive.

Similarly, we can have the following result.

Theorem 3.3: The feedback connection of a strongly passive

descriptor system and a passive function is strongly passive.

Remark 3.2: Theorem 3.1 establishes the connection between

Lyapunov stability and strong passivity of nonlinear descriptor

systems. Theorems 3.2 and 3.3 generalize the classical passive

theorems [20] to nonlinear descriptor systems. These results

are useful for stability analysis of nonlinear feedback descriptor

systems.

IV. STRONGLY ABSOLUTE STABILITY OF LUR’E TYPE

DESCRIPTOR SYSTEMS

In the previous sections, Lyapunov stability theorem and pas-

sivity theorem are proposed for nonlinear descriptor systems.

The results (Theorems 3.1 and 3.3) will be used in this section

to further investigate strongly absolute stability of Lur’e type

descriptor systems (LDS) that admit the block diagram repre-

sentation of Fig. 2, which is the feedback interconnection of the

descriptor system with a static nonlinearity .

The descriptor system is described by

(16)

where , . The nonlinearity satisfies

certain sector condition.

The following definition summaries the sector terminology.

Definition 4.1: A function is said to belong

to the sector

i) , if ;

ii) , if , where is a sym-

metric positive definite matrix;
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Fig. 3. Loop transform for the block when .

Fig. 4. Loop transformed Lur’e system when .

iii) with , if

, where and are sym-

metric matrices.

Definition 4.2: Consider the LDS, where satisfies a sector

condition in Definition 4.1. The system is said to be strongly

absolutely stable if the equilibrium point is globally asymptot-

ically stable and of index one for any nonlinearity in the given

sector.

Remark 4.1: Definition 4.2 is a generalization of the classical

absolute stability for standard state-space systems [20] as well

as the strongly absolute stability for standard LDS where is

a linear time-invariant descriptor system [18], [19].

We will propose a stability criterion for general LDS and then

specialize the result to standard LDS.

A. Strongly Absolute Stability Criterion for General LDS

Theorem 4.1: Assume that is in the form of (16). Then,

the LDS is strongly absolutely stable with respect to sector

i) , if system is strongly passive.

ii) , if system is strongly passive, where is

shown in Fig. 4.

iii) , if system is strongly passive, where is

shown in Fig. 6.

Proof: Assume that system is strongly passive. By Defi-

nition 4.1, every belonging to sector is passive. Then,

using Theorem 3.3, the feedback connection of system (16) and

nonlinearity is strongly passive. By Theorem 3.1

and Definition 4.2, the LDS is strongly absolutely stable with

respect to sector . This completes the proof for i).

As stated in [20], a function in sector can be trans-

formed into a function in sector by the loop transform

described in Fig. 3. The transformed system described in Fig. 4

is equivalent to the original LDS. Then we can prove ii) by the

same way as we prove i).

Fig. 5. Loop transform for the block when with
.

Fig. 6. Loop transformed Lur’e system when with
.

A function in sector can be transformed into a func-

tion in sector by the loop transform described in Fig. 5.

The transformed system described in Fig. 6 is equivalent to the

original LDS. Then we obtain iii) by the same way as we prove

i).

Remark 4.2: In [18], [19], strongly absolute stability problem

for LDSwas considered. However, the proposed results requires

to be a linear time-invariant descriptor system and nonlin-

earity to belong to . Thus Theorem 4.1 is more general

than the existing results.

B. Strongly Absolute Stability Criterion for Standard LDS

Consider the standard LDS, where is a linear time-in-

variant descriptor system,

(17)

From Theorem 4.1, strongly absolute stability of LDS is guar-

anteed by the strong passivity of system . The following result

present a sufficient condition for (17) to be strongly passive.

Lemma 4.1: System (17) is strongly passive if there exist

matrices satisfying the following LMI

conditions

(18)

(19)

(20)

Proof: Assume that there exist matrices

satisfying (18)–(20).
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Let , where satisfies (18) and (20). It

holds that because matrix is non-

singular by (20). From [8], matrix satisfying

and can be parameterized by

, where satisfying ,

, is a matrix of full column

rank such that and . As a result,

. Then is a func-

tion of and can be expressed as . It is easy to show

that satisfies conditions i)–iii) of Definition 3.2.

From (19), it follows that

(21)

Differentiating along the trajectories of the system,

we have

(22)

Taking into account (21), we obtain

(23)

where

From (20) and (23), there exists , such that

Hence, system (17) is strongly passive.

Remark 4.3: If we set in (19) and (20), Lemma 4.1

reduces to Corollary 2 of [37], which provides a sufficient condi-

tion for admissibility and passivity of linear descriptor systems.

Thus Lemma 4.1 is less conservative than the result of [37].

The LMI conditions in Lemma 4.1 coincide with those in

Corollary 9 of [23], which provides a condition for admissibility

as well as for extended strict positive realness. As stated by [23],

non-strict LMIs may lead to numerical singularity problems.

A method has been proposed by [23] to convert the non-strict

LMI (18) into a strict one. In this paper, we will deal with the

non-strict LMI (18) and (19), simultaneously, and show that the

non-strict LMIs (18)–(20) can be converted into a single strict

LMI.

Let orthogonal matrix and be such

that

(24)

where is positive definite and diagonal.

From (24), it can be seen that and .

Then by (19), we have , which gives

that with , where

and . As a result, . Therefore,

matrix variable satisfying (19) can be parameterized as

Furthermore, by [19], we have where

and

.

Thus, without any additional conservatism, the non-strict

LMIs (18)–(20) in Lemma 4.1 can be converted to the following

strict LMI,

(25)

where .

Then by Lemma 4.1, we have the following result.

Lemma 4.2: System (17) is strongly passive if there

exist a positive definite matrix , and matrices

satisfying the strict LMI (25).

When is in the form of (17), the transformed system in

Fig. 4 is given by

(26)

where ,

, , .

The transformed system in Fig. 6 is given by

(27)

where ,

, ,

.

Note that the existence of is necessary for the

interconnection in Fig. 2 being well-defined.

Using Theorem 4.1 and Lemma 4.1, we have the following

result.

Theorem 4.2: Assume is in the form of (17). Then, the

LDS is strongly absolutely stable with respect to sector

i) , if there exist a positive definite matrix

, and matrices

satisfying the strict LMI (25).
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ii) , if there exist a positive definite matrix

, and matrices

satisfying

(28)

where .

iii) , if there exist a positive definite matrix

, and matrices

satisfying

(29)

where .

Remark 4.4: Theorem 4.2 is more general and less conserva-

tive than the existing methods [18], [35]. Specifically,

� The proposed Theorem 4.2 can deal with unbounded

sector, but the methods in [18], [35] can not;

� When , iii) reduces to the stability conditions given

by [18];

� When and , iii) reduces to the stability

conditions given by [35].

Remark 4.5: Time-delays are often involved in practical

control systems, which may induce instability, oscillations or

bad performance for the closed-loop systems. Lur’e systems

with time-delays have been widely considered (see [34] and

the references therein). However, there are few investiga-

tions on LDS with time-delays. The exception is [36], where

an absolute stability criterion was proposed by appropriate

Lyapunov-Krasovskii functional construction. The proposed

passivity framework in this paper provides a new idea for abso-

lute stability analysis of LDS and is expected to be generalized

to deal with absolute stability of LDS with time-delays, as will

be considered in our future work.

V. EXAMPLES

In this section, examples are given to illustrate the proposed

methods and show their advantages over the existing results.

A. Example 1

This example is borrowed from [18] to illustrate the advan-

tages of the proposed methods over the existing results [18],

[35]. The system matrices are as follows:

Fig. 7. A nonlinear circuit.

The method of [35] can not be used to analyze this example

because the system matrix . As shown by [18], this

system is strongly absolutely stable with respect to sector

with . However, when , we find

that the sufficient conditions presented in [18] are not feasible.

We now consider this case by using Theorem 4.2.

By computation, , and can be obtained by the singular

value decomposition of as

Solving LMI (29) gives

Then, by Theorem 4.2, the system is strongly absolutely

stable with respect to sector with .

Therefore, as shown in Remark 4.4, Theorem 4.2 is more gen-

eral and less conservative than the existing methods [18], [35].

B. Example 2

This example will demonstrate how the proposed method is

applied to analyze the circuit displayed in Fig. 7, where a dc

source with voltage is connected in series to a linear resistor, a

linear inductor and a nonlinear capacitor with characteristic

satisfying sector constraint . Similar

nonlinear capacitors have been considered in [38].
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This circuit may be easily shown to admit the charge-flux

description

(30)

where is the magnetic flux in the inductor.

To study the stability of system (30) with by the pro-

posed method, we shall rewrite the system as an LDS with in

the form of (17). Let . Then we have

in the form of (17) with

The nonlinearity and the section condition is

described by .

Let , , , .

Solving LMI (29), we have

Then, by Theorem 4.2, the system is strongly absolutely

stable with respect to sector [0.1, 10]. However, we find that

the methods in [18], [35] are not valid for this example.

The presented examples show that Theorem 4.2 can be ap-

plied to more general LDS and is less conservative than the

methods in [18], [35].

VI. CONCLUSIONS

In this paper, the stability and passivity of nonlinear de-

scriptor systems have been investigated. The classical concept

on Lyapunov stability was refined and strong passivity was

defined for descriptor systems, which facilitates to link the sta-

bility to passivity of nonlinear descriptor systems. A Lyapunov

stability theorem which describes a sufficient condition for the

system to be globally asymptotically stable and of index one

was proposed. Furthermore, the connection between Lyapunov

stability and strong passivity was established and two passivity

theorems were given. Based on these results, strongly abso-

lute stability criteria for Lur’e type descriptor systems were

proposed, which were shown to improve the existing methods.

Finally, two examples were given to demonstrate the utility of

the methods and the advantages of the results.

The proposed results did not take into account time-delays

which are often involved in practical control systems. In the

future, we will try to extend the developed Lyapunov stability

theorem and passivity theorem to deal with nonlinear descriptor

systems with time-delays. In addition, stability of nonlinear

descriptor systems, which relates nicely to passivity, is also an

interesting topic for the future.
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